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Abstract

By incorporating energy-saving through both technology-embodied investment and embodied investment-

specific technical change, as well as disembodied factor-neutral technical change into a dynamic stochastic

general equilibrium (DSGE) model with heterogeneous investment, this paper deepens our understanding

of the avenues through which firms adjust to rising energy prices. Using Chinese firm-level data from

1997-2004, we estimate a set of stylized facts regarding how firms of various ownership types respond

to energy price changes. Through indirect inference, we then use these stylized facts to recover the key

parameters in the DSGE model. The results show that within Chinese industry, in response to rising

energy prices, state-owned enterprises, domestic non-state enterprises, and foreign-funded enterprises em-

ploy significantly different means to achieve their energy efficiency. Such differences can be substantially

explained by government policy affecting energy pricing and the cost of investment finance across firms

of different ownership types.
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1 Introduction

Many studies investigate the impact of changes in energy prices on energy production and energy consumption.

As most simply estimate energy intensity-price elasticities, they suffer from a kind of “black box” effect

meaning that when a firm or industry faces an exogenous increase in the price of energy, they employ

unspecified channels to respond with varying degrees of energy conservation.

This paper seeks to construct a structural model, in the form of a dynamic stochastic general equilibrium

(DSGE) model that includes a variety of pathways for energy-saving outcomes available to the firm. These

include roles for energy-saving technologies, both disembodied and embodied in investment, to facilitate the

achievement of energy conserving objectives.

A key feature of this model is the availability of two forms of technology-embodied investment, so-

called “putty-clay” and “putty-putty” types of capital. While the former consists of vintages of capital

with fixed energy-capital ratios, the latter, the putty-putty version, embodies a degree of flexibility, so

that as energy prices change, the installed capital adapts to more optimal combinations of price-energy

consumption. Notwithstanding the desirability of the flexible feature, because the flexible feature generally

entails a cost premium – a higher initial price or ex post adjustment costs – firms may choose not to install the

flexible putty-putty technology; rather they may choose the more rigid putty-clay technology. In our model,

investment and technology – both neutral and factor-biased, endogenous and exogenous – jointly determine

different factor efficiencies in the firms included in our study.

In recent years, with China having become the world’s largest emitter of greenhouse gasses, attention

has focused on China’s industrial sector, including its evolving diversity across ownership types, and change

in its industry mix. In this paper, we are able to employ a substantial panel of China’s larger industrial

firms to estimate energy price-intensity and energy price-investment relationships from which we identify

salient stylized facts regarding the avenues through which firms of different ownership types – state-owned

enterprises (SOEs), domestic non-state owned enterprises (NSOEs), and foreign-funded enterprises (FFEs)

– respond to rising energy prices. Using these firm-level data, and recovering key structural parameters in

the model, we are able to test the consistency of the model with the stylized facts that represent the various

Chinese firm ownership types.

We investigate the proposition that firms choosing among the menu of technology-investment opportuni-

ties embedded in our model operate in different policy environments that make their choices different. Among

these differences in policy environments are subsidies or guaranteed access to low-cost finance for state-owned

enterprises, and the tendency of government to moderate market volatility and limit price changes, especially
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for SOEs, thus reducing the risk and cost of energy price fluctuations.

Due to a lack of detailed data on the vintage composition of the capital stock, existing empirical analyses

of the relationship among energy prices, energy intensity, and investment are typically limited to a reduced-

form regression analysis. Most firm- or industry-level data provide only the amount of capital stock or new

investment over given periods. Although measures of the real capital stock or real investment are generally

available, the quality of each vintage capital is not directly observable, making it challenging to construct

quality-adjusted capital stock, or the vintage structure of capital, the exceptions being Gordon [1990] and

Sakellaris and Wilson [2004]. Griffin and Schulman [2005] describe the challenge as follows:

In a properly specified econometric demand model, the stocks of energy-using equipment would be modeled

with of a number of investment and depreciation equations for each type of energy using capital. Energy

consumption would then depend on the utilization and efficiency characteristics of the stock of equipment.

Such an elaborate model could then be simulated to describe the adaption of the capital stock to energy price

shock. But given the absence of capital stock data needed to reflect the adjustment of the capital stock of energy

using equipment, econometricians estimate reduced form single demand equations featuring a distributed lag

on price to capture the adaptation of the capital stock.

This paper uses a novel approach to overcome the challenge caused by the absence of quality-adjusted

vintage capital stock data. Given measures of each firm’s net and gross capital stock valuations, both available

in our data set, we construct a measure of the age structure of the capital stock as the ratio of net value

to gross value of capital. Using this age structure measure, we then identify a robustly positive relationship

between the age and energy efficiency across vintages. Given our proxy for the energy vintage structure and

the stylized facts obtained from the reduced-form analysis, we are able to formulate and estimate our DSGE

model for China’s SOEs, domestic non-SOEs (NSOEs) and foreign funded firms (FFEs). The validity our

model is demonstrated by its ability to replicate the stylized facts from firms of different ownership types.

Our results show that vintage capital that embodied energy efficiency technology plays a critical role in

achieving energy efficiency for China’s industrial firms. We find that the model with vintage capital, i.e.,

putty-clay investment, does a better job of replicating the dynamics between energy prices and energy inten-

sity than do models without vintage capital investment. In comparison to domestic NSOEs and FFEs, SOEs

rely more on investment-specific technology. SOEs tend to invest in capital goods that are more efficient when

energy prices are high. Following SOEs, domestic NSOEs exhibit the next highest proportion of putty-clay

investment, followed the FFEs that have the lowest proportion of putty-clay investment. Meanwhile, em-

bodied capital or labor augmenting investment and disembodied factor-neutral technology are two additional
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channels through which firms reduces their energy intensity.

This paper is organized as follows. The next section presents a literature review with a focus on vintage

capital models. Section 3 presents the empirical evidence that supports the existence of an active energy

price-investment response in Chinese industry. Section 4 propose a DSGE model, which is able to explain

the “stylized facts”, or equivalently the regression results presented in Section 3. Within an inter-temporal

optimizing framework, the DSGE model in Section 4 specifies the firm’s investment choice in response to

energy price changes. Section 5 identifies key structural parameters regarding the importance of vintage

capital, embodied and disembodied technology, and shows the DSGE model successfully mimics the stylized

facts in Section 3. Based on the DSGE model, Section 6 conducts a policy experiment to evaluate the effect

of SOE reform on firm-level energy efficiency. Conclusions are drawn in Section 7.

2 Literature Review

This paper builds directly on the work of Wei [2003] and Gilchrist and Williams [2000], who develop a modern

business cycle version of the putty-clay theory of Johansen [1959]. Gilchrist and Williams [2000] first propose

a putty-clay model and empirically estimate of the relative importance of putty-clay investment in the U.S.

economy. With two factors in their model – capital and labor - the authors focus on how the aggregate

economy responds to exogenous productivity shocks, such as investment-specific technology shocks and total

factor productivity shocks. Their model does not include energy price shocks. However, Wei [2003] extends

the work of Gilchrist and Williams [2000] to include energy, thereby enabling the analysis of how a firm’s

market value responds to exogenous energy price shocks. Wei [2003] examines the implications of putty-clay

investment for the stock market crash during the 1973 oil crisis. However, Wei [2003]’s study does not assess

the relative importance of putty-clay and putty-putty investment.

Much of the research that follows from Gilchrist and Williams [2000] and Wei [2003] focuses on the impact

of energy price shocks on the aggregate economy or on financial markets, e.g., Kilian [2008], Kilian and Park

[2009], Gourio [2011], Balcilar et al. [2015], Mohaddes and Pesaran [2017], and Sim and Zhou [2015].

Atkeson and Kehoe [1999] is the first paper to use putty-clay investment to study the relationship between

energy prices and energy use. Based on Atkeson and Kehoe [1999], Díaz and Puch [2019] and Rausch and

Schwerin [2016] propose dynamic models with putty-clay investment and investment-specific technology to

study the features of the balanced growth path. Empirically, Díaz and Puch [2019] and Rausch and Schwerin

[2016] use their putty-clay investment model to study the relationship among energy prices, energy use, the

capital-energy ratio, and other factors on the balanced growth path, based on US aggregate economy. Our
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paper differs from these two papers in the two respects. First, in Díaz and Puch [2019] and in Rausch and

Schwerin [2016], vintages of capital can only combine with fixed amounts of energy, thereby requiring a fixed

capital-energy ratio. However, by allowing substitution between labor and capital services, all vintage capital

becomes fully utilized if energy prices are low enough. In our model, as in Wei [2003] and Gilchrist and

Williams [2000], there is no substitutability among capital, energy and labor, the utilization decision of a

particular vintage of capital is therefore endogenously determined in the model. Second, the focus of these

other papers, however, is not the empirical relevance of putty-clay investment versus putty-putty investment.

This paper quantifies the relative importance of the two modes of investment across different firm ownership

types for the purpose of achieving energy efficiency in China’s industry firms.

A second well-establish body of literature is the analysis on China’s energy intensity. This body of research

can be classified roughly into two groups according to the methods applied: the first group uses decomposition

methods; the second group uses regression methods. As noted in the Introduction, most researchers and

experts in this area concentrate their research on deriving energy-intensity price elasticities.Many of these

studies are well-known among scholars, who focus on energy conservation in Chinese industry. Table A1 in

the Appendix A lists a number of relevant paper studying China’s energy intensity.

A third related stream of literature relates to the impact of energy prices on investment. Pindyck and

Rotemberg [1983] use a dynamic factor input model to estimate the demand of capital in response to energy

price changes, using US annual data from1948 to 1971. Edelstein and Kilian [2007] investigate the impact

of energy prices on the fixed assets of U.S. firms. Ratti et al. [2011] estimate the impact of energy prices

on the investment decisions of European firms. Sadath and Acharya [2015] study how investment in Indian

manufacturing firms responds to energy prices. Wang et al. [2018] empirically analyze the effect of interna-

tional oil price volatility on China’s corporate investment. And Phan et al. [2019] show that crude oil price

uncertainty negatively influences corporate investment from 54 countries in 1984-2015. All these regression

analysis show the negative impact of volatility in energy prices on firm or industry investment.

However, the price-investment channel – firms investing in energy-efficient capital when energy price rises

– has not been explored fully. One relevant paper is Gamtessa and Olani [2018], who apply a panel VAR

to estimate the effect of energy price shocks on energy intensity, using Canadian industry-level data from

1961-2007. Their regression analysis supports the proposition that in response to an increase in energy prices,

industrial firms employ more already-installed energy-saving capital in the short run, while also investing in

new energy-saving capital in the long run. Other studies (Parker and Liddle [2016], and Wu [2012]) investigate

the investment channel by adding variables that serve as proxies for capital’s vintage structure, such as new
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investment or the growth rates of the capital stock, into energy intensity regressions.

