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Abstract 

Children exposed to pollutants like lead are more disruptive and have lower achievement. 

However, little is known about whether lead-exposed children affect the long-run outcomes of 

their peers. We estimate these spillover effects using new data on preschool blood lead levels 

(BLLs) matched to education data for all students in North Carolina public schools. We compare 

siblings whose school-grade cohorts differ in the proportion of children with elevated BLLs, 

holding constant school and peers’ demographics. Having more lead-exposed peers is associated 

with lower high-school graduation and SAT-taking rates and increased suspensions and absences. 

Peer effects are larger for same-gendered students. 
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I. Introduction 

A growing literature shows that early life exposure to pollution hinders 

health and human capital accumulation (Persico, Figlio, and Roth 2020; Alexander 

and Currie 2017). For example, lead-poisoned children are more likely to be 

suspended and commit crimes (Aizer and Currie 2019; Reyes 2015) and have worse 

academic achievement (Ferrie, Rolf, and Troesken 2012; Grönqvist, Nilsson, and 

Robling 2020), consistent with lead’s impacts on children’s neurological 

development. These associations manifest at blood lead levels (BLLs) as low as 1–

2 micrograms per deciliter (µg/dL) of blood (Aizer et al. 2018; Feigenbaum and 

Mueller 2016). Lead may also affect children’s disability status (Gazze 2016). 

These negative effects of lead exposure are costly to children, families, and society 

in terms of reduced tax revenues and increased expenditure on special education, 

crime, and health care (Reyes 2014). Recent estimates suggest that at least half a 

million young children are still poisoned by lead each year in the US (Aizer et al. 

2018). Low-income children are up to 12 times more likely to have elevated BLLs 

(CDC 2005), and Black children are more than twice as likely to be lead-poisoned 

than their White peers (CDC 2005). 

So far, the literature has focused on estimating the effects of pollution and 

lead poisoning1 on directly exposed children. However, these children interact daily 

with peers, which could lead to long-run spillover effects. In this paper, we ask 

whether there are spillover effects of lead poisoning on children who are not 

directly exposed to lead, but are exposed to school peers with high blood lead 

levels. Because children exposed to lead are more disruptive, have lower 

achievement, and engage in risky behavior, the effects of lead exposure might spill 

over to affect everyone in the classroom. These spillovers also may have long term 

consequences for students, but less is known about the long-run impacts of 

 
1 In this paper, we use the words lead poisoning and lead exposure interchangeably. 
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childhood peers. Thus, the spillover effects of lead exposure are an unexplored 

mechanism through which social context, pollution, and built environment could 

affect schools and children’s outcomes.  

Rigorously estimating peer effects is challenging because peers influence 

each other simultaneously, so it is unclear whether a disruptive child causes their 

classmates to misbehave, or whether the classmates cause them to be disruptive 

(i.e., the reflection problem). In addition, peer groups are not randomly assigned; 

they are selected based in part on unobserved characteristics (i.e., the selection 

problem). Using a novel identification strategy and data set, we plausibly estimate 

how early health shocks (i.e., pollution exposure) spill over within school contexts. 

We use rich education data from public schools in North Carolina linked to data on 

children’s BLLs measured by age six and compare siblings whose cohorts happen 

to randomly differ in the proportion of children with elevated preschool BLLs in 

their grade-cohort in the same school. Our preferred specification includes family, 

school, grade, birth month, birth order, and year fixed effects, and controls for a 

broad set of time varying child and cohort demographic characteristics, as well as 

school quality. Since elevated BLLs have been linked to behavioral incidents, 

criminality, and lower test scores, we use them as a proxy for peers with potentially 

disruptive behavior and lower academic achievement. This methodology avoids the 

reflection problem because a child cannot affect the BLLs of their peers, but 

elevated BLLs might affect children negatively, which in turn might affect peers. 

Including family fixed effects mitigates the selection problem by controlling for 

unobserved family characteristics that could be correlated with both peers’ quality 

and child’s outcomes, such as the propensity to attend schools with fewer lead-

poisoned children. Controlling for peers’ race and economic status suggests that 

our estimated effects are due to lead poisoning and not peer demographics.  

We find that a ten percent increase in the share of peers in a child’s cohort 

that are exposed to lead is associated with a 0.3 percentage point increase in the 
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likelihood of suspension from school, a 2.8 percent increase. A ten percent increase 

in the share of peers in a cohort exposed to lead is also associated with a 1.7 

percentage point decrease in the likelihood that a child graduates high school, a 2 

percent decrease in the graduation rate. We also find that having more lead-exposed 

children in a child’s cohort is associated with a higher likelihood of chronic 

absenteeism and dropping out of school, and a decrease in the likelihood of taking 

the SAT. Disruptive peers disproportionally affect the outcomes of economically 

disadvantaged and Black students, suggesting that the spillover effects of pollution 

could be contributing to persistent inequality in human capital accumulation. These 

findings generally hold in samples limited to locations where we measure lead 

exposure and sibling matches less noisily, and where students are less likely to 

switch schools in response to disruptive peers. Our results are also largely robust to 

further testing for school-switching directly and by including sibling-by-school 

fixed effects.  

We find that disruptive peers disproportionally affect same-gendered 

students, and especially those students who also share the same race. Furthermore, 

we find that students going to school with a higher share of lead-exposed peers are 

more likely to be involved in incidents leading to suspensions with these disruptive 

students. Finally, exposure to disruptive peers in middle school, rather than 

elementary school, appears to drive long-run outcomes. We interpret our results as 

suggestive that homophily in network formation might drive the spillover effects 

of lead poisoning through peers influencing each other to engage in similar 

disruptive behavior. 

This paper makes three main contributions. First, this is the first study to 

investigate the spillover effects of lead exposure on peers’ academic achievement, 

behavior, and long-run outcomes. By exploiting rich individual-level data, we 

assess the costs of the spillover effects of lead exposure. Furthermore, our findings 

have implications for more than just lead: our estimates imply that the true costs of 
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pollution are likely higher than the direct costs alone, especially for pollutants that 

are known to affect behavior and suspensions from school. 

Second, this is among the first studies to examine the long-run impacts of 

disruptive peers, as well as the channels through which these effects manifest. 

Current evidence on the long-run effects of peers is mixed. While Carrell, Hoekstra, 

and Kuka (2018) show that peers exposed to domestic violence lower wages and 

educational attainment, Bietenbeck (2020) finds positive long-run peer effects from 

peers who repeat kindergarten. We show that exposure to lead-poisoned peers in 

middle school can have long term consequences, including dropping out of high 

school, even for those children who were not themselves exposed to lead. We also 

find suggestive evidence on the mechanisms – that homophily within groups and 

exposure to disruptive peers in middle school might drive some of these effects. 

Understanding how the organization of schools mitigates these negative effects is 

crucial to design policies that curb the negative consequences of lead poisoning and 

pollution exposure.  

Third, we contribute to a growing literature documenting the importance of 

neighborhood effects for health, education, and behavior outcomes. Our findings 

on the long-term effects of exposure to lead-poisoned children might help explain 

why high-poverty and high-pollution neighborhoods have persistent effects 

(Chetty, Hendren, and Katz 2016). Low-income children are more likely to live 

near sources of toxic waste (Persico, Figlio, and Roth 2020; Banzhaf, Ma, and 

Timmins 2019), and neighborhood characteristics contribute significantly to health 

disparities, for example in asthma rates (Alexander and Currie 2017). Our paper 

presents another channel through which inequalities in prevalence of pollutants at 

the neighborhood level contribute to the persistence of inequality in the US.  

II. Background 

Lead Exposure 
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Ingestion or inhalation of lead causes lead poisoning, which, if severe, can 

induce widespread brain damage (Meyer, McGeehin, and Falk 2003). Small 

children are especially exposed to lead-contaminated soil and dust from paint due 

to normal hand-to-mouth activity. Moreover, lead is most damaging to small 

children: they absorb and retain more lead than adults and their neurological 

development is particularly susceptible to neurotoxins (Meyer, McGeehin, and Falk 

2003). Specifically, lead causes the axons of nerve cells to degenerate and lose their 

myelin coats (Meyer, McGreehin and Falk, 2003). Early life exposure to lead has 

been shown to cause cognitive disabilities, lower test scores, increase suspensions 

from school, and even affect crime and wages in adulthood (Persico, Figlio, and 

Roth 2020; Gazze 2016; Gronqvist, Nilsson and Robling 2020). Lead has also been 

associated with problems in cognition, executive functioning, abnormal social 

behavior (including aggression), and fine motor control (Cecil et al, 2008). Reyes 

(2014) estimates that lead costs $200 billion for a single birth-year cohort. 

Peer Effects in the Classroom 

Peer effects can work through different channels, both positively and 

negatively. Children teaching each other is an example of a positive peer effect, 

while disruptive behavior can negatively affect the learning of all children in a 

classroom (Carrell and Hoekstra 2010; Figlio 2007; Hoxby 2000). Using the 

random assignment of roommates in college, Sacerdote (2001) finds that 

roommates can influence college grade point averages positively or negatively. A 

variety of mechanisms link peer composition and academic outcomes, including 

differential curricular offerings and instructional practices in classes with higher 

average ability (Jackson 2013); social dynamics in a student’s reference group 

(Hoxby 2000); and low performing students not keeping up with higher-achieving 
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peers (Imberman, Kugler and Sacerdote 2009).2 Peers might also draw 

disproportionately on a teacher’s time and influence class culture and standards.  

One strand of the literature examines how low-performing and disruptive 

children affect peers. Having more low achieving peers or peers with learning 

disabilities is associated with lower achievement (Hoxby 2000; Fletcher 2010). 

Moreover, boys with feminine sounding names and children exposed to domestic 

violence are both more likely to be disruptive and negatively affect peers’ 

achievement and behavior (Figlio 2007; Carrell and Hoekstra 2010). 

Less is known about the long-term impacts of disruptive peers or the 

mechanisms through which disruptive peers affect long-run outcomes. Carrell, 

Hoekstra, and Kuka (2018) find that having more disruptive peers in elementary 

school leads to lower earnings in adulthood and lower college attendance. Bifulco, 

Fletcher, and Ross (2011) find that a higher percentage of high school classmates 

with college-educated mothers increases school completion and college attendance. 

Bobonis and Finan (2009) find that the PROGRESA program in Mexico increased 

college attendance of non-eligible peers. Black, Devereux, and Salvanes (2013) 

find that a higher share of girls in ninth grade reduces educational attainment and 

the likelihood of selecting an academic track for college but lowers teen birth rates.  

In this paper, we show that children who were exposed to lead are associated 

with both short- and long-run negative outcomes for their peers. We provide fresh 

evidence on the spillover effects of lead, the long-run effects of having disruptive 

peers, and the mechanisms through which peers affect long-run outcomes. 

