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Abstract

This paper deals with identification and inference on the unobservable conditional factor

space and its dimension in large unbalanced panels of asset returns. The model specification

is nonparametric regarding the way the loadings vary in time as functions of common shocks

and individual characteristics. The number of active factors can also be time-varying as

an effect of the changing macroeconomic environment. The method deploys Instrumental

Variables (IV) which have full-rank covariation with the factor betas in the cross-section. It

allows for a large dimension of the vector generating the conditioning information by machine

learning techniques. In an empirical application, we infer the conditional factor space in the

panel of monthly returns of individual stocks in the CRSP dataset between January 1971 and

December 2017.
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1 Introduction

This paper studies empirical asset pricing models with unobservable risk factors and time-varying
factor sensitivities. The exposures of assets to various forms of systematic risk can be time-varying,
as an effect of the changing macroeconomic environment and individual asset characteristics. The
empirical asset pricing literature deploying time-varying beta specifications has mostly focused on
models with observable factors (see e.g. Connor and Korajczyk (1989), Shanken (1990), Cochrane
(1996), Ferson and Schadt (1996), Ferson and Harvey (1991, 1999), Lettau and Ludvigson (2001),
Petkova and Zhang (2005) using portfolios, and Gagliardini, Ossola and Scaillet (2016, 2019) using
individual stocks). In such models, the risk factors are a-priori identified with observable economic
variables. However, empirical research shows that there is a great latitude in the choice of the
economic factors explaining equity portfolios returns, see in particular the emerging literature on
the “factor zoo" (e.g. Cochrane (2011), Feng, Giglio and Xiu (2019)). Moreover, it is not clear
whether the same risk factors are relevant for individual stocks as well.

The difficulty in identifying economic risk factors can be solved empirically by using latent factor
models. In recent years, there has been a growing interest for large panel models with unobservable
factors. However, this literature has been confined mostly to a framework with time-invariant
factor sensitivities (see e.g. the pioneering work of Bai and Ng (2002), Bai (2003), Stock and
Watson (2002), and the more recent developments in e.g. Onatski (2009), Ahn and Horenstein
(2013)). Allowing for general time-variation of the coefficients as functions of the conditioning
information is key when addressing the questions on how many, and which ones, are the systematic
risk factors. In fact, a model with one risk factor, say, and time-varying risk exposures can be
confused with a model with several risk factors, when the exposures are erroneously assumed time-
invariant. The aim of this paper is to overcome these difficulties by simultaneously accommodating
the unobservability of the factor values and the time-variation of the factor sensitivities. This task
requires to develop new econometric methodologies, because the traditional approach for inference
in linear latent factor models relying on Principal Component Analysis (PCA) cannot be applied
with time-varying loadings.

The contributions of this paper are twofold. First, we develop a novel methodology to extract
statistical (i.e. unobservable) factors in linear cross-sectional factor models with time-varying
coefficients. Our modeling framework is both coherent with the implications of the absence of ar-
bitrage opportunities in large economies with conditioning information, and very general regarding
the assumptions on the dynamics of factor betas. In fact, our approach is essentially nonpara-
metric with respect to the beta dynamics, and focuses on valid inference on the conditional factor
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structure - both regarding the dimension and the span of the conditional factor space. A major
distinctive feature of our work compared to existing literature is that the dimension of the condi-
tional factor space can be time-varying, as an effect of the systematic changes in factor exposures.
To the best of our knowledge, this paper is the first to propose inference on the number of latent
factors with conditional betas. Our methodology relies on two key inputs, namely availability of
a sufficiently large number of instruments, and knowledge of the variables spanning the filtration
of common shocks. Instruments are variables assumed to be cross-sectionally uncorrelated with
idiosyncratic errors but full-rank correlated with factor betas, and are used to construct cross-
sectional averages from which factors can be extracted, in a similar vein as in Gagliardini and
Gourieroux (2017). Given the conditional setting adopted in this paper, the factor space at a
given date is defined in terms of innovations which are unpredictable w.r.t. the sigma-field of
aggregate shocks at the previous date. This implies that factor extraction requires finding the
residuals of the projection of the cross-sectional averages on the sigma-field of aggregate shocks
at the previous date. Being the latter sigma-field generated by a potentially very large number of
economic and financial variables, we deploy a machine learning approach via post-Lasso estima-
tors (see e.g. Belloni et al. (2012)) or artificial neural networks. We investigate the small- and
large-sample properties of our estimators and inferential procedures. We show the consistency of
the estimator of the (time-varying) number of factors in a large-n-large-T asymptotics 1.

Second, our empirical contribution consists in estimating the conditional factor space from the
unbalanced panel of monthly returns for individual stocks in the CRSP dataset in the period
between January 1971 and December 2017. We select 22 characteristics for each firm as our
instrumental variables from Freyberger, Neuhierl, and Weber (2017) and the portfolio weights
of some observable factor returns. We include 34 different monthly variables to generate the
information set of aggregate shocks. Our methodology provides a first evidence that the number
of latent conditional factors is time-varying and small, ranging between 1 and 2 in most months
in our sample. Our estimator selects only one conditional factor in almost 75% of the months and
especially often after 2000. Some finite-sample volatility of the estimator makes challenging the
exact determination of the regime shifts in the number of conditional factors. We also investigate
to which extent the conditional factor space coincides with that of traditional specifications with
observable factors. Considering a model with only 1 conditional latent factor, we estimate the
conditional canonical correlation between our latent factor and the market factor. The results
show that the latent factor has a conditional correlation over 0.5 with the market factor in most
months in the period 1980-2000, and that it tends to correlate more just before or during recessions.

1Zaffaroni (2019) considers inferential theory with unobserved factors in a setting with n large and T fixed.
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When we let the number of conditional factors be time-varying, we see large improvements in the
first conditional canonical correlation of the latent factors with Fama-French factors, compared
with the single factor case. Such increases mean that not only the market factor but also e.g. the
SMB and HML factors help explain our conditional latent factor space. However, the estimated
second conditional correlation is constantly rather small, suggesting that Fama-French factors do
not span the entire conditional factor space.

Some recent papers allow time variation in betas in unobserved factor models via instruments.
Connor, Linton and Hagmann (2012) estimate nonparametrically characteristic-based factor mod-
els in which the betas are individual-independent functions of observed regressors. An extension
of their base specification allows for time-variation of the regressors. Fan, Liao and Wang (2016)
develop the Projected PCA method which accommodates an additive individual-specific compo-
nent in the characteristic-based betas but in a time-invariant framework. Pelger and Xiong (2018)
consider kernel estimation of betas which are functions of a small vector of observable state vari-
ables. Gagliardini, Ossola and Scaillet (2019) develop a diagnostic criterion to select the number
of omitted unconditional latent factors in a large approximate conditional model with observed
factors. Recent studies in the same topic as ours include Kelly, Pruitt and Su (2017, 2019).
In their pioneering work, these authors introduce Instrumented Principal Component Analysis
(IPCA) for estimating both the time-varying beta loadings and the latent factors. The method
makes it possible to disentangle the dynamics of beta loadings from latent factors by assuming a
constant mapping matrix Γ, which links linearly “instrumental” variables to factor loadings. The
estimation method consists in solving a least squares problem with respect to matrix Γ and sample
factor values in a similar vein as panel fixed effects estimators. Both our and Kelly, Pruitt and Su
(2017, 2019) papers follow similar ideas as PCA but under a dynamic setting to extract statistical
latent factors from a large dataset. In order to do so, we both use instumental variables as ad-
ditional information for identifying factors. However, our paper is distinct from theirs in several
aspects, and the two methodologies are complementary in some respect. Firstly, we estimate the
conditional factor space in a more general setting without specifying any particular model that
links the factor loadings to instruments. The framework of IPCA is useful instead as it allows
to estimate the mapping of factor loadings to instrumental variables at the same time. Secondly,
we introduce a consistent selection procedure for the number of conditional factors and allow the
latter to be time-varying to better accommodate reality. Thirdly, our methodology allows to es-
timate non-parametrically the time-varying risk premium associated with the conditional latent
factors, and the associated Stochastic Discount Factor (SDF). Some recent work also takes ad-
vantage of machine learning methods to achieve greater flexibility in modeling beta dynamics and
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accommodate large conditioning information sets. Among others, Gu, Kelly and Xiu (2019) use
autoencoder artificial neural networks. Finally, Ait-Sahalia and Xiu (2017), Liao and Yang (2018),
Pelger (2019 a,b), Li, Todorov and Tauchen (2019) consider inference in large-dimensional models
with unobserved factors using high-frequency data.

The rest of the paper is structured as follows. Section 2 introduces the model framework. Section
3 presents identification of the conditional factor space and its dimension. Section 4 provides
estimates of the factor space and a procedure to infer the number of conditional factors. Section 5
discusses the economic identification of the factor space. Section 6 provides the empirical analysis
on the CRSP dataset. Technical developments and a Monte Carlo analysis are relegated to the
Appendix.

2 Conditional Factor Model

We consider the following linear factor model for asset returns with time-varying coefficients:

yi,t = ai,t−1 + b′i,t−1ft + εi,t, (1)

where yi,t denotes the excess return on asset i in period t, for i = 1, · · · , n and t = 1, · · · , T .
Coefficient ai,t−1 is a Fi,t−1-measurable scalar, and bi,t−1 is a Fi,t−1-measurable k× 1 vector, where
Fi,t for t varying is the filtration of the relevant information for asset i. The sigma-field Fi,t is
such that Fi,t = Ft ∨ Gi,t, where Ft is the information set of common shocks (see Section 3.1 for
a formal definition) and Gi,t is an additional component that is both asset- and time-dependent.
The k× 1 vector ft is Ft-measurable and represents the systematic risk factors. It is unobservable
to the econometrician. The number of factors k is assumed unknown and has to be estimated
from data. In the time-varying setting the number of active factors with non-vanishing loadings
can be smaller than k at some dates t, is Ft−1 measurable, and has also to be determined. The
idiosyncratic error terms εi,t are such that E(εi,t|Fi,t−1) = 0 and Cov(εi,t, ft|Fi,t−1) = 0, which
implies that ai,t−1 and bi,t−1 are conditional alphas and betas for asset i, respectively. Moreover,
the error terms are weakly cross-sectionally correlated as in an approximate factor structure à la
Chamberlain and Rothschild (1983) under assumptions introduced below.

Gagliardini, Ossola and Scaillet (2016), henceforth referred as GOS, study the implications of
Arbitrage Pricing Theory (APT) in conditional factor models for large economies. They build
on the framework of Al-Najjar (1995, 1998, 1999) with a continuum of assets, and extend it to a
setting with conditional information and random draws of the indices of the n assets in the sample.
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Under the Assumptions APR.1-4 in GOS, the following pricing restriction holds:

ai,t−1 = b′i,t−1νt, (2)

for all i, where vector νt is Ft−1-measurable. By inserting equation (2) into (1), we get:

yi,t = b′i,t−1gt + εi,t, (3)

where:
gt = νt + ft. (4)

Then, the vector of equity risk premia is:

λt = E[gt|Ft−1] = νt + E[ft|Ft−1], (5)

where E[·|Ft] denotes conditional expectation given Ft.

The focus of this paper is on identification and statistical inference for the conditional factor space,
including its dimension, in a framework that is nonparametric regarding the dynamics of factor
loadings.

Definition 1. The conditional factor space is identifiable if the stochastic process ft can be
identified from observable data up to linear affine conditional transformations mapping ft into
Rt−1ft + rt−1, where the non-singular k × k matrix Rt−1 and the k × 1 vector rt−1 are Ft−1-
measurable.

In fact, latent factor models are invariant to one-to-one affine transformations of the unobservable
factors. In our conditional setting, the transformation can be time-varying and predetermined, i.e.
function of the information in Ft−1. 2 Under suitable normalization restrictions on the conditional
factor space introduced below, a unique “representer" can be identified. The data available to the
econometrician consists in a large panel of asset returns, the variables generating the information
set Ft of common shocks, and a set of instrumental variables in the filtrations Fi,t to be defined
below. For expository purpose, we present the identification and estimation strategies in the
framework of a balanced panel of asset returns. The extension of the methodology to accommodate
unbalanced panels with missing-at-random data is simple and is discussed later.

2Specifically, the model can be written in terms of the transformed factor f∗t = Rt−1ft + rt−1 and transformed
loading b∗i,t−1 = (R′t−1)

−1bi,t−1, with ν∗t = Rt−1νt − rt−1 and λ∗t = Rt−1λt.
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3 Identification

Our identification strategy heavily relies on cross-sectional averages of the available data. The next
subsection sets the ground to ensure that the probability limits of such cross-sectional averages in
large samples exist and are measurable w.r.t. suitable information sets.

3.1 Probability limits of cross-sectional averages

Let Wi,t denote a random vector measurable w.r.t. information set Fi,t. 3

Assumption 1. (i) For any Wi,t such that sup
i≥1

E[‖Wi,t‖β] < ∞ for some β > 1, the probability

limit

Ec[W·,t] := plim
n→∞

1

n

n∑
i=1

Wi,t

exists, for any t, and is measurable w.r.t. the sigma-field Ft. (ii) The variables generating Ft are
observable and known to the econometrician.

We work with Assumption 1 (i) as a convenient high-level regularity condition that accommodates
various forms of cross-sectional and time-series dependence. With cross-sectionally i.i.d. data,
Assumption 1 (i) corresponds to the standard Law of Large Numbers (LLN) and the sigma field
Ft is trivial. If the data Wi,t, for i = 1, 2, ..., are exchangeable, these data are i.i.d. conditionally

on the sigma-field generated by symmetric functions, i.e. Ft =
∞⋂
N=1

FNt , where FNt denotes the

sigma-field generated by N -symmetric functions of the variables Wi,t, for i = 1, 2, ... (see e.g.
Andrews (2005), Hall and Heyde (1980), Chapter 7). Assumption 1 (i) clarifies why sigma-field
Ft corresponds to common - or systematic - shocks in the economy, that is, the shocks which are
not eliminated by diversification across a large number of assets. Assumption 1 (ii) implies that
conditional expectations of observable quantities given Ft are identifiable for the econometrician.
4

3.2 Identification with time-invariant number of factors

Suppose first that the true number of factors k, unknown to the econometrician, is time-invariant.
We start our identification strategy by imposing the existence of K× 1 instrumental variables wi,t

3This condition covers the case in which Wi,t = (x′i,1, ..., x
′
i,t)
′ consists of the history of variable x up to time t.

4Note that Assumption 1 (ii) does not conflict with the latent character of the factors, since the factors are
unknown functions of the variables generating the sigma-field Ft.
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with K ≥ k, i.e. we assume a known upper bound on the number of unobservable factors and the
availability of at least as many asset-level observable variables which satisfy the next assumption.

Assumption 2. There exists a K × 1 vector of instrumental variables wi,t−1 measurable w.r.t.
Fi,t−1 such that:

(i)Ec[w·,t−1ε·,t] = 0,

(ii) Γt−1 := Ec[w·,t−1b
′
·,t−1] is aK × k full-rank matrix, P -a.s.,

for any t ≥ 1.

Hence, instruments are predetermined variables which feature zero correlation with error terms and
full-rank covariance with the factor loadings cross-sectionally. Lagged values of asset characteris-
tics such as firm size, book-to-market ratio, earnings per share, etc. can provide valid instrumental
variables. 5

Define the limit cross-sectional average:

ξt = Ec[w·,t−1y·,t], (6)

which is measurable w.r.t. Ft under Assumption 1 and is identifiable being a function of the
observed data distribution. Vector ξt corresponds to the returns of K (well-diversifies) portfolios.
Then, equation (3) and Assumption 2 imply:

ξt = Γt−1 gt, (7)

where Γt−1 is the K × k full-rank, Ft−1-measurable matrix defined in Assumption 2 (ii). By
computing the conditional variance of vector ξt given information set Ft−1, we get the K × K

symmetric matrix
V (ξt|Ft−1) = Γt V (gt|Ft−1) Γ′t (8)

which has rank k. Thus, the true number of latent factors k is identifiable by the rank of the
symmetric matrix V (ξt|Ft−1), or equivalently, the number of its non-zero eigenvalues.