Summarizing, this paper draws most directly on Gilchrist and Williams [2000] and Wei [2003]. Considering

the existing literature, the value added of this study consists of devising and estimating a structural model in

which for given energy prices, the firm chooses optimal combination of energy-saving vintages of investment

in a setting that includes a variety of channels of factor-augmenting embodied and disembodied technical

change. Furthermore, our paper applies this vintage capital model with multiple avenues for adapting to

changing energy prices to three principle ownership types in Chinese industry, likely the most important

single source of global warming and carbon emission in today’s world.

3 Stylized Facts

This section presents the “stylized facts” using the firm-level data in Chinese industries from 1997-2004. These

facts are framed to examine the core structural parameters in the model we develop to study the roles of

energy-efficient technology and the vintage composition of energy-conserving investment.

We use three sets of regressions to characterize the relationships among energy price, energy intensity

(the ratio of energy consumption En over output Y ) and new investment. For readers’ convenience and sake

of completeness, we only re-present the three sets of regressions in this section. The detailed description of

the data set and variable constructions can be found in Tang [2020].

First, we employ the standard energy intensity regression equation to summarize the relationship between

energy intensity (En/Y ) and energy price (P e) as follows:

ln(
En

Y
)i,t = β0 + β1 lnP ei,t + β2 lnP ei,t−1 + β3 lnP ei,t−2 + β4 lnP ei,t−3 + β5 lnP ei,t−4 + controlsi,t + ξi,t (1)

where the dependent variable is the logarithm of energy intensity of firm i in year t; the explanatory variables

are the logarithmic values of real energy prices in the current year (denoted as P ei,t) and in past years (denoted

as P ei,t−j). The lagged energy price terms capture the dynamic effect of energy prices on energy intensity. The

control variables include year dummies and dummies for the two-digit industrial classification and provincial

setting for each firm. Equation (1), which captures the impact of energy prices on energy intensity, hereafter

is referred to as Regression 1.

Equation (1) is estimated using OLS for three sub samples: state-owned enterprises (SOEs), domestic non-

state-owned enterprises (NSOEs), and foreign-funded enterprises (FFEs) separately. The regression results
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are presented in Table 1. The upper panel A of Table 1 corresponds to the estimation results for SOEs,

the middle panel B corresponds to NSOEs, and the lower panel C is for FFEs. Longer lagged price terms

beyond t − 4 were added; however, they are not reported due to their coefficients having been statistically

insignificant.

Table 1: Regressing energy intensity on energy prices by ownership
(OLS)

(1) (2) (3) (4) (5)
Panel A: SOEs
P et −0.389∗∗∗ −0.304∗∗∗ −0.325∗∗∗ −0.313∗∗∗ −0.304∗∗∗

(0.010) (0.014) (0.017) (0.024) (0.036)

P et−1 −0.206∗∗∗ −0.147∗∗∗ −0.159∗∗∗ −0.126∗∗∗

(0.013) (0.017) (0.023) (0.033)

P et−2 −0.141∗∗∗ −0.087∗∗∗ −0.129∗∗∗

(0.016) (0.021) (0.026)

P et−3 −0.111∗∗∗ −0.066∗∗∗

(0.019) (0.024)

P et−4 −0.081∗∗∗

(0.023)

Panel B: NSOEs
P et −0.441∗∗∗ −0.339∗∗∗ −0.351∗∗∗ −0.330∗∗∗ −0.315∗∗∗

(0.012) (0.017) (0.025) (0.037) (0.047)

P et−1 −0.217∗∗∗ −0.121∗∗∗ −0.119∗∗∗ −0.074∗∗

(0.015) (0.020) (0.030) (0.036)

P et−2 −0.178∗∗∗ −0.134∗∗∗ −0.137∗∗∗

(0.018) (0.023) (0.031)

P et−3 −0.163∗∗∗ −0.141∗∗∗

(0.021) (0.028)

P et−4 −0.048∗

(0.026)

Panel C: FFEs
P et −0.525∗∗∗ −0.425∗∗∗ −0.404∗∗∗ −0.360∗∗∗ −0.467∗∗∗

(0.020) (0.031) (0.040) (0.057) (0.090)

P et−1 −0.221∗∗∗ −0.135∗∗∗ −0.126∗∗ 0.002

(0.028) (0.043) (0.063) (0.112)

P et−2 −0.155∗∗∗ −0.095∗∗ −0.075

(0.032) (0.043) (0.057)

P et−3 −0.179∗∗∗ −0.134∗∗

(0.038) (0.054)

P et−4 −0.089∗

(0.052)

Robust Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: the dependent variable is log of energy intensity, P et is log of energy price
in year t, P et−1 is log of energy price in year t − 1, etc. All regressions include
year, 2-digit industry and province dummies. To save space, R2 and number of
observations are not reported here.
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For all SOEs, NSOEs and FFEs, the regression coefficients of current and lagged energy prices are sig-

nificantly negative, and the contemporaneous impact of energy prices on energy intensity is larger than that

of lagged energy prices. In all the regressions, the coefficients for the current energy price are significantly

different from -1, which implies that energy intensity is inelastic to changes in current energy prices. The

inelastic or sluggish reaction of energy intensity to current energy prices is consistent with findings in Lin and

Xu [2019], who use province-level data in the metallurgical industry from 2003 to 2015, and Fisher-Vanden

et al. [2016], who also use firm-level data to investigate energy intensity in four energy-intensive industries in

China.

This pattern of regression coefficients – magnitudes of coefficients of current energy prices that are less than

unity and non-zero coefficients of lagged energy prices – contradicts predictions associated with Cobb-Douglas

production function, which is widely used in empirical analysis. Under the assumption of the Cobb-Douglas

production function, the coefficients for current energy prices should always be -1, consistent with the unitary

elasticity of substitution among factor inputs. And the coefficients of all lagged energy prices are expected

to be 0, because current energy intensity only depends on current energy price. That is to say, there should

be no vintage effect in a Cobb-Douglas production function or in a putty-putty investment setting. That the

pattern of coefficients from Regression 1 clearly contradict from predictions associated with Cobb-Douglas

production function motivates us to introduce the putty-clay investment or vintage capital into the DSGE

model in Section 4.

Next we investigate the role of the vintage capital channel through which firms can decrease their energy

intensities in the long run. One hypothesis is that for firms that depend on technology-embodied investment,

when energy prices rise, firms are incentivized to invest in energy-efficient capital goods, which in turn reduces

energy intensity. To test this hypothesis, we apply the following two regressions:

ln(
En

Y
)i,t = α0 + α1 lnP ei,t + α2 ln(

NV FA

OV FA
)i,t + α3

1

s

s∑
j=1

lnP ei,t−j + controlsi,t + εi,t (2)

ln(
NV FA

OV FA
)i,t = γ0 + γ1

1

s

s∑
j=0

lnP ei,t−j + controlsi,t + υi,t (3)

In Equation (2), we add one key explanatory variable, the log of NV FA/OV FA, a proxy for the vintage

structure of the capital stock, which becomes the dependent variable in Equation (3).

We use the net value of fixed assets, NV FA, and the original value of fixed assets, OV FA, to construct a

ratio, NV FA/OV FA, as proxy for the vintage structure of a firm’s capital stock. The older the capital, the
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greater degree of depreciation, causing this ratio to diminish. This ratio NV FA/OV FA lies in the range of

0 and 1. At one extreme, all vintages of capital that materialize through investment in current period have

a value of NV FA/OV FA = 1. At another extreme, if all capital had materialized long time ago, then the

ratio NV FA/OV FA would converge toward 0. Thus, the younger a firm’s capital structure, the higher the

ratio NV FA/OV FA.

Within the existing literature that investigates the price-investment channel, Gamtessa and Olani [2018],

Parker and Liddle [2016] and Wu [2012] add new investment or the growth rate of the capital stock as an

explanatory variable in energy efficiency regressions to estimate the effect of capital on energy efficiency.

Nevertheless, investment in one period is not enough to capture the age structure of capital stock. Given

the shortcomings of these measures, we use the NV FA/OV FA ratio to measure the age/vintage structure

of the capital stock.

Equation (2), hereafter referred to as Regression 2, identifies the contribution of the capital’s age structure

to changes in energy intensity. As such, it determines the extent to which the age structure is a suitable proxy

as a vintage measure of capital. Equation (3), which we reference as Regression 3, tests the responsiveness

of our age/vintage capital measure to energy price changes.

To maintain the parsimony of the regression Equation (2) and (3), we use moving averages of past energy

prices as a regressor to capture the impact of lagging energy prices on energy intensity. The control variables

include year dummies and dummies for the two-digit industrial classification and provincial setting for each

firm.

Table 2 reports the estimation results of Equation (2), which shows how capital’s vintage structure affects

the energy intensity for the three sub-samples individually: SOEs, NSOEs and FFEs. The coefficients on

current and lagged energy prices are significantly negative in all the regressions. Moreover, the coefficients

of NV FA/OV FA suggest that only SOEs and NSOEs use newer vintages of investment as a means for

reducing their energy intensity, while FFEs do not reduce energy intensity through new investment. The

negative coefficient for NV FA/OV FA indicates that firms with higher ratios of NVFA to OVFA tend to be

more energy efficient. This suggests the SOEs and/or NSOEs reduce their energy intensity by investing in

new capital that is relatively more energy efficient.
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Table 2: Energy intensity responding to the vintage structure
NVFA/OVFA by ownership (OLS)

(1) (2) (3) (4) (5)
1-year 2-year 3-year 4-year

Panel A: SOEs
P et −0.387∗∗∗ −0.303∗∗∗ −0.323∗∗∗ −0.324∗∗∗ −0.318∗∗∗

(0.010) (0.014) (0.017) (0.023) (0.032)
NV FA
OV FA

−0.125∗∗∗ −0.108∗∗∗ −0.148∗∗∗ −0.128∗∗∗ −0.132∗∗∗

(0.039) (0.050) (0.034) (0.038) (0.050)

Lagged P e −0.205∗∗∗ −0.285∗∗∗ −0.339∗∗∗ −0.379∗∗∗

(0.013) (0.018) (0.025) (0.035)

Panel B: NSOEs
P et −0.440∗∗∗ −0.337∗∗∗ −0.341∗∗∗ −0.320∗∗∗ −0.309∗∗∗

(0.012) (0.017) (0.024) (0.034) (0.043)
NV FA
OV FA

−0.106∗∗∗ −0.160∗∗∗ −0.180∗∗∗ −0.227∗∗∗ −0.215∗∗∗

(0.023) (0.032) (0.050) (0.048) (0.063)

Lagged P e −0.217∗∗∗ −0.305∗∗∗ −0.422∗∗∗ −0.408∗∗∗

(0.015) (0.024) (0.036) (0.048)

Panel C: FFEs
P et −0.525∗∗∗ −0.425∗∗∗ −0.401∗∗∗ −0.349∗∗∗ −0.415∗∗∗

(0.020) (0.031) (0.038) (0.048) (0.066)
NV FA
OV FA

0.053 0.012 0.013 0.018 0.051

(0.038) (0.042) (0.049) (0.056) (0.091)

Lagged P e −0.222∗∗∗ −0.292∗∗∗ −0.403∗∗∗ −0.343∗∗∗

(0.028) (0.040) (0.050) (0.071)

Robust Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: the dependent variable is log energy intensity, P e is log of the current energy
price, NV FA/OV FA represents current vintage structure in capital, and Lagged
P e is the moving average of lagged log energy price. In the column (1), no lagged
energy price is included; in the column (2) labeled with "1-year", the Lagged P e
is P et−1, the 1-year lagged energy price; in the column (3) labeled with “2-year”,
the Lagged P e is 1

2
(P et−1 + P et−2), the moving average energy price in t − 1 and

t − 2, and so forth for the rest of columns. All regressions include year, 2-digit
industry and province dummies. To save space, R2 and number of observations
are not reported here.