III. Data Description 

Education Data 

 
2 See Epple and Romano (2011) and Sacerdote (2011) for overviews of the literature on peer effects. 
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We use 1997-2017 population-level data on every child attending public 

school in North Carolina, including charter schools. The data provide individual-

level education outcomes, rich demographic information, and blood lead test 

records when available. These unique data include home address identifiers that 

enable us to match siblings. To our knowledge, this is the first state-level data set 

linking individual BLLs to schooling records that allow the matching of siblings 

and students to classrooms. The data also include detailed information on students’ 

race and economic disadvantage status in a given year, annual standardized test 

scores administered by the state, suspensions, absences, high school dropout and 

completion information, college intentions, as well as teacher characteristics.  

While we use the entire sample to calculate the number of children per 

school-grade-year cohort who have elevated BLLs (as well as all of our cohort 

controls), for our main analysis we drop children who do not have siblings, as well 

as children who live in large buildings since we cannot reliably identify families in 

those buildings. We test for whether error in sibling matches affects the results in 

Section VD. Our main analysis also drops students who themselves have an 

elevated BLL and estimates the spillover effects of lead exposure on children 

without known lead poisoning. The Data Appendix provides more information on 

the linkage performed by the North Carolina Education Research Data Center 

(NCERDC), our sibling identification algorithm, and other details of our variables. 

For our contemporaneous outcomes, we use the average of standardized 

mathematics and reading test scores and construct indicators for being absent for 

more than 22 days and receiving an in-school or out-of-school suspension, as well 

the number of days the child was suspended out-of-school each year. For our long-

term outcomes, we use indicators for high school graduation, dropping out,3 college 

intentions in 12th grade, and whether the student took the SAT in high school.  

 
3 The data include separate variables for dropping out and graduating. Dropping out of school is 

distinct from school switching, death, moving, promotion, graduation, and other confounding 
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Blood Lead Levels Data  

 We obtained individual blood lead test records for children up to age six 

from the North Carolina Department of Health and Human Services for the years 

1992-2016. Test records include the date of blood draw, test result in µg/dL, and 

the child’s identifier and address. We define a child as having an elevated BLL 

(EBLL) if their highest BLL is ≥5 µg/dL, the upper reference interval value per the 

2012 guidelines by the Centers of Disease Control and Prevention (CDC 2013).4 

Childhood lead screening is not mandatory in North Carolina. However, 

federal guidelines mandate that all children on Medicaid are screened for lead 

poisoning at ages one and two. Thus, we expect screening to be higher among low-

income children, who have a higher likelihood of lead exposure. We construct 

indicators for children missing blood lead tests and include these children in our 

analysis. We compute the share of a child’s peers with EBLLs using all children in 

the cohort or classroom as the denominator, independently of whether they have a 

blood lead test. Figure 1 plots the share of children with blood tests and the share 

of children with EBLLs by birth cohort in our sample, showing that as lead 

screening increases over time, the incidence of lead poisoning decreases. 

Sample Description 

Table 1 presents summary statistics for our original dataset (2.75 million 

children, Column 1) and our analysis sample of siblings (1.3 million children, 

 
factors, and specific reason codes are given for dropping out. If a student is ever observed as 
graduating, we count them as graduating and not dropping out. 
4 This value is the 97.5th percentile of BLLs in U.S. children aged 1–5 years from the combined 

2007–2008 and 2009–2010 cycles of the National Health and Nutrition Examination Survey. 

Starting in 1991 and prior to 2012, CDC defined BLLs ≥10 µg/dL as the "level of concern" for 

children aged 1–5 years. In robustness checks, we define a child as having an elevated BLL if 

alternatively the mean of their BLLs is ≥5 µg/dL or their highest BLL is ≥10 µg/dL. 



10 

Column 2). The Data Appendix details our sample selection criteria. 39.6 percent 

of children in our analysis sample have a blood lead test, and 10.9 percent have at 

least one test greater or equal than 5 µg/dL, slightly higher shares than in the 

original data. Children in our sample are also marginally more likely to be 

economically disadvantaged, less likely to be Black, and have slightly better 

outcomes. Children with EBLLs are more likely to be Black, be economically 

disadvantaged (ED) as measured by an indicator for having ever received free or 

reduced-price lunch, and have teachers without Master’s degrees (Columns 4 and 

5). The average cohort in our sample includes 225 children. Children who spend at 

least one elementary school year in a cohort with above median share of lead-

exposed children (or >10.1 percent of cohort peers) have lower test scores, higher 

suspension rates, lower graduation and SAT taking rates, and have a lower 

probability of intending to attend a four-year college (Columns 6 and 7). These 

children are also more likely to be Black, be economically disadvantaged, have 

teachers without Master’s degrees, and have a blood lead test themselves. Our 

identification strategy controls for family background with family fixed effects, 

assuaging concerns of omitted variable bias due to these differences. 

IV.  Identification Strategy 

Rigorously estimating peer effects has proven difficult methodologically 

and due to limitations of existing data. First, peers influence each other 

simultaneously, so it is unclear whether a disruptive child causes their classmates 

to misbehave, or whether the classmates cause them to be disruptive. This is called 

the reflection problem (Manski 1993). Second, peer groups are not randomly 

assigned; they are selected based in part on unobserved characteristics. Children in 

the same classroom often share similar backgrounds. Moreover, attentive parents 

might remove their children from classrooms with more disruptive peers. Because 

of this self-selection into groups, it is impossible to determine whether the outcome 
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is a causal effect of the peers or the reason the individuals joined the peer group 

(Carrell and Hoekstra 2010; Hoxby 2000). Third, unobserved factors might 

simultaneously cause students and their peers to perform poorly.  

We solve the reflection problem by finding a predetermined proxy for peer 

ability: lead exposure. Consistent with the literature on lead exposure and academic 

outcomes, being exposed to lead is strongly associated with worse academic 

achievement, a higher likelihood of suspension, and a lower probability of 

graduating or intending to attend a four-year college in our sample (Figure 2).5 

Previous research has proxied for peer ability and behavior using preexisting 

measures such as peers’ race and gender (Hoxby and Weingarth 2006; Hoxby 

2000), feminine-sounding names of male peers (Figlio 2007), peers’ retention 

status (Lavy, Paserman, and Schlosser 2012), peers’ disability (Fletcher 2010), or 

peers’ exposure to domestic violence (Carrell and Hoekstra 2010). Our approach is 

similar in that we use the presence of peers with elevated blood lead levels to 

estimate how early health shocks (i.e., lead exposure) spill over within school 

contexts to exacerbate inequality through peer effects. This is a valid approach as a 

student cannot affect their peers’ elevated blood lead levels. 

Yet, a child’s lead exposure could be correlated with their socioeconomic 

status, which in turn has been associated with peers’ learning disruptions (Hoxby 

and Weingarth 2006; Hoxby 2000). Thus, to causally identify the spillover effect 

of a child’s lead exposure on their peers we further control for the share of cohort 

peers who are non-White or economically disadvantaged. We also control for the 

share of the student’s peers who have been tested for lead exposure. Because 

screening rates are higher among low-socioeconomic status students, additionally 

controlling for screening rates mitigates concerns about selection into testing. 

 
5 Our companion paper (Gazze, Persico, and Spirovska 2020) estimates the effects of lead exposure 

on short- and long-run outcomes in our sample using a family fixed effects model. That paper finds 

that having an EBLL is associated with worse educational and behavioral outcomes. 
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Finally, we exclude children with known EBLLs so that we can isolate the spillover 

effects of lead poisoning on peers who are not lead-poisoned.  

We compare siblings whose grade cohorts randomly happen to have 

different proportions of children with EBLLs. Including family fixed effects 

mitigates the selection problem by controlling for unobserved family characteristics 

that could be correlated with both peer quality and child’s outcomes, such as 

parents’ propensity to move their children to schools with fewer lead-poisoned 

children. Including school fixed effects further controls for students’ characteristics 

that are common to the school’s catchment area. Remaining idiosyncratic variation 

in the BLLs of siblings’ cohorts offers plausibly exogenous variation to identify the 

spillover effects of lead and the effects of peer quality more broadly. 

We first examine how lead exposure affects contemporaneous outcomes, 

that is test scores, suspensions from school, and absences of peers without known 

EBLLs. Our main estimation equation is given by:  

(1)  𝑌𝑖𝑗𝑠𝑔𝑡 = 𝛽1

∑ 𝑘≠𝑖 𝑃𝑒𝑒𝑟𝑠𝐸𝐵𝐿𝐿𝑠𝑘𝑠𝑔𝑡

𝑛𝑠𝑔𝑡−1
+ 𝜋𝑋𝑖𝑡 + 𝜔𝑆𝑠𝑔𝑡 + 𝜃𝑗 + 𝛿𝑠 + 𝜏𝑔 + 𝜎𝑡 + 𝛾𝑒 +

𝜀𝑖𝑗𝑠𝑔𝑡  

where 𝑌𝑖𝑗𝑠𝑔𝑡  is some outcome for child i who either has not been screened for lead 

exposure or has always tested below 5 µg/dL, born to family j, attending school s, 

in grade g and in year t. 
∑ 𝑘≠𝑖 𝑃𝑒𝑒𝑟𝑠𝐸𝐵𝐿𝐿𝑠𝑘𝑠𝑔𝑡

𝑛𝑠𝑔𝑡−1
 is the share of students in a child’s 

school-grade-year cohort (or school-classroom-grade-year cohort) with known 

EBLLs not including the student themselves. The coefficient 𝛽1 on  

∑ 𝑘≠𝑖 𝑃𝑒𝑒𝑟𝑠𝐸𝐵𝐿𝐿𝑠𝑘𝑠𝑔𝑡

𝑛𝑠𝑔𝑡−1
 captures the effect of having 100 percent of a child’s peers in a 

given year with known EBLLs. Xit is a vector of child-specific control variables, 

including gender, race, birth month fixed effects, birth order fixed effects, 

economically disadvantaged (ED) status in each year, and an indicator for whether 

a child was tested for lead. The vector 𝑆𝑠𝑔𝑡 controls for time-varying school-grade 
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characteristics: the percent non-White students by school-grade-year, the percent 

economically disadvantaged by school-grade-year, and the share of students who 

have been tested for lead exposure by school-grade-year. We also control for school 

time-varying characteristics: annual school size, the share of teachers with Master’s 

degrees and the school-level stability rate.6 𝜃𝑗 is a family fixed effect. 𝜏𝑔 is a grade 

fixed effect to account for statewide grade-specific shocks. 𝛿𝑠 is a school fixed 

effect to account for constant school characteristics over time, and we adjust for 

secular trends using a year fixed effect 𝜎𝑡. 𝛾𝑒  is an exam type fixed effect that 

restricts our comparison to children who took the same exam.7 We cluster standard 

errors at the school level to account for arbitrary correlation in the error terms.  