Let us now come to the identification of process gt. From equation (8) the eigenvectors of condi-
tional variance-covariance matrix V (ξt|Ft−1) associated to the non-zero eigenvalues span the range
of matrix Γt−1, which is therefore identifiable. Then, from equation (7) vector gt is identifiable

5Assumption 2 does not require instrumental variables to be necessarily time-varying. In the Appendix, we
show that we can generate time-invariant instrumental variables from return data and prove that they satisfy the
identification conditions above.
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up to a one-to-one linear transformation that is Ft−1 measurable. To make the identification
argument more operational in view of the estimation step, we introduce a normalization of the
conditional factor space to fix this conditional transformation uniquely. Let Jt−1 be the K×k ma-
trix of normalized eigenvectors associated to the non-zero eigenvalues of V (ξt|Ft−1). This matrix
is Ft−1-measurable, full-rank, and identifiable up to sign changes if the eigenvalues of V (ft|Ft−1)

are distinct, P -a.s.

Assumption 3. Without loss of generality, we assume that the following normalization restriction
holds for the latent factors:

Γt−1 = Jt−1,

for any t.

Assumption 3 is not a restriction on the Data Generating Process (DGP) since this normalization
can always be achieved by a conditional transformation of the factors. Indeed, for any normaliza-
tion we have Γt−1 = Jt−1Rt−1, where Rt−1 is a k × k invertible matrix, measurable w.r.t. Ft−1.
The conditional factor structure is observationally invariant under the transformation from ft to
the new factor f ∗t = At−1ft, say, with loadings b∗i,t−1 = (A−1

t−1)′bi,t−1, where At−1 is a non-singular
k × k matrix that is measurable w.r.t. the information set Ft−1. Then, for the rotated factors we
have:

Γ∗t−1 = Ec[w·,t−1b
∗′
·,t−1]

= Ec[w·,t−1b
′
·,t−1]A−1

t−1 = Γt−1A
−1
t−1 = Jt−1Rt−1A

−1
t−1 = Jt−1,

if we choose At−1 = Rt−1. Assumption 3 is a normalization of the conditional factors, which is
alternative to e.g. imposing a conditional variance of the factor vector equal to the identity matrix
(plus additional restrictions on the factor loadings). We prefer the former approach over the latter
one since it simplifies the identification argument and the derivation of the estimators. In fact,
under Assumption 3 equation (8) implies:

V (ft|Ft−1) = Λt, (9)

where Λt is the diagonal k × k matrix of the non-zero eigenvalues of matrix V (ξt|Ft−1).

From equation (7) we deduce that under Assumption 3 vector gt is given by:

gt = J ′t−1ξt, (10)

i.e., the population conditional principal component of vector ξt. The identified value gt depends
on the normalization implied by Assumption 3. We can interpret this identification strategy
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as if we were using the exactly identified set of instrumental variables J ′t−1wi,t−1, and take the
limit cross-sectional averages of cross-products of these new asset characteristics and returns:
gt = Ec[(J ′t−1w·,t−1) y·,t].

For the purpose of identification of the vector ft of factor values, we need the next assumption.

Assumption 4. Without loss of generality, we assume E[ft|Ft−1] = 0.

This assumption can always be imposed on the DGP by a conditional shift of the factor. 6 Under
Assumption 4 the risk premium vector is:

λt = νt = E[gt|Ft−1] = (Jt−1)′E[ξt|Ft−1]. (11)

From (4) and (11) we can identify the vector of unobservable factors:

ft = gt − λt = (Jt−1)′(ξt − E[ξt|Ft−1]). (12)

We have proved the following result.

Proposition 1. Under Assumptions 1-4, the number of latent conditional factors k, the condi-
tional factor values ft, and the conditional risk premium vector λt, are identifiable, for all t.

In particular, for the identification of the conditional factor space we need the observability of the
sigma-field Ft of aggregate shocks, but not of the whole Fi,t, nor the specification of the conditional
betas dynamics.

It is instructive to compare our identification strategy with other recent contributions in the theory
of large-dimensional latent factor models. Bai and Ng (2002), Bai (2003), Onatski (2008), and Ahn
and Horenstein (2013) among others propose methods for estimating the number of factors, and
the factor space, in static latent factor models. These methods rely on the eigenvalue-eigenvector
decomposition of the sample variance-covariance matrix of the data under the assumption of time-
invariant loadings. In our setting with time-varying loadings, we rely instead on the time-series
conditional variance-covariance matrix of a vector of cross-sectional averages, which is shown to
have reduced rank equal to the number of unobservable conditional factors.

The use of instrumental variables to model time-varying betas is a central idea in the IPCA
methodology of Kelly, Pruitt and Su (2017, 2019). IPCA assumes that the number of factors
is known and constant through time, and that the cross-sectional regression coefficient matrix

6Indeed, suppose E[ft|Ft−1] 6= 0. We can rewrite our model (1) in an observationally equivalent way as
yi,t = a∗i,t−1 + b′i,t−1f

∗
t + εi,t, where a∗i,t−1 = ai,t−1 + b′i,t−1E(ft|Ft−1) and f∗t = ft − E(ft|Ft−1). The new factor

f∗t matches Assumption 4.
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(Ec[w·,t−1w
′
·,t−1])−1Γt−1 is time-variant. Further, IPCA does not impose the no-arbitrage restriction

(2).

3.3 Identification with time-varying number of factors

We can extend our identification strategy to treat the case where the true number of factors is
time-varying. In model (1) time variation of the number of factors is implied by the possibly
changing dimension of the space spanned by the loadings (i.e., the column space of the loadings
matrix for a large number of assets) during different economic phases. The number of common
factors at date t is denoted kt and is defined as the rank of the cross-sectional variance-covariance
matrix of the loadings:

kt = Rank Ec [(b·,t−1 − Ec[b·,t−1])(b·,t−1 − Ec[b·,t−1])′] , (13)

and is Ft−1 measurable. We have kt < k at date t, if the loadings of k − kt factors are zero for
most assets at that date, or more generally if (k− kt) linear combinations - with Ft−1-measurable
weights - of the components of vector bi,t−1 are zero for most assets.

Identification of factor dimension kt relies on the following assumption, which is version of As-
sumption 2 adapted to cover a time-varying (TV) number of factors.

Assumption 2.TV There exists a K × 1 vector of instrumental variables wi,t−1 measurable
w.r.t. Fi,t−1 such that:

(i)Ec[w·,t−1ε·,t] = 0,

(ii) Γt−1 := Ec[w·,t−1b
′
·,t−1] is a K × k matrix of column rank kt,

for any t, where kt ≤ k is Ft−1-measurable.

By the argument in Section 3.2 we identify kt from the rank of matrix V (ξt|Ft−1) = Γt−1 V (gt|Ft−1) Γ′t−1.
Hence, the time-varying number of factors is identifiable at each date under Assumption 2.TV.

For the identification of vector gt we mimic the strategy in Section 3.2. First, let Jt−1 be the K×kt
matrix having as columns the normalized eigenvectors of matrix V (ξt|Ft−1) associated with the kt
non-zero eigenvalues.

Assumption 3.TV Without loss of generality, the following normalization restriction holds for
the latent factors:

Γt−1 = [Jt−1 : 0K×(k−kt)],
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for any t.

The interpretation of this normalization restriction when kt < k is that we are adopting a trans-
formation of the unobservable factors such that the loadings of the last k−kt components are zero
for almost all assets at date t. This yields the right block of zeros 0K×(k−kt) in matrix Γt. The
normalization of the left block of Γt−1 to get Jt−1 is achieved by an additional transformation of
the first kt components of the factor vector in analogy to Section 3.2.

From equation (7) we deduce that under Assumption 3.TV:

ḡt := J ′t−1ξt (14)

identifies the kt-dimensional sub-block of the vector gt corresponding to the rotated factors with
non-vanishing loadings at date t. The corresponding factor values f̄t and risk premia vector λ̄t are
identified as before under Assumption 4 as

f̄t = ḡt − λ̄t = (Jt−1)′(ξt − E[ξt|Ft−1]), λ̄t = E[ḡt|Ft−1] = (Jt−1)′E[ξt|Ft−1]. (15)

The remaining k − kt factor values and risk premia are not identifiable at date t.

We summarize our results in the next proposition.

Proposition 2. Under Assumptions 1, 2.TV, 3.TV and 4, the number of latent conditional factors
kt, the conditional factor values f̄t, and the conditional risk premium vector λ̄t, are identifiable,
for all t.

4 Estimation

The identification strategy developed in the previous section naturally leads to an estimation
methodology by the plug-in approach consisting in replacing population quantities with their sam-
ple analogues. Conditional expectations E(·|Ft−1) given the information set of common shocks are
involved in several intermediate steps of the identification strategy. We estimate these conditional
expectations by nonparametric methods. To cope with the possibly high-dimensional framework
and the implied curse of dimensionality, we adopt machine learning approaches that we present in
the next subsection.

4.1 Estimating conditional expectations by machine learning

To start with, we need to specify the variables generating the information set Ft−1.
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Assumption 5. The information set Ft is generated by the d-dimensional observable vector
Markov process Zt.

This assumption implies:

E[ζt|Ft−1] = E[ζt|Zt−1] =: ψζ(Zt−1)

for a function ψζ(·) and any random vector ζt. We adopt the notation ψζl (Zt−1) = E[ζtl|Zt−1],
for l = 1, · · · , L, where ζtl is the lth component of the L-dimensional vector ζt, and ψζl is the lth
component of the vector function ψζ . The estimation of the conditional expectation E[ζtl|Ft−1]

amounts to estimation of function ψζl in the nonparametric regression model:

ζtl = ψζl (Zt−1) + utl, E[utl|Zt−1] = 0,

for l = 1, · · · , L. Nonparametric regression estimators popular in the econometrics literature
include kernel smoothing and Sieve (e.g. series) estimators (e.g. Haerdle and Linton (1994), Chen
(2007)). Nonparametric regression estimators suffer from the curse of dimensionality, i.e. the
convergence rate deteriorates as dimension d grows, implying unreliable estimates in samples of
realistic size when d is large. 7 Imposing functional restrictions on the regression function via e.g.
additive specifications or index models is a way to cope with the curse of dimensionality. Here we
consider two methods in machine learning which gained popularity in econometrics for estimating
high-dimensional conditional expectations.

i) Lasso and Post-Lasso estimators

We firstly adopt the post-Lasso estimator used e.g. in Belloni et al. (2012). Suppose that there are
p known functions of Zt−1 that we collect in the vector h(Zt−1) = (h1(Zt−1), · · · , hp(Zt−1))′ to be
used in estimation of conditional expectation functions ψζl (Zt−1), l = 1, · · · , L. The list h(Zt−1)

can consist of series terms with respect to the components of vector Zt−1, such as orthogonal
polynomials, B-splines or other function bases used in Sieve estimation, and their number p is
possibly much larger than the sample size T .

Sparsity condition. Each conditional expectation function ψζl (Zt−1) is well-approximated by a

7For e.g. a tensor Sieve estimator with polynomial basis, the number of parameters to approximate a function
in d dimensions using polynomials of order M grow like O(Md). This leads to a convergence rate of the Sieve
estimator Op(T

− m
2p+m ) to estimate a function in the Holder class of degree m.
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list of s ≥ 1 unknown common variables functions:

ψζl (Zt−1) = h(Zt−1)′γl0 + el(Zt−1), l = 1, · · · , L,

max
1≤l≤L

‖γl0‖0 ≤ s = o(T ), max
1≤l≤L

[ET el(Zt−1)2]1/2 ≤ cs = Op(
√
s/T ),

where ET denotes sample average across the T observations of variable Zt, el(Zt−1) is the approx-
imation error, and ‖γ‖0 denotes the number of non-zero elements of vector γ.

The above sparsity assumption, which is Condition AS in Belloni et al. (2012), imposes that
only s � T functions in the list - with unknown identity - are relevant for approximating the
conditional expectation functions of interest.

The Lasso estimator of vector γl is defined as a solution of the convex optimization problem

γ̂l = arg min
γ∈Rp

Q̂l(γ) +
θ

T
‖Υ̂lγ‖1

where Q̂l(γ) = ET [(ζtl−h(Zt−1)′γ)2] is the least square criterion function using ζtl as the dependent
variable and h(Zt−1) as regressors, θ is the penalty level, ‖z‖1 =

∑p
l=1 |zl| is the L1-norm of vector

z in Rp, and Υ̂l = diag(υ̂l1, · · · , υ̂lp) is a diagonal matrix specifying the penalty loadings. 8

The L1-penalty in the Lasso criterion implies that the elements of the estimate vector γ̂l,i are
different from zero only for the indices i in a subset Ŝ of {1, ..., p}. The post-Lasso estimator ̂̂γl is
obtained by performing Ordinary Least Squares (OLS) on the variables that are selected by Lasso
in a first step, i.e.

(̂̂γl)Ŝ = ET [h(Zt−1)Ŝh(Zt−1)′
Ŝ
]−1ET [h(Zt−1)Ŝζtl]

and (̂̂γl)Ŝc = 0, where (γ)S denotes the subvector of γ for the components with indices i ∈ S,
set Ŝc is the complement of Ŝ in {1, ..., p}, and ŝ = |Ŝ| is the cardinality of Ŝ. Then, the post-
Lasso estimator of the conditional expectation ψζl (Zt−1) takes the form ψ̂ζl (Zt−1) = h(Zt−1)′̂̂γl, for
l = 1, · · · , L.

Under the above Sparsity condition and other assumptions, Belloni et al. (2012) show that the

post-Lasso estimator ψ̂ζl has a convergence rate Op

(√
s log(s∨T )

T

)
in the empirical L2 norm. The

convergence rate depend on s but not on d directly.
8Belloni et al. (2012) characterize the optimal penalty loadings. In order to implement them, in the empirical

application we use the same algorithm as in the Appendix of Belloni et al. (2012).
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ii) Neural Networks

The other nonparametric estimation method that we adopt for our analysis is the artificial neural
network. In the mathematical theory of artificial neural networks, the universal approximation
theorem states that a feed-forward network with a single hidden layer containing a large number
of neurons can approximate any continuous function (Gallant, White (1988), Cybenko (1989),
Hornik et al. (1991), Hornik (1991)).

Universal Approximation Theorem. Let φ : R→ R be a non-constant, bounded and continu-
ous function, and let I ⊂ Rd be a compact set. The set of functions

ANNd =

{
ψ(Z) =

M∑
m=1

vmφ(w′mZ + bm), vm, bm ∈ R, wm ∈ Rd, m = 1, ...,M, M ∈ N

}

is dense in the set Cd(I) of real-valued continuous functions on I.

We base our analysis on feed-forward networks, which consist of an input layer, one or more hidden
layers, and an output layer. Figure 1 shows a graphical representation in our case with one hidden
layer that contains M neurons. Each neuron m firstly forms a linear combination of the d input
predictors in vector Zt−1, and then applies the nonlinear activation function φ to its aggregated
value before sending its output Hl,m,t−1 for component l to the next layer. At last, the prediction
for ζlt is modeled as a linear combination of the outputs Hl,m,t−1 for the different neurons m. In
formulas:

Hl,m,t−1 = φ(bl,m + w′l,mZt−1), m = 1, ...,M,

ψζl (Zt−1; γl) = vl,m +
M∑
m=1

vl,mHl,m,t−1,

where vector γl consists of the network parameters b, w, v for component l. The estimator
ψ̂ζl (Zt−1) = ψζl (Zt−1; γ̂l) is obtained by replacing vector γl with an estimate from a penalized
nonlinear least square criterion:

γ̂l = arg min
γ∈Rp

ET
[
(ζtl − ψζl (Zt−1; γ))2

]
+
θ

T
pen(γ).