Table 3 reports the regression results of Equation (3), which shows how vintage structure responds to

current and lagged energy prices, for SOEs, NSOEs and FFEs, separately. For SOEs, the positive coefficient

for NV FA/OV FA suggests that rising energy prices encourage SOEs to undertake more new investment.

For NSOEs, new investment responds to the current energy price, but the coefficients of past energy prices

are no longer significant. The Table 3 results show that the investment of FFEs appears to be indifferent to

price changes.
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Table 3: Vintage structure NVFA/OVFA response to lagged energy
price by ownership (OLS)

(1) (2) (3) (4) (5)
1-year 2-year 3-year 4-year

Panel A: SOEs
Lagged P e 0.012∗∗∗ 0.013∗∗∗ 0.031∗∗∗ 0.040∗∗∗ 0.059∗∗∗

(0.003) (0.005) (0.005) (0.007) (0.009)

Panel B: NSOEs
Lagged P e 0.010∗∗∗ 0.009 0.010 0.007 0.004

(0.004) (0.005) (0.007) (0.009) (0.011)

Panel C: FFEs
Lagged P e 0.003 0.003 −0.012 −0.015 0.006

(0.007) (0.011) (0.014) (0.022) (0.027)

Robust Standard errors in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Note: the dependent variable is the log of NV FA/OV FA, and Lagged P e is
the moving average of lagged log energy price. In the column (1), Lagged P e is
energy price in current year. In the column (2) labeled with "1-year", Lagged
P e corresponds 1

2
(P et + P et−1). And in the column (3) labeled with “2-year

Lagged P e is 1
3
(P et + P et−1 + P et−2), and so forth for the rest of columns. All

regressions include year, 2-digit industry and province dummies. To save space,
R2 and number of observations are not reported here.

The different investment responses from SOEs relative to NSOEs and FFEs could be explained by prefer-

ential government treatment for SOEs. Central or local governments may provide subsidies or other support

to SOEs, thereby enabling SOEs to sustain their investment even when energy prices are rising. One mo-

tivation for sustained SOE investment is the fact that local government officials in China are rewarded and

promoted based on local economic development, as measured mainly by GDP growth. In support of this

proposition, Brandt and Li [2003], Bailey et al. [2011] and Song et al. [2011] present evidence that banks in

China prefer to give loans to SOEs and discriminate against firms of other ownership types. Hence, when

energy prices increase, SOEs might not be as financially constrained as other types of firms. Consistent with

this proposition, Regression 2 and Regression 3 together show that, in the long run, rising energy prices

induce firms to invest in energy efficient capital, especially for SOEs.

The second interpretation of the relative absence of investment responsiveness to energy prices among

NSOEs and FFEs firms is the greater likelihood that they have invested in relatively flexible types of capital

stock. That is NSOEs and FFEs firms may have invested in putty-putty vintages of capital stock. By contrast,

perhaps due to available investment subsidies and/or due to relatively stable energy prices, resulting from

government energy price controls, SOEs have tended to be less forward-looking in their investment activity.

The average energy prices for SOEs, NSOEs and FFEs are: 0.388, 0.409, and 0.631, respectively, while the

standard deviations of these prices are 0.584, 0.672, and 0.943, respectively. Because the mean and standard
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deviation of energy prices for SOEs are somewhat less than those for counterpart NSOEs, while substantially

less than those for FFEs, SOEs tend to be less forward-looking in their investment activity.

More robustness check can be found in Tang [2020], the regression results share similar patterns as

reported here. Hence, for the purpose of its baseline reference, the model we propose in Section 4 aims to

replicate the stylized facts as shown in Tables 1, 2 and 3.

We do not assert that the regression coefficients in Regressions 1, 2 and 3 are consistent, such as coefficients

in Regression 1 are price-elasticities, and these 3 sets regressions are the correct specification. We interpret

these regression coefficients as correlation coefficients, which summarize the relationships among energy price,

energy intensity and new investment. Regressions 1, 2, and 3 are auxiliary regressions, whose purpose is to

help us recover structural parameters in the DSGE model in Section 4. In Section 5, we apply the exact same

specifications of Equations (1), (2) and (3) to a synthetic data generated by the model.

4 The Model

In this section, we formulate key components in the DSGE model, with salient features adopted from Gilchrist

and Williams [2000] and Wei [2003]. The detailed specification and derivation of the full model can be found

in Gilchrist and Williams [2000] and Wei [2003]. 1

On the production side, there are two sectors: putty-clay sector and putty-putty sector. Firms in both

sectors use capital (K), energy (En), and labor (L), to produce output (Y ). Energy and labor are homoge-

neous and can be reallocated across firms and sectors with no cost. Capital is heterogeneous. Each vintage

capital depreciates at a rate δ in a period and is fully scrapped after M periods.

In the putty-putty sector, each vintage of capital is characterized by its vintage and investment-specific

technology. The firm’s production technology is described by a vintage Cobb-Douglas production function.

Following the terminology from Gilchrist and Williams [2000] and Wei [2003], the vintage capital is referred

as “machines”. Specifically, the output produced by machine i with vintage t− j in period t is:

Y Pi,t−j,t = At · θi,t−j ·Kλα
t−j,t · En

(1−λ)α
t−j,t · L1−α

t−j,t (4)

where At represents economy-wide disembodied factor-neutral technological change, and θi,t−j is machine-

level idiosyncratic efficiency, which remains fixed for the M -period lifespan of each vintage. We assume that
1The detailed specification of the model, its first-order conditions and solution programs are available from authors upon

request.
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θi,t−j is a log-normally distributed random variable. Namely,

ln θi,t−j ∼ N(ln θt−j −
1

2
σ2, σ2) (5)

where σ2 is the variance of the idiosyncratic shock, and the aggregate index θt−j represents investment-

specific technology, or capital-augmented technology of vintage t − j . This embodied investment-specific

technology θt−jonly affects production efficiency of vintage t− j, and remains unchanged for M periods after

installation. On the contrary, the disembodied technology At affects the production efficiency for all vintages

in period t.

The investment-specific technology, θt, first introduced by Greenwood et al. [1997], refers to technology

advances that make capital goods more productive, efficient, and less expensive. In our model, we assume

that investment-specific technology θt follows the process as:

ln θt = ρθ ln θt−1 + ρpθ(lnP
e
t−1 − ln P̄ ) + vt (6)

where vt ∼ iidN(0, σ2
θ).

In addition to the investment-specific technology, we assume economy-wide factor-neutral disembodied

technology At follow the process as:

lnAt = ρA lnAt−1 + ρpA(lnP et−1 − lnP̄ ) + ςt (7)

where ςt ∼ iidN(0, σ2
A).

Different from existing literature, (for instance in Gilchrist and Williams [2000], Wei [2003], Díaz and Puch

[2019] and Rausch and Schwerin [2016]), we add two key parameters, ρpθ and ρpA, to model the energy-price

induced innovation. That ρpθ > 0 indicates that firms tend to use more efficient investment or capital goods

with a higher θt when energy prices rise. Likewise, a positive ρpA implies that firms tend to adopt a better

disembodied technology in response to higher energy prices. This is in accordance with Popp [2001] and

Popp [2002], who provide evidence on the energy-price induced technology advance in U.S.

By imposing the restriction of no ex-post substitution among factor inputs, we obtain the production

function for putty-clay investment. As stated in Equation (4), once a machine is installed, its capital-energy

ratio, K/En, and energy-labor ratio, En/L, are fixed for the following M periods. Hence, the output
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produced by machine i with vintage t− j in period t in putty-clay sector is:

Y Ci,t−j,t = At · θi,t−j · kλαk−j · eαt−j · Li,t−j,t (8)

where kt−j and et−j are the fixed capital-energy ratio K/En, and fixed energy-labor ratios En/L of machines

with vintage t − j, and Li,t−j,t is the amount of labor used to these machines, which is normalized to be

unity under the constant-returns-to-scale assumption. Hence, in the putty-clay sector, capital goods are

heterogeneous in terms of its vintage t − j, capital-energy ratio kk−j and energy-labor ratio et−j chosen at

the time of installation, and the value of idiosyncratic efficiency term θi,t−j .

In the putty-putty sector, firms only chooses the profit-maximizing amount of investment; in the putty-

clay sector, firms not only choose the amount of investment (the extensive margin), but also the capital-

energy ratio k and energy-labor ratio e (the intensive margin). The capital-energy ratio and energy-labor

ratio chosen by firms are the energy-efficient technology embodied in new investment. These elements are

absent in the putty-putty sector. In summary, firms employ various channels to achieve energy efficiency.

These channels are: disembodied factor-neutral technology At, embodied investment-specific technology θt

and energy-efficient technology embodied in vintage capital, such as the choice of capital-energy ratio in

investment.

Firms in both sectors respond to exogenous energy prices, which are assumed to follow an AR(1) process:

lnP et+1 − ln P̄ = ρP (lnP et − lnP̄ ) + εt+1 (9)

where εt+1 ∼ iidN(0, σ2
p), P̄ is the unconditional mean of the energy price, normalized to be one, and ρp is

the persistence parameter of the energy price process.2

In each sector, firms choose the profit maximizing quantities of labor, energy and investment; the total

output produced in each sector is the aggregation of output over all machines and all vintages is Y pt =∑M
j=1

∫
θi,t−j

Y Pi,t−j,t · f(θi,t−j) · dθi,t−j , and Y Ct =
∑M
j=1

∫
θi,t−j

Y Ci,t−j,t · f(θi,t−j) · dθi,t−j , where f(θi,t−j) is

density function of the log-normal variable in Equation (5).

In a two-sector economy in which both putty-putty and putty-clay technologies operate, final-goods output
2Fisher-Vanden et al. [2016] and Tang [2020] argue that the firm-level energy prices are exogenous to a large degree, based on

the energy price setting institution in China. Here the assumption that energy prices are exogenous is of course a simplification.
The focus of our research is to have a model, which is able to replicate the stylized facts in the data. Section 5 does demonstrate
that this model with exogenous energy prices is able to mimic salient features observed in the firm-level data.
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produced by output from the putty-putty sector (Y pt ) and output from putty-clay sector (Y ct ) is:

Yt = (Y pt )1−η(Y ct )η (10)

One key structural parameter we intend to recover is η, the share of output produced by the putty-clay

sector. If the estimated value of η is close to unity, the data effectively places a large weight on putty-clay

production in order to match the regression coefficients obtained in Section 3. On the other hand, if the

estimated value of η is close to zero, the data suggest little, if any, role for putty-clay capital for the purpose

of matching the regression coefficients in Section 3.