 There are three main threats to the internal validity of our estimates. First, 

our estimates would be biased if a child’s peers’ BLLs were correlated to the child’s 

own BLLs, or their ability, other than through classroom interactions. To address 

this issue, we measure lead exposure prior to school entrance. Moreover, family 

fixed effects account for omitted variables such as unobserved lead exposure or 

parental characteristics that could confound the effects of peer quality. School fixed 

effects help us account for selection into schools. Second, our estimates could be 

biased in the presence of common shocks that are systematically correlated with 

the proportion of peers with BLLs in a school-grade-year. Time-varying school and 

teacher controls help assuage concerns that these channels drive our results. Third, 

bias could arise if high-quality students systematically select out of schools when 

there are more students with EBLLs. We test for school switching across siblings 

 
6 The stability rate is defined as the percentage of students from the October membership count who 

are still present in the second semester (90 days later). 
7 Exams and exam scales in North Carolina changed multiple times over this time period. The scale 

for the math EOG exam changed in 2001-2002, 2005-2006, and in 2012-2013, while the reading 

EOG exam scale changed in 2002-2003, 2007-2008, and again in 2012-2013. Finally, in 2014-2015 

a new 5-level scale replaced the long-standing 4-level scale. See the Data Appendix for more details. 
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in Section VD, where we also show that our results are largely robust to including 

school-by-family fixed effects.   

 Finally, it is important that we have enough variation in our regressor of 

interest, the share of children with EBLLs within school-grade-year. Figure A1 

shows the distribution of the within-school interquartile range of this variable for 

3rd grade. Panel A shows this distribution for the share of children with EBLLs over 

all children in the cohort, which we use in the analysis, while Panel B shows the 

distribution for the share over the number of children with lead tests in the cohort. 

Despite the distribution being right-skewed, it has significant mass above 0.1, 

meaning the difference between the 25th and the 75th percentile is 10 percentage 

points or more.  

V. Results 

A. The Contemporaneous Effects of Peers Exposed to Lead on Child Outcomes  

We begin by showing the effects of peers with elevated BLLs on 

contemporaneous standardized test scores, suspensions from school, and absences. 

Figure 3 shows that the share of a child’s peers with EBLLs is negatively correlated 

with the child’s test scores, and positively correlated with their likelihood of 

receiving a suspension in the raw data. Table 2 confirms these patterns are causal. 

Panel A presents the results for the effect of additional cohort peers who are lead-

poisoned on a child’s outcomes using our primary specification in equation (1). We 

find that a ten percent increase in the proportion of cohort-level peers with elevated 

BLLs in a given year leads to a 0.3 percentage point increase in the likelihood of 

suspension, compared to siblings in the same school. In other words, attending 

school with 10 percent more lead-poisoned peers increases the suspension rate by 

2.8 percent above the mean of 10.4 percent, and increases out-of-school 

suspensions by one hour based on a 7-hour school day. Moreover, these increased 

suspensions appear to be driven by suspensions on the same day as suspensions for 
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lead-poisoned children. Using incident indicators to link children to the same 

incident resulting in suspensions, we find in fact an increase in suspensions linked 

to incidents including lead-poisoned children. Finally, we note that the effect of 

lead-poisoned peers on suspensions is similar to the effect of economically 

disadvantaged peers, while the coefficient on non-White peers is negative.  

One concern, however, is that increased suspensions for peers of lead-

poisoned children could be due to more punitive policies at the cohort-level. For 

example, teachers might be more prone to suspending students for minor 

misbehavior in cohorts with more disruptive students. To disentangle peers’ 

behavior from school policies, we look at the effects of lead-poisoned peers on 

absences, which should not be driven by school policies. We find that a 10 percent 

increase in the proportion of cohort-level peers with elevated BLLs increases the 

likelihood of chronic absenteeism by 0.2 percentage points, or 5 percent on a base 

of 3.9 percent, suggesting that our results are driven by students misbehaving more 

when they have more lead-poisoned peers and not blanket-style school policies. 

Finally, some specifications show a decrease in test scores among students with 

more lead-poisoned peers, although this result is not statistically significant at 

conventional levels in our primary specification.  

While we use cohort-level variation in our primary specification to avoid 

the issue of selection into classrooms by students, Panel B of Table 2 presents the 

estimates of the effect of having more lead-poisoned peers in the same classroom 

using family, school, grade and year fixed effects and all controls specified in 

equation (1). We define peer exposure at the classroom level by averaging the 

number of peers with EBLLs across all classes a child takes in that year. Thus, if 

students switch classrooms, they will have more peers overall.8 We find that peers 

 
8 We only have classroom-level data for a subset of the children in the sample from 2006 to 2017, 

whereas the cohort level variation is available from 1997-2017. Children in grades 3-5 do not 

typically switch classrooms for different subjects, so they are counted as in the same classroom 
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in the same classroom have an impact on a child’s test score that is almost ten times 

as large, and statistically significant at the 0.1 percent level, as peers in the same 

cohort but potentially different classrooms. Yet, classroom peers have a slightly 

smaller effect on suspensions and absences than cohort peers. These results suggest 

that while peers outside the classroom but in the same cohort do not directly affect 

a child’s ability to learn, they can still influence each other’s behavior, for example 

by spending time together at lunch or recess. Both classroom and cohort peers 

matter.  

In Panel C, we estimate how average exposure to lead-poisoned peers in 

elementary school classrooms (in grades 3-5) affects outcomes in eighth grade. We 

find that elementary school peers have strong impacts on 8th-grade test scores: an 

additional student in a class of 25 decreases average eighth grade test scores by 0.97 

percent of a standard deviation. However, elementary school peers do not appear 

to affect suspensions, incidents with lead-poisoned peers, or absences in 8th grade, 

suggesting that it is contemporaneous exposure to misbehaving peers that increases 

suspensions and absences. 

B. Long Term Effects of Peers Exposed to Lead 

We next examine whether a child’s lead-poisoned peers in elementary and 

middle school affect that child’s long-run outcomes. Table 3 presents estimates of 

these long-run effects by estimating the following regression: 

(2)  𝑌𝑖𝑗𝑠𝑔𝑡  =  𝛽1

∑ 𝑘≠𝑖 𝑃𝑒𝑒𝑟𝑠𝐸𝐵𝐿𝐿𝑠𝑘𝑠𝑔𝑡

𝑛𝑠𝑔𝑡−1

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 + 𝜋𝑋𝑖̅ + 𝜔𝑆𝑠𝑡

̅̅ ̅̅ +  𝜃𝑗 + 𝛿𝑠 + 𝜏𝑔 + 𝜎𝑡 +   𝜀𝑖𝑗𝑠𝑡 

where 𝑋𝑖̅ and 𝑆𝑠𝑡
̅̅ ̅̅  include all of the individual-level controls from our primary 

specification, as well as the average share of non-White peers, the average share of 

economically disadvantaged peers, the average share of peers tested for lead, and 

 
based on their mathematics classroom peers. Children in grades 6 and up usually do switch 

classrooms, so they are counted as many times as the number of classes they take with each student. 
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the average school size, school stability rate and share of teachers with masters 

degrees over elementary and middle school. 𝛿𝑠 , 𝜏𝑔 and 𝜎𝑡 are school, grade and year 

fixed effects for the child’s last observation. The coefficient 𝛽1 captures the effect 

of having 100 percent of peers with known EBLLs in elementary and middle school. 

Panel A of Table 3 shows that a child whose average cohort in elementary 

and middle school has 10 percent more lead-poisoned peers has a 1.7 percentage 

point lower likelihood of graduating high school, representing a 2 percent decrease 

on the mean graduation rate of 89 percent. We also find that having 10 percent more 

lead-poisoned peers increases the likelihood of dropping out by 0.47 percentage 

points and decreases the likelihood of taking the SAT while in high school by 2.3 

percentage points, or a 4.3 percent decrease on the mean rate of 53.2 percent. 

Finally, a higher share of lead-poisoned peers decreases the likelihood that a student 

intends to attend a four-year college in some specifications, although this result is 

not statistically significant at conventional levels in our primary specification. 

 Panel B of Table 3 estimates the effect of lead-poisoned peers at the 

classroom level on long-run outcomes. While we do not find an effect of lead-

poisoned peers in the classroom on graduation, we find larger effects on SAT 

taking. We also find evidence that lead-poisoned peers in the classroom might lead 

students to substitute college intentions from a four-year college to a community 

college. While we cannot measure whether students followed through on their 

college plans because we lack college enrollment data, these results suggest that 

prolonged exposure to lead-exposed peers could worsen long-run outcomes. 

Panel C of Table 3 estimates the long-run effect of lead-poisoned peers in 

elementary and middle school cohorts separately. We find that long-run outcomes 

are largely driven by middle school peers. This result is in line with our 

interpretation of the findings in Panel C of Table 2—that behavior in 8th grade is 

driven by exposure to disruptive peers in middle school, which in turn could set 

students on a path to lower graduation and college attendance rates.  Peers in middle 
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school also could be especially impactful for long-run outcomes if middle school 

is a time when some students are deciding whether to remain in school. Finally, 

student learning and behavior in middle school might be especially important for 

college readiness (Naven 2019). 

While the peer effects we find on test scores are smaller than those obtained 

by Carrell, Hoekstra, and Kuka (2018), the effects we find on college going are 

similar in magnitude. Those authors find that one male peer exposed to domestic 

violence decreases four-year college going by 1.4 percentage points. Using our 

cohort results and assuming that there are 25 students in a class, we calculate that 

adding an additional lead-poisoned peer to each class, a 0.04% increase in the share 

of lead-poisoned peers, would lead to a 0.92 percentage point reduction in the 

likelihood of taking the SATs, a proxy for college intentions, and a 0.68 percentage 

point reduction in graduating high school.   

C. Mechanisms and Heterogeneity of Estimated Effects 

Given our findings that cohort peers shape children’s contemporaneous 

behavior just as much as classroom peers (Table 2), we hypothesize that children 

friends’ groups outside the classroom might drive peer effects. As we lack data on 

friendship networks, we exploit the fact that children likely sort into groups with 

similar characteristics (Jackson 2010). Table 4 presents both the effect of exposure 

to a higher share of lead-poisoned peers and the additional effect of exposure to a 

higher share of lead-poisoned peers of the same gender (Panel A), race (Panel B), 

and same gender and same race (Panel C), and male same-race peers (Panel D). We 

find that same gender peers with EBLLs have larger effects on suspensions and 

high school graduation, while same-race peers have larger effects on test scores. 