As activation function we use φ(x) = x+, where x+ = x if x ≥ 0, and = 0 otherwise, i.e.
the positive part of x. 9 Several features of the the neural network’s architecture influence its
approximation quality, such as the number of hidden layers ("width"), the number of neurons in

9This function is commonly refered to as rectified linear unit in the artificial neural network literature.
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each layer ("depth"), and which units are connected. We discuss our choice in the Monte Carlo and
empirical application sections. We refer to e.g. Hastie et al. (2009), Chapter 11, for more details.
Chen and Shen (1998) and Chen and White (1999) prove that, if ψζl (·) belongs to a smothness class
defined by an integrability condition for the Fourier transform, then a single-layer feed-forward
ANN estimator has convergence rate Op

(
(T/ log T )−

1
4

1+2/(d+1)
1+1/(d+1)

)
in L2 norm. The convergence rate

is faster than T−1/4 for any d ≥ 1. Gu, Kelly, and Xiu (2018) and Chen, Pelger and Zhu (2019)
provide recent applications of neural networks and other machine learning methods in empirical
asset pricing.

Equipped with these machine learning methods to estimate conditional expectations, we denote
Ê(ζt|Ft−1) := (ψ̂ζ1(Zt−1), · · · , ψ̂ζL(Zt−1))′ the vector of estimates. In some cases vector ζt is unob-
servable and has to be estimated by a consistent estimator ζ̂t, say. In those cases, we apply the
Lasso methodology to ζ̂t and denote as Ê(ζ̂t|Ft−1) = ψ̂ζ̂(Zt−1) the estimated conditional expecta-
tion function. Moreover, when ζt is a random matrix, the machine learning estimator is defined
for each element.

We now turn to the estimation of the conditional factor space and the determination of its dimen-
sion.

4.2 Estimation of the conditional factor space

i) Time-invariant number of factors

Let us first assume that the number of latent factors k is time-invariant and known to the econo-
metrician, and suppose that a possibly overidentified set of K ≥ k instruments is available (this
assumption is relaxes afterwards). We start with the estimation of process ξt defined in equation
(6) by means of a cross-sectional average:

ξ̂t =
1

n

n∑
i=1

wi,t−1yi,t. (16)

This estimator is consistent as n→∞ under Assumption 1.

Next, to estimate vector gt using equation (10), the conditional variance-covariance matrix V (ξt|Ft−1)

is estimated by the machine learning methods introduced in Subsection 4.1 applied to the esti-
mated process ξ̂t in (16), namely:

V̂ (ξ̂t|Ft−1) := ψ̂ξ̂ξ̂′(Zt−1)− ψ̂ξ̂(Zt−1)[ψ̂ξ̂(Zt−1)]′. (17)

Since the machine learning estimator is computed elementwise, we regularize the estimate V̂ (ξ̂t|Ft−1)

to ensure positive semi-definiteness. The eigenvectors associated with the k largest eigenvalues of
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the regularized matrix yield the columns of matrix Ĵt−1. The signs are chosen recursively such
that Ĵ ′t,jĴt−1,j ≥ 0 for all columns j = 1, · · · , k and dates t = 2, · · · , T . Then, the estimator of gt
is

ĝt = (Ĵt−1)′ξ̂t, (18)

and corresponds to the vector of the k first sample conditional principal components of ξ̂t.

Finally, building on equations (11) and (12), the estimators for the factor values and risk premia
vectors are:

f̂t = ĝt − λ̂t = (Ĵt−1)′(ξ̂t − E[ξ̂t|Ft−1]), λ̂t = (Ĵt−1)′E[ξ̂t|Ft−1]. (19)

The estimator of the conditional factor space is in closed-form up to the conditional expectation
estimate by machine learning deployed for getting E[ξ̂t|Ft−1] and Ĵt−1. Moreover, the methodology
relies on cross-sectional averaging for estimating ĝt, which implies that it readily applies to an
unbalanced panel under the missing-at-random assumption.

ii) Time-varying number of factors

When the number of factors kt is time-varying, the estimators (18) and (19) apply, with Ĵt−1

being the K × kt matrix of the standardized eigenvectors associated with the kt largest eigen-
values of V̂ (ξ̂t|Ft−1). In this case estimates ˆ̄gt = Ĵ ′t−1ξ̂t,

ˆ̄ft = (Ĵt−1)′(ξ̂t − E[ξ̂t|Ft−1]) and
ˆ̄λt = (Ĵt−1)′E[ξ̂t|Ft−1] correspond to the kt-dimensional conditional rotation of the factor vec-
tor with non-vanishing loadings at date t.

4.3 Estimation of the number of factors

In this section we consider the problem of estimating the true number of conditional factors. Recall
that, under Assumption 2 (resp., Assumption 2.TV), the factor dimension k (resp. kt) equals the
rank of the conditional variance-covariance matrix V (ξt|Ft−1) = Γt−1 V (gt|Ft−1) Γ′t−1. Hence,
inference on the factor space dimension at date t is tantamount to inference on the rank of matrix
V (ξt|Ft−1), or, equivalently, on the number of non-zero eigenvalues of that matrix. We build on
the insight of Ahn and Horenstein (2013) and adapt their eigenvalue-ratio selection principle to our
setting with conditional factors. The idea is that, if the eigenvalues of the empirical counterpart
of matrix V (ξt|Ft−1) feature a scree-plot decay behavior, the number of conditional factors can be
estimated by the integer r such that the ratio between the rth and (r + 1)th largest eigenvalues
is maximal. 10 Next we detail the selection procedure in the cases of constant and time-varying

10Statistical tests for the rank of a matrix V are developed e.g. by Cragg and Donald (1996), Robin and Smith
(2000), Kleibergen and Paap (2006), Al-Sadoon (2017). These tests rely on the asymptotic normality of the
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number of conditional factors, respectively.

i) Time-invariant case

Let us first assume that the true number of conditional factors k is constant through time, and
k ≤ q for some known upper bound q. Let us denote δr(A) the rth largest eigenvalue of sym-
metric matrix A. With this notation, let ρ̂r,t = δr[V̂ (ξ̂t|Ft−1)]/δr+1[V̂ (ξ̂t|Ft−1)] be the ratio of
two consecutive eigenvalues, and ρ̂r = 1

T1

∑
t∈T1 ρ̂r,t the average across time of such eigenvalue

ratios, for any integer r ≤ q, where the estimator V̂ (ξ̂t|Ft−1) is defined in (17). The index set
T1 =

{
t ≤ T : δq+1[V̂ (ξ̂t|Ft−1)] ≥ σa

}
with cardinality T1, where a > 1 is a constant and σ ↓ 0 is

a positive sequence shrinking to zero as n and T increase, is used as a trimming device to avoid
too small (or negative) eigenvalue estimates in the denominator of the eigenvalue ratio. Then, the
estimator of the number of conditional factors is:

k̂ = arg max
1≤r≤q

ρ̂r, (20)

i.e. the location of the largest average eigenvalue ratio.

ii) Time-varying case

Let us now allow for the number of conditional factors kt being time-varying as in Subsection 3.3.
Then, the estimator of the number of conditional factors at date t is:

k̂t = arg max
1≤r≤q

ρ̂r,t, (21)

for t ∈ T1, i.e. the eigenvalue ratio is maximized at each date t after trimming.

We stress that the consistency of estimators k̂ and k̂t does not follow from the theory developed in
Ahn, Horenstein (2013). Indeed, matrix V̂ (ξ̂t|Ft−1) is a time-series conditional variance-covariance
matrix of a vector of cross-sectional averages, and not a sample unconditional variance-covariance
matrix of a large panel. We show the consistency of estimators k̂, k̂t is Section 4.4. Moreover,
other estimators could possibly be developed building on the approaches of e.g. Bai, Ng (2002) and
Onatski (2008). Our estimators k̂, k̂t based on Ahn, Horenstein (2013) eigenvalue ratio principle
have to advantage not to require the choice of a tuning parameter for the scale of the eigenvalues.

estimator of matrix V . Such distributional results are available for kernel regression and Sieve estimators, but are
much more scarce for machine learning estimators to the best of our knowledge. Moreover, when the matrix of
interest V is a variance-covariance matrix, the results for standard tests may fail, e.g. Donald, Fortuna and Pipiras
(2007, 2014). We avoid these difficulties by adopting a model selection approach for the inference on the number
of conditional latent factors.
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4.4 Large sample results

We provide regularity conditions for proving the consistency, and establishing the convergence
rates, of the estimators of Sections 4.2 and 4.3 in the double asymptotics with n, T → ∞. Let
us denote by ‖h(Zt)‖p,T = (ET [‖h(Zt)‖p])1/p the sample Lp norm, for p > 0, and ‖h(Zt)‖∞,T =

sup
1≤t≤T

‖h(Zt)‖ the sample sup norm. Moreover, aT ↓ 0 denotes a deterministic sequence such that

aT > 0 and aT = o(1), and X = O−1
p (1) means X−1 = Op(1) for a non-zero random variable X.

i) Factor values and risk premia estimates

We start by establishing consistency and convergence rates for the estimators of factor values and
risk premia under our normalization.

Assumption 6. (i) The estimator ξ̂t is such that ξ̂t = ξt + 1√
n
ut for all t, where ‖ut‖4,T = Op(1).

(ii) It holds ‖ft‖∞,T = Op(τT ) and ‖νt‖∞,T = Op(τT ), where τT = O([log T ]b) for b > 0. (iii) The
kt non-zero eigenvalues of matrix V (ft|Ft−1) are distinct, and %t := max

r=1,...,kt

∑kt
j=1,j 6=r |µr,t−µj,t|−1,

where µj,t = δj[V (ft|Ft−1)], is such that ‖%t‖∞,T = Op(τT ).

Assumption 7. The machine learning regression estimator is such that: (i) ‖ψ̂X(Zt−1)−ψX(Zt−1)‖2,T =

Op(aT ), and (ii) ‖ψ̂X+u(Zt−1)− ψ̂X(Zt−1)‖2,T = Op(‖ut‖2,T +bT ), where Xt is either ξt, vech(ξtξ
′
t),

or gt, for any process ut and some rates aT ↓ 0 and bT ↓ 0.

Assumption 6 (i) requires that the cross-sectional estimator ξ̂t has convergence rate
√
n. The

bounds in Assumption 6 (ii) are implied by tail conditions on the stationary distribution of pro-
cesses ft and νt. Assumption 6 (iii) is a lower bound on the separation among the eigenval-
ues of matrix V (ft|Ft−1). This condition is used to control how the estimation error on matrix
V (ξt−1|Ft−1) propagates to the estimation error on its eigenvectors Jt−1. Assumption 7 concerns
the machine learning estimator of conditional expectations. Part (i) implies the convergence rate
aT in the sample root mean square error (RMSE). Part (ii) upper bounds the effect on the re-
gression estimator of a small “perturbation" on the regressand process, by means of the sample
L2-norm of the perturbation ut and rate bT . Such condition is required to control the effect of
replacing ξt with ξ̂t, and gt with ĝt, in the meaching learning estimator. Assumption 7 is stated
in general form to cover different machine learning methodologies. In the Appendix we detail
primitive regularity conditions to ensure Assumption 7 for the Lasso estimator and we give the
corresponding rates aT and bT .

The next proposition establishes the consistency of factor values and risk premia estimates in
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the ‖ · ‖2,T norm (i.e., in RMSE) and provides upper bounds for the convergence rates. Let
Φ̂t = V̂ (ξ̂t|Ft−1)− V (ξt|Ft−1) be the estimation error on the conditional variance.

Proposition 3. (a) Under Assumption 1-6 we have ‖ĝt − gt‖2,T = Op

(
τ 2
T‖Φ̂t‖2,T + 1√

n

)
. (b)

Under Assumptions 1-7 we have ‖Φ̂t‖2,T = Op(aT + 1√
n
τT + bT ) and

‖f̂t − ft‖2,T = Op[τ
2
T (aT +

1√
n
τT + bT )], ‖λ̂t − λt‖2,T = Op[τ

2
T (aT +

1√
n
τT + bT )].

The nonparametric convergence rate implied by aT is slower than the parametric rate
√
T . Thus,

if T = O(n) as expected in our empirical application with individual stock return data, the error
from cross-sectional estimation of ξ̂t is asymptotically negligible compared to the machine learning
estimation of conditional expectations.

ii) Selection of the number of conditional factors

Let us now turn to the consistency of estimators k̂ and k̂t. Define Ψ̂t = V̂ (ξ̂t|Ft−1)−Γt−1V̂ (gt|Ft−1)Γ′t−1,
that is the sum of the estimation error V̂ (ξ̂t|Ft−1) − V̂ (ξt|Ft−1) induced by replacing ξt with ξ̂t,
plus the estimation error V̂ (ξt|Ft−1) − Γt−1V̂ (gt|Ft−1)Γ′t−1 induced by the time-variation of Γt−1.
Then, we can write:

V̂ (ξ̂t|Ft−1) = Γt−1V̂ (gt|Ft−1)Γ′t−1 + Ψ̂t. (22)

We use equation (22) and a perturbation theory argument in the Appendix to derive the asymptotic
behavior of the eigenvalues of V̂ (ξ̂t|Ft−1). The first matrix on the RHS of equation (22) has reduced
rank kt and drives the behaviour of the kt largest eigenvalues of V̂ (ξ̂t|Ft−1). The second term in
the RHS converges to zero in sample RMSE under our assumptions, and drives the behaviour of
the eigenvalues after the ktth one.

Assumption 8. We have (i) ‖Φ̂t‖∞,T = op(1), (ii) ‖Ψ̂t‖2
2,T = o(σa), and

either (iii)
1

T

T∑
t=1

1{‖Ψ̂t‖ ≤ ε
√
σ, σ ≤ δq−k(Π

′
t−1Ψ̂t−1Πt−1)} = O−1

p (1),

or (iv) P
(
‖Ψ̂t‖ ≤ ε

√
σ, σ ≤ δq−kt(Π

′
t−1Ψ̂tΠt−1), ∀t ∈ T

)
→ 1,

for a subset T of {1, ..., T}, a sequence σ ↓ 0, and constants a > 1 and ε > 0 small, where
the columns of the K × (K − kt) matrix Πt−1 are orthonormal vectors which span the orthogonal
complement to the range of matrix Jt−1.
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For the maximum eigenvalue-ratio principle to work, we need that the eigenvalues of V̂ (ξ̂t|Ft−1)

for orders larger than kt are small and bounded away from zero from below by a small positive
quantity (depending on T ), with probability close to 1, so that the eigenvalue ratios for orders
larger than kt are not the dominating ones. The leading terms in the asymptotic expansions for
these eigenvalues after the ktth one are determined by the eigenvalues of matrix Π′t−1Ψ̂tΠt−1. This
remark explains the conditions in Assumptions 8 (iii) and (iv), which apply for the time-invariant,
and the time-variyng case, respectively.

Proposition 4. (a) Let the number of conditional factors be time-invariant. Then, under As-
sumptions 1-7 and 8 (i)-(iii), estimator k̂ is consistent: k̂ = k w.p.a. 1. (b) With a possibly
time-varying number of conditional factors, under Assumptions 1-7 and 8 (i), (ii), (iv) the esti-
mator k̂t is uniformly consistent over T , i.e. P

(
k̂t = kt, ∀ t ∈ T

)
→ 1.

As a plausibility remark, we notice that in Assumptions 8 (iii) and (iv) the norm of Ψ̂t is required to
be O(

√
σ) while the eigenvalues of the transformation Π′t−1Ψ̂t−1Πt−1 have to be bigger than σ, i.e. a

threshold that is smaller that
√
σ when σ tends to 0. While possible for kernel regression and Sieve

estimators, deriving primitive conditions implying Assumptions 8 (iii) and (iv) for Lasso, artificial
neural networks or other machine learning estimators require to develop the theory considerably
beyond the currently available results.