5 Estimating the model parameters

In this section, we first introduce indirect inference estimation, then discuss the identification strategy that

allows us to recover the structural parameters from the model through the regression coefficients, which are

directly observable from actual data. Thereafter, the estimations of structural parameters are presented and

discussed.

5.1 Indirect inference estimation

There are two sets of parameters in the model. The structural parameters, such as the share of putty-clay

investment, and the process of disembodied and embodied technology, are estimated via indirect inference.

Another set of parameters in utility and production function are calibrated.3 The calibrated parameters

values are presented in Table 11 in Appendix B.

Because the model described in Section 4 has no analytical closed-form solution, consequently we are

not able to find the functional form of energy intensity, the dependent variables in Equation (1) and (2),

and NV FA/OV FA, the dependent variable in Equation (3). Hence, the structural parameters can not be

estimated using standard regression techniques. Instead,we use the indirect inference estimation routine,

which minimizes the distance between the model’s moments and the counterpart data moments.

In general, for a given vector ψ of unknown model parameters, we first solve the model. The resulting

decision rules are then used to simulate a synthetic data set. Next we run the three sets of regressions,

described in Equations (1)- (3) on this synthetic data set, and the regression coefficients, gM (ψ), are obtained.
3In principle, every parameter in the model can be estimated, but in practice the size of the estimated parameter space is

limited by computational constraints. Therefore, in this research we estimate the parameters about which there are probably
the weakest prior.
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Last, we compare the regression coefficients based on the synthetic data, with the regression coefficients

obtained directly from the actual data. At the end, the estimated structural parameters ψ̂ are obtained by

solving the following minimization problem:

J(ψ) = min
ψ

[gM (ψ)− gd]TW [gM (ψ)− gd] (11)

where gd is a vector of regression coefficients using actual data, gM (ψ) is a vector of regression coefficients

using simulated data generated by the model, and W is the optimal weighting matrix. J(ψ), the value of the

objective function in Equation (11), provides a chi-square test for the equality between gM (ψ) and gd. The

detailed descriptions of model solution and computational strategy are present in Appendix B.

Specifically, the vector of structural parameters to be estimated is:

ψ = {η, ρP , ρθ, ρpθ, ρA, ρpA, σθ
σp+σθ+σA

, σA
σp+σθ+σA

}.4

And gd are the 34 coefficients from three sets of regressions, which are reported in Tables 1-3. 5

The regression coefficients in Equations (1)-(3) are selected because they are informative about the un-

derlying parameters. Theoretically, the regression coefficients based on the model gM are some nonlinear

intractable functions of structural parameters ψ. 6 Hence we are able to recover the unobservable structural

parameters through observable regression coefficients.

Intuitively, η, the proportion of putty-clay investment, and ρP , the auto-correlation of energy prices, can

be identified from coefficients in Regression 1. At one extreme, if η equals to 0, then the production function

is essentially Cobb-Douglas, indicating that the coefficient for the current energy price being -1, and the

coefficients of all lagged energy prices being 0 in Regression 1. At the other extreme, if η = 1, then the

production function is of the Leontief form, in which the factor input ratios are fixed. This condition would

imply: first the coefficient for the current energy price in Regression 1 is close to 0, this is because firms can

hardly change the current energy consumption due to the fixed input ratios. Second, the coefficients of all

lagged energy prices would be negative, this is because firms would invest in energy-efficient capital if energy

prices rose in the past, so its vintage structure depends on past energy prices. Hence, past energy prices

influence current energy intensity through capital’s vintage structure.
4Because we solve this model by linearizing all the first-order conditions, the regression coefficients based on the model only

depend on the relative magnitude of standard deviations of 3 structural shocks, i.e., σθ/σp, σA/σp, not absolute values of σp, σθ,
σA. Although the absolute values of σp, σθ, σA can be estimated by matching the standard errors of 34 regression coefficients,
adding more structural parameters in indirect inference estimation routine would increase computational time exponentially.
Thus, in this paper, we estimate the relative magnitudes of 3 structural shocks’ standard deviations.

5There are 15 regression coefficients in Table 1, 14 coefficients in Table 2 and 5 coefficients in Table 3.
6The detailed discussion on the mapping of ψ to gM is in Appendix B.
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The parameters, {ρθ, ρpθ, ρA, ρpA, σθ/(σp + σθ + σA), , σA/(σp + σθ + σA)}, that govern the processes of

investment-specific technology θt and disembodied technology At, can be identified mainly from coefficients

in Regression 2 and Regression 3. Without this embodied and disembodied technology, firms will lower in-

vestment when energy prices rise. When energy prices rise, the firm’s profit will decrease, so that investment

will decrease; also, when energy prices rise, capital goods become less efficient, causing the marginal benefit

of investment to decrease, so firms will choose to invest less in the future. Both income effect and substi-

tution effect dictate firms to reduce investment; therefore, our measure of capital’s vintage age-structure

NV FA/OV FA will decrease. This indicates the coefficients of NV FA/OV FA in Regression 2 are expected

to be positive, and the coefficients of energy prices in Regression 3 are expected to be negative. In order

to reproduce the coefficients in Regression 2 and 3, adding θt and At will increase the marginal benefit of

investment or increase profit in the future, mitigating the substitution and income effects, hence enabling the

model to generate coefficients in Regressions 2 and 3 similar to those based on data. The standard deviation

of innovation in embodied and disembodied technologies also affect the firm’s investment decision, as firms

tend to wait and reduce investment if the second moment of innovation or uncertainty increases, see in Dixit

et al. [1994]. Several empirical analysis, see in Wang et al. [2018] and Phan et al. [2019], also find that energy

price uncertainty negatively influence firm’s investment, using firm-level data.

In sum, the 34 coefficients from the three sets of regressions reported in Tables 1-3 are jointly determined

by the eight structural parameters, ψ = {η, ρP , ρθ, ρpθ, ρA, ρpA, σθ⁄(σp + σθ + σA), σA/(σp + σθ + σA)}.

5.2 Estimation result

The estimations of the structural parameters through indirect inference are reported in Table 4, for SOEs,

NSOEs and FFEs, respectively.
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Table 4: Estimation of structural parameters

Definition for parameters Parameters SOEs NSOEs FFEs
Share of putty-clay investment η 0.675 0.625 0.550

(0.007) (0.010) (0.020)

Serial correlation of energy price P et ρP 0.550 0.550 0.600

(0.027) (0.032) (0.059)

Serial correlation of embodied technology θt ρθ 0.400 0.538 0.900

(0.441) (0.895) (0.087)

Cross correlation between P et and θt ρPθ 0.200 0.050 0.100

(0.038) (0.067) (0.212)

Serial correlation of disembodied technology At ρA 0.725 0.838 0.750

(0.042) (0.051) (0.126)

Cross correlation between P et and At ρPA 0.200 0.200 0.200

(0.012) (0.013) (0.035)

Relative standard deviation of innovation to θt σθ
σp+σθ+σA

0.667 0.667 0.600

(0.027) (0.059) (0.160)

Relative standard deviation of innovation to At σA
σp+σθ+σA

0.111 0.111 0.200

(0.004) (0.007) (0.058)

Objective function in indirect inference J(ψ̂) 107.606 121.558 44.728

Note: standard errors are in parentheses. The 1% critical value for J(ψ̂) is 45.642. Standard errors reported for
σθ

σp+σθ+σA
are standard errors of σθ/σp. Standard errors reported for σA

σp+σθ+σA
are standard errors of σA/σp.

For all three types of firms, the magnitude of the proportion of output produced by putty-clay investment

ranges from 0.55 to 0.68. These estimates are in line with Gilchrist and Williams [2000], in which their

estimates of the share of putty-clay investment in the US economy during 1967 to 1997 ranges from 0.47 to

0.64 among their various models. Meanwhile, our estimates of η are significantly different from 0, indicating

that putty-clay investment also plays a significant role in explaining energy use by China’s industrial firms.

It indicates that new capital goods that embedded with energy-efficiency technology is a crucial channel

through which firms reduce their energy intensity. For instance, Zhang and Huang [2017] find that utilization

of the energy-efficient basic-oxygen furnace and phasing out the energy-inefficient open-hearth furnace is a

key factor driving down the energy intensity in China’s iron and steel industry from 1980 to 2015.Last, our

estimates of η show that SOEs have the highest proportion of putty-clay investment, while FFEs have the

lowest proportion. This result is consistent with the stylized fact, based on Table 1, that the energy intensity

of SOEs is relatively more inelastic in response to energy price change, while that of the FFEs is less inelastic.

Possible explanations regarding why SOEs exhibit a relatively large magnitude of η include the following:

first, energy prices for SOEs are less volatile for NSOEs and FFEs, so SOEs tend to invest in more putty-

clay capital; second, SOEs receive investment subsidies that may be more targeted and generous to specific

periods of energy price change; third, SOEs occupy industries with high entry cost, as documented in Li

et al. [2015], specifically related to energy-intensive capital, so they may concentrate vintage investment and
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major capital renovation in times of entry; last, SOEs optimizing time horizon may be longer than that of

other ownership types, shown as the case study of state-owned steel enterprise in Jin et al. [2017], since their

levels of x-inefficiency are somewhat greater.

Table 4 also shows that the energy price is serially correlated, which is captured by ρp. Specifically,

compared with SOEs and NSOEs, the energy prices of FFEs are relatively more serially correlated. In the

AR(1) specification of the energy price, described in Eq. (9), our estimates of ρp imply that the unconditional

variance of the log of energy prices for SOEs is comparable to NSOEs, and largest for the FFEs. This result

is consistent with what we observe from the firm-level data: the standard deviations of log energy prices for

SOEs, NSOEs and FFEs are 1.48, 1.44 and 1.54, respectively.

The investment-specific technology, θt, is also serially correlated, as ρθ ranges from 0.4 to 0.9. Although

there is no prior expectation about the serial correlation of investment-specific technology, our estimates

of ρθ are comparable to Greenwood et al. [2000], who estimate the AR(1) coefficient of investment-specific

technology to be 0.64, based on an equipment price index constructed by Gordon [1990]. Gilchrist and

Williams [2000] also estimate the AR(1) coefficient for investment-specific technology to be in the vicinity of

0.98 using US aggregate data from 1967-1997. This is somewhat higher than our estimates.

The estimates of ρpθ are positive for all three types of ownership. The positive estimate for ρpθ is an

indication that capital-augmenting innovation is induced by energy prices. This finding is in line with Popp

[2002], who reports a positive effect of energy prices on energy-efficient innovation using US patent data from

1970 to 1994. That the estimates of ρpθ are the largest for SOEs could result from government subsidies.