Peers who are of both the same race and same gender have larger effects on both 

suspensions and test scores, and male same-race peers increase suspensions among 

male students, suggesting that there are larger effects for same-race peers once we 
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take gender into account. While exposure to similar lead-poisoned peers appears to 

have an additional effect on contemporaneous outcomes, we find limited effects on 

long-run outcomes, suggesting the effects of homophily in networks might 

diminish over time.  

Because exposure to lead-poisoned peers could interact with a child’s 

background to shape their outcomes, we next study heterogeneity in peer effects by 

demographic subgroups. For example, students of different socioeconomic status 

might have differential access to resources, such as academic help outside of 

school, that could ameliorate the effects of peers with EBLLs. Table 5 presents our 

preferred estimates by race/ethnicity (White, non-Hispanic in Panel A, Black 

students in Panel B, and Hispanic students in Panel C), by economically 

disadvantaged status (never economically disadvantaged in Panel D, sometimes 

economically disadvantaged in Panel E, and always economically disadvantaged in 

Panel F), and by gender (girls in Panel G and boys in panel H). 

We find some evidence of heterogeneous effects of lead-poisoned peers by 

race. Black students see the largest increase in suspensions and the largest decrease 

in high school graduation from lead-poisoned peers. Black students have higher 

suspension rates, so our results suggest that Black students might disproportionally 

get in trouble when there are disruptive peers.  

Students who are economically disadvantaged in all grades have the greatest 

test score losses in the presence of more lead-poisoned peers. However, students 

who are economically disadvantaged only in some grades see larger increases in 

suspensions and decreases in graduation rates than students who are either never or 

always economically disadvantaged. Appendix Table A1 presents estimates of the 

effects of lead-poisoned peers for children in schools with different levels of 

poverty. We find stronger negative peer effects on suspensions in schools with the 

highest share of economically disadvantaged students. This finding suggests that 

poverty might exacerbate the effects of having lead-poisoned peers. 
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Finally, we find that in cohorts with a higher share of lead-poisoned peers, 

boys have lower test scores and graduation rates than girls. Panel A of Appendix 

Table A2 shows that lead-poisoned boys have larger negative effects on their peers 

than lead-poisoned girls. Together, these results support the hypothesis that peer 

effects are mediated by assortative matching of peer groups, as shown in Table 4. 

D. Additional Threats to Internal Validity 

This section discusses and tests for threats to internal validity, including 

spurious correlation, selection into lead testing, measurement error, and 

endogenous sorting. 

If our results are driven by increases in peers’ blood lead levels, we would 

expect students exposed to a higher percentage of cohort peers with elevated BLLs 

to do worse. Figure 4 plots estimates from equations (1) and (2) using bins for 

different percentages of cohort peers with elevated BLLs (0-5%, 5%-10%, 10%-

15%, 15%-20%, 20%-100%).9 We find a stronger effect of lead-poisoned peers on 

test scores, suspensions, and graduation rates as the percentage of peers with 

elevated BLLs increases. We do not find a statistically significant gradient for 

college intentions. Moreover, Appendix Figure A2 shows that our estimates are 

unlikely to be due to random chance. This figure plots the results from estimating 

500 placebo specifications in which we assign a random share of lead-poisoned 

peers to each school-grade-year cohort drawn from a distribution with the same 

mean and standard deviation as the empirically observed peers’ distribution. Our 

true estimates for the effects of lead-poisoned peers on suspensions and graduation 

rates fall well outside the distribution of estimates from the placebo specifications. 

However, there may be selection in who is tested for lead. As we do not 

observe lead exposure for all children, we measure the share of lead-poisoned 

children in each cohort with error. Since we compute the share of lead-poisoned 

 
9 We omit the indicator for having 0-5% of cohort peers with elevated BLLs from the regression. 
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peers over all students in a cohort, irrespective of whether they have a blood lead 

test, unknown lead-poisoned peers would attenuate our results. North Carolina 

requires screening for all children living in zip codes where at least one block 

group within the zip code has 27 percent or more homes built prior to 1950.10 Panel 

A of Table 6 shows the effects of lead-poisoned peers on children in these high-risk 

zip codes, where screening rates are 16 percent higher than average. We find a 

larger effect on test scores than in the full sample suggesting attenuation bias due 

to measurement error could be a concern. However, the coefficients on graduation 

and taking the SAT are comparable to our main results in Table 3. 

Furthermore, we identify siblings based on home addresses, which could 

lead to error, particularly in multi-family homes. Thus, Panel B of Table 6 shows 

results on the sample of Census tracts where the majority of homes are single family 

homes. The pattern of results largely holds in this sample, suggesting that error in 

matching siblings does not bias the findings. 

In addition, if parents of high-achieving students pull their children out of a 

cohort with particularly disadvantaged or lead-poisoned students, such nonrandom 

selection could lead us to misattribute poor peers’ performance to the larger 

presence of lead-poisoned students. Importantly, most of North Carolina did not 

offer school choice options for public schools over our sample period: with one 

exception, up until the 2014-2015 school year, students could only switch schools 

if they switched into a charter or magnet school, which we observe in our data.11 

Panel C of Table 6 shows that our long-run results hold for children in zip codes 

with no charter schools or other school choice options (at the time), which are 

 
10 The designation also adjusts for prevalence of elevated BLLs (Hanchette 1999). 
11 In the 2014-2015 school year, North Carolina implemented the Opportunity Scholarships 

program, a voucher program for low income children. Children whose families make less than 133 

percent of the qualifying amount for the federal free or reduced-price lunch program qualify for the 

voucher, which can be used for any school. In addition, the Charlotte Mecklenburg Public School 

district has had a school choice program from 2002 so we exclude that district.  
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effectively no-choice zip codes. Moreover, Table 7 formally investigates the 

association between a student’s share of lead-poisoned peers and school switching. 

We find no evidence of increased switching to public or charter schools of students 

with higher shares of lead-poisoned peers or of their siblings. Thus, differential 

sorting does not appear to drive our results. To further test whether differential 

school switching biases our results, Panel A of Appendix Table A3 controls for 

siblings-by-school fixed effects, effectively comparing siblings only in grades 

during which they attend the same school.12 We find spillover effects of lead-

poisoned peers on long-run outcomes that are half to two-thirds the size of our main 

results. 

Our estimates could also be biased if the share of peers with EBLLs in a 

school-grade-year is systematically correlated with students’ or peers’ 

characteristics other than those included in equation (1). Panel B of Table A3 adds 

Census block group fixed effects. The results are similar to those in our main 

specification despite the sample size being smaller due to missing block group 

information, suggesting that neighborhoods, including contemporaneous pollution 

exposure not captured by BLLs by age 6, do not drive the results. Panel C of 

Appendix Table A3 further shows that estimates using school-grade fixed effects 

are virtually indistinguishable from our main results that include school and grade 

fixed effects. Finally, because the incidence of lead poisoning has decreased over 

time (Figure 1), our primary estimates might capture similarly occurring trends in 

outcomes despite controlling for grade and year fixed effects. To assuage this 

concern, in Panel D of Appendix Table A3, we control for grade-year fixed effects 

and find peer effects that are, relative to our main specification, larger on test scores, 

similar on SAT taking, but smaller on suspension and graduation rates. 

 
12 Bertoni, Brunello, and Cappellari (2020) use this design to study the effects of privileged peers. 
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In addition, peer characteristics could be correlated with a child’s own 

characteristics. We investigate this possibility in Table 8 by regressing child 

characteristics on the proportion of peers with EBLLs to see if peer EBLLs predict 

these characteristics. Generally, the fraction of peers with EBLLs shows only a very 

small correlation with a student’s characteristics, and we control for these 

characteristics in our primary specification. Moreover, some characteristics 

correlated with a higher share of lead-poisoned peers would predict better 

outcomes, such as being female. A 10 percent increase in peers with EBLLs is 

associated with a 0.27 percentage point increase in the likelihood that a child is 

female and an increase in cohort size of 0.64 students. Finally, we find that a higher 

share of peers with EBLLs is associated with a slight increase in the school stability 

rate, suggesting that differential school-switching does not account for our findings. 

To address the concern that blood lead levels are measured with some error, 

in Panels B and C of Appendix Table A2, we show that our results are largely robust 

to using different measures of lead-exposed peers, although when we define EBLLs 

as BLLs≥10 µg/dL we are left with smaller residual variation in this rarer condition 

after controlling for family, school, year, and grade fixed effects. In Panel D we 

include all students, even those who are exposed to lead, and control for one’s own 

lead exposure. The estimates are largely similar to our main results.  

Finally, Appendix Table A4 shows the robustness of our specification to 

different sets of controls. Panel A shows that when omitting all controls other than 

family, school, grade and year fixed effects, we would find larger contemporaneous 

but smaller long-run peer effects, suggesting that spurious correlations might arise 

even with our conservative specification. Reassuringly, Panel B shows that once 

we add individual and school-level controls, omitting the share of students in a 

school-grade-year who are non-White and the share of students who are 

economically disadvantaged does not affect our estimates compared to our main 

results. In other words, peers’ characteristics other than lead poisoning do not 
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appear to explain much of the variation in students’ outcomes after controlling for 

the set of fixed effects that provides our identification. This finding suggests that 

the share of lead-poisoned peers does not just capture the effect of non-White or 

poor peers. Panel C shows that excluding school fixed effects yields slightly larger 

contemporaneous peer effects but similar long-run effects to our main results. 

These results suggest that our more conservative primary specification controls for 

unobserved time invariant school characteristics. 

VI. Conclusion 

This is the first study documenting the spillover effects of lead onto school 

peers. By comparing siblings who attend the same school, we find that a child’s 

own lead exposure spills over to affect other children’s behavior and long-run 

outcomes. A ten percent increase in peers with elevated BLLs in a given year leads 

to a 2.8 percent increase above the mean in the likelihood of being suspended and 

a 5 percent increase in chronic absenteeism. A ten percent increase in peers with 

elevated BLLs over a student’s elementary and middle school career causes a 2 

percent decrease in the likelihood of graduating high school, and a 4.3 percent 

decrease in the likelihood of taking the SAT. The magnitude of these effects is 

substantively important, suggesting that the social cost of lead exposure has been 

underestimated so far. Our results suggest that environmental hazards are an 

important factor contributing to human capital accumulation even for children who 

are not themselves exposed to these hazards. In addition, we show that peers can 

have long term consequences on human capital formation and reveal some 

mechanisms through which peer effects manifest, namely homophily in network 

formation and behavior shaping while in middle school. Furthermore, our findings 

have implications for other types of pollution that are known to cause suspensions 

from school, such as traffic pollution and pollution from TRI or Superfund sites 
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(Persico and Venator 2020; Heissel, Persico and Simon 2020), suggesting that the 

true cost of pollution has been underestimated.   

