Minimum-wage policy implications in higher education

Diana Alessandrini

Joniada Milla
St. Francis Xavier University
St. Mary's University

Motivation

- In North America, 50\% of minimum-wage workers are between ages 17-29.
- Within this group, half are students.

However.

- most studies are silent on whether minimum-wage policies affect higher education.

Existing literature

- Baker (2005) and Pacheco and Cruickshank (2007) study school enrollment (i.e. high school and post-secondary combined) of 15-24 year olds.
- Lee (2020) studies community-college enrollment.

We distinguish between university and community college, and study decisions beyond enrollment.

Our findings

A 10\%-increase in the minimum wage

increases community-college enrollment by 6\%
reduces university enrollment by 5%

Why?

Community college:

University:

- High minimum wages reduce dropouts and encourage mature students to return to community college after a job separation
- High minimum wages lead to fewer low socioeconomic-status (SES) students in university

University

$$
Y_{i p t}=\alpha_{0}+\alpha_{1} \ln \left(M W_{p t}\right)+\boldsymbol{\alpha}_{2} \mathbf{X}_{\mathbf{i p t}}^{\prime}+\boldsymbol{\alpha}_{3} \mathbf{Z}_{\mathbf{p t}}^{\prime}+u_{i p t}
$$

linear probability model
MW = real minimum wage
Table 1
$Y_{i p t}: \quad$ Enrolled $_{i p t}$ Enrolled $_{i p t}$ Enrolled $_{i p t}$ Dropped $_{i p t}$ Returned $_{i p t}$

Sample:	All	High SES	Low SES	All	All
$\ln \left(\mathrm{MW}_{p t}\right)$	$\begin{gathered} -0.079^{* * *} \\ (0.015) \end{gathered}$	$\begin{gathered} 0.025 \\ (0.036) \end{gathered}$	$\begin{gathered} -0.113^{* * *} \\ (0.018) \end{gathered}$	$\begin{gathered} 0.029 \\ (0.037) \end{gathered}$	$\begin{gathered} 0.057^{* * *} \\ (0.021) \end{gathered}$
Elasticity	-0.5	0.1	-0.9	0.3	1.8
N	220,518	30,655	189,863	16,963	19,658
R^{2}	0.322	0.434	0.244	0.070	0.026

Community college
$Y_{i p t}=\alpha_{0}+\alpha_{1} \ln \left(M W_{p t}\right)+\boldsymbol{\alpha}_{2} \mathbf{X}_{\mathbf{i p t}}^{\prime}+\boldsymbol{\alpha}_{3} \mathbf{Z}_{\mathbf{p t}}^{\prime}+u_{i p t}$
linear probability model
MW = real minimum wage

Canadian data

Education Data: Survey of Labour and Income Dynamics (1993-2011)
Minimum wage: Provincial real minimum wages (1993-2011)
Sample: Individuals aged 18-45 with at least a high school diploma or GED equivalent

Data strengths: Panel data following students and workers Great variation in provincial minimum wages (136 changes in 19 years)

Difference-in-differences

$Y_{i p t}=\beta_{0}+\beta_{1} \ln \left(M W_{p t}\right)+\beta_{2} \ln \left(M W_{p t}\right) \times D_{i p t}+\beta_{3} D_{i p t}+\boldsymbol{\beta}_{4} \mathbf{X}_{\mathbf{i p t}}^{\prime}+\boldsymbol{\beta}_{5} \mathbf{Z}_{\mathbf{p t}}^{\prime}+u_{i p t}$
$D_{i p t}= \begin{cases}1 & \text { if } \text { Wage }_{i p t-1}<\text { Nominal }_{\text {in }} W_{p t} \\ 0 & \text { if NominalM } W_{p t} \leq \text { Wage }_{\text {ipt }-1}\end{cases}$
if NominalM $W_{p t} \leq$ Wage $_{i p t-1} \leq$ Nominal $_{\text {No }} W_{p t} \times \phi$

Table 3				
$Y_{i p t}$	Enrolled $_{\text {ipt }}$			
Institution:	University	University	Comm. College Comm. College	
$\phi=$	1.5	2	1.5	2
$\ln \left(\mathrm{MW}_{p t}\right) \times \mathrm{D}_{\text {ipt }}$	-0.090^{*}	$-0.101^{* *}$	$0.187^{* * *}$	$0.197^{* * *}$
	(0.049)	(0.050)	(0.063)	(0.060)
N	35,829	57,613	32,596	53,928
R^{2}	0.395	0.387	0.240	0.222
X				

$X=$ demographics, family income, family size, parental education.
$Z=$ tuition, de-trended GDP, PSE wage premium, $\%$ of individuals living in rural areas.