When energy prices are rising, SOEs receive subsidies from government, thereby enabling SOEs to purchase

efficient capital.

The estimates of ρA indicate that the factor-neutral technology At is also serially correlated, as ρA ranges

from 0.70 to 0.85. Although there is no clear prior for the serial correlation of factor neutral technology,

our estimates of ρA are in line with calibration or estimation exercises in real business cycle literature, i.e.,

DeJong and Dave [2011] and King and Rebelo [1999]. The estimates of ρpA are positive for our three ownership

types. The positive values of ρpA indicate that innovation in the disembodied factor neutral technology is

also induced by energy price change. When energy price rises, firms tend to choose a higher At, thereby

reducing the firm’s energy intensity.

That η > 0 and positive values in ρpθ and ρpA suggest that firms would adopt both disembodied and

embodied energy-efficient technology and invest in energy-saving capital in response to rising energy prices

in China’s industrial firms. This finding is in line with Alpanda and Peralta-Alva [2010], who find that U.S.
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firms adopt energy-efficient technology and obsolescence of energy-consuming capital during the oil crisis of

1973-1974.

The relative magnitudes of σθ and σA suggest that the investment-specific technology shock plays a

relatively larger role in explaining the dynamics of energy intensity and investment. The relative importance

of three shocks in the descending order are: investment-specific technology shock, energy price shock and

disembodied technology shock for all three types of firms.

The last column of Table 4 reports the value of the objective function, J(ψ̂) in Equation (11), which

measures the difference between gM (ψ) and gd. With the optimal weighting matrix W , the distribution of

J(ψ̂) converges to a χ2(n−k) distribution, where n is number of moments to be matched, and k is number of

parameters estimated in the structural model. For the structural model we estimated, at the 1% significance

level, the critical values of a χ2 distribution with degree freedom of 26 (i.e., 34-8) is 45.642. This is not

surprising that we reject a test of equality between the model moments gM (ψ) and the data moments gd.

One reason is that given the large sample size in the data, the regression coefficients are precisely measured,

and consequently the weighting matrix W has very large values, as large as magnitudes of 103. This leads

to a relatively large value in the objective function in Equation (11). Thus, given how precisely these micro-

moments are calculated from the actual data, virtually any model would be formally rejected with even very

modest deviations of the simulated moments from the data moments.7

To see how the model reproduces the regression coefficients reported in Tables 1- 3, we compare the

regression results from the estimated model with those from actual firm-level data for SOEs, NSOEs and

FFEs, respectively, in Tables 5,6 and 7. In Tables 5-7, the standard errors of the regression coefficients

from the model and the data are not listed, because we focus on the regression coefficients other than the

their standard errors. More importantly, we solve the model by first-order linear approximation, thus the

standard deviation of energy price shock drops out in the decision rules. Consequently, the standard errors

of coefficients are undetermined. 8

The left panel labeled “Model” reports the regression coefficients from the model, and the right panel

labeled “SOEs” reports regression coefficients for the SOEs, which are reported in panel A of Tables 1, 2, and

3. Our model is able to reproduce the inelastic response of energy intensity to energy prices, as the coefficients

from Regression 1; it also reproduces the price-investment mechanism. The coefficients of NV FA/OV FA
7Large values in the objective function in indirect inference are not uncommon. In a variety of papers, topics including

estimation of capital adjustment cost (Cooper and Haltiwanger [2006]), labor adjustment cost (Cooper et al. [2015]), the
demand function for fish (Graddy and Hall [2011]), vintage capital and business cycle (Gilchrist and Williams [2000]), etc., the
null hypothesis that the structural model is the true data generation process is overwhelmingly rejected.

8An extension of this analysis is to estimate the standard deviation of energy price shock, σP , along with other parameters,
by matching the 34 regression coefficients and their standard errors in Equations (1), (2) and (3).
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are all negative in Regression 2; for Regression 3, our model replicates three of the five positive estimates for

the investment response. The fact that compared with the actual regression coefficients model estimates are

somewhat negative for the first two periods and more robustly positive in the last two periods may result

from a greater investment lag built into the investment response process in the model.

Table 5: Compare the model with data for SOEs

Model SOEs

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1-year 2-year 3-year 4-year 1-year 2-year 3-year 4-year

Regression 1: Energy intensity responding to energy prices

P et −0.405 −0.277 −0.278 −0.278 −0.279 −0.389 −0.304 −0.325 −0.313 −0.304

P et−1 −0.238 −0.159 −0.160 −0.159 −0.206 −0.147 −0.159 −0.126

P et−2 −0.145 −0.093 −0.094 −0.141 −0.087 −0.129

P et−3 −0.095 −0.061 −0.111 −0.066

P et−4 −0.064 −0.081

Regression 2: Energy intensity responding to the vintage structure NV FA/OV FA

P et −0.403 −0.277 −0.282 −0.299 −0.315 −0.387 −0.303 −0.323 −0.324 −0.318

NV FA
OV FA −0.143 −0.145 −0.132 −0.114 −0.096 −0.125 −0.108 −0.148 −0.128 −0.132

Lagged P e −0.237 −0.298 −0.328 −0.344 −0.205 −0.285 −0.339 −0.379

Regression 3: vintage structure NV FA/OV FA responding to energy prices

Lagged P e −0.002 −0.003 0.015 0.048 0.090 0.012 0.013 0.031 0.040 0.059

Note: the left panel labeled “Model” reports regression coefficients from the estimated model, and right panel labeled
“SOEs” are regression results using actual SOE firm-level data, and these coefficients are also reported in the middle
panels of Tables 1, 2 and 3.

For the NSOEs, Table 6 shows that the model imitates most coefficients from Regression 1 and Regression

2. For regression 3, the coefficients in columns (2)-(5) based on the model are very close to zero.

Table 6: Comparing the model with data for NSOEs

Model NSOEs

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1-year 2-year 3-year 4-year 1-year 2-year 3-year 4-year

Regression 1: energy intensity responding to energy prices

P et −0.448 −0.322 −0.323 −0.323 −0.324 −0.441 −0.339 −0.351 −0.330 −0.315

P et−1 −0.233 −0.147 −0.148 −0.148 −0.217 −0.121 −0.119 −0.074

P et−2 −0.158 −0.094 −0.095 −0.178 −0.134 −0.137

P et−3 −0.118 −0.069 −0.163 −0.141

P et−4 −0.089 −0.048

Regression 2: Energy intensity responding to vintage structure NV FA/OV FA

P et −0.445 −0.321 −0.323 −0.336 −0.351 −0.440 −0.337 −0.341 −0.320 −0.309

NV FA
OV FA −0.144 −0.148 −0.142 −0.131 −0.118 −0.106 −0.160 −0.180 −0.227 −0.215

Lagged P e −0.233 −0.303 −0.344 −0.372 −0.217 −0.305 −0.422 −0.408

Regression 3: vintage structure NV FA/OV FA responding to lagged energy prices

Lagged P e −0.007 −0.012 −0.001 0.025 0.062 0.010 0 0 0 0

Note: the left panel labeled “Model” reports regression coefficients from the estimated model, and right panel labeled
“NSOEs” are regression results using actual NSOE firm-level data, and these coefficients are also reported in the middle
panels of Tables 1, 2 and 3. We report statistically insignificant coefficients as zeros.
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Finally, for the FFEs, Table 7 compares the coefficients generated by the model with coefficients using

the data for foreign firms. The model successfully reproduces the results obtained from the regressions.

Table 7: Comparing the model with data for FFEs

Model FFEs

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1-year 2-year 3-year 4-year 1-year 2-year 3-year 4-year

Regression 1: Energy intensity responding to energy prices

P et −0.519 −0.387 −0.388 −0.388 −0.389 −0.525 −0.425 −0.404 −0.360 −0.467

P et−1 −0.224 −0.147 −0.147 −0.147 −0.221 −0.135 −0.126 0

P et−2 −0.130 −0.078 −0.079 −0.155 −0.095 0

P et−3 −0.088 −0.052 −0.179 −0.134

P et−4 −0.061 −0.089

Regression 2: Energy intensity responding to vintage structure NV FA/OV FA

P et −0.516 −0.387 −0.392 −0.408 −0.424 −0.525 −0.425 −0.401 −0.349 −0.415

NV FA
OV FA −0.055 −0.056 −0.055 −0.052 −0.049 0 0 0 0 0

Lagged P e −0.223 −0.274 −0.297 −0.310 −0.222 −0.292 −0.403 −0.343

Regression 3: Vintage structure NV FA/OV FA responding to lagged energy price

Lagged P e −0.007 −0.011 0.002 0.028 0.065 0 0 0 0 0

Note: the left panel labeled “Model” reports regression coefficients from the estimated model, and right panel labeled
“FFEs” are regression results using actual foreign firm-level data, and these coefficients are also reported in the lower
panels of Tables 1, 2 and 3. We report statistically insignificant coefficients as zeros.

In addition to the full model estimated in this section, we also estimate three alternative models. Each

of the three models omits a certain element in our full model. In Table 8, we compare results for our full

model developed in Section 4 with the three alternative models. The detailed specification and estimation

results of these three alternative models are presented in the Appendix C. The three alternative models are:

(i) the basic model for which the sole source of shocks is energy prices (column 1 labeled as “Without θt

nor At” in Table 8), (ii) the Extended I model, which adds only investment-specific technology θt , with

the results reported in column 2 labeled as “with θt only” in Table 8, and (iii) the Extended II model with

disembodied factor-neutral technology shocks alone, as reported in column 3 labeled as “with At only” in

Table 8. Similarly, the results for our full model are shown in column 4 labeled as “With both θt and At” in

Table 8. Table 8 shows how each of the models fits with the regression results in Section 3, as determined

by the comparative values of J(ψ̂), which measure the distance between regression coefficients based on the

model and coefficients based on actual data.

Table 8: Comparison among models
J(ψ̂) Without θt nor At with θt only with At only With both θt and At
SOEs 2453.093 321.710 543.763 107.606
NSOEs 1420.000 248.905 481.787 121.558
FFEs 429.752 89.280 105.157 44.738
1% Critical Values 53.486 49.588 49.588 45.642
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In terms of J(ψ̂), we first notice that our full model provides a significantly better match than any of the

other three models. Second, adding investment-specific technology or disembodied technology substantially

improves the fit of the model as compared with the basic model. Third, all four models tend to have a better

fit for FFEs firms than SOEs and NSOEs.

Although it is rejected by the J-test (except for FFEs), our model still fundamentally mimics the stylized

facts. While we might wish for the model to replicate the exact coefficient estimates reported in Tables 1,

2, and 3, as Prescott [1986] pointed out: “The models constructed within this theoretical framework are

necessarily highly abstract. Consequently, they are necessarily false, and statistical hypothesis testing will

reject them. This does not imply, however, that nothing can be learned from such quantitative theoretical

exercise.” In Section 6, we conduct some policy experiment based on our model.