We likely estimate a lower bound of the effect of lead-poisoned peers. We 

find strong evidence of worse outcomes for children exposed to more lead-poisoned 

peers despite their siblings are likely exposed to disruptive peers as well and despite 

potential spillovers within siblings, too. Moreover, missing BLLs for some lead-

poisoned children would attenuate our findings.  

While external validity issues make it difficult to extrapolate how lead 

exposure might affect labor market outcomes, we attempt a back of the envelope 

calculation for the effect of one lead-poisoned peer in a cohort of 225. We find that 

being exposed to one additional lead-poisoned peer is associated with $71 in lost 

earnings per student from lower graduation rates alone.13 This estimate does not 

include the additional costs of behavioral issues and potentially lower test scores 

(although our estimates are sensitive to specifications). Yet, this figure implies a 

spillover effect of a lead-poisoned child of $15,976 on their 224 school peers 

through elementary and middle school. As half a million young children appear to 

still be poisoned by lead each year (Aizer et al. 2018), these spillovers total almost 

$8 billion per birth-year cohort. Reyes (2014) estimates the direct social cost of lead 

poisoning at $200 billion per birth-year cohort. Thus, our estimates suggest that the 

social cost of lead has been underestimated by at least 4 percent by not including 

these spillover effects.   

 
13 Following Heckman, Lochner, and Todd (2006), we estimate the net present value of graduating 

high school to be $93,188. We estimate a schooling-experience-earnings profile non-parametrically 

in the 2018 March Current Population Survey data and predict earnings conditional on years of 

schooling at each age between 18 and 65, assuming a growth rate of real labor productivity growth 
of 1.9 percent and a discount rate of 3.38 (i.e., the 30-year Treasury bond rate).  As 1 in 225 students 

is a 0.4% increase in the share of peers with elevated BLLs, we multiply that by our estimate of the 

effect of 100% of peers with elevated BLLs on graduation (-17.22 percentage points) to obtain the 

impact of one child with EBLLs through elementary and middle school on graduation rates: -0.077 

percentage points, or a decrease in the probability of 0.00077. Thus, one child with EBLLs in a 

cohort would decrease the net present value of lifetime earnings by 0.00077*$93,188=$71.  
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Our results imply some important lessons for policy. Remediating lead 

hazards is likely to be more cost effective than previously supposed since lead 

exposure affects everyone in the classroom. Lead remediation efforts have shown 

positive impacts on children’s blood lead levels and test scores (Sorensen et al. 

2019). In addition, Billings and Schnepel (2018) show that offering early 

interventions for lead-poisoned children improves their outcomes. Thus, early 

interventions might help both lead-poisoned children and their peers.  

Finally, school segregation by race and socioeconomic status likely 

exacerbates these peer effects, suggesting that additional efforts to desegregate 

students might be beneficial. Low income schools have some of the largest 

achievement gaps (e.g., see Reardon 2015). Our results suggest that peer effects 

and lead exposure contribute to low performance in high-poverty schools, as well 

as to some of the negative long-run outcomes associated with poverty. Lead 

exposure and exposure to lead-poisoned peers are both mechanisms through which 

poverty produces worse human capital outcomes.  
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Table 1: Characteristics of children and schools 

 Sample: 

(1)  

All children 

attending school 
in North 

Carolina 

(2) 

Children in 

sample 

(3) 

Children with 

BLL test 

(4) 

Children with 

EBLLs 

(5) 

Children 

without EBLLs 

(6) 

Children with 

above-median 
share of EBLL 

peers in at least 

one elementary 

grade 

(7) 

Children with 

below-median 
share of EBLL 

peers in all 

elementary grades 

Average test score 0.040 0.066 -0.097 -0.268 0.114 -0.104 0.287 

Any suspension 0.277 0.322 0.369 0.494 0.301 0.382 0.255 

Ever graduated 0.842 0.872 0.866 0.816 0.881 0.850 0.895 

4-year college intentions 0.436 0.454 0.398 0.346 0.471 0.389 0.519 

Has taken the SAT 0.452 0.466 0.411 0.366 0.482 0.407 0.525 

Cohort size 224 225 199 203 229 194 263 

Share of teachers with 

an MA degree 
0.361 0.362 0.353 0.340 0.366 0.343 0.386 

Share economically 

disadvantaged 
0.534 0.586 0.712 0.822 0.557 0.712 0.445 

Stability rate 0.955 0.957 0.957 0.953 0.958 0.955 0.960 

Share Black 0.261 0.249 0.308 0.432 0.226 0.305 0.186 

Share Hispanic 0.125 0.124 0.144 0.107 0.126 0.136 0.111 

Share with a BLL test 0.314 0.396 1 1 0.322 0.530 0.249 

Share with EBLL 0.086 0.109 0.276 1 0 0.162 0.050 

N Students 2,749,324 1,326,622 525,535 144,957 1,181,665 696,924 629,698 
Notes: The table presents summary statistics for selected variables in our sample. Observations are at the student-year level. Cohort is defined as student-grade-year. Column 1 shows 

the means for all children in North Carolina. Column 2 shows means for children with siblings, that is our main sample. Column 3 shows means for children that have a blood lead 

level test. Column 4 shows means for children with elevated blood lead levels (EBLLs), and Column 5 shows means for children without elevated blood lead levels. Column 6 shows 

means for children whose share of elementary school peers with elevated BLLs was above the median share at the grade-year level in at least one grade, while Column 7 shows 

means for children whose share was below the median in all elementary grades. Test scores are standardized at the grade-year level. The stability rate is defined as the percentage of 

students from the October membership count who are still present in the second semester (90 days later). 
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Table 2: Contemporaneous Effects of Attending School with an Increased Share of 

Children with Elevated BLLs  

 

Dependent Variable: 

(1) 

Average 

Test Score 

(2) 

Any 

suspension 

(3) 

Days 

Suspended 

(4) 

Suspended 

Same Day 

as Lead-
Exposed 

Child  

(5) 

Incident 

with  

Lead-
Exposed 

Child 

(6) 

Absent 22 

or More 

Days 

Panel A: Cohort Peers with Family and School Fixed Effects 

Share of peers with 
BLLs over 5 µg/dL  

-0.0203  
(0.0193) 

0.0295*** 

(0.0083) 
0.1526+ 

(0.0835) 
0.0930*** 
(0.0058) 

0.0429***  
(0.0037) 

0.0215*** 
(0.0040) 

Share of Non-White 
Children in School-

Grade-Year 

-0.0403**  
(0.0143) 

-0.0298*** 

(0.0081) 
-0.1997* 

(0.0888) 
-0.0101+ 
(0.0060) 

-0.0027 
(0.0039) 

-0.0010 
(0.0032) 

Share of 
Economically 

Disadvantaged 

Children in School-

Grade-Year 

0.0098  
(0.0094) 

0.0261*** 

(0.0048) 
0.2753*** 

(0.0486) 
0.0292*** 
(0.0037) 

0.0072** 
(0.0025) 

0.0069*** 
(0.0021) 

Observations 5,452,009 6,940,254 6,940,254 6,136,248 5,459,509 7,611,487 

N Students  1,135,915 1,161,968 1,161,968 1,155,334 1,123,086 1,158,135 

Mean of outcome 0.1175 0.1037 0.4552 0.0241 0.0108 0.0394 

Panel B: Peers in the Same Classroom with Family and School Fixed Effects 

Share of peers with 

BLLs over 5 µg/dL  

-0.1943*** 

(0.0202) 

0.0160* 

(0.0079) 

0.0166 

(0.0794) 

0.1286*** 

(0.0067) 

0.0718*** 

(0.0039) 

0.0229*** 

(0.0040) 

Observations 3,063,248 4,906,795 4,906,795 4,201,754 4,201,754 4,775,787 

N Students 878,866 1,073,872 1,073,872 965,999 965,999 1,063,034 
Mean of outcome 0.1169 0.1238 0.5041 0.0199 0.0073 0.0424 

Panel C: Average Exposure in Classrooms Grades 3-5 on 8th Grade Outcomes 

Share of peers with 

BLLs over 5 µg/dL 
-0.2428**  
(0.0905) 

0.0069 

(0.0438) 

0.4684 

(0.4208) 

0.0056 

(0.0307) 

0.0257 

(0.0178) 

-0.0075 

(0.0231) 

Observations 119,363 120,258 120,258 120,258 120,258 116,336 

N Students 118,591 119,405 119,405 119,405 119,405 115,542 

Mean of outcome 0.1602 0.1668 0.6007 0.0334 0.0155 0.0365 

Notes: The table reports the effect of a child’s share of peers with EBLLs on the child’s school outcomes. Panel A 

uses the share of peers with maximum BLLs over 5 µg/dL at the school-grade-year level as the main explanatory 

variable, while panels B and C use the share of peers with maximum BLLs over 5 µg/dL at the classroom level. All 

regressions include cohort and individual controls, as well as family, birth month, birth order, grade, school, and year 

fixed effects. In column 1 we take the average of math and reading test scores and additionally control for subject-by-

type test fixed effects. Individual controls include indicators for gender, race, economically disadvantaged status, and 

whether the student has a blood lead level test. Cohort controls include the share of non-White peers, share of children 
with a lead test, and the share of peers who are economically disadvantaged at the school-grade-year level. We also 

control for school size, the stability rate, and the percent of teachers with an MA degree. Panel C additionally includes 

our cohort and school controls averaged over elementary grades. Standard errors are in parentheses and clustered at 

the school level.  +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 3: Long-Run Outcomes of Exposure to Peers with Elevated BLLs by Timing of 

Exposure 

 (1) (2) (3) (4) (5) 
Dependent Variable: Ever 

graduated 

Ever 

dropped out 

Intention to 

Attend a 4-

Year College 

Intention to 

Attend a 

Community 

College  

Took SAT 

 Panel A: Share of All Peers with EBLLs Over Elementary and Middle School 

(Cohort Variation) 

Share of peers with 

BLLs over 5 µg/dL 

-0.1722*** 

(0.0357) 

0.0474+  

(0.0244) 

-0.1017 

(0.0731) 

0.0388 

(0.0800) 

-0.2302** 

(0.0745) 

Mean of outcome 0.8902 0.0530 0.5066 0.3291 0.5316 

N Students 281,098 412,514 204,213 204,141 200,186 

 Panel B: Share of All Peers with EBLLs Over Elementary and Middle School 

(Classroom Variation) 
Share of peers with 

BLLs over 5 µg/dL 

-0.0458 

(0.0453) 

0.0089 

(0.0347) 

-0.3405*** 

(0.0960) 

0.2589* 

(0.1008) 

-0.3990*** 

(0.0853) 

Mean of outcome 0.9382 0.0346 0.5225 0.3180 0.5331 

N Students 145,518 182,153 148,776 148,015 147,608 

 Panel C: Share of Elementary Versus Middle School Peers with EBLLs  

(Cohort Variation) 