4.5 Smoothing the estimated number of conditional factors

i) Unsupervised learning

With time-varying number of conditional factors, the estimates k̂t may be noisy in samples of
moderate size T as in our empirical application. We can use unsupervised learning approaches to
smooth the estimated paths. To simplify let us focus on the problem of distinguishing between two
regimes: kt = 1 (i.e. a single conditional factor) vs. kt ≥ 2 (i.e. at least two conditional factors).
Further let us assume that these regimes are persistent, i.e. the transitions occur infrequently
compared to the monthly data sampling frequency. Let γ(t) denote the indicator of the first
regime. We build on the ideas in Horenko (2010 a, b) to regularize the regime transitions by a
Total Variation (TV) bound. We solve the constrained optimization problem:

max
{γ(t), t=1,...,T}

T∑
t=1

∆ρ̂tγ(t) s.t. 0 ≤ γ(t) ≤ 1, ∀t, and
T∑
t=2

|γ(t)− γ(t− 1)| ≤ C,

where ∆ρ̂t = ρ̂1,t − max
j=2,...,q

ρ̂j,t. Without the TV constraint, the objective function is maximized

by assigning γ(t) = 1 to the dates when ∆ρ̂t > 0, i.e. the largest eigenvalue ratio is the first one,
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and γ(t) = 0 otherwise. The constant C > 0 defining the TV bound can be interpreted as a the
number of allowed regime changes. If we set C = ∞ we get γ(t) = 1{∆ρ̂t > 0} = 1{k̂t = 1} i.e.
the unregularized time-varying estimator, while C = 0 yields γ(t) = 1{

∑T
t=1 ∆ρ̂t > 0} = 1{k̂ = 1}

i.e. the time-invariant estimator. 11

ii) Supervised learning

5 Economic Identification of the Conditional Factor Space

Since the latent conditional factor space is identified only up to a conditional transformation
(fixed by the normalization restrictions in Assumptions 3 and 4), the estimated factor values and
risk premia do not admit a direct economic interpretation. In an unconditional setting, Giglio
and Xiu (2017) estimate the risk premia of the projection of the latent factors onto observable
factors. In this section we consider identifiable features of the conditional factor space, which can
be interpreted in economic terms.

5.1 Conditional canonical correlations with observed factors

Let us consider a vector fOt of KO observed factors, such as the vector of three Fama-French
factors with KO = 3. We want to measure to extent to which the spaces spanned by the latent
and observed factors ft and fOt coincide conditionally on Ft−1. For this purpose we estimate
the conditional canonical correlations between these vectors ρr,t, r = 1, 2, · · · , Kt, where Kt =

min{KO, kt}. Specifically, the first conditional canonical correlation is defined by:

ρ1,t = max
a1∈RKO , b1∈Rkt

Cov(a′1f
O
t , b

′
1f̄t|Ft−1)

s.t. V (a′1f
O
t |Ft−1) = 1, V (b′1f̄t|Ft−1) = 1.

11Alternatively, we can solve the regularized log-likelihood maximization problem:

max
{p(t), t=1,...,T}

T∑
t=1

1{k̂t = 1} log p(t) + 1{k̂t ≥ 2} log[1− p(t)], s.t. 0 ≤ p(t) ≤ 1, ∀t, and
T∑

t=2

|p(t)− p(t− 1)| ≤ C,

where p(t) can be interpreted as the probability to be in the first regime at time t.
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It is a stochastic process with Ft−1 measurable values in [0, 1]. 12 The second, third, etc. condi-
tional canonical correlations are defined recursively by:

ρr,t = max
ar∈RKO , br∈Rkt

Cov(a′rf
O
t , b

′
rf̄t|Ft−1)

s.t. V (a′rf
O
t |Ft−1) = 1, V (b′rf̄t|Ft−1) = 1,

Cov(a′rf
O
t , a

′
jf

O
t |Ft−1) = 0, Cov(b′rf̄t, b

′
j f̄t|Ft−1) = 0, j = 1, · · · , r − 1,

for r = 2, ..., Kt. By Proposition 2 the conditional canonical correlations are identifiable under
Assumptions 1, 2.TV, 3.TV and 4. By analogy with the unconditional setting (see e.g. An-
derson (2003)), the squared conditional canonical correlations are the Kt largest eigenvalues of
matrix Rt−1 = V (fOt |Ft−1)−1Cov(fOt , f̄t|Ft−1)V (f̄t|Ft−1)−1Cov(f̄t, f

O
t |Ft−1). By equations (14)

and (15) we have V (f̄t|Ft−1) = Λt−1 and Cov(fOt , f̄t|Ft−1) = Cov(fOt , ξt|Ft−1)Jt−1, where Λt−1 is
the diagonal matrix of the kt non-zero eigenvalues of V (ξt|Ft−1). Thus:

Rt−1 = V (fOt |Ft−1)−1Cov(fOt , ξt|Ft−1)V (ξt|Ft−1)†Cov(ξt, f
O
t |Ft−1),

where V (ξt|Ft−1)† = Jt−1(Λt−1)−1(Jt−1)′ is the pseudo-inverse of matrix V (ξt|Ft−1) based on Sin-
gular Value Decomposition (SVD).

We estimate the conditional canonical correlations at each date t by plug-in of the estimators of
Section 4. Specifically, they are the square roots of the K̂t = min{k̂t, KO} largest eigenvalues of
matrix

R̂t−1 = V̂ (fOt |Zt−1)−1Ĉov(fOt , ξ̂t|Zt−1)V̂ (ξ̂t|Zt−1)†Ĉov(ξ̂t, f
O
t |Zt−1),

where ξ̂t is the cross-sectional average in equation (16), V̂ (·|Zt−1) and Ĉov(·, ·|Zt−1) denote the
estimators of the conditional variance and covariance based on machine learning methods of Section
4.1, and V̂ (ξ̂t|Zt−1)† = Ĵt−1(Λ̂t−1)−1(Ĵt−1)′ and Λ̂t−1 = diag(δj[V̂t−1(ξ̂t)], j = 1, ..., k̂t) as defined in
Section 4.2, and k̂t is the estimated number of conditional latent factors from Section 4.3.

5.2 Double Machine Learning (DML) estimation of average conditional

canonical correlations

Let θ = (ψζ1(·), ..., ψζL(·))′, where ψζl (Zt−1) = E(ζtl|Zt−1) for l = 1, ..., L, and the vector ζt =

(fO′t , vech(fOt f
O′
t )′, ξ′t, vech(ξtξ

′
t)
′, vec(fOt ξ

′
t)
′)′ stacks the elements of vectors fOt and ξt, and their

cross-products, whose conditional expectations build the variance and covariance matrices V (fOt |Zt−1),
12The vectors a1 and b1 which solve the minimization problem are the first conditional canonical directions and

are also Ft−1 measurable. Their time dependence is not made explicit to ease notation.
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V (ξt|Zt−1) and Cov(fOt , ξt|Zt−1). Then, we can write the rth conditional canonical correlation
as ρr,t = δr[R(θ(Zt−1))]1/2 ≡ ρr[θ(Zt−1)], where the matrix-valued function R(·) is such that
R(θ(Zt−1)) = V (fOt |Zt−1)−1Cov(fOt , ξt|Zt−1)V (ξt|Zt−1)†Cov(ξt, f

O
t , |Zt−1). We consider the finite-

dimensional parameter
c(θ0) = E(Wtρr,t) = E[Wtρr(θ0(Zt−1))],

where Wt = W (Zt−1) is a given scalar function of Zt−1. This class of functionals, and simple
nonlinear transformations thereof, include e.g. average conditional canonical correlations (when
Wt = 1) and the regression coefficients of conditional canonical correlations onto functions of
Zt−1. It also includes fixed-bandwidth kernel regression of ρk,t onto a vector Z∗t−1 = f(Zt−1), with
Wt = K((Z∗t−1 − z∗)/h)/E[K((Z∗t−1 − z∗)/h)], for given z∗ and h > 0.

The classical plug-in principle of semi-parametric econometrics suggests an estimator of c(θ0) that
is asymptotically normal under some assumptions (e.g., Chen and Shen (1998), Chen and White
(2000)). The more recent literature on Double Machine Learning (DML, see e.g. Chernozhukov
et al. (2018a, b), Chernozhukov, Newey and Robins (2018), Chernozhukov, Newey, Singh (2019))
shows that, if the estimator is modified by using a locally robust orthogonality restriction and
sample splitting, then a more basic set of regularity conditions can be invoqued, which may apply
in more general high-dimensional settings. More specifically, the modified orthogonality restriction
for DML is:

E[Wtρr(θ(Zt−1))− c+ α(Zt−1)′(ζt − θ(Zt−1))] = 0, (23)

with scalar parameter c and functional parameters θ, α. Here, the true value α0(·) of vector
function α(·) is the L2 Rietz representer of the Gateaux derivative of functional c(θ), i.e.

∂c

∂θ
[θ − θ0] := lim

τ→0

c(θ + τ(θ − θ0))− c(θ0)

τ
= 〈α0, θ − θ0〉,

for any θ in a neighborhood of θ0, where 〈θ, ϑ〉 =
´
θ(z)′ϑ(z)dP0(z) denotes the vector L2 scalar

product w.r.t. the true stationary distribution P0 of Zt−1. The orthogonality restriction in (23) is
locally robust in the sense that, for c = c0, the orthogonality restriction holds for any α and θ = θ0,
and for any θ and α = α0 at first-order. From ∂c

∂θ
[θ−θ0] = E[Wt∇ρr(θ0(Zt−1))′(θ(Zt−1)−θ0(Zt−1))]

we get:
α0(Zt−1) = Wt∇ρr(θ0(Zt−1)), (24)

where ∇ρr(·) is the gradient of function ρr(·) (see the Appendix for its expression).

Let Is for s = 1, 2 be two subintervals yielding a splitting of the sample along the time dimension.
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13 The DML estimator of c0 is:

ĉ =
1

T

2∑
s=1

∑
t∈Is

(
Wtρr(θ̂s(Zt−1)) + α̂s(Zt−1)′(ζ̂t − θ̂s(Zt−1)

)
(25)

where α̂s(·) and θ̂s(·) are estimators of the vectors of Rietz representer and conditional expectations
obtained from the sample excluding dates in Is. It is obtained from the orthogonality restriction
(23) replacing ζt with ζ̂t, plugging-in estimates α̂s(·) and θ̂s(·) and using sample splitting. We can
use α̂s = W (·)∇ρr(θ̂s(·)).

We establish asymptotic normality of estimator ĉ under the next assumptions.

Assumption 9. (i) Functions α0(·) and Σu(·) = V (ut|Zt−1 = ·) are bounded. (ii) E[W 2
t ] < ∞.

(iii) We have
´
W (z)2[ρr(θ(z)) − ρr(θ0(z))]2dP0(z) ≤ C‖θ − θ0‖ā, for ā > 0, and

(iv) |
´
W (z)[(ρr(θ(z))− ρr(θ0(z))−∇ρr(θ0(z))′(θ(z)− θ0(z)))]dP0(z)| ≤ C‖θ − θ0‖2, for θ in a

neighborhoud of θ0, and a constant C > 0.

Assumption 10. We have: (i) ‖θ̂s − θ0‖ = op(T
−1/4), (ii) ‖α̂s − α0‖ = op(1) and (iii)

√
T‖θ̂s −

θ0‖‖α̂s − α0‖ = op(1), for s = 1, 2.

Assumption 11. We have E[‖ζ̂t − ζt‖2]1/2 = O(1/
√
n).

Assumption 12. The process {Yt = (Zt, yi,t, w
′
i,t, i = 1, ..., n)′} is beta-mixing, with beta-mixing

coefficient
β(j) = sup

n≥1
sup
t≥1

E
[
sup

{
|P (B|Y t

−∞)− P (B)| : B ∈ Y ∞
t+j

}]
such that β(j) ≤ Cj−m̄, for m̄ > 3 and C > 0, where Y s

t = σ(Yu : t ≤ u ≤ s).

Assumption 13. The orthogonality vector ψt = Wtρr(θ0(Zt−1)) + α0(Zt−1)′(ζt − θ0(Zt−1)) =

Wt[ρr(θ0(Zt−1))+∇ρr(θ0(Zt−1))′ut], where ut = ζt−θ0(Zt−1), is such that 1√
T

∑T
t=1 ψt ⇒ N(0, σ2

1+

σ2
2) as T →∞, where

σ2
1 =

∞∑
h=−∞

E[WtWt−h∇ρr(θ0(Zt−1))′utu
′
t−h∇ρr(θ0(Zt−h))], (26)

and

σ2
2 =

∞∑
h=−∞

Cov (Wtρr(θ0(Zt−1)),Wt−hρr(θ0(Zt−h))) . (27)

Then, we have the next asymptotic normality result.
13We could consider sample splitting in more than two subintervals. However this leads to computing estimators

on samples with non-consecutive dates, which breaks the serial dependence structure.
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Proposition 5. Under Assumptions 9-13 and regularity conditions, if n, T →∞ such that T/n =

o(1), we have
√
T (ĉ− c0) ⇒ N(0, σ2

1 + σ2
2), where σ2

1 and σ2
2 are given in (26) and (27).

If the errors ut are a conditional martingale difference sequence given Zt, namely E(ut|ut−1, Zt) = 0,
then the asymptotic variance component σ2

1 becomes:

σ2
1 = E[W (Zt−1)2∇ρk(θ0(Zt−1))′Σu(Zt−1)∇ρk(θ0(Zt−1))] (28)

where Σu(Zt−1) = E(utu
′
t|Zt−1).

5.3 Stochastic discount factor implied by the conditional factors

It is well-known that a (conditional) linear multi-factor model for returns corresponds to a speci-
fication of the Stochastic Discount Factor (SDF) which is (conditionally) linear in the factors. In
our conditional framework, equations (3)-(5) and the factor normalization in Assumption 4 imply
that the conditional expected excess returns are:

E(yi,t|Ft−1) = b′i,t−1λt.

By using bi,t−1 = V (ft|Ft−1)−1Cov(ft, yi,t|Ft−1) and rearranging terms, we get
E [yi,t (1− f ′tV (ft|Ft−1)−1λt) |Ft−1] = 0. When the number of factors is time-varying, the same
equation holds after replacing ft and λt with f̄t and λ̄t. Thus, we get:

E (mt−1,tyi,t|Ft−1) = 0, (29)

where the SDF between dates t− 1 and t is given by:

mt−1,t = R−1
f,t

(
1− f̄ ′tV (f̄t|Ft−1)−1λ̄t

)
, (30)

and Rf,t = E (mt−1,t|Ft−1)−1 is the gross return of the conditionally risk-free asset. 14 Note
that, while the vectors of factor values and risk premia are identifiable only up to conditional
transformations, the quantity defining the SDF is invariant to such conditional transformations.

In an asset pricing model defined by a SDF, the cross-section of conditional expected excess returns
is spanned by the assets conditional betas with respect to a single factor (see e.g. Singleton (2006),
Chapter 11, and references therein). In fact, equation (29) can be rewritten as:

E (yi,t|Ft−1) = β∗i,t−1λ
∗
t , (31)

14The SDF in (30) does not necessarily meet the positivity condition.
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where β∗i,t−1 = V (r∗t |Ft−1)−1Cov (r∗t , yi,t|Ft−1),

r∗t =
mt−1,t

E
(
m2
t−1,t|Ft−1

) , (32)

and λ∗t = −Rf,tV (mt−1,t|Ft−1) /E
(
m2
t−1,t|Ft−1

)
. The single factor r∗t is the gross return of an asset

with payoff equal to the SDF mt−1,t. Equivalently, r∗t is the minimum conditional second-moment
gross return. If this asset is tradable, λ∗t = E (r∗t |Ft−1)−Rf,t equals its expected excess return.

Our methodology yields the non-parametric identification for the SDF and the minimum con-
ditional second-moment return provided by equations (30) and (32). It only relies on a linear
conditional linear factor structure for a large cross-section of assets. It is very general for what
concerns the observability of the factors by the econometrician, their possibly time-varying num-
ber, and the dynamics of betas.

Finally, two remarks are in order. First, the single-factor structure in expected excess returns does
not imply that the return conditional factor space itself is one-dimensional. In fact, the implied
error terms yi,t−β∗i,t−1r

∗
t are not necessarily weakly correlated across assets. Second, we stress that

we have deployed the conditional linear factor structure to derive the no-arbitrage restrictions by
the results in GOS. Otherwise, in our conditional economy with an infinity (continuum) of assets,
the derivation of a SDF without assuming a factor structure for returns is unknown to us.

6 Empirical Analysis

We conduct our empirical analysis on U.S. equities. The dependent variable is excess return over
risk-free rate on each individual stock in our sample. We proxy the risk-free rate with the monthly
30-day T-bill beginning-of-month yield. To cope with an overidentified case we choose 22 firm-level
characteristics listed below as our instruments.

6.1 Data Description

We get monthly stock returns from CRSP and quarterly firm characteristics from COMPUSTAT.
The sample begins in January 1971 and ends in December 2017, which consists of 564 months.