6 A counterfactual

The advantage of having a structural model is that we are able to conduct policy experiments or create

counterfactual, which are not available in reduced-form regression analysis. In this section, we conduct one

policy experiment: if the Chinese government limits its preferential treatment to SOEs, such as monopoly

power, subsidies, and easy access to external funds, so that SOEs act more like FFEs, how will it alter

the SOEs’ energy intensity response to rising energy price? In particular, we alter one parameter in this

exercise; that is, we change η, so that the SOE share of putty-clay investment decrease from 0.675 to 0.550,

the estimated share of putty-clay investment for FFEs. All the other parameter values remain unchanged,

thus sustaining some differentiating characteristics of SOEs versus FFEs. These differences may be sustained

by differences in industry type, by provincial location, including local policies, and other factors, including

governance structures, not directly related to central government policy, which we assume is principally

responsible for differences in the putty-clay vintage composition of investment.
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Table 9: Effect of SOEs reform on energy intensity

Year % change in energy intensity % change in energy intensity
for unreformed SOEs for reformed SOEs

with η = 0.675 with η = 0.550

T −27.56 −37.78

T+1 −28.76 −34.21

T+2 −23.67 −26.02

T+3 −18.84 −19.72

T+4 −14.63 −14.85

T+5 −11.13 −11.08

T+6 −8.30 −8.17

T+7 −6.04 −5.93

T+8 −4.27 −4.20

T+9 −2.90 −2.87

Note: energy price rises by 50% in year T.

Table 9 compares the percentage changes in energy intensity under the reformed and unreformed scenarios

when energy price rises by 50%. As shown below, at the onset of energy price shock, energy intensity

for reformed SOEs is expected to decrease by 37.78%, almost 10% more than that for the non-reformed

SOEs. The difference response in energy intensity tends to be small after four years. This difference is

not surprising. With diminished motivation for and access to investment in putty-clay vintages, SOEs rely

more on disembodied means of energy conservation. Moreover, government investment subsidies tied to

energy policy are less important. If subsides do persist, they may be more factor-neutral or biased toward

other objectives, including employment and exports. In any event, this counterfactual simulation shows that

energy-specific vintage capital matters for SOEs. In the short-term following energy price increases, the

reliance on putty-clay investment appears to substitute for other measures as a means for reducing energy

intensity.

7 Conclusion

This paper uses a novel approach to uncover the dynamic relationships among energy price, energy intensity

and investment. We formulate and estimate a structural model that successfully mimics the observed stylized

facts generated from the commonly-used energy intensity-price regression equations. These widely-used

regression equation can be interpreted as the reduced form equation derived from the DSGE model we have

devised and estimated using the stylized facts of different price-energy responses across ownership types in

Chinese industry.

A key innovation that enables this exercise is our data set that allows us to compute the age structure
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of the capital stock of each firm, for which we are able to identify the energy efficiency of different vintages

across the three key ownership types – state, non-state, and foreign owned enterprises.

Our analysis demonstrates that the vintage capital that embodied energy efficiency plays a critical role in

achieving energy efficiency for China’s industrial firms. We find that the model with vintage capital or putty-

clay investment does a better job of replicating the dynamics between energy prices and energy intensity

than do the models without putty-clay investment.

Our key findings are: first, the DSGE model that combines putty-clay and putty-putty investment,

and incorporating both embodied investment-specific technology and disembodied factor-neutral technology

provides the best match with the stylized facts. Second, SOEs retain the largest share of putty-clay vintage

capital; the NSOE share follows; the FEEs exhibits the least, as this latter group of firms dedicates a majority

of its investment to putty-putty vintages of capital.

We posit that these differences arise principally from two conditions. The first is that the government

appears to smooth energy prices for the SOE sector. The second is that subsidized capital is more widely

available to the state-owned sector than it is to other firm types.

Given these empirical findings, we conclude that with greater price stability and financial subsidies for

replacing the most outdated inefficient vintages of capital, SOEs appear to be making optimizing vintage

selections, as do the NSOEs and FFEs whose energy price-investment decision are shaped more by market-

based energy price and constrained financial market conditions. When we simulate the estimation of the policy

presences for SOEs by the vintage investment behavior of SOEs and FFEs to be equivalent, we find that in

response to rising energy prices, SOEs exhibit a substantially higher rate of near-term energy conservation.

These findings have several important implications. First, any policy that distorts investment incentives

will have a substantially larger effect when technology is embodied in capital goods. Second, conflicts in

current trade between China and the US, and perhaps other countries, may create barriers for Chinese firms

to import equipment that inhibits the diffusion of embodied energy-saving technologies. Lastly, heavy reliance

on putty-clay investment for adjusting to higher energy prices, as with SOEs, suggests asymmetric responses

of the aggregate economy to energy price shocks. Due to the negative output effects, recessions caused by

large increases in energy prices are deeper than expansions caused by the same proportional reduction in

energy price. Avoiding large increases in energy prices by stocking domestic energy supplies or decreasing the

dependence of imported energy could alleviate the negative impacts of rising energy prices on the aggregate

economy.
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A. Related research on China’s energy intensity
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B. Model solution and estimation

B1. Calibration

Before solving and simulating the model, we calibrate parameter values in preference and production tech-

nology. The calibrated parameter values are presented in Table 11.

Table 11: Predefined parameters in the model
Meaning of parameter Parameter Value
Preference
Annual discount rate β 0.98
Relative risk aversion in utility γ 1.5
Leisure parameter in utility φ 3
Production
Share of capital in production function λα 0.52
Share of labor in production function 1− α 0.31
Annual depreciation rate for capital δ 0.10
Life span of capital M 15
Standard deviation of θit σ 0.25

The calibrated values of the predefined parameters are frequently used in the literature. The annual

discount rate β = 0.98. In the utility function [Ct(1−Lt)φ]1−γ
1−γ , we set the coefficient of the relative risk

aversion to γ = 1.5. The leisure parameter φ is set to 3, which implies that in the steady state, households

work about 23% of their time, which is generally consistent with a 40-hour week adjusted for sleep, holidays

and vacations.

In the production function Y = (KλEn1−λ)αL1−α, λ is set to be 0.757, and α is set to be 0.689. Together

these values imply a labor share of income (1−α) of 0.3112, an energy share of income (1−λ)α of 0.17, and

a capital share of income (λα) of 0.52. These are consistent with the average factor shares for the firm-level

data; the capital share of 0.52 is also consistent with Bai et al. [2006] and Song et al. [2011].

The annual depreciation rate for capital is δ = 0.10, which is also used in Song et al. [2011] and David and

Venkateswaran [2019]. The number of vintages,M , is set to be 15 years. In fact, in manufacturing industries,

the life-span of equipment and machines varies significantly. The minimum life-span for depreciation dictated

by the general accounting rule is 10 years.9 Here we use 15 years as the average life-span of capital across all

industries. M = 15 is also used in Wei [2003].

There is no prior estimate for the standard deviation of the idiosyncratic uncertainty, σ. For the calibra-

tion, we use σ = 0.25 , which has been used in Wei [2003] and Gilchrist and Williams [2000].
9For more detail, please see http://www.gov.cn/gongbao/content/2008/content_859860.htm.
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B2. Computational strategy

First, the two-sector DSGE model described in Section 4 is solved by Dynare. The decision rules are obtained

by linearizing the first-order conditions, following the method described in Blanchard and Kahn [1980]. We

also solve the model using the second-order approximation and the extended deterministic path method

(see Fair and Taylor [1983]).These methods are able to conserve the non-linearity in the decision rules, in

comparison to the first-order approximation or linearization. The decision rules using the alternative two

methods are similar to those obtained through the first-order linearization. Thus, the gain in decision rule’s

accuracy is limited. To save computational time in the indirect inference estimation routine, we solve the

DSGE model through first-order linearization.

Second, using the decision rules obtained from the first step, we simulate a synthetic data with 250 time

periods and 300 firms. Then we run the same three sets of regression described in Equations (1), (2)and (3) on

the synthetic data. These regression coefficients, gM (ψ), are used to compare with the regression coefficients,

gd, which are obtained directly from the firm-level data. As the process is ergodic (after discarding the first

50 periods), the regression coefficients from the simulated data are determined by the total observations.

Last, we find the minimum value of the objective function in Equation (11) using a grid search. The

standard errors of estimated parameters are calculated numerically (see Hayashi [2000]).

B3. Mapping of parameters ψ to regression coefficients gM

We estimate the model parameter vector ψ = {η, ρp, ρθ, ρpθ, ρA, ρpA, σθ/(σp + σθ + σA), σA/(σp + σθ + σA)}

by minimizing the distance between gM (ψ) and gd, where gM (ψ) is the model analogue of gd. To establish

the fact that gM is a function of ψ, we rely on the fact that our model solution is linear and may be expressed

in the standard state-space form:

St = A(ψ)St−1 +B(ψ)Ut

Xt = F (ψ)St

where (UtU
T
t ) = I , St is a vector of the state variables in this model and Xt is a vector of observable variables

in the model.

Specifically, Ut is a vector of 3 structural shocks in the model: shock to energy price, shock to em-

bodied technology and shock to disembodied technology. The state variables in St are: energy price, P et ,
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disembodied technology, At, embodied technology, θt, investment in putty-putty sector for each M vintage,

kt−j , j = 1, 2, . . . ,M ; investment in putty-clay sector for each M vintage, kt−j , et−j , qt−j , j = 1, 2, . . . ,M .

The observable variables in Xt include: energy intensity, Ent/Yt, capital vintage structure NV FAt/OV FAt,

and lagged or moving average of lagged energy prices P et−j , i = 1, 2, 3, 4. The model solution proposes a data

generation process for energy intensity, Ent/Yt, capital vintage structure NV FAt/OV FAt, and energy price

P et . Then 3 sets of regressions are run based on Ent/Yt, NV FAt/OV FAt and P et . This indicates that the

regression coefficients gM may then be computed as a function of A, B and F . Because the matrices A, B

and F are (nonlinear intractable) functions of the underlying model parameters ψ, the vector of regression

coefficients gM is also a function of ψ.

Last, because we solve this model by linearizing all the first-order conditions, the regression coefficients

in model depend on the relative magnitude of standard deviations of 3 structural shocks, i.e., σθ/(σp + σθ +

σA), σA/(σp + σθ + σA), not the absolute values of σp, σθ, σA.

C. Estimation results of alternative models

C1. Benchmark model

In this section, we estimate the model, in which energy price shock is the only shock; or equivalently, we

shut down both terms θt and At. We refer the model with energy price shock only as the benchmark model.

In another way of saying, we set ρθ = ρpθ = ρA = ρpA = 0, and only estimate the values of (η, ρP ) in the

benchmark model.