Share of peers with 
BLLs over 5 µg/dL 

in Elementary 

School 

-0.0547+ 
(0.0295) 

-0.0068 
(0.0218) 

-0.0157 
(0.0674) 

0.0188 
(0.0689) 

0.0076 
(0.0677) 

Share of peers with 

BLLs over 5 µg/dL 

in Middle School 

-0.1270** 

(0.0426) 

0.0749* 

(0.0311) 

-0.0393 

(0.0942) 

-0.0021 

(0.1018) 

-0.2406** 

(0.0903) 

Mean of outcome 0.8940 0.0523 0.5098 0.3305 0.5372 
N Students 243,118 347,820 178,049 177,992 174,634 

Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s long-run 

outcomes. We restrict the sample to the highest grade a student is observed in. Column 1 reports the effects on the 

likelihood a student ever graduates from high school, and column 2 shows the effects on the likelihood of ever 

dropping out of school. Columns 3 and 4 show the effects on self-reported intention of enrolling in a four-year college 

and community college, respectively. Column 5 shows the effects on the likelihood of taking the SAT test by grade 

12. All regressions include individual controls, as well as family, birth month, birth order, school, grade and year fixed 

effects. Individual controls include indicators for gender, race, economically disadvantaged status, and whether the 

student has a blood lead level test. We also control for the average share of elementary and middle school peers that 

are non-White or economically disadvantaged, average share of children with a lead test, school size, the stability rate, 

and the percent of teachers with an MA degree averaged over elementary and middle school. Standard errors are in 

parentheses and clustered at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 4: Heterogeneity by Peer Gender, Race and Neighborhood 

 Short Run Outcomes  Long-run Outcomes 

 

Dependent 
Variable: 

(1) 

Average 
Test score 

(2) 

Any 
Suspension 

 

 

 

 

(3) 

Ever 
graduated 

(5) 

Intention 
to Attend 

a 4-Year 

College 

(6) 

Intention to 
Attend a 

Community 

College  

(6) 

Took the 
SAT  

Panel A: By Same-Gender Lead Poisoned Peers 

Share of same-

gender peers with 
BLLs ≥5 µg/dL 

-0.0328 

(0.0271) 

0.0774*** 

(0.0116) 

 -0.1031+ 

(0.0534) 

0.1679 

(0.1223) 

-0.2161 

(0.1332) 

0.0403 

(0.1305) 

Share of peers 

with BLLs ≥5 

µg/dL 

-0.0036 

(0.0236) 

-0.0101 

(0.0103) 

 -0.1204** 

(0.0429) 

-0.1861* 

(0.0940) 

0.1472 

(0.1055) 

-0.2507* 

(0.0982) 

Panel B: By Same-Race Lead Poisoned Peers (White) 

Share of same-

race peers with 
BLLs ≥5 µg/dL 

-0.2525*** 

(0.0271) 

-0.0160 

(0.0117) 

 0.0284 

(0.0586) 

-0.0691 

(0.1160) 

0.3516** 

(0.1271) 

-0.1616 

(0.1220) 

Share of peers 

with BLLs ≥5 
µg/dL 

0.1480*** 

(0.0260) 

0.0416*** 

(0.0106) 

 -0.1913*** 

(0.0485) 

-0.0539 

(0.1074) 

-0.2000+ 

(0.1206) 

-0.1199 

(0.1124) 

Panel C: By Same Gender-Race Lead Poisoned Peers (White) 

Share of same 

gender-race peers 
with BLLs ≥5 

µg/dL 

-0.2212*** 

(0.0292) 

0.0413*** 

(0.0121) 

 -0.0343 

(0.0610) 

0.0735 

(0.1356) 
 

0.0852 

(0.1505) 

-0.0796 

(0.1432) 

Share of peers 
with BLLs ≥5 

µg/dL 

0.0544* 

(0.0214) 
0.0168+ 

(0.0089) 
 -0.1604*** 

(0.0376) 
-0.1262 
(0.0834) 

0.0097 
(0.0949) 

-0.2028* 

(0.0887) 

N Students 1,135,912 1,161,968  281,098 204,213 204,141 200,186 

Mean of outcome 0.1176 0.1037  0.8902 0.5066 0.3291 0.5316 
Panel D: By Same-Race Lead Poisoned Peers (White), Male Sample 

Share of male 

same-race peers 
with BLLs ≥5 

µg/dL 

-0.1511*** 

(0.0399) 

0.0494** 

(0.0189) 

 -0.0486 

(0.1149) 

-0.0116 

(0.2547) 

-0.0984 

(0.2906) 

-0.0860 

(0.2681) 

Share of peers 
with BLLs ≥5 

µg/dL 

0.0052 
(0.0272) 

0.0025 
(0.0130) 

 -0.2491*** 

(0.0736) 
-0.0520 
(0.1631) 

0.0724 
(0.1817) 

-0.1741 
(0.1573) 

N Students 558,528 575,934  78,090 56,282 56,264 54,952 

Mean of outcome 0.0803 0.1396  0.8771 0.4607 0.3285 0.4878 
Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school 

outcomes. Panel A reports the effect of a child’s share of same-gendered peers with elevated blood lead levels on the 

child’s school outcomes, Panel B reports the reports the effect of a child’s share of same-race peers with elevated 

blood lead levels, and Panel C reports the effect of a child’s same-race and same-gender share of peers with elevated 

blood lead levels. Panel D shows the effect of male same-race peers on male students. All regressions include the 

cohort, school-level and individual controls listed in equation (1), as well as family, birth month, birth order, school, 

grade, and year fixed effects. Cohort and school controls are averaged over elementary and middle school in Columns 

3-6. Standard errors are in parentheses and clustered at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 5:  Heterogeneity by Demographic Subgroups 

  Short Run Outcomes   Long-run Outcomes 

 

Dependent 
Variable: 

(1) 

Average 
Test 

Score 

(2) 

Any 
Suspension 

 (3) 

Ever 
Graduated 

(5) 

Intention 
to Attend 

a 4-Year 

College 

(6) 

Intention to 
Attend a 

Community 

College  

(6) 

Took 
the 

SAT  

Panel A: White, non-Hispanic students 

Share of peers w/ 

BLLs ≥5µg/dL  

0.0340 

(0.0247) 

0.0176* 

(0.0077) 

 

 

-0.1538*** 

(0.0409) 

-0.0864 

(0.0901) 

0.0058 

(0.0995) 

-0.1220 

(0.0875) 
Panel B: Black non-Hispanic students 

Share of peers w/ 

BLLs ≥5µg/dL 

0.0363 

(0.0300) 

0.0364* 

(0.0165) 

 

 

-0.3181*** 

(0.0797) 

0.0837 

(0.1777) 

0.0258 

(0.1618) 

-0.3591* 

(0.1724) 
p-val. =White 0.95 0.30  0.07 0.39 0.92 0.22 

Panel C: Hispanic students 

Share of peers w/ 

BLLs ≥5µg/dL 

-0.0206 

(0.0467) 

0.0117 

(0.0168) 

 

 

-0.1335 

(0.1259) 

-0.1228 

(0.2264) 

-0.1692 

(0.2484) 

-0.4146+ 

(0.2431) 
p-val. =White 0.30 0.75  0.88 0.88 0.51 0.26 

Panel D: Never Economically Disadvantaged students 

Share of peers w/ 
BLLs ≥5µg/dL 

0.1251*** 
(0.0308) 

0.0134+ 

(0.0070) 
 

 

-0.0978* 
(0.0409) 

-0.0274 
(0.1044) 

-0.0654 
(0.1144) 

-0.0308 
(0.1116) 

               Panel E: Sometimes Economically Disadvantaged students 

Share of peers w/ 

BLLs ≥5µg/dL 

-0.0117 

(0.0272) 

0.0261* 

(0.0120) 

 

 

-0.1901** 

(0.0688) 

-0.1265 

(0.1417) 

0.1213 

(0.1410) 

-0.2706* 

(0.1371) 
p-val. =Never 0.00 0.36  0.25 0.57 0.30 0.17 

Panel F: Always Economically Disadvantaged students 
Share of peers w/ 

BLLs ≥5µg/dL 

-0.0535+ 

(0.0297) 

-0.0169 

(0.0135) 

 

 

0.0218 

(0.1037) 

-0.1510 

(0.1826) 

-0.0132 

(0.2026) 

-0.1347 

(0.2043) 

p-val. =Never 0.00 0.05  0.28 0.56 0.82 0.66 

Panel G: Girls 

Share of peers w/ 
BLLs ≥5µg/dL 

0.0032 
(0.0234) 

0.0334*** 

(0.0080) 
 
 

-0.1136+ 
(0.0611) 

-0.0424 
(0.1316) 

0.0380 
(0.1446) 

-0.2491+ 
(0.1318) 

Panel H: Boys 

Share of peers w/ 
BLLs ≥5µg/dL 

-0.0483*  
(0.0231) 

0.0194+ 

(0.0114) 
 

 

-0.2648*** 
(0.0676) 

-0.0563 
(0.1316) 

0.0385 
(0.1486) 

-0.2037 
(0.1370) 

p-val. =Girls 0.12 0.32  0.10 0.94 1.00 0.81 
Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school 

outcomes for children with different observable characteristics in each panel. For each outcome, results are from three 

regressions, one for each characteristic (race, economic status, gender). All regressions include cohort and individual 

controls, as well as family, birth month, birth order, school, grade, and year fixed effects. Individual controls include 

indicators for whether the student has a blood lead level test, gender, race, and economically disadvantaged status. 