For each firm we select 15 characteristics as our instrumental variables wi,t from Freyberger,
Neuhierl, and Weber (2017). The FNW characteristics are grouped into four categories: (i)
investment-related characteristics, which are change in total assets (investment), change in book
equity (∆ceq), change in shares outstanding (∆shrout), (ii) profitability-related characteristics,
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which are earnings per share (eps), gross profit over book equity (prof), return on asset (roa),
return on equity (roe), (iii) value-related characteristics, which are book to market ratio (beme),
cash flow to total liabilities (c2a), sales growth (sales_g), market capitalization (me), and (iv)
past return based variables, which are lagged 1 month return (r2−1), return from 6 to 2 months
before current period (r6−1), return from 12 to 2 months before current period (r12−2) and return
from 12 to 7 months before current period (r12−7). For a detailed description of the 15 variables,
see Freyberger, Neuhierl, and Weber (2017).

Next, we obtain the estimates of ξt by cross-sectionally averaging the products of characteristics
wi,t−1 and excess return yi,t of the same stock between consecutive dates as in (16). Notice that if
we rescale wi,t−1 to have

∑n
i=1wi,t−1 = 1, then ξt can be simply seen as a portfolio return. One may

recall that any tradable return factors, such as SMB or HML, are essentially returns of portfolios
in which different weights for stocks are assigned according to some firm-level characteristics.
Therefore, our ξt can be interpreted as a vector of portfolio returns based on some functions of
certain stock characteristics. As a result, any existing tradable return factors such as Fama-French
factors can be regarded as a candidate for our ξt using some function of firm-level characteristics
as weights. Thus, we include 7 well known return factors as additional components of vector
ξ̂t. The 7 factors are the Fama-French 5 factors MKT, SMB, HML, RMW, CMA, together with
Momentum (MOM) and Betting Against Beta (BAB).

Our Markov process Zt, which generates the information set Ft of aggregate shocks, consists of 18
different monthly variables. We group those state variables into 4 categories: (i) financial indicators
as proposed in Goyal and Welch (2008), which are dividend-price ratio (DP), earnings-price ratio
(EP), book-to-market ratio (BM), net equity expansion (NTIS), Treasury-bill rate (TBL), term
spread (TMS), default spread (DFY) and stock variance (SVAR), (ii) risk factors, which are the 5
factors in Fama-French 5-factor model (ExMKT, SMB, HML, RMW, CMA), BAB and MOM, (iii)
macroeconomic variables, which are aggregate consumption growth (CONSr), nominal inflation
rate (CPIr) and unemployment rate (UNEMP), and (iv) past values of our cross-sectional weighted
returns ξt−1.

6.2 Data preparation and parameter settings

We only retain the stock×month observations for which all 22 characteristics are non-missing and
convert all quarterly firm characteristics into monthly basis simply by assuming a constant value
across the quarter. For each instrumental variable, we standardize its values cross-sectionally at
each time period, in order to mitigate influence from outliers as well as to make variables more
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comparable. Specifically, at each month we calculate every individual stock’s ranks for each of
the 22 characteristics, divide the ranks by the number of observations, multiply by 2 and subtract
1. The values of the new characteristics after remapping are in the [−1, 1] interval. Remember
that the definition of ξ̂t is equivalent to building 22 portfolios using the values of the 22 remapped
characteristics at month t−1 as stocks’ weights in each portfolio. We calculate the value-weighted
portfolios by multiplying the market capitalization weight of each stock.

We compute the cross-sectional average ξ̂t month by month. The sample start is chosen such that
the estimate ξ̂t is obtained by averaging returns times characteristics over more than 2000 stocks
at each date, which should imply that ξ̂t is close to the cross-sectional limit ξt as in Assumption
1. Figure 5 shows the evolution of the cross-sectional sample size over time. The number of
observations steadily increases from about 2000 to close to 9000 from 1971 to 1998. After the
internet bubble, there is a decrease but the sample size still keeps above 5000. Moreover, we
standardize each element in ξ̂t across time to make sure that all elements are of the same order of
magnitude.

For estimating conditional expectations E[ζt|Zt−1], we can adopt the machine learning methods
discussed in Subsection 4.1. In this empirical application, we choose to use neural networks
to estimate the conditional expectations element by element. Specifically, we use a feed-forward
network with single hidden layer, of which the number of neurons is equal to the number of variables
in our common information vector Zt. Because the time-series sample size and the dimension of
conditioning variables are not very large (compared e.g. with image recognition problem), we
will not deploy the widely-used stochastic gradient descent algorithm which optimizes on random
sub-samples for the purpose of efficiency. Instead, we are able to efficiently optimize our objective
function over the whole sample.

To improve generalization and mitigate overfitting of our neural networks, we adopt two meth-
ods: the Bayesian Regularization training function, in conjunction with averaging across multiple
parallel neural networks.

We take the Bayesian Regularization backpropagation from Matlab as our optimization algorithm.
Bayesian regularization backpropagation is a network training function that updates the weight
and bias values according to Levenberg-Marquardt optimization algorithm. It minimizes a combi-
nation of squared errors and weights, and then determines the correct combination so as to produce
a network that generalizes well. The biggest advantage of this algorithm is that it determines the
optimal regularization parameters in an automated fashion.
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The network averaging method is adopted because the mean squared error for the average output
is likely to be lower than most of the individual neural network performances. In our case, for
each estimate we train 48 parallel networks at the same time using different initial values and then
take the average as the final output.

6.3 Inference on the number of conditional factors

According to Subsection 4.3, the conditional factor space dimension kt equals the rank of the
conditional variance-covariance matrix V (ξt|Zt−1), which can be estimated by:

V̂ (ξ̂t|Zt−1) = Ê(ξ̂tξ̂t
′
|Zt−1)− Ê(ξ̂t|Zt−1)Ê(ξ̂t|Zt−1)′. (33)

The estimated dimension k̂t is obtained by maximizing the eigenvalue-ratio criterion introduced in
Subsection 4.3. Moreover, here we also propose several other eigenvalue-based ratios as alternative
estimation methods for kt. By carrying out the eigen-decomposition of the estimated conditional
variance V̂ (ξ̂t|Zt−1), we are able to infer the conditional factor space dimension.

Figure 6 displays four time series of eigenvalue ratios, averaged by quarters. For most quarters,
the average ratio of the first to the second eigenvalues is the largest one. This shows the presence
of a dominating first factor in the conditional factor space. Figure 7 reports the time series
of incremental explanatory power ratios, averaged by quarter. These quantities are defined as
the ratios of the rth largest eigenvalue to the sum of the first r eigenvalues, for any integer
r. Their interpretation is supported by the decomposition of the conditional variability of ξt
as Tr[V (ξt|Ft−1)] =

∑K
r=1 δr[V (ξt|Ft−1)] =

∑kt
r=1 V (fr,t|Ft−1). For ranks r larger than 4, these

incremental explanatory power ratios are smaller than 10% for almost all factors. In Figure 8
we display the time series of accumulative explanatory power ratios, averaged by quarter. The
explanatory power ratio for rank r is defined as the ratio of the sum of the first r eigenvalues to
the sum of the first kmax eigenvalues. We set kmax = 4 following Figure 7, which suggests that the
contributions of the remaining factors is small. The first factor has an explanatory power around
or above 50%. The accumulative explanatory power of the first three factors is around 90%. The
yellow vertical bars denote periods in which there is an increase of the accumulative explanatory
power ratios, e.g. the one of the first factor reaches 60−70%, and the one of the first three factors
is above 90%. Figure 9 reports the time series of accumulative explanatory power ratios computed
using squared eigenvalues. This reflects the contribution of conditional covariation in addition to
conditional variation, similarly as in Fiorentini and Sentana (2015). These ratios are larger than
those in Figure 8, highlighting the importance of conditional factors in explaining conditional
covariation.
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6.4 Estimation of the conditional factor space

Once we estimated the number of conditional factors, we are able to adopt the method in Sub-
section 4.2 to estimate the values of the latent conditional factors. We start by assuming that the
number of conditional factors is time-invariant. We choose the number of factors to be 1, given
the dominance of the first eigenvalue ratio in Figure 6.

To conduct an economically-meaningful analysis, we estimate the conditional canonical correlation
between our latent factor and some observable factors as well as state variables following steps in
Subsection 5.1. Next, we calculate the in-sample averages of those conditional correlations, and
then rank them in a descending order and display them in Figure 10. Not surprisingly, the first
conditional factor can be mostly explained by the excess market return, with average conditional
correlation close to 70%. The next most powerful variables are HML and CMA, with average
conditional correlation around 60%. The results are not surprising as well, since the two factors
are highly correlated in the first place according to Fama and French (2015).

Based on the analysis above, the market factor explains most of the factor space of our first
conditional latent factor. For the second latent factor, we follow the same procedures and provide
the bar charts in Figure 11. A value around 45% for the conditional correlation indicates that
SMB is likely to be the most important factor in spanning our second conditional factor space.

Together with the previous results for the first conditional factor, we may conclude that the factor
space of our two latent factors are mostly driven by two observable static factors: the market
factor and the SMB factor.

TO BE CONTINUED...
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APPENDIX

A Proof of Proposition 3

(a) With identity weighting matrix we have ˆ̄gt = Ĵ ′t ξ̂t. First, let us show the RMSE convergence of
Ĵt to Jt. We use a result in perturbation theory providing the approximation for the eigenvectors
of a matrix with explicit characterization of the Lipshitz constant (see Proposition 7 in Carlini
and Gagliardini (2018), which is an extension of Theorem 3 in Izenman (1975)).

Lemma 1. Let A be a symmetric n× n matrix of rank k ≤ n, with distinct non-zero eigenvalues
µ1 > µ2 > ... > µk > 0, and associated standardized eigenvectors v1, v2, ... vk (hence, the null
eigenvalue µ0 = 0 has eigenspace of dimension n − k). Let Â be a symmetric n × n matrix (a
“perturbation" of A), and let µ̂1, ... , µ̂k be its k largest eigenvalues and v̂1, ... , vk the associated
standardized eigenvectors. Then:

‖v̂j − vj‖ ≤ cρ‖Â− A‖

for j = 1, ..., k, where ρ := max
j:j=1,...,k

∑k
l=0,l 6=j |µj − µl|−1 and c is a universal constant (that can be

chosen equal to c = 6 + 5
√

2).

Write Jt = [J1,t : · · · : Jkt,t] and Ĵt = [Ĵ1,t : · · · : Ĵkt,t] the matrices of standardized eigenvectors to
the first kt eigenvalues of matrices V (ξt|Ft−1) and V̂ (ξ̂t|Ft−1). Recall that matrix V (ξt|Ft−1) has
rank kt, under Assumption 4.TV its kt non-zero eigenvalues are the non-zero diagonal elements
of diagonal matrix V (ft|Ft−1), and the latter are distinct µ1,t > µ2,t > ... > µkt,t > 0 under
Assumption 6 (iii). Moreover,

∑kk
l=0,l 6=j |µj,t − µl,t|−1 ≤ %t, for all j = 1, ..., kt and all t = 1, ..., T

(where µ0,t ≡ 0). Then, from Lemma 1 we have:

‖Ĵj,t − Jj,t‖ ≤ c%t‖V̂ (ξ̂t|Ft−1)− V (ξt|Ft−1)‖ = c%t‖Φ̂t‖,

for all j = 1, ..., kt and all t = 1, ..., T , where constant c is independent of j and t. Thus, from
Assumption 6 (iii) we get:

‖Ĵt − Jt‖2,T = Op(τT‖Φ̂t‖2,T ). (A.1)

Let us now show the RMSE convergence of ĝt. We use ξ̂t = Ĵtḡt− (Ĵt−Jt)ḡt+ 1√
n
ut, which implies

ˆ̄gt = ḡt − Ĵ ′t(Ĵt − Jt)ḡt +
1√
n
Ĵ ′tut. (A.2)
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We use ‖Ĵt‖ = 1. Then, from Assumption 6 (ii) we get

‖ˆ̄gt − ḡt‖ ≤ C1τT‖Ĵt − Jt‖+
1√
n
‖ut‖, (A.3)

w.p.a. 1, for constant C1. Then, from bound (A.1) and Assumption 6 we get:

‖ĝt − gt‖2,T = Op

(
τ 2
T‖Φ̂t‖2,T +

1√
n

)
. (A.4)

(b) First, let us show the convergence of V̂ (ξ̂t|Ft−1) to V (ξt|Ft−1) in RMSE. We use V̂ (ξ̂t|Ft−1) =

ψ̂ξ̂ξ̂′(Zt−1) − ψ̂ξ̂(Zt−1)ψ̂ξ̂(Zt−1)′, V̂ (ξt|Ft−1) = ψ̂ξξ′(Zt−1) − ψ̂ξ(Zt−1)ψ̂ξ(Zt−1)′ and V (ξt|Ft−1) =

ψξξ
′
(Zt−1) − ψξ(Zt−1)ψξ(Zt−1)′, and the equations ξ̂t = ξt + 1√

n
ut and ξ̂tξ̂

′
t = ξtξ

′
t + 1√

n
(utξ

′
t +

ξtu
′
t) + 1

n
utu
′
t for all t. From Assumption 6 (ii) process ξt is Op(τT ) uniformly in t. Then, from

Assumptions 7 (ii) and 6 (i)-(ii) we have ‖ψ̂ξ̂(Zt−1)−ψ̂ξ(Zt−1)‖2,T = Op(
1√
n

+bT ) and ‖ψ̂ξ̂ξ̂′(Zt−1)−
ψ̂ξξ′(Zt−1)‖2,T = Op(

1√
n
τT + bT ). Therefore ‖V̂ (ξ̂t|Ft−1)− V̂ (ξt|Ft−1)‖2,T = Op(

1√
n
τT + bT ). More-

over, from Assumption 7 (i) we have ‖V̂ (ξt|Ft−1)− V (ξt|Ft−1)‖2,T = Op(aT ). Thus, we get:

‖Φ̂t‖2,T = ‖V̂ (ξ̂t|Ft−1)− V (ξt|Ft−1)‖2,T = Op(aT +
1√
n
τT + bT ). (A.5)

From (A.4) this implies

‖ĝt − gt‖2,T = Op[τ
2
T (aT +

1√
n
τT + bT )]. (A.6)

Finally, we can prove the RMSE convergence of λ̂t and f̂t. We have λ̂t = ψ̂ĝ(Zt−1) and λt =

ψg(Zt−1). From Assumption 7 (ii) and bound (A.6) we have ‖ψ̂ĝ(Zt−1)−ψ̂g(Zt−1)‖2,T = Op[τ
2
T (aT+

1√
n
τT + bT )], and from Assumption 7 (i) we have ‖ψ̂g(Zt−1) − ψg(Zt−1)‖2,T = Op(aT ). Hence,

‖λ̂t − λt‖2,T = Op[τ
2
T (aT + 1√

n
τT + bT )]. From the latter bound and (A.6), and using f̂t = ĝt − λ̂t,

we get ‖f̂t − ft‖2,T = Op[τ
2
T (aT + 1√

n
τT + bT )].

B Proof of Proposition 4

In this appendix we prove the consistency of the rank test on the number of conditional factors
based on the eigenvalue-ratio principle.

B.1 Perturbation theory for the eigenvalues of matrix V̂ (ξ̂t|Ft−1)

Let V̂t := V̂ (ξ̂t|Ft−1) denote an estimator of matrix Vt := V (ξt|Ft−1) = ΓtV (gt|Ft−1)Γ′t. Under
Assumption 8 (i), we have an asymptotic expansion of the form:

V̂t = Ṽt + Ψ̂t, (B.1)

38



where Ṽt := ΓtV̂ (gt|Ft−1)Γ′t and V̂ (gt|Ft−1) is a (generally infeasible) estimator of V (gt|Ft−1), the
estimation error term Ψ̂t is such that Ψ̂t = Op(R), and R = Rn,T is a positive rate tending to zero
as n, T →∞.