The estimations of (η, ρP ) for SOEs, NSOEs and FFEs are reported in Table 12. First, in comparison

to SOEs and NSOEs, as expected, FFEs have a lower proportion of putty-clay investment; second, for three

types of firms, their energy prices are not serially correlated, ρp ranges from −0.09 to 0.139; The reason ρp is

small in magnitude is that now we force the benchmark model to match the coefficients in Regression 2 and

Regression 3, which capture the price-investment mechanism. If ρp is relatively high, then the coefficients of

NV FA/OV FA in Regression 2 are either positive or very negative, and coefficients from Regression 3 are

all negative. In order the match coefficients observed from actual data, the best match of ρp is close to zero

in magnitude. Third, the values of J(ψ̂) reported in Table E4 increase dramatically, in comparison to Table

4. This is because we set the benchmark model to match coefficients from all three sets of regressions.
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Table 12: Estimation of structural parameters in benchmark model

Definition for parameters Parameters SOEs NSOEs FFEs
Share of putty-clay investment η 0.535 0.485 0.401

(0.005) (0.006) (0.009)
Serial correlation of energy price P et ρP −0.080 −0.090 0.139

(0.029) (0.024) (0.043)

Objective function in indirect inference J(ψ̂) 2453 1420 429

Note: standard errors are in parentheses. The 1% critical value for J(ψ̂) is 53.486.

In Tables 13, 14 and 15, we compare the benchmark model based on the estimates in Table 12, with data

from SOEs, NSOEs and FFEs, respectively. In order to match the coefficients in Regression 2 and Regression

3, the energy price cannot be highly serially correlated. This also leads to the coefficients of lagged energy

prices in Regression 1 close to zero, while those coefficients are significantly negative from actual data.

Table 13: Comparing benchmark model with data for SOEs

Model SOEs

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1-year 2-year 3-year 4-year 1-year 2-year 3-year 4-year

Regression 1: Energy intensity responding to energy prices

P et −0.422 −0.422 −0.421 −0.421 −0.421 −0.389 −0.304 −0.325 −0.313 −0.304

P et−1 0.004 0.005 0.005 0.005 −0.206 −0.147 −0.159 −0.126

P et−2 0.001 0.001 0.001 −0.141 −0.087 −0.129

P et−3 0.001 0.001 −0.111 −0.066

P et−4 0.001 −0.081

Regression 2: Energy intensity responding to vintage structure NV FA/OV FA

P et −0.422 −0.422 −0.422 −0.422 −0.422 −0.387 −0.303 −0.323 −0.324 −0.318

NV FA
OV FA −0.082 −0.028 −0.033 −0.036 −0.041 −0.125 −0.108 −0.148 −0.128 −0.132

Lagged P e 0.004 0.004 0.004 0.004 −0.205 −0.285 −0.339 −0.379

Regression 3: vintage structure NV FA/OV FA responding to energy prices

Lagged P e 0.001 −0.019 −0.036 −0.050 −0.063 0.012 0.013 0.031 0.040 0.059

Note: the left panel labeled “Model” reports regression coefficients from the estimated model, and right panel labelled
“SOE” are regression results using actual SOE firm-level data, and these coefficients are also reported in the upper
panels of Tables 1, 2 and 3.
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Table 14: Comparing benchmark model with data for NSOEs

Model NSOEs

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1-year 2-year 3-year 4-year 1-year 2-year 3-year 4-year

Regression 1: Energy intensity responding to energy prices

P et −0.470 −0.469 −0.469 −0.469 −0.469 −0.441 −0.339 −0.351 −0.330 −0.315

P et−1 0.006 0.006 0.006 0.006 −0.217 −0.121 −0.119 −0.074

P et−2 0.001 0.001 0.001 −0.178 −0.134 −0.137

P et−3 0.001 0.001 −0.163 −0.141

P et−4 0.001 −0.048

Regression 2: Energy intensity responding to vintage structure NV FA/OV FA

P et −0.470 −0.469 −0.470 −0.470 −0.470 −0.440 −0.337 −0.341 −0.320 −0.309

NV FA
OV FA −0.098 −0.029 −0.039 −0.043 −0.052 −0.106 −0.160 −0.180 −0.227 −0.215

Lagged P e 0.005 0.005 0.005 0.005 −0.217 −0.305 −0.422 −0.408

Regression 3: vintage structure NV FA/OV FA responding to lagged energy prices

Lagged P e 0.001 −0.019 −0.036 −0.050 −0.063 0.010 0 0 0 0

Note: the left panel labeled “Model” reports regression coefficients from the estimated model, and right panel labeled
“NSOEs” are regression results using actual NSOEs firm-level data, and these coefficients are also reported in the middle
panels of Tables 1, 2 and 3. We report statistically insignificant coefficients as zeros.

Table 15: Comparing benchmark model with data for FFEs

Model FFEs

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1-year 2-year 3-year 4-year 1-year 2-year 3-year 4-year

Regression 1: Energy intensity responding to energy prices

P et −0.549 −0.548 −0.548 −0.548 −0.548 −0.525 −0.425 −0.404 −0.360 −0.467

P et−1 −0.008 −0.008 −0.008 −0.007 −0.221 −0.135 −0.126 0

P et−2 −0.001 −0.001 −0.001 −0.155 −0.095 0

P et−3 −0.001 −0.001 −0.179 −0.134

P et−4 −0.001 −0.089

Regression 2: Energy intensity responding to the vintage structure NV FA/OV FA

P et −0.549 −0.548 −0.549 −0.549 −0.549 −0.525 −0.425 −0.401 −0.349 −0.415

NV FA
OV FA 0.107 0.029 0.024 0.031 0.041 0 0 0 0 0

Lagged P e −0.007 −0.007 −0.007 −0.007 −0.222 −0.292 −0.403 −0.343

Regression 3: Vintage structure NV FA/OV FA responding to lagged energy price

Lagged P e −0.003 −0.023 −0.041 −0.056 −0.069 0 0 0 0 0

Note: the left panel labeled “Model” reports regression coefficients from the estimated model, and right panel labeled
“Foreign” are regression results using actual foreign firm-level data, and these coefficients are also reported in the lower
panels of Tables 1, 2 and 3. We treat statistically insignificant coefficients as zeros.

In sum, the benchmark model, in which energy price is the only shock, has difficulty to match coefficients

from all 3 sets of regressions. To improve the fitness of model, we will add other shocks to the model, such

as investment-specific technology shock of factor-neutral technology shock, so the extended models are able

to replicates 3 sets of regression coefficients.
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C2. Extended I model

In this section, we estimate the model, which includes energy price shock and the investment-specific

technologyθt; or equivalently, we shut down the disembodied technology term At. We refer this model

as extended I model, or a model with embodied technology shock only. In another way of saying we set

ρA = ρpA = σA = 0, and only estimate the four parameters, (η, ρP , ρθ, ρpθ, σθ/(σp + σθ)), in this extended

model.

Including investment-specific technology or capital-augmented technology shock, the estimation of five

structural parameters, {η, ρP , ρθ, ρpθ, σθ/(σp + σθ)}, in this extended I model are reported in Table 16, for

SOEs, NSOEs and FFEs, respectively.

Table 16: Estimation of structural parameters in extended I model

Definition for parameters Parameters SOEs NSOEs FFEs
Share of putty-clay investment η 0.630 0.640 0.560

(0.007) (0.010) (0.013)
Serial correlation of energy price P et ρP 0.840 0.880 0.890

(0.005) (0.004) (0.006)
Serial correlation of embodied technology θt ρθ 0.870 0.850 0.910

(0.029) (0.098) (0.248)
Cross correlation between P et and θt ρPθ 0.440 0.200 0.180

(0.035) (0.027) (0.022)
Relative standard deviation of innovation to θt σθ

σp+σθ
0.545 0.643 0.706

(0.008) (0.003) (0.011)

Objective function in indirect inference J(ψ̂) 321.7103 248.905 66.645

Note: standard errors are in parentheses. The 1% critical value for J(ψ̂) is 49.588. Standard
errors reported for σA

σp+σA
are standard errors of σθ/σp.

To see how the extended model reproduces the stylized facts, i.e., the long-run price and price-investment

mechanism, we compare the regression results from the estimated model with those from actual firm-level

data for SOEs, NSOEs and FFEs, respectively, in Tables 17, 18 and 19.

Table 17 reports the coefficients generated by the extended model using SOEs data. Adding the investment-

specific technology shock into the model, the extended model is able to reproduce the coefficients from the

sets of regressions, described by Equations (1), (2) and (3) in Section 3.
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Table 17: Comparing extended I model with data for SOEs

Model SOEs

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1-year 2-year 3-year 4-year 1-year 2-year 3-year 4-year

Regression 1: energy intensity responding to energy prices

P et −0.443 −0.284 −0.286 −0.285 −0.286 −0.389 −0.304 −0.325 −0.313 −0.304

P et−1 −0.195 −0.103 −0.105 −0.104 −0.206 −0.147 −0.159 −0.126

P et−2 −0.111 −0.027 −0.029 −0.141 −0.087 −0.129

P et−3 −0.102 −0.025 −0.111 −0.066

P et−4 −0.092 −0.081

Regression 2: Energy intensity responding to the vintage structure NV FA/OV FA

P et −0.438 −0.286 −0.290 −0.302 −0.313 −0.387 −0.303 −0.323 −0.324 −0.318

NV FA
OV FA −0.139 −0.136 −0.129 −0.119 −0.107 −0.125 −0.108 −0.148 −0.128 −0.132

Lagged P e −0.189 −0.204 −0.207 −0.210 −0.205 −0.285 −0.339 −0.379

Regression 3: Vintage structure NV FA/OV FA responding to energy prices

Lagged P e 0.020 0.026 0.043 0.071 0.109 0.012 0.013 0.031 0.040 0.059

Note: the left panel labeled “Model” reports regression coefficients from the estimated model, and right panel labeled
“SOEs” are regression results using actual SOEs firm-level data, and these coefficients are also reported in the upper
panels of Tables 1, 2 and 3.

For NSOEs, the extended model with investment-specific technology shocks can basically reproduce the

stylized facts in all three sets of regressions. Table 18 shows that energy intensity is inelastic to current energy

price changes, and significantly negative coefficients of past energy prices; in Regression 2, the coefficients

of NV FA/OV FA are significantly negative, although the magnitude are slightly larger. The extended

model with investment-specific technology has some difficulty replicating the Regression 3. In Table 18, this

estimated model generates a negative coefficient -0.018 in column (1) specification, whereas the NSOEs data

shows that this coefficient is significantly positive.