Cohort controls include the share of non-White peers, share of children with a lead test, and the share of peers who 

are economically disadvantaged at the school-grade-year level. We also control for school size, the stability rate, and 

the percent of teachers with an MA degree. Cohort and school controls are averaged over elementary and middle 

school in Columns 3-6. Standard errors are clustered at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001.
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Table 6: Results for Zip Codes with Universal Screening, No School Choice, and Tracts 

with Majority Single Family Homes 

 Short Run Outcomes   Long-run Outcomes 

 (1) 
Average 

Test Score 

(2) 
Any 

Suspension 

 (3) 
Ever 

Graduated 

(5) 
Intention 

to Attend 

a 4-Year 
College 

(6) 
Intention to 

Attend a 

Community 
College  

(6) 
Took the 

SAT  

Panel A:  Zip Codes with Universal Screening Based on >27% of Housing Being Built Before 1950 

Share of peers 

with BLLs over 5 

µg/dL 

-0.0533* 

(0.0251) 

0.0176 

(0.0110) 

 -0.1895*** 

(0.0460) 

-0.0320 

(0.1087) 

0.0103 

(0.1131) 

-0.1829+ 

(0.0982) 

N Students 459,255 465,438  145,787 102,116 102,099 100,217 

Mean of outcome 0.0395 0.1173  0.8798 0.4833 0.3453 0.5140 

Panel B: >50% of Homes in Census Tract are Single Family 

Share of peers 

with BLLs over 5 
µg/dL 

-0.1161*** 

(0.0333) 

0.0145 

(0.0130) 

 -0.1515* 

(0.0703) 

-0.1508 

(0.1174) 

0.0374 

(0.1226) 

-0.1351 

(0.1350) 

N Students 321,303 355,820  84,612 61,308 61,300 60,214 

Mean of outcome 0.0626 0.1061      0.8831 0.4739 0.3505 0.5106 

Panel C: Zip Codes with No School Choice Options (No Charter Schools or Voucher Programs) 

Share of peers 

with BLLs over 5 
µg/dL 

-0.0316 

(0.0258) 

0.0150 

(0.0108) 

 -0.2685*** 

(0.0706) 

-0.0577 

(0.0906) 

-0.0106 

(0.1042) 

-0.2185* 

(0.0888) 

N Students 717,120 705,750  175,103 125,337 125,282 123,114 

Mean of outcome 0.1225 0.0957  0.8932 0.4846 0.3498 0.5128 
Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school 

outcomes. Each cell reports results from a separate regression. Panel A restricts the sample to students who live in zip 

codes that are subject to universal lead screening. Panel B restricts the sample to Census tracts where more than half 

of homes are single family homes. Panel C restricts the sample to zip codes without charter schools or voucher 

programs. All regressions include cohort and individual controls, as well as family, birth month, birth order, grade, 

school, and year fixed effects. In column 1 we additionally control for subject-by-type test fixed effects. Individual 

controls include indicators for gender, race, economically disadvantaged status, and whether the student has a blood 

lead level test. Cohort controls include the share of non-White peers, share of children with a lead test, and the share 

of peers who are economically disadvantaged at the school-grade-year level. We also control for school size, the 

stability rate, and the percent of teachers with an MA degree. Cohort and school controls are averaged over elementary 

and middle school in Columns 3-6. Standard errors are in parentheses and clustered at the school level. +  p<0.10, * 

p<0.05, ** p<0.01, *** p<0.001. 
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Table 7: The Effects of Peers on Switching Schools 

 (1) 

Changed Schools 

(2) 

Changed to a 

Charter School 

(3) 

Child’s Sibling 

Changed Schools 

(4) 

Both Siblings 

Changed Schools 

(5) 

Consecutive Younger 

Sibling is in a Different 

School for the Same 
Grade 

Share of peers with BLLs 
over 5 µg/dL 

0.0217 
(0.0142) 

0.0017 
(0.0019) 

0.0082 
(0.0058) 

-0.0022 
(0.0046) 

-0.0237 
(0.0158) 

Observations 6,372,937 6,372,937 6,900,757 6,928,249 4,172,510 

N Students 1,011,814 1,011,814 1,045,756 1,049,982 575,582 

Mean of outcome 0.3082 0.0046 0.1113 0.0507 0.1878 

Notes: The table reports the association of a child’s share of peers with elevated blood lead levels with the child’s own likelihood of switching schools (columns 1 

and 2), the child’s sibling’s likelihood of switching schools (column 3), both children switching schools (column 4), and the likelihood that a consecutive younger 

sibling attends a different school than the child’s school for the same grade (column 5). All regressions include cohort and individual controls, as well as family, 

birth month, birth order, school, grade, and year fixed effects. Individual controls include indicators for gender, race, economically disadvantaged status, and 

whether the student has a blood lead level test. Cohort controls include the share of non-White peers, share of children with a lead test, and the share of peers who 

are economically disadvantaged at the school-grade-year level. We also control for school size, the stability rate, and the percent of teachers with an MA degree. 

Standard errors are clustered at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001. 
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Table 8: Correlation Between Share of Peers with Blood Lead Levels at or above 5µg/dL and a Child’s Own Characteristics 

 
Dependent 

Variable: 

(1)  
Child is Female 

(2)  
Cohort size in 

School-Grade-

Year 

(3)  
Child is 

Economically 

Disadvantaged 

(4)  
Child is missing 

test scores 

(5)  
Cohort (School-

Grade-Year) 

Stability Rate 

 

(6) 
Share of teachers 

with Masters or 

higher 

Share of peers with 

BLLs over 5 µg/dL 

0.0270** 

(0.0086) 

6.3857+  

(3.2806) 

0.0057  

(0.0069) 

-0.1330*** 

(0.0114) 

0.0052**  

(0.0019) 

-0.0067  

(0.0076) 

Observations 1,171,475 1,171,475 1,171,475 1,171,475 1,171,475 1,171,475 

Mean of Outcome 0.4935 231.4184 0.4032 0.2816 0.9572 0.3657 
Notes: The table reports the correlation between a child’s share of peers with elevated blood lead levels and the child’s characteristics indicated in each column. 

Each cell reports results from a separate regression. All regressions include controls for gender, race, economically disadvantaged status, whether the student has 

a blood lead level test, share of non-White peers, share of children with a lead test, and the share of peers who are economically disadvantaged at the school-

grade-year level. All regressions include family, birth month, birth order, school, grade, and year fixed effects. Standard errors are in parentheses and clustered at 

the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001. 
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Figure 1: Share of Children with Blood Lead Levels at or above 5µg/dL by Birth Cohort 

and Share of Children with Blood Lead Tests by Cohort 

 

Notes: The figure plots the share of children in a school-grade-year cohort with at least one blood lead test (blue 

dashed line) and with a blood lead level of at least 5µg/dL (red solid line) 
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Figure 2: The Relationship Between a Child’s Own Blood Lead Levels and, Test Scores, Suspensions, and Dropping out of 

School 

Panel A: Test scores    Panel B: Suspension Likelihood 

                          
Panel C: Ever Graduated 

 

Panel D: 4-year College Intention 

 
Notes: The figure plots average test scores (Panel A), suspension rates (Panel B), graduation rates (Panel C), college and community college intention 

rates (Panels D and E), and SAT taking rates (Panel F) by students’ blood lead levels and adds the line of best fit.  
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Figure 3: The Relationship Between Peers’ Blood Lead Levels and Test Scores, Suspensions, and Dropping out of School 

Panel A: Test scores 

 

Panel B: Suspension Likelihood 

 
 

Panel C: Ever Graduated 

 

Panel D: 4-year College Intention 

 
Notes: The figure plots average test scores (Panel A), suspension rates (Panel B), graduation rates (Panel C), college and community college intention 

rates (Panels D and E), and SAT taking rates (Panel F) by quintiles of students’ share of peers with blood lead levels at or above 5µg/dL.  
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Figure 4: Binned Effects of Share of Peers with Blood Lead Levels above 5 µg/dL 

Panel A: Test scores 

 

Panel B: Suspension Likelihood 

 
 

Panel C: Ever Graduated 

 

Panel D: 4-year College Intention 

 
Notes: Each figure plots non-parametric estimates of the effect of having different proportions (binned) of peers with BLLs 5+ in a child’s cohort on average test 

scores (Panel A), suspension rates (Panel B), graduation rates (Panel C), college and community college intention rates (Panels D and E), and SAT taking rates 

(Panel F). The omitted category is an indicator for share of peers with BLLs 5+ that is lower than 0.05. We control for all fixed effects and controls in our primary 

specification (which includes family, school, year, and grade fixed effects, and individual and demographic controls by cohort, averaged over elementary and 

middle school in Panels C and D.). Vertical bars represent 95% confidence intervals based on standard errors clustered at the school level. 
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APPENDIX: FOR ONLINE PUBLICATION 

A. Additional Tables and Figures 

Table A1:  Heterogeneity by School-Level Demographics 

 Short Run Outcomes Long-run Outcomes 

 
Dependent 

Variable: 

(1) 
Average 

Test Score 

(2) 
Any 

Suspension 

 (3) 
Ever 

Graduated 

(4) 
Intention 

to Attend 

a 4-Year 
College 

(5) 
Intention to 

Attend a 

Community 
College  

(6) 
Took the 

SAT  

Panel A: Schools in Lowest Tercile of Share Students who are Economically Disadvantaged 

Share of peers 

with BLLs 

over 5 µg/dL  

0.1714** 

(0.0576) 

0.0113 

(0.0173) 
 

 

-0.1739+ 

(0.1046) 

-0.0665 

(0.1638) 

-0.2822 

(0.2027) 

-0.4692* 

(0.2205) 

        
Panel B: Schools in Middle Tercile of Share Students who are Economically Disadvantaged 

Share of peers 

with BLLs 

over 5 µg/dL 

0.0560 

(0.0378) 

0.0334* 

(0.0147) 
 
 

-0.1210* 

(0.0583) 

-0.0902 

(0.1330) 

0.0593 

(0.1515) 

-0.0841 

(0.1361) 

p-val = First 
Tercile 

0.09 0.33 
 

0.66 0.91 0.18 0.14 

Panel C: Schools in Highest Tercile of Share Students who are Economically Disadvantaged 

Share of peers 

with BLLs 

over 5 µg/dL 

-0.0126 

(0.0268) 

0.0520*** 

(0.0128) 
 
 

-0.1814* 

(0.0775) 

-0.2763* 

(0.1359) 

0.2439+ 

(0.1415) 

-0.3690** 

(0.1384) 

p-val = First 

Tercile 

0.00 0.06 
 

0.95 0.32 0.03 0.70 

N Students 1,124,003 1,154,452  199,394 153,846 153,798 151,399 

Mean of 
outcome 

0.1213 0.1034 
 

0.9038 0.5177 0.3233 0.5396 

Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school 

outcomes for children in schools with different shares of children who are economically disadvantaged in each panel. 