We derive an asymptotic expansion for the K−kt smallest eigenvalues of matrix V̂t using equation
(B.1) and perturbation theory. Recall that under Assumptions 2.TV and 4.TV, we have Γt =

[Jt : 0K×(k−kt)], where the columns of matrix Jt are the normalized eigenvectors of Vt associated
to the kt non-zero eigenvalues. The K − kt smallest eigenvalues of both Vt and Ṽt are equal to
zero. The corresponding eigenspace is the orthogonal complement of the column space of matrix
Jt. Let Πt denote a K × (K − kt) full column rank matrix, whose columns span this eigenspace
and are normalized to have length 1. Then we have Π′tΓt = 0 and Π′tΠt = IK−kt . Let Ŵt denote
the K × (K − kt) matrix whose columns are the orthonormalized eigenvectors of V̂t associated to
the K−kt smallest eigenvalues, and let Λ̂t be the diagonal matrix of these eigenvalues. They solve
the eigenvalue-eigenvector equation:

V̂tŴt = ŴtΛ̂t. (B.2)

Since the columns of the orthogonal matrix [Jt : Πt] span RK , we can write

Ŵt = (Πt + Jtα̂t)Ut, (B.3)

for some matrices α̂t and Ut, where matrix Ut is non-singular. By perturbation theory, matrices
α̂t and Λ̂t converge to zero as n, T →∞ (see below).

The asymptotic expansions of the eigenvalues of matrix V̂t are provided in the next lemma.

Lemma 2. We have:

|δj(V̂t)− δj(Vt)| ≤ ‖Ψ̂t‖+ ‖V̂ (gt|Ft−1)− V (gt|Ft−1)‖, (B.4)

for j = 1, ..., kt, and:
|δj(V̂t)− δj−kt(Π′tΨ̂tΠt)| ≤ C‖Ψ̂t‖2, (B.5)

for j = kt + 1, ..., K, where C is a universal constant.

Proof of Lemma 2: We plug (B.1) and (B.3) into the eigenvalue-eigenvector equation (B.2) to
get:

ṼtJtα̂tUt + Ψ̂tΠtUt + Ψ̂tJtα̂tUt = ΠtUtΛ̂t + Jtα̂tUtΛ̂t.

Pre-multiplying this equation by Π′t, and by J ′t, we get:

Π′tΨ̂tΠtUt + Π′tΨ̂tJtα̂tUt = UtΛ̂t, (B.6)
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and:
J ′tṼtJtα̂tUt + J ′tΨ̂tΠtUt + J ′tΨ̂tJtα̂tUt = α̂tUtΛ̂t, (B.7)

respectively, using Π′tJt = 0, Π′tΠt = IK−kt and J ′tJt = Ikt . From equation (B.6) we get:

Λ̂t = U−1
t

(
Π′tΨ̂tΠt + Π′tΨ̂tJtα̂t

)
Ut. (B.8)

By plugging (B.8) into (B.7), and multiplying times U−1
t from the right, we get:

J ′tṼtJtα̂t + J ′tΨ̂tΠt + J ′tΨ̂tJtα̂t = α̂t

(
Π′tΨ̂tΠt + Π′tΨ̂tJtα̂t

)
.

By using J ′tṼtJt = V̂ (ḡt|Ft−1), this yields:

α̂t = V̂ (ḡt|Ft−1)−1
{
−J ′tΨ̂tΠt − J ′tΨ̂tJtα̂t + α̂t

[
Π′tΨ̂tΠt + Π′tΨ̂tJtα̂t

]}
. (B.9)

We use this equation to upper bound the norm of matrix α̂t. For this purpose, we deploy
‖V̂ (ḡt|Ft−1)−1‖ = Op(1). By computing the norms on both sides of (B.9) we get:

‖α̂t‖ ≤ c1 + c2‖α̂t‖+ c3‖α̂t‖2, (B.10)

where c1 = Op(‖Ψ̂t‖), c2 = Op(‖Ψ̂t‖) and c3 = Op(‖Ψ̂t‖). Hence, ‖α̂t‖ satisfies an inequality of sec-

ond order, either ‖α̂t‖ ≤
1−c2−

√
(1−c2)2−4c1c3

2c3
or ‖α̂t‖ ≥

1−c2+
√

(1−c2)2−4c1c3

2c3
. The second case is not

admissible, since 1−c2+
√

(1−c2)2−4c1c3

2c3
' c−1

3

p→ ∞ (...). Hence we have ‖α̂t‖ ≤
1−c2−

√
(1−c2)2−4c1c3

2c3
.

Using that 1−c2−
√

(1−c2)2−4c1c3

2c3
' 2c1c3

2c3
= c1, we get:

‖α̂t‖ = Op(c1) = Op(‖Ψ̂t‖). (B.11)

From equation (B.8) we have:

δj(Λ̂t) = δj

(
U−1
t (Π′tΨ̂tΠt + Π′tΨ̂tJtα̂t)Ut

)
= δj

(
Π′tΨ̂tΠt + Π′tΨ̂tJtα̂t

)
.

If we can apply a Weyl’s inequality argument, from (B.11) we deduce:

δj(Λ̂t) = δj(Π
′
tΨ̂tΠt) +Op(‖Π′tΨ̂tJtα̂t‖) = δj(Π

′
tΨ̂tΠt) +Op(‖Ψ̂t‖‖α̂t‖)

= δj(Π
′
tΨ̂tΠt) +Op(‖Ψ̂t‖2).

The bound in (B.5) follows by using δkt+j(V̂t) = δj(Λ̂t).

Note: The application of the Weyl’s inequality is not straightforward, and we check this here in
more detail. The Weyl’s inequalities for two symmetric matrices A and B state that δi+j−1(A +
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B) ≤ δi(A) + δj(B). In particular, for j = 1 we get: δi(A + B) ≤ δi(A) + δ1(B). Now, this
inequality also implies δi(A) ≤ δi(A+B) + δ1(−B) ≤ δi(A+B)− δm(B), if m is the dimension of
B. Thus, we have: δi(A+B) ≥ δi(A)+ δm(B) ≥ δi(A)− max

1≤j≤m
|δj(B)|. Using that for a symmetric

matrix B we have ‖B‖ = max
1≤j≤m

|δj(B)|, we have just shown that:

|δi(A+B)− δi(A)| ≤ ‖B‖, (B.12)

(this inequality corresponds to Fact 9.12.4 in Bernstein (2009) 15). The above application of this
inequality was not fully justified because one of the two matrices is not symmetric. Equation (B.3)
implies by the orthonormality of the eigenvectors in Ŵt:

IK−kt = U ′t (IK−kt + α̂′tα̂t)Ut. (B.13)

Hence:
U−1
t = U ′t + U ′tα̂′tα̂t. (B.14)

By plugging into the expression of Λ̂t given in (B.8), we have:

Λ̂t = U ′tΠ′tΨ̂tΠtUt + U ′t
{
α̂′tα̂tΠ

′
tΨ̂tΠt + (IK−kt + α̂′tα̂t)Π

′
tΨ̂tJtα̂t

}
Ut.

Moreover, from (B.13) we have IK−kt = U ′tUt + U ′tα̂′tα̂tUt, which implies IK−kt = (U ′tUt)−1/2 + C,
where C := IK−kt − (IK−kt − U ′tα̂′tα̂tUt)−1/2. Then we can write Λ̂t = A+B, where

A = Ū ′tΠ′tΨ̂tΠtŪt,

B = CU ′tΠ′tΨ̂tΠtŪt + Ū ′tΠ′tΨ̂tΠtUtC + CU ′tΠ′tΨ̂tΠtUtC ′

+U ′t
{
α̂′tα̂tΠ

′
tΨ̂tΠt + (IK−kt + α̂′tα̂t)Π

′
tΨ̂tJtα̂t

}
Ut

where Ūt := Ut(U ′tUt)−1/2 is an orthogonal matrix. Matrix A and therefore also B = Λ̂t − A

are symmetric. Hence, inequality (B.12) implies δj(Λ̂t) = δj(A) + Op(‖B‖), uniformly in j =

1, ..., K − kt. Now, δj(A) = δj(Ū−1
t Π′tΨ̂tΠtŪt) = δj(Π

′
tΨ̂tΠt) because Ūt is orthogonal. To bound

the operator norm of matrix B, we use that ‖Ut‖ = δ1(U ′tUt)1/2 = δ1(IK−kt − U ′tα̂′tα̂tUt)1/2 ≤ 1.
Using the series expansion of the inverse square-root matrix function and the bound in (B.11), we
get ‖C‖ = Op(‖Ψ̂t‖2). Thus we get ‖B‖ = Op(‖Ψ̂t‖2). We conclude

δj(Λ̂t) = δj(Π
′
tΨ̂tΠt) +Op(‖Ψ̂t‖2). (B.15)

Then, (B.5) follows from δkt+j(V̂t) = δj(Λ̂t).

The bound in (B.4) is a straightforward implication of equation V̂t = Ṽt + Ψ̂t = Vt + Ψ̂t +

Γt(V̂ (gt|Ft−1)− V (gt|Ft−1))Γ′t, the result in (B.12) and triangular inequality. Q.E.D.
15A related result is the Weilandt-Hoffmann inequality:

∑m
j=1 |δj(A + B) − δj(A)|2 ≤ ‖B‖2F , see Tao (2012),

p.137.
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B.2 Consistency of the eigenvalue-ratio test

B.2.1 Constant number of conditional factors

We first focus on the case where the number of conditional factors k is constant.

(i) Let j ≤ k − 1. We have
δj(V̂t)

δj+1(V̂t)
≤ δj(Vt)

δj+1(Vt)

1 + x

1− y
,

where x := |δj(V̂t)− δj(Vt)|/δj(Vt) and y := |δj+1(V̂t)− δj+1(Vt)|/δj+1(Vt). From Lemma 1 we have
|δj(V̂t)− δj(Vt)| ≤ ‖Φ̂t‖ for all j and t, where ‖Φ̂t‖ = ‖Ψ̂t‖+ ‖V̂ (gt|Ft−1)−V (gt|Ft−1)‖. Moreover
c̄ ≥ δj(Vt) ≥ c, for all j, t. Define T = {‖Φ̂t‖ ≤ ε, t = 1, ..., T} where ε = ρc and ρ ∈ (0, 1).
Further we use that 1+x

1−y ≤ 1 + 1
1−ρ(x+ y) for all x, y ∈ [0, ρ]. Thus we get on T :

δj(V̂t)

δj+1(V̂t)
≤ δj(Vt)

δj+1(Vt)
+ C‖Φ̂t‖, (B.16)

for universal constant C = 2(c̄/c2)(1− ρ)−1.

(ii) Let j = k. From Lemma 1 we have |δj(V̂t)− δj(Vt)| ≤ ‖Φ̂t‖ and z := |δj+1(V̂t)− δ1(Π′tΨ̂tΠt)| ≤
C‖Ψ̂t‖2. Then on T we have:

δj(V̂t)

δj+1(V̂t)
≥ δj(Vt)(1− x)

δ1(Π′tΨ̂tΠt) + z

≥ c(1− x)

δ1(Π′tΨ̂tΠt) + C‖Ψ̂t‖2
≥ c(1− ρ)

(1 + Cε)‖Ψ̂t‖
.

(iii) Let j ≥ k + 1 and j ≤ q − 1. Let us define the sets of time indices:

T1 =
{
t : 1 ≤ t ≤ T, δq(V̂t) ≥ σa

}
,

T ∗ =
{
t : 1 ≤ t ≤ T, ‖Ψ̂t‖ ≤ ε

√
σ, σ ≤ δq−k(Π

′
tΨ̂tΠt)

}
,

with a > 1 and σ ↓ 0. We have T ∗ ⊂ T1, for ε small. Indeed, from Lemma 1 we have for t ∈ T ∗:

δq(V̂t) ≥ δq−k(Π
′
tΨ̂tΠt)− C‖Ψ̂t‖2

≥ (1− Cε2)σ ≥ σa,

for ε ≤
√

1/(2C) and σ ≤ (1/2)1/(a−1). For t ∈ T1 and on T we have:
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δj(V̂t)

δj+1(V̂t)
≤ δj−k(Π

′
tΨ̂tΠt) + C‖Ψ̂t‖2

σa

≤ (1 + Cε)‖Ψ̂t‖
σa

.

We summarize the previous findings. For j ≤ k − 1 and on T we have:

δj(V̂t)

δj+1(V̂t)
≤ δj(Vt)

δj+1(Vt)
+ C‖Φ̂t‖,

for j = k and on T we have:
δj(V̂t)

δj+1(V̂t)
≥ C‖Ψ̂t‖−1,

and finally for j ≥ k + 1 and j ≤ q − 1 on T and for t ∈ T1 we have:

δj(V̂t)

δj+1(V̂t)
≤ C
‖Ψ̂t‖
σa

,

where C denotes a generic positive constant (not necessarily equal in all instances).

Let ρ̂j := 1
T1

∑
t∈T1

δj(V̂t)

δj+1(V̂t)
with T1 = |T1|. We have for j ≤ k − 1 and on T :

ρ̂j ≤ C + C
1

T1

∑
t∈T1

‖Φ̂t‖ ≤ C(1 + ε),

for j = k on T :

ρ̂j ≥ C
1

T1

∑
t∈T1

‖Ψ̂t‖−1 ≥ C

(
1

T1

∑
t∈T1

‖Ψ̂t‖

)−1

≥ C(T ∗/T )

(
1

T

T∑
t=1

‖Ψ̂t‖

)−1

,

where T ∗ = |T ∗| ≤ T1 and using Jensen inequality, and finally for j ≥ k + 1 and j ≤ q − 1 on T :

ρ̂j ≤
C

σa
1

T1

∑
t∈T1

‖Ψ̂t‖ ≤
C

σa
(T ∗/T )−1 1

T

T∑
t=1

‖Ψ̂t‖.

Let k̂ = arg max
1≤j≤q−1

ρ̂j. Then, using the Cauchy-Schwarz inequality, we have k̂ = k w.p.a. 1, if

P(T ) → 1, T ∗/T = O−1
p (1), i.e. T ∗/T is bounded away from zero w.p.a. 1, and 1

T

∑T
t=1 ‖Ψ̂t‖2 �

σa.
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Lemma 3. Let us assume that

i) P
(

sup
1≤t≤T

‖Φ̂t‖ ≤ ε

)
→ 1,

ii)
1

T

T∑
t=1

1{‖Ψ̂t‖ ≤ ε
√
σ, σ ≤ δq−k(Π

′
tΨ̂tΠt)} = O−1

p (1),

iii)
1

T

T∑
t=1

‖Ψ̂t‖2 = o(σa),

for σ ↓ 0, a > 1, and ε > 0 small. Then k̂ = k w.p.a. 1.

B.2.2 Time-varying number of factors

Let us now consider the case with time-varying number of factors kt. We assume that 1 ≤ kt ≤ q.
Let ρ̂j,t = δj(V̂t)/δj+1(V̂t), and k̂t := max

j:1≤j≤q
ρ̂j,t. Let t be such that ‖Φ̂t‖ ≤ ε, for ε > 0 small. From

the arguments in the previous subsection we have:

(i) ρ̂j,t ≤ C(1 + ε), for j < kt, and

(ii) ρ̂j,t ≥ C
1+Cε
‖Ψ̂t‖−1, for j = kt, where C is a generic universal constant. Moreover:

(iii) Suppose that date t is in the set {t : ‖Ψ̂t‖ ≤ ε
√
σ, σ ≤ δq−kt(Π

′
tΨ̂tΠt)}. Then, we have

δq(V̂t) ≥ (1− Cε2)σ, and thus ρ̂j,t ≤ (1+Cε)‖Ψ̂t‖
(1−Cε2)σ

, for j > kt.

Therefore, at a date t in set {t : ‖Φ̂t‖ ≤ ε, ‖Ψ̂t‖ ≤ ε
√
σ, σ ≤ δq−kt(Π

′
tΨ̂tΠt)}, we have k̂t = kt if :

C

1 + Cε
‖Ψ̂t‖−1 > C(1 + ε) ⇔ ‖Ψ̂t‖ <

1

(1 + ε)(1 + Cε)
,

C

1 + Cε
‖Ψ̂t‖−1 >

(1 + Cε)‖Ψ̂t‖
(1− Cε2)σ

⇔ ‖Ψ̂t‖2 <
C(1− Cε2)

(1 + Cε)2
σ,

and the latter inequalities hold true if ε is small enough.

