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This Paper

Identifies distribution of random coefficients for large class of
models.

Covers discrete choice, bundles models, consideration set
models, among others.

Key feature: need to identify average demand function.

Get traction by exploiting envelope theorem.
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Example: Discrete Choice

Discrete choice with linear random coefficients

(]
/
VK = ,Bka + €k.

@ 3 and ¢ are random

@ Special case is random coefficients logit, in which € has a
known distribution up to location.

e Studied in Fox, il Kim, Ryan, Bajari (2012, JoE).

o We differ by letting both 3 and € have nonparametric
distribution.

e Identify all moments of 8 = (34, ..., Bk)-



General Model

These models (and others) can be written as perturbed utility
models of the form

K

Y(X.B.¢) € argn;aXZ(ﬁ’ka)yk +D(y,e).
YeE k=1

@ Y is quantity vector for K goods.
@ X collects regressors.

@ ¢ can be infinite dimensional.

@ B is nonrandom however D(y,¢) can be —oo for certain
combinations.
e Allows “consideration sets.”



Identified Primitive

This paper starts with average structural function

Y(x) = / Y (x, 8,2)dr(8, )

and asks what we can learn about distribution of 3.

@ When X and (f3,¢) are independent,

Y(x) =E[Y | X = x].
@ Also identifiable with endogeneity.

o We complement Berry and Haile (2014, ECTA), who identify
Y (x) in a demand setting with instruments.



Envelope Theorem

Let

K
V(B1x1, - - - Brxk) :/ (Teaé(Z}/k(ﬂLXk) + D(%ﬁ)) dp(e).
k=1

Then
/ Y (x, . €)du(e) = VV(Bix, .., Bixk)

at any point of differentiability.

o Related to Williams-Daly-Zachary theorem of discrete choice.
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Slope-Intercept Independence

B and e are independent so we can write

_ / / Y (x, 3, €)dp(e)dv(B).

Notation:

/Y x,8,¢)

Y(x) = / x, B)dv(B



Assume each x is scalar for simplicity.

Write envelope theorem as
Yi(x,8) = 0 V(Brix1, - - -, B xk)-
Differentiate envelope theorem further to get
Oy Yi(x,8) = 0k V(Brx1, - - ., Bk xk)Bj

and
Dx 05 Y (X, B) = Opju V(Brx1, - - -, Bx)Bebj-



Take expectations over 3 and evaluate at x = 0 to get:
0,05 V4(0) = 01, V(0) [ Busydv(5),

o Key feature: 9y «V/(0) does not depend on (.



Example: Identification of Second Moments

01,0 V(0) = D112 V(0) / B2du(p)
0,0, V(0) = 122 V(0) / Ba81dv(B)
0,0, Y1(0) = 92,11 V(0) / 8,82 (B)

0,0, V1(0) = D22 V/(0) / B2dv(p)

—
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Example: Identification of Second Moments

D505, Y2(0)  8112V(0) [ B2dv(B)
D0, Y1(0)  02,1,1V(0) [ B1B2dv(B)
[ Bdv(B)

[ B1Bedv(B)

@ Uses symmetry 01,12 V/(0) = 02,11 V(0).

@ Symmetry has been used without random coefficients in Allen
and Rehbeck (2019, ECTA).
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Example: Identification of Second Moments

Combining other equations identifies the ratio of any two second
moments.

o Identification given a scale assumption [ 32dv(8) = 1.
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Main Result

Theorem

Assume fﬁ{‘f’ldy(ﬂ) is known. Under regularity conditions, each
M-th order moment of the form

/6/(1,[1 e BkaMdV(/B)

is identified. In addition, for each v € {1,..., K}M+1,

2, V(0)

is identified.
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Counterfactuals and Welfare

Can identify counterfactual /welfare objects under additional
assumptions.

@ Integrated indirect utility

K
V(Bix1, - Brxk) = / <r}p€a§ZYk(ﬁ;<Xk) + D(ya€)> du(e).
k=1

14 /17



|dentification of V' (Welfare)

How to identify V7

@ Main result identified partial derivatives of V at 0.

e If V is real analytic we can identify the function globally from
these derivatives.

o (Paper presents two other techniques.)
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Counterfactuals

Once V is identified, counterfactuals can be identified from
envelope theorem.

7k(XwB) - 81(\/(/81)(17 o 7/8;(XK)-

16 /17



Conclusion

o

Identification of moments of linear random coefficient
distribution in class of perturbed utility models.

Covers several examples in a single framework.

@ Requires only the average structural function.

Exploits the envelope theorem.
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