Table 18: Comparing extended I model with data for NSOEs

Model NSOEs

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1-year 2-year 3-year 4-year 1-year 2-year 3-year 4-year

Regression 1: Energy intensity responding to energy prices

P et −0.519 −0.302 −0.304 −0.304 −0.305 −0.441 −0.339 −0.351 −0.330 −0.315

P et−1 −0.250 −0.090 −0.093 −0.091 −0.217 −0.121 −0.119 −0.074

P et−2 −0.181 −0.038 −0.041 −0.178 −0.134 −0.137

P et−3 −0.162 −0.034 −0.163 −0.141

P et−4 −0.144 −0.048

Regression 2: Energy intensity responding to the vintage structure NV FA/OV FA

P et −0.518 −0.303 −0.290 −0.295 −0.305 −0.440 −0.337 −0.341 −0.320 −0.309

NV FA
OV FA −0.176 −0.184 −0.182 −0.173 −0.159 −0.106 −0.160 −0.180 −0.227 −0.215

Lagged P e −0.248 −0.283 −0.296 −0.303 −0.217 −0.305 −0.422 −0.408

Regression 3: Vintage structure NV FA/OV FA responding to lagged energy prices

Lagged P e −0.018 −0.020 −0.019 −0.014 −0.007 0.010 0 0 0 0

Note: the left panel labeled “Model” reports regression coefficients from the estimated model, and right panel labeled
“NSOEs” are regression results using actual NSOEs firm-level data, and these coefficients are also reported in the middle
panels of Tables 1, 2 and 3. We treat statistically insignificant coefficients as zeros.
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Table 19 compares the coefficients generated by the extended model with coefficients using the data for

the FFEs. The extended model is able to reproduce the coefficients from the energy price effect regressions.

In Column (5), the coefficients of P et−1 and P et−2, generated from the model, are not exactly zero, but the two

coefficients, -0.079 and -0.040, both fall within the 95% confidence intervals of the estimates using the FFEs

data.10 For Regression 2, as shown in Table E1, the coefficients of P et and lagged energy prices generated by

the model are quite similar to the coefficients using the data for the foreign firms. For all specifications, the

coefficients of NV FA/OV FA generated from the model all fall within the 95% confidence intervals of the

coefficients estimated from the actual data.11 For Regression 3, the coefficients of lagged energy prices from

the model are close to zero, although all the coefficients in Columns (1)-(5) from the model lie outside the

95% confidence intervals for the estimates using the data for the FFEs. 12

Table 19: Comparing extended I model with data for FFEs

Model FFEs

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1-year 2-year 3-year 4-year 1-year 2-year 3-year 4-year

Regression 1: Energy intensity responding to energy prices

P et −0.615 −0.394 −0.397 −0.396 −0.398 −0.525 −0.425 −0.404 −0.360 −0.467

P et−1 −0.248 −0.078 −0.081 −0.079 −0.221 −0.135 −0.126 0

P et−2 −0.188 −0.037 −0.040 −0.155 −0.095 0

P et−3 −0.168 −0.033 −0.179 −0.134

P et−4 −0.149 −0.089

Regression 2: Energy intensity responding to the vintage structure NV FA/OV FA

P et −0.606 −0.394 −0.376 −0.377 −0.384 −0.525 −0.425 −0.401 −0.349 −0.415

NV FA
OV FA −0.012 −0.007 −0.017 −0.023 −0.026 0 0 0 0 0

Lagged P e −0.241 −0.279 −0.295 −0.304 −0.222 −0.292 −0.403 −0.343

Regression 3: Vintage structure NV FA/OV FA responding to lagged energy prices

Lagged P e −0.048 −0.053 −0.057 −0.060 −0.062 0 0 0 0 0

Note: the left panel labeled “Model” reports regression coefficients from the estimated model, and right panel labeled
“Foreign” are regression results using actual foreign firm-level data, and these coefficients are also reported in the lower
panels of Tables 1, 2 and 3. We treat statistically insignificant coefficients as zeros.

C3. Extended II model

In this section, we estimate the model, which includes energy price shock and disembodied technology, At; or

equivalently, we shut down the investment-specific technology, θt. We refer the model as extended II model,

or a model with disembodied technology shock only. In another way of saying we set ρθ = ρpθ = σθ = 0, and

only estimate the values of (η, ρP , ρA, ρpA, σA/(σp + σA) in this extended model.
1095% confidence intervals for coefficients of P et−1 and P et−2 in column (5) specification are:[-0.218, 0.222], [-0.187, 0.037],

respectively.
1195% confidence intervals for coefficients of NV FA/OV FA in column2 (1)-(5) are: [-0.021, 0.129], [-0.069, 0.094], [-0.082,

0.109], [-0.092, 0.128], and [-0.127, 0.229].
1295% confidence intervals for coefficients of NV FA/OV FA from step-two regressions are: [-0.011, 0.016], [-0.018, 0.024],

[-0.040, 0.016], [-0.058, 0.029], and [-0.047, 0.058].
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We estimate the five structural parameters (η, ρP , ρA, ρpA, σA/(σp + σA) together in the extended II

mode, which includes energy price shock and disembodied technology shock. The estimation results for

SOEs, NSOEs, and FFEs are reported in Table 20.

Table 20: Estimation of structural parameters in extended II model

Definition for parameters Parameters SOEs NSOEs FFEs
Share of putty-clay investment η 0.703 0.650 0.580

(0.011) (0.008) (0.013)
Serial correlation of energy price P et ρP 0.817 0.883 0.900

(0.008) (0.004) (0.007)
Serial correlation of disembodied technology At ρA 0.173 0.173 0.010

(0.016) (0.018) (0.021)
Cross correlation between P et and At ρPA 0.150 0.050 0.050

(0.010) (0.008) (0.020)
Relative standard deviation of innovation to At σA

σp+σA
0.833 0.500 0.643

(0.023) (0.001) (0.007)

Objective function in indirect inference J(ψ̂) 543.763 481.786 105.157

Note: standard errors are in parentheses. The 1% critical value for J(ψ̂) is 49.588. Standard
errors reported for σA

σp+σA
are standard errors of σA/σp.

To see how the extended model with neutral technologies reproduces the stylized facts, in Tables 21, 22

and 23, we compare the regression results from the estimated model with those from the actual firm-level

data for SOEs, NSOEs and FFEs, respectively.

Table 21 compares the coefficients generated by the extended model with the coefficients using the SOEs

data. Adding the neutral technology shock into the model, the extended model is able to reproduce the

regressions that capture the impact of price changes on energy intensity, however, the extended II model still

has difficulty matching the positive coefficients in Regression 3.
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Table 21: Comparing extended II model with data for SOEs

Model SOEs

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1-year 2-year 3-year 4-year 1-year 2-year 3-year 4-year

Regression 1: Energy intensity responding to energy prices

P et −0.464 −0.278 −0.278 −0.278 −0.279 −0.389 −0.304 −0.325 −0.313 −0.304

P et−1 −0.233 −0.138 −0.141 −0.137 −0.206 −0.147 −0.159 −0.126

P et−2 −0.117 −0.046 −0.050 −0.141 −0.087 −0.129

P et−3 −0.088 −0.024 −0.111 −0.066

P et−4 −0.079 −0.081

Regression 2: Energy intensity responding to the vintage structure NV FA/OV FA

P et −0.466 −0.283 −0.289 −0.306 −0.321 −0.387 −0.303 −0.323 −0.324 −0.318

NV FA
OV FA −0.153 −0.154 −0.150 −0.146 −0.141 −0.125 −0.108 −0.148 −0.128

Lagged P e −0.231 −0.248 −0.249 −0.250 −0.205 −0.285 −0.339 −0.379

Regression 3: Vintage structure NV FA/OV FA responding to energy prices

Lagged P e −0.014 −0.014 −0.011 −0.006 −0.001 0.012 0.013 0.031 0.040 0.059

Note: the left panel labeled “Model” reports regression coefficients from the estimated model, and right panel labeled
“SOEs” are regression results using actual SOEs firm-level data, and these coefficients are also reported in the upper
panels of Tables 1, 2 and 3.

For NSOEs, the extended model with disembodied technology shocks can reproduce the stylized facts in

all three sets of regressions. Table 22 shows that energy intensity is inelastic with respect to current energy

price changes, with significantly negative coefficients for increases in past energy prices. In Regression 1, the

coefficients of NV FA/OV FA are now significantly negative, although the magnitudes are slightly larger;

and the coefficients in Regression 3 are close to zero, in small magnitude.

Table 22: Comparing extended II model with data for NSOEs

Model NSOEs

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1-year 2-year 3-year 4-year 1-year 2-year 3-year 4-year

Regression 1: Energy intensity responding to energy prices

P et −0.525 −0.310 −0.312 −0.311 −0.313 −0.441 −0.339 −0.351 −0.330 −0.315

P et−1 −0.249 −0.100 −0.103 −0.100 −0.217 −0.121 −0.119 −0.074

P et−2 −0.170 −0.041 −0.045 −0.178 −0.134 −0.137

P et−3 −0.146 −0.032 −0.163 −0.141

P et−4 −0.130 −0.048

Regression 2: Energy intensity responding to the vintage structure NV FA/OV FA

P et −0.527 −0.313 −0.301 −0.308 −0.318 −0.440 −0.337 −0.341 −0.320 −0.309

NV FA
OV FA −0.065 −0.166 −0.203 −0.217 −0.218 −0.106 −0.160 −0.180 −0.227 −0.215

Lagged P e −0.252 −0.287 −0.299 −0.306 −0.217 −0.305 −0.422 −0.408

Regression 3: Vintage structure NV FA/OV FA responding to energy prices

Lagged P e −0.031 −0.035 −0.038 −0.040 −0.040 0.010 0 0 0 0

Note: the left panel labeled “Model” reports regression coefficients from the estimated model, and right panel labeled
“NSOEs” are regression results using actual NSOEs firm-level data, and these coefficients are also reported in the middle
panels of Tables 1, 2 and 3. We treat statistically insignificant coefficients as zeros.

Table 23 compares the coefficients generated by the extended II model with coefficients using the data

for FFEs. The extended II model is able to reproduce most coefficients from Regression 1, 2, and 3.
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Table 23: Comparing extended II model with data for FFEs

Model FFEs

(1) (2) (3) (4) (5) (1) (2) (3) (4) (5)

1-year 2-year 3-year 4-year 1-year 2-year 3-year 4-year

Regression 1: Energy intensity responding to energy prices

P et −0.597 −0.377 −0.379 −0.378 −0.380 −0.525 −0.425 −0.404 −0.360 −0.467

P et−1 −0.250 −0.096 −0.099 −0.096 −0.221 −0.135 −0.126 0

P et−2 −0.172 −0.037 −0.041 −0.155 −0.095 0

P et−3 −0.151 −0.030 −0.179 −0.134

P et−4 −0.135 −0.089

Regression 2: Energy intensity responding to the vintage structure NV FA/OV FA

P et −0.595 −0.379 −0.366 −0.371 −0.380 −0.525 −0.425 −0.401 −0.349 −0.415

NV FA
OV FA 0.073 0.033 0.020 0.016 0.018 0 0 0 0 0

Lagged P e −0.247 −0.279 −0.291 −0.298 −0.222 −0.292 −0.403 −0.343

Regression 3: Vintage structure NV FA/OV FA responding to energy prices

Lagged P e −0.032 −0.036 −0.038 −0.040 −0.040 0 0 0 0 0

Note: the left panel labeled “Model” reports regression coefficients from the estimated model, and right panel labeled
“Foreign” are regression results using actual foreign firm-level data, and these coefficients are also reported in the lower
panels of Tables 1, 2 and 3. We treat statistically insignificant coefficients as zeros.
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