Lemma 4. For any subset T1 of {1, ..., T}, constant ε > 0 small enough, and σ ↓ 0, we have:

P
(
k̂t = kt, ∀t ∈ T1

)
≥ P

(
‖Φ̂t‖ ≤ ε, ‖Ψ̂t‖ ≤ ε

√
σ, σ ≤ δq−kt(Π

′
tΨ̂tΠt), ∀t ∈ T1

)
.

In particular, if the probability in the RHS tends to 1, then k̂t = kt for all t ∈ T1 w.p.a. 1.
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C Finding instrumental variables

Time-invariant instrumental variables wi are generated by time averages:

wi = Ei[ϕ(W )] = plim
T→∞

1

T

T∑
t=1

ϕ(Wi,t), (C.1)

where ϕ(·) denotes a generic (integrable) function of variable W . From Assumption 1 variable wi
is measurable w.r.t. sigma-field Hi.

Assumption 14. For any variable wi which is measurable w.r.t. Hi, we have:

plim
n→∞

1

n

n∑
i=1

wiεi,t = 0.

Under Assumption 14 the asset-specific and time-invariant characteristics are cross-sectionally un-
correlated with the idiosyncratic errors. Then, time-invariant instrument wi satisfies Assumption
1 (i).

As an example, suppose the factor loadings vector bi,t−1 is such that:

bi,t−1 = b(Zt−1, αi), (C.2)

where Zt−1 generates the common information set Ft−1 at time t − 1, and αi contains all the
firm-specific characteristics for asset i that generate Hi. Taking (C.2) into (C.1) with Wi,t = yi,t,
we have:

wi = plim
T→∞

1

T

T∑
t=1

ϕ [b(Zt−1, αi)
′gt + εi,t]

= E[ϕ(b(Zt−1, αi)
′gt + εi,t)|αi]

=

ˆ
ϕ(b(Zt−1, αi)

′gt + εi,t)dPi(Zt−1, gt, εi,t) ≡ U(αi),

where E[·|αi] represents the expectation across time for given asset i, and Pi(·) denotes the con-
ditional probability law of Zt−1, gt, εi,t given αi, for asset i. As a result, U(αi) is a time-invariant
function, which only depends on firm-specific characteristics αi. Assumption 14 (or equivalently
Assumption 2 (i)) is satisfied if the αi and the εi,t are cross-sectionally independent at any date.
Assumption 2 (ii) is satisfied if matrix Ec

t [wib
′
i,t−1] =

´
U(αi)b(Zt−1, αi)

′dP (αi) is full-rank, P -a.s.
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D Proof of equation (9)

Matrices Λt and Jt are the diagonal matrix of the k non-zero eigenvalues of V (ξt|Ft−1), and the
matrix of the associated standardized eigenvectors, respectively. Thus, V (ξt|Ft−1)Jt = JtΛt. From
equation (8) and Assumption 3 we get:

JtΛt = V (ξt|Ft−1)Jt = JtV (gt|Ft−1)J ′tJt

= JtV (ft|Ft−1),

where we use J ′tJt = Ik and V (gt|Ft−1) = V (ft|Ft−1). Then, since matrix Jt is full column-rank,
equation (9) follows.

E. Monte Carlo Simulations

In this section, we report the results of our Monte Carlo simulation study to investigate the finite
sample properties of our estimators for the factor space and its dimension.

E.1 DGPs with time-invariant number of factors

E.1.1 Data generating process

We simulate the excess returns from the conditional factor model (3)-(4) consistent with the
no-arbitrage restrictions, where ft is a k × 1 vector with distribution i.i.d.N(0, Ik) and εi,t ∼
i.i.d.N(0, 1), mutually independent. The factor loadings bi,t−1 and the vector νt are generated by:

bi,t−1 = bi,0 + bi,1Zt−1

νt = ν0 + ν1Zt−1, (C.3)

where Zt is a d × 1 vector with distribution i.i.d.N(0, Id), bi,0 is a k × 1 vector with distribution
i.i.d.N(1k, Ik), where 1k denotes a k× 1 vector with unit elements, and bi,1 is a k× d matrix with
each element following i.i.d.N(0, 1), ν0 is a k×1 constant vector and ν1 is a k×d constant matrix.
All random variables are assumed mutually independent.

The K × 1 vector of instrumental variables wi,t is generated as follows:

wi,t =

[
SAt(Cbi,t + ui,t)

QuWi,t

]
(C.4)
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and S is a (k + kR) × k matrix with S =

[
Ik

R

]
UΛ−1/2, where R is a full-rank kR × k matrix, U

is the matrix of normalized eigenvectors of Ik + R′R and Λ is the diagonal matrix of eigenvalues.
Therefore, the columns of matrix S are orthonormal

S ′S = Λ−1/2U ′(Ik +R′R)UΛ−1/2 = Ik. (C.5)

Moreover, C is a k × k diagonal matrix with ρ1, ..., ρk on its diagonal, Q is a (K − k − kR)× kW
matrix, ui,t ∼ i.i.d.N(0, Ik) and uWi,t ∼ i.i.d.N(0, IkW ) mutually independent. In Appendix D we
show that with the choice

At =
[
(1 + ‖Zt‖2)Ik + 1k1k

′]−1
C−1 (C.6)

Assumptions 2 and 4 are satisfied. When kR = kW = 0 we have S = Ik, the setting is exactly iden-
tified and matrix C controls for the correlation of the instruments with the loadings. Otherwise,
matrix S is designed to create k useful and kR redundant instruments, and matrix Q generates
K − k − kR useless instruments from kW pure noise variables.

We simulate 1000 panel datasets for each of the following DGP settings:

DGP 1 : k = 1 , kR = kW = 0, d = 1 , ν0 = 1, ν1 = 1

DGP 2 : k = 2 , kR = kW = 0, d = 1 , ν0 = [1 − 1]′, ν1 = [1 1]′

DGP 3 : k = 2 , kR = kW = 0, d = 10 , ν0 = [1 − 1]′, ν1 is a 2× 10 matrix of ones

DGP 4 : k = 2 , kR = kW = 0, d = 20 , ν0 = [1 − 1]′, ν1 is a 2× 20 matrix given by:

ν1 =

[
1 1 1 1 1 0 · · · 0
1 1 1 0 0 0 · · · 0

]

DGP 5 : k = 2, kR = 1, kW = 3, d = 10, ν0 =
[
1 −1

]′
,

ν1 =

[
1 1 1 1 1 0 · · · 0
1 1 1 0 0 0 · · · 0

]
,

R =
[
−1 1

]
, Q = I3, C =

[
100 0

0 100

]
,

where ν1 is a 2× 10 matrix.

DGP1 and DGPs 2-4 are exactly identified with 1 and 2 factors, respectively, and different numbers
of common variables. DGP 5 is overidentified with 1 redundant and 3 useless factors.
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E.1.2 Simulation Results

We start with exactly identified settings (DGP 1-4). In order to understand how our estimation
approach works for different finite samples, we perform simulation exercises combining different
values of the cross-sectional dimension n and the time series dimension T . Tables 1 to 4 in the
Appendix show percentiles of root mean square error (RMSE) of our estimators ĝt, ν̂t and f̂t of
different sample sizes under corresponding DGP processes. RMSE is calculated via the following
formulas:

RMSE(l) =

√√√√ 1

kT

k∑
j=1

T∑
t=1

(l̂jt − ljt)2, (C.7)

where l = g, ν, f .

Since we estimate gt based on a pure cross-sectional average at each time t, we expect that the
RMSE of ĝt is stable with respect to time series dimension T and decreases with cross-sectional
dimension n. RMSEs of ĝt in Tables 1-4 verify this property: for each column, the RMSE stays
approximately the same with constant n but different T , while it is decreasing when n increases.

The RMSEs of ν̂t will show an opposite property since we estimate ν̂t by using conditional expec-
tation model, which is basically a time-series weighted average. However, since we replace gt with
ĝt when estimating νt, we may also expect RMSEs to decrease with cross-sectional dimension n.
From the panels corresponding to ν̂t in each table, we observe that the RMSEs of ν̂t are relatively
stable as n increases, while clearly decreasing with T . We deduce that the estimation error from
replacing gt with ĝt can be neglected compared to the error from time series regression.

As f̂t is simply given by ĝt−ν̂t, we expect the RMSEs of f̂t to decrease with both sample dimensions,
which we indeed observe from the panel regarding f̂t in each table.

To summarize, in the exactly identified case, the root mean square errors of our estimates are rather
small for realistic sample sizes, showing that our methodology has good finite-sample properties
for the considered DGPs. Moreover, the root mean square errors decrease with the sample sizes
N and T as predicted by theory.

We now move to the overidentified setting with DGP 5. Table 5 shows percentages of selection of
k̂ among all repetitions of different sample sizes. For the smallest considered sample sizes, namely
n = 1000 and T = 250, the estimate k̂ selects the correct number of factors k = 2 in 76% of
the cases, and underestimates k by one unit in the rest of the cases. When the time dimension
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increases to T = 500, which is similar to our empirical application, the percentage of correct
selection increases to 95%. As the sample sizes continue to increase to n ≥ 5000, the simulation
results reach a 100% rate of correct selection, showing that the estimator k̂ behaves very well in
the time-invariant case.

In order to assess the accuracy of the estimator of the number of factors k̂t at the given date t, in
Figure 2 we display histograms of k̂t across dates t = 1, ..., T and 100 Monte Carlo replications for
different combinations of n and T . As expected, the histograms become more peaked at the true
number of factors k = 2 as n and T increase.

In order to highlight the importance of accounting for the conditional nature of the factors, we
compare our results with those obtained by selecting the number of factors with a method for
static factor models. Specifically, we deploy the ICp1 and ICp2 criteria of Bai and Ng (2002).
For our simulation designs, both criteria select 22 factors in every Monte Carlo draw across all
sample sizes. In fact, by plugging (C.3) into (3), we see that our DGP corresponds to a model
with k(d+ 1) = 22 static factors.

E.2 Overidentified case with time-varying number of factors

In this section, we conduct Monte Carlo experiments with a model featuring a time-varying number
of conditional factors.

E.2.1 Data generating process

The data generating process for the excess returns yi,t is (3)-(4) where the factor loadings bi,t−1

are now generated by

bi,t−1 = Dt−1(bi,0 + bi,1Zt−1), Dt−1 =

[
Ik0 0

0 {φ(Zt−1)}+Ik−k0

]
, (C.8)

where φ(·)+ = max{0, φ(·)} is the positive part of the scalar-valued function φ(·), k0 < k, and bi,0,
bi,1, Zt−1 are generated in the same way as in Subsection 7. As a result, the number of non-zero
factor loadings in bi,t−1 is now time-varying:

kt =

k, when φ(Zt−1) > 0

k0, otherwise

The vector of instrumental variables wi,t is as in (C.4) with

At−1 =

[
{(1 + ‖Zt−1‖2)D2

t−1 +Dt−11k1k
′Dt−1}−1

kt,kt
0

0 0(k−kt)×(k−kt)

]
C−1, (C.9)
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where {·}kt,kt denotes the upper-left (kt, kt) block of a matrix. The factors are i.i.d. condition-
ally heteroschedastic given Zt−1, with ft ∼ N(0, D2

t−1) and νt = Dt−1(ν0 + ν1Zt−1). Hence, the
conditional variances of k − k0 factors are phased out by function φ(Zt−1)+. The conditions in
Assumption 2.TV and Assumption 4.TV are met (see Appendix D.2), with

E(ξt|Ft−1) =

(
Sk0 : Sk−k0φ(Zt−1)+

0

)
(ν0 + ν1Zt−1), (C.10)

V (ξt|Ft−1) =

(
Sk0S

′
k0

+ φ(Zt−1)2
+Sk−k0S

′
k−k0 0

0 0

)
, (C.11)

where we partition S =

[
Sk0

... Sk−k0

]
and Sk0 is the left (k + kR)× k0 block.

Based on the same setting k = 2, kR = 1, kW = 3, d = 10 and the same values for ν0, ν1, R, Q,
and C as DGP 5 in the time-invariant case, we set up two DGPs for the time-varying case:

DGP 6 :

φ(Zt−1) = 1{1

3
≤ t

T
≤ 2

3
}, k0 = 1,

where we include the indicator variable 1{1
3
≤ t

T
≤ 2

3
} as a component of Zt−1.

DGP 7 :

φ(Zt−1) = 1{Z1,t−1 ≥ 0}, k0 = 1,

where Z1,t−1 = µ+ ϕ(Z1,t−1 − µ) + et with et ∼ i.i.N.(0, 1).

In DGP 6, the switch in the number of factors between 1 and 2 is deterministic, while in DGP
7 it is driven by the value of Z1,t. Hence, in DGP 6 the econometrician is assumed to know the
dates of structural breaks in the number of factors. In DGP 7, this assumption is relaxed.

E.2.2 Simulation Results

Figure 3 and 4 display histograms of k̂t across dates t = 1, ..., T and 100 Monte Carlo replications
for different sample sizes under DGP6, distinguishing dates with kt = 1 and kt = 2, respectively.
For all sample sizes (except the smallest one), the mode of the histogram is the true number of
factors. The histograms become more peaked as the sample sizes increase.
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E.3 Factor normalization in the MC designs

E.3.1 Time-invariant number of factors

Let us check the validity of Assumption 4 when the instruments are defined as in (C.4) and (C.6).
We have:

Γt = Ec
t [wi,t−1b

′
i,t−1] (E.1)

= Ec
t

([
SAt−1(Cbi,t−1 + ui,t−1)

QuWi,t−1

]
b′i,t−1

)

=

[
SAt−1CE

c
t [bi,t−1b

′
i,t−1]

0

]
.

Moreover:

Ec
t [bi,t−1b

′
i,t−1] = Ec

t [bi,0b
′
i,0] + Ec

t [bi,1Zt−1Z
′
t−1b

′
i,1]

= Ik + 1k1k
′ + Ec

t [bi,1Zt−1Z
′
t−1b

′
i,1].

Let us now compute the (m, l) element of matrix Ec
t [bi,1Zt−1Z

′
t−1b

′
i,1]. We denote by b′i,1,k the kth

row of matrix bi,1, then:

(Ec
t [bi,1Zt−1Z

′
t−1b

′
i,1])ml =Ec

t [b
′
i,1,mZt−1Z

′
t−1bi,1,l] = Tr(Zt−1Z

′
t−1E

c
t [bi,1,lb

′
i,1,m])

=

Tr(Zt−1Z
′
t−1) = ‖Zt−1‖2, if m = l

0, otherwise

Thus, we get:

Γt =

[
SAt−1C{(1 + ‖Zt−1‖2)Ik + 1k1k

′}
0

]
.

Then, with the choice (C.6) for At−1 and using V (gt|Ft−1) = Ik, we get

Γt =

[
S

0

]
, V (ξt|Ft−1) = ΓtV (gt|Ft−1)Γ′t =

[
SS ′ 0

0 0

]
.

Since S ′S = Ik, the eigenvectors of matrix V (ξt|Ft−1) associated withe the non-zero eigenvalues
are the columns of matrix Γt, i.e. Jt = Γt, and Assumption 4 is met.

Finally, we note that matrix At−1 can be written as:

At−1 =[(1 + ‖Zt−1‖2)Ik + 1k1k
′]−1C−1 = [λ1,tPk + λ2,tMk]

−1C−1

=[
1

λ1,t

Pk +
1

λ2,t

Mk]C
−1,

where λ1,t = 1 + k + ‖Zt−1‖2, λ2,t = 1 + ‖Zt−1‖2, Pk = 1
k
1k1k

′, Mk = Ik − Pk.
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E.3.2 Time-varying number of factors

Let us now consider the case with time-varying number of factors kt according to the loadings in
(C.8), and check the validity of Assumption 4** when the instruments are defined as in (C.4) and
(C.9). Matrix Γt is as in (E.1) with

Ec
t [bi,t−1b

′
i,t−1] = (1 + ‖Zt−1‖2)D2

t−1 +Dt−11k1k
′Dt−1.

With the definition of At−1 in (C.9) we get:

Γt =

[
Skt 0(k+kR)×(k−kt)

0 0

]
=

[
Sk0 Sk−k01kt=k

0 0

]
. (E.2)

Using that V (gt|Ft−1) = D2
t−1 we get V (ξt|Ft−1) as in (C.11). The non-zero eigenvalues of matrix

V (ξt|Ft−1) are 1 with multiplicity kt and φ(Zt−1)+ with multiplicity k − kt. Then:

Jt =

[
Skt

0

]
.

Hence, Assumption 4** holds. Finally, the expression of E(ξt|Ft−1) in (C.10) follows from E(ξt|Ft−1) =

Γtνt and (E.2).
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F Tables and Figures

ĝt ν̂t f̂t

n T 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

100
50 0.2021 0.2488 0.2872 0.3389 0.4722 0.0832 0.1646 0.2384 0.3194 0.4284 0.2468 0.3129 0.3833 0.4591 0.6072
100 0.2187 0.2556 0.2897 0.3390 0.4406 0.0652 0.1194 0.1751 0.2345 0.3130 0.2459 0.2982 0.3463 0.4063 0.5229
500 0.2286 0.2581 0.2887 0.3443 0.4681 0.0255 0.0538 0.0781 0.1030 0.1399 0.2357 0.2655 0.3022 0.3583 0.4727

500
50 0.0896 0.1108 0.1294 0.1559 0.2013 0.0852 0.1751 0.2480 0.3238 0.4542 0.1440 0.2137 0.2806 0.3542 0.4894
100 0.0970 0.1124 0.1298 0.1537 0.1992 0.0555 0.1217 0.1686 0.2218 0.3025 0.1303 0.1743 0.2167 0.2674 0.3475
500 0.1022 0.1152 0.1307 0.1579 0.2087 0.0235 0.0546 0.0775 0.1021 0.1361 0.1128 0.1327 0.1562 0.1849 0.2443

1000
50 0.0637 0.0788 0.0926 0.1117 0.1520 0.0864 0.1786 0.2422 0.3277 0.4400 0.1184 0.2015 0.2615 0.3473 0.4604
100 0.0688 0.0798 0.0918 0.1093 0.1423 0.0620 0.1204 0.1740 0.2312 0.3177 0.1051 0.1526 0.1995 0.2514 0.3395
500 0.0725 0.0819 0.0920 0.1108 0.1487 0.0283 0.0558 0.0790 0.1041 0.1420 0.0852 0.1054 0.1238 0.1501 0.1931

5000
50 0.0286 0.0352 0.0417 0.0508 0.0668 0.0817 0.1686 0.2464 0.3285 0.4438 0.0899 0.1745 0.2490 0.3279 0.4517
100 0.0312 0.0369 0.0423 0.0506 0.0668 0.0603 0.1195 0.1743 0.2237 0.3099 0.0720 0.1261 0.1764 0.2292 0.3093
500 0.0324 0.0362 0.0403 0.0469 0.0632 0.0253 0.0534 0.0776 0.1038 0.1374 0.0452 0.0676 0.0890 0.1134 0.1476

Table 1: Percentiles of RMSE (C.7) of estimators ĝt, ν̂t, f̂t in DGP1 (Exactly Identified Case)



ĝt ν̂t f̂t

n T 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

100
50 0.2369 0.2834 0.3196 0.3652 0.4326 0.0581 0.1152 0.1675 0.2215 0.3106 0.2658 0.3182 0.3661 0.4213 0.5200
100 0.2533 0.2890 0.3217 0.3629 0.4390 0.0350 0.0849 0.1177 0.1571 0.2147 0.2676 0.3077 0.3457 0.3896 0.4702
500 0.2692 0.2959 0.3202 0.3550 0.4283 0.0171 0.0380 0.0563 0.0719 0.0985 0.2726 0.3001 0.3243 0.3632 0.4388

500
50 0.1089 0.1275 0.1438 0.1618 0.1952 0.0524 0.1194 0.1694 0.2214 0.3194 0.1393 0.1808 0.2226 0.2766 0.3621
100 0.1131 0.1280 0.1427 0.1595 0.1927 0.0406 0.0870 0.1204 0.1626 0.2234 0.1319 0.1590 0.1883 0.2242 0.2733
500 0.1207 0.1324 0.1428 0.1579 0.1862 0.0200 0.0398 0.0567 0.0726 0.0989 0.1267 0.1410 0.1532 0.1727 0.2096

1000
50 0.0775 0.0906 0.1029 0.1166 0.1407 0.0634 0.1239 0.1746 0.2366 0.3189 0.1129 0.1600 0.2058 0.2555 0.3544
100 0.0803 0.0918 0.1019 0.1130 0.1367 0.0431 0.0915 0.1276 0.1654 0.2214 0.1003 0.1329 0.1632 0.2011 0.2508
500 0.0853 0.0934 0.1014 0.1132 0.1355 0.0176 0.0381 0.0549 0.0691 0.0966 0.0914 0.1049 0.1170 0.1331 0.1606

5000
50 0.0351 0.0404 0.0454 0.0518 0.0634 0.0578 0.1201 0.1681 0.2250 0.3169 0.0694 0.1288 0.1757 0.2325 0.3194
100 0.0362 0.0410 0.0450 0.0512 0.0618 0.0436 0.0881 0.1248 0.1634 0.2164 0.0611 0.0989 0.1337 0.1697 0.2214
500 0.0380 0.0417 0.0452 0.0502 0.0607 0.0178 0.0389 0.0560 0.0732 0.0989 0.0459 0.0580 0.0727 0.0883 0.1144

Table 2: Percentiles of RMSE (C.7) of estimators ĝt, ν̂t, f̂t in DGP2 (Exactly Identified Case)



ĝt ν̂t f̂t

n T 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

100
50 0.3351 0.4039 0.4624 0.5301 0.6459 0.5110 0.5890 0.6442 0.7107 0.9440 0.6458 0.7373 0.8092 0.8949 1.0828
100 0.3639 0.4197 0.4615 0.5122 0.5981 0.3834 0.4416 0.4817 0.5262 0.5898 0.5353 0.6149 0.6715 0.7310 0.8311
500 0.4027 0.4369 0.4666 0.4998 0.5680 0.1857 0.2108 0.2282 0.2447 0.2757 0.4388 0.4798 0.5160 0.5604 0.6418

500
50 0.1526 0.1828 0.2055 0.2308 0.2884 0.5120 0.5913 0.6479 0.7149 1.0539 0.5503 0.6239 0.6863 0.7493 1.0761
100 0.1663 0.1883 0.2079 0.2310 0.2669 0.3812 0.4415 0.4834 0.5251 0.5911 0.4269 0.4858 0.5261 0.5710 0.6377
500 0.1812 0.1975 0.2122 0.2272 0.2542 0.1838 0.2124 0.2294 0.2476 0.2761 0.2577 0.2888 0.3119 0.3394 0.3822

1000
50 0.1074 0.1280 0.1463 0.1655 0.1993 0.5137 0.5948 0.6532 0.7235 0.9825 0.5293 0.6113 0.6681 0.7402 0.9943
100 0.1165 0.1341 0.1486 0.1640 0.1891 0.3819 0.4460 0.4863 0.5288 0.5945 0.4029 0.4628 0.5092 0.5531 0.6217
500 0.1277 0.1392 0.1486 0.1598 0.1799 0.1884 0.2141 0.2318 0.2501 0.2728 0.2261 0.2535 0.2761 0.2979 0.3353

5000
50 0.0479 0.0573 0.0646 0.0727 0.0902 0.5189 0.5936 0.6506 0.7213 1.0074 0.5198 0.5953 0.6514 0.7259 1.0153
100 0.0514 0.0598 0.0661 0.0735 0.0850 0.3844 0.4427 0.4819 0.5290 0.5924 0.3928 0.4478 0.4863 0.5350 0.5929
500 0.0572 0.0622 0.0669 0.0712 0.0804 0.1866 0.2082 0.2272 0.2456 0.2716 0.1913 0.2185 0.2355 0.2545 0.2865

Table 3: Percentiles of RMSE (C.7) of estimators ĝt, ν̂t, f̂t in DGP3 (Exactly Identified Case)



ĝt ν̂t f̂t

n T 5% 25% 50% 75% 95% 5% 25% 50% 75% 95% 5% 25% 50% 75% 95%

100
50 0.2346 0.2744 0.3056 0.3377 0.4008 0.3769 0.4637 0.5273 0.6086 0.7453 0.4630 0.5516 0.6200 0.6887 0.8130
100 0.2532 0.2847 0.3079 0.3358 0.3795 0.2765 0.3362 0.3847 0.4387 0.5340 0.3940 0.4484 0.4934 0.5445 0.6386
500 0.2767 0.2942 0.3087 0.3235 0.3491 0.1262 0.1554 0.1758 0.1983 0.2312 0.3055 0.3337 0.3539 0.3784 0.4194

500
50 0.1037 0.1223 0.1362 0.1517 0.1752 0.3899 0.4700 0.5393 0.6158 0.7584 0.4144 0.4906 0.5549 0.6366 0.7641
100 0.1138 0.1275 0.1376 0.1490 0.1664 0.2776 0.3406 0.3852 0.4355 0.5348 0.3085 0.3649 0.4090 0.4564 0.5551
500 0.1241 0.1319 0.1381 0.1454 0.1552 0.1276 0.1544 0.1728 0.1960 0.2328 0.1826 0.2047 0.2222 0.2409 0.2768

1000
50 0.0751 0.0871 0.0971 0.1075 0.1256 0.3677 0.4693 0.5413 0.6190 0.7594 0.3820 0.4779 0.5462 0.6287 0.7713
100 0.0803 0.0902 0.0974 0.1050 0.1199 0.2744 0.3413 0.3863 0.4400 0.5358 0.2857 0.3534 0.3992 0.4502 0.5440
500 0.0879 0.0938 0.0982 0.1029 0.1103 0.1285 0.1545 0.1758 0.1983 0.2313 0.1582 0.1813 0.2016 0.2221 0.2583

5000
50 0.0329 0.0384 0.0426 0.0476 0.0561 0.3849 0.4747 0.5409 0.6172 0.7577 0.3854 0.4783 0.5413 0.6185 0.7567
100 0.0361 0.0403 0.0434 0.0470 0.0528 0.2745 0.3428 0.3891 0.4467 0.5455 0.2778 0.3460 0.3904 0.4490 0.5433
500 0.0391 0.0418 0.0439 0.0458 0.0489 0.1286 0.1551 0.1760 0.1967 0.2292 0.1345 0.1614 0.1818 0.1997 0.2330

Table 4: Percentiles of RMSE (C.7) of estimators ĝt, ν̂t, f̂t in DGP4 (Exactly Identified Case)
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n T k̂ = 1 k̂ = 2 k̂ = 3 k̂ = 4 k̂ = 5 k̂ = 6

1000
250 24% 76% 0% 0% 0% 0%
500 5% 95% 0% 0% 0% 0%
1000 5% 95% 0% 0% 0% 0%

5000
250 0% 100% 0% 0% 0% 0%
500 0% 100% 0% 0% 0% 0%
1000 0% 100% 0% 0% 0% 0%

10000
250 0% 100% 0% 0% 0% 0%
500 0% 100% 0% 0% 0% 0%
1000 0% 100% 0% 0% 0% 0%

Table 5: Percentages of selected k̂ in the overidentified case with constant number
of factors k = 2. DGP5 is defined in Subsection 6.1.1. Results are computed with
100 Monte Carlo replications.
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Figure 1: Diagram of a single hidden layer, feed-forward neural network
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Figure 2: Histograms of k̂t, with time-invariant k = 2 (DGP5)

(a) n = 1000; T = 250 (b) n = 1000; T = 500 (c) n = 1000; T = 1000

(d) n = 5000; T = 250 (e) n = 5000; T = 500 (f) n = 5000; T = 1000

(g) n = 10000; T = 250 (h) n = 10000; T = 500 (i) n = 10000; T = 1000

The nine panels display the histograms of selected k̂t across time t and Monte Carlo
replications for different sample size settings. The number of true, redundant and
useless factors are: k = 2, kR = 1 and kW = 3. Data are generated according to
DGP5 defined in Subsection 6.1.1.
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Figure 3: Histograms of k̂t, when kt = 1 (DGP6)

(a) n = 1000; T = 250 (b) n = 1000; T = 500 (c) n = 1000; T = 1000

(d) n = 5000; T = 250 (e) n = 5000; T = 500 (f) n = 5000; T = 1000

(g) n = 10000; T = 250 (h) n = 10000; T = 500 (i) n = 10000; T = 1000

The nine panels display the histograms of selected k̂t across dates t with kt = 1

and Monte Carlo replications for different sample size settings. The number of
true factors is time-varying: kt = 2 when

t

T
∈ [

1

3
,
2

3
] and kt = 1 otherwise. Data

are generated according to DGP6 defined in Subsection 6.2.1.
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Figure 4: Histograms of k̂t, when kt = 2 (DGP6)

(a) n = 1000; T = 250 (b) n = 1000; T = 500 (c) n = 1000; T = 1000

(d) n = 5000; T = 250 (e) n = 5000; T = 500 (f) n = 5000; T = 1000

(g) n = 10000; T = 250 (h) n = 10000; T = 500 (i) n = 10000; T = 1000

The nine panels display the histograms of selected k̂t dates t with kt = 2 and
Monte Carlo replications for different sample size settings. The number of true
factors is time-varying: kt = 2 when

t

T
∈ [

1

3
,
2

3
] and kt = 1 otherwise. Data are

generated according to DGP6 defined in Subsection 6.2.1.
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Figure 5: Cross-sectional sample size over time

This figure displays the number of observations nt available to compute the cross-

sectional average ξ̂t =
1

nt

nt∑
i=1

wi,t−1yi,t at each month t in our sample. The vertical

shaded bars denote recessions according to NBER.
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Figure 6: Time series of eigenvalue ratios averaged by quarter

This figure displays the time series of eigenvalue ratios averaged by quarter, namely
ρ̂r,τ = 1

3

∑
t∈τ

δr[V̂ (ξ̂t|Ft−1)]

δr+1[V̂ (ξ̂t|Ft−1)]
, where τ denotes a quarter, for r = 1, 2, 3, 4. Grey

vertical bars represent economic crises as from NBER and financial crises as in
Zaffaroni (2019).
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Figure 7: Time series of IEP ratios averaged by quarter

This figure displays the time series of incremental explanatory power (IEP) ratios
averaged by quarter, namely ρ̃Ir,τ = 1

3

∑
t∈τ

δr[V̂ (ξ̂t|Ft−1)]∑r
j=1 δj [V̂ (ξ̂t|Ft−1)]

, where τ denotes a
quarter, for r = 2, 3, ..., 7. Grey vertical bars represent economic crises as from
NBER and financial crises as in Zaffaroni (2019).
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Figure 8: Time series of AEP ratios averaged by quarter

This figure displays the time series of accumulative explanatory power (AEP)
ratios averaged by quarter, namely ρ̃Ar,τ = 1

3

∑
t∈τ

∑r
j=1 δj [V̂ (ξ̂t|Ft−1)]∑kmax
j=1 δj [V̂ (ξ̂t|Ft−1)]

with kmax = 4,
where τ denotes a quarter, for r = 1, 2, 3. Grey vertical bars represent economic
crises as from NBER and financial crises as in Zaffaroni (2019).
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Figure 9: Time series of AEP ratios for squared eigenvalues, averaged by quarter

This figure displays the time series of accumulative explanatory power
(AEP) ratios for squared eigenvalues, averaged by quarter, namely ρ̃A,Zr,τ =

1
3

∑
t∈τ

∑r
j=1 δj [V̂ (ξ̂t|Ft−1)]2∑kmax
j=1 δj [V̂ (ξ̂t|Ft−1)]2

with kmax = 4, where τ denotes a quarter, for r = 1, 2, 3.
Grey vertical bars represent economic crises as from NBER and financial crises as
in Zaffaroni (2019).

66



Figure 10: In-sample averages of conditional canonical correlation between f̂1,t and
one observable variable

This bar chart ranks the time averages of conditional canonical correlation between
the first factor f̂1,t and one observable variable.
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Figure 11: In-sample averages of conditional canonical correlation between f̂2,t and
one observable variable

This bar chart ranks the time averages of conditional canonical correlation between
the first factor f̂2,t and one observable variable.
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