For each outcome, results are from a single regression. All regressions include cohort and individual controls, as well 

as family, birth month, birth order, school, grade, and year fixed effects. Individual controls include indicators for 

gender, race, economically disadvantaged status, and whether the student has a blood lead level test. Cohort controls 

include the share of non-White peers, share of children with a lead test, and the share of peers who are economically 

disadvantaged at the school-grade-year level. We also control for school size, the stability rate, and the percent of 

teachers with an MA degree. Cohort and school controls are averaged over elementary and middle school in Columns 

3-6. Standard errors are clustered at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001. 
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Table A2: Alternative measures of BLL 

 Short Run Outcomes  Long-run Outcomes 

 (1) 
Average 

Test Score 

(2) 
Any 

Suspension 

 (3)  
Ever 

Graduated 

(4) 
Intention to 

Attend a 4-

Year College 

(5) 
Intention to 

Attend a 

Community 

College  

(6) 
Took the 

SAT 

Panel A: Share of Male and Female Peers with Max BLL over 5 µg/dL 

Share of male 
peers with 

BLLs over 5 

µg/dL 

-0.0231 
(0.0246) 

0.0791*** 

(0.0110) 
 

-0.1561*** 
(0.0462) 

-0.1148 
(0.0961) 

0.0494 
(0.1075) 

-0.2448* 
(0.1034) 

Share of 

female peers 

with BLLs 
over 5 µg/dL 

-0.0137 

(0.0270) 

-0.0260* 

(0.0115) 
 

-0.1902*** 

(0.0478) 

-0.0851 

(0.1067) 

0.0303 

(0.1165) 

-0.2066+ 

(0.1078) 

Panel B: Mean BLL 

Share of peers 

with BLLs 
over 5 µg/dL 

-0.0398+ 

(0.0209) 

0.0164 

(0.0101)  

-0.2094*** 

(0.0356) 

-0.0820 

(0.0769) 

-0.0015 

(0.0825) 

-0.2357** 

(0.0741) 

Panel C: Max BLL is over 10 µg/dL 

Share of peers 
with BLLs 

over 10 µg/dL 

-0.0052 
(0.0449) 

-0.1233*** 

(0.0250) 
 

 

-0.3955*** 
(0.0858) 

-0.2008 
(0.1518) 

0.0515 
(0.1701) 

-0.4545** 
(0.1520) 

N Students 1,135,915 1161968  281,098 204,213 204,141 200,186 

Mean of 
outcome 

0.1175 0.1037 
 

0.8902 0.5066 0.3291 0.5316 

Panel D: Including Students with Elevated Blood Lead Levels 

Share of peers 
with BLLs 

over 5 µg/dL 

-0.0241 
(0.0185) 

0.0219* 

(0.0087)  
-0.1810*** 

(0.0331) 
-0.1045+ 

(0.0616) 
0.0495 

(0.0687) 
-0.2042*** 

(0.0600) 

N Students 1,284,429 1,310,320  359,422 260,673 260,581 255,215 
Mean of 

outcome 

0.0684 0.1125 
 

0.8768 0.4775 0.3435 0.5031 

Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school outcomes 

using different measures of peer exposure based on blood lead levels. Panel A uses the share of male and share of female 

peers with maximum BLL over 5 µg/dL. Panel B uses the share of peers with average BLL above 5 µg/dL. Panel C uses 

the share of peers with maximum BLL over 10 µg/dL. Panel D includes children who have maximum BLL over 5 µg/dL. 

All regressions include cohort and individual controls, as well as family, birth month, birth order, school, grade, and year 

fixed effects. In column 1 we additionally control for subject-by-type test fixed effects. Individual controls include indicators 

for gender, race, economically disadvantaged status, and whether the student has a blood lead level test. Cohort controls 

include the share of non-White peers, share of children with a lead test, and the share of peers who are economically 

disadvantaged at the school-grade-year level, school size, the stability rate, and the percent of teachers with an MA degree. 
Cohort and school controls are averaged over elementary and middle school in Columns 3-6. Standard errors are clustered 

at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001. 



45 

Table A3: Results with More Stringent Sets of Fixed effects  

 Short Run Outcomes  Long-run Outcomes 

 

Dependent 
Variable: 

(1) 

Average 
Test Score 

(2) 

Any 
Suspension 

 (3) 

Ever 
Graduated 

(4) 

Intention 
to Attend 

a 4-Year 

College 

(5) 

Intention to 
Attend a 

Community 

College  

(6) 

Took the 
SAT  

Panel A: Sibling-School Fixed Effects 

Share of peers 

with BLLs over 5 
µg/dL 

-0.0162 

(0.0232) 

0.0046 

(0.0089) 

 -0.1096*** 

(0.0272) 

-0.0570 

(0.0608) 

-0.0016 

(0.0691) 

-0.2160*** 

(0.0635) 

 

Observations 4,928,691 6,500,548  226,517 165,983 165,943 163,507  

N Students 1,091,665 1,129,993  226,517 165,983 165,943 163,507  

Panel B: With Family, School, and Block Group Fixed Effects  

Share of peers 

with BLLs over 5 

µg/dL 

-0.0637** 

(0.0247) 

0.0097 

(0.0102) 

 -0.2211*** 

(0.0601) 

-0.1030 

(0.1236) 

0.1010 

(0.1424) 

-0.2120+ 

(0.1243) 

 

Observations 2,771,076 3,638,450  118,027 70,128 70,116 68,148  

N Students 733,456 799,803  118,027 70,128 70,116 68,148  

Panel C: Family and School-Grade Fixed Effects 

Share of peers 

with BLLs over 5 
µg/dL 

-0.0180 

(0.0195) 

0.0227** 

(0.0084) 

 -0.1530*** 

(0.0314) 

-0.0864 

(0.0737) 

0.0261 

(0.0811) 

-0.2227** 

(0.0749) 

Observations 5,451,919 6,940,142  280,651 203,737 203,696 200,062 

N Students 1,135,909 1,161,966  280,651 203,737 203,696 200,062 

Panel D: Family, School, and Grade-Year Fixed Effects 

Share of peers 

with BLLs over 5 

µg/dL 

-0.0532** 

(0.0197) 

-0.0060 

(0.0086) 

 -0.0848** 

(0.0326) 

-0.0796 

(0.0733) 

0.0633 

(0.0807) 

-0.2256** 

(0.0744) 

Observations 5,452,009 6,940,254  281,090 204,203 204,135 200,184 

N Students 1,135,915 1,161,968  281,090 204,203 204,135 200,184 

Mean of outcome 0.1175 0.1037  0.8902 0.5066 0.3291 0.5316 

Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school 

outcomes. Each cell reports results from a separate regression. All regressions include controls for gender, race, 

economically disadvantaged status, whether the student has a blood lead level test, share of non-White peers, share of 

children with a lead test, and the share of peers who are economically disadvantaged at the school-grade-year level. 

We also control for school size, the stability rate, and the percent of teachers with an MA degree. Cohort and school 

controls are averaged over elementary and middle school in Columns 3-6. All regressions include birth month and 

birth order fixed effects. Panel A includes sibling-school, grade and year fixed effects. Panel B includes family, school, 

year, grade and block group fixed effects. Panel C includes sibling, year and school-grade fixed effects. Panel D 

includes family, school and grade-year fixed effects. Standard errors are in parentheses and clustered at the school 

level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001. 
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Table A4: Results with Fewer Controls  

 Short Run Outcomes  Long-run Outcomes 

 

Dependent 
Variable: 

(1) 

Average 
Test Score 

(2) 

Any 
Suspension 

 (3) 

Ever 
Graduated 

(4) 

Intention 
to Attend 

a 4-Year 

College 

(5) 

Intention to 
Attend a 

Community 

College  

(6) 

Took the 
SAT  

Panel A: No controls 

Share of peers 

with BLLs over 5 

µg/dL 

-0.0578*** 

(0.0154) 

0.0870*** 

(0.0073) 

 -0.0177 

(0.0241) 

-0.0569 

(0.0553) 

0.0811 

(0.0593) 

-0.0773 

(0.0560) 

Observations 5,572,319 7,083,319  283,032 205,832 205,760 201,783 

N Students 1,144,411 1,168,436  283,032 205,832 205,760 201,783 

Panel B: All Controls Except for Share Non-White and Share Educationally Disadvantaged 

Share of peers 
with BLLs over 5 

µg/dL 

-0.0247 
(0.0192) 

0.0334*** 

(0.0082) 
 -0.1689*** 

(0.0345) 
-0.1106 
(0.0733) 

0.0466 
(0.0790) 

-0.2164** 
(0.0725) 

 

Observations 5,452,009 6,940,254  281,098 204,213 204,141 200,186  

N Students 1,135,915 1,161,968  281,098 204,213 204,141 200,186  

Panel C: Family Fixed Effects 

Share of peers 

with BLLs over 5 

µg/dL 

-0.0363+ 

(0.0199) 

0.0643*** 

(0.0089) 

 -0.1630*** 

(0.0377) 

-0.1078 

(0.0726) 

0.0575 

(0.0797) 

-0.2328** 

(0.0745) 

Observations 5,452,019 6,940,258  281,302 204,265 204,186 200,216 

N Students 1,135,917 1,161,968  281,302 204,265 204,186 200,216 

Notes: The table reports the effect of a child’s share of peers with elevated blood lead levels on the child’s school 

outcomes. Each cell reports results from a separate regression. All regressions include sibling, birth month, grade, 

year and birth order fixed effects. Panel A shows our results with no control variables except for our fixed effects and 

school fixed effects. Panel B includes school fixed effects and controls for gender, race, economically disadvantaged 

status, whether the student has a blood lead level test,  the share of children with a lead test at the school-grade-year 

level, as well as school size, the stability rate, and the percent of teachers with an MA degree. We omit cohort-level 

controls for share of non-White peers and share of peers who are economically disadvantaged. Panel C includes our 

fixed effects together with all controls in our main specification but omits school fixed effects. Cohort and school 

controls are averaged over elementary and middle school in Columns 3-6. Standard errors are in parentheses and 

clustered at the school level. +  p<0.10, * p<0.05, ** p<0.01, *** p<0.001. 
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Figure A1: Identifying Variation: Within-School Interquartile Range of Share of Children in 3rd Grade with Elevated 

Blood Lead Levels 

 

Panel A: All Children as Denominator                        Panel B: Only Tested Children as Denominator 

     

Notes: This figure plots the distribution of the school level interquartile range of the share of children in a school-grade-year with blood lead levels at or above 

5µg/dL. We limit the sample to children in 3rd grade and compute the share of children in a school-year with blood lead levels at or above 5µg/dL. We then compute 

the interquartile range of this variable at the school level. Panel A uses all children and treats missing blood lead levels as zeros, while Panel B uses only children 

with blood lead tests.  
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Figure A2: Placebo Estimates 

 

Notes: Distribution of results from 500 placebo tests per outcome. Our main estimates for our preferred specification 

are represented with a vertical line on the placebo effect size distribution. The lightly shaded gray region is the 

region of the graph where there is 5% in the tail of the distribution. The darker shaded gray region represents 10% in 

the tail of the distribution. For each placebo, school-grade cohorts were randomly assigned a percent of peers with 

EBLLs from the empirically observed distribution and we estimated our main specification.   
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B: Data Appendix 

B1. Data linkage 

 

NCERDC performed the linkage between the education and BLL data according to the 

following algorithm and anonymized the dataset for us. Appendix Table B1 reports the number 

of tests matched at each step. 

1. Exact match on school district, that is local education agency (LEA), or county and first 

and last name, date of birth. 

2. Exact match on first and last name, date of birth 

3. Exact match on LEA or county and first and last name, but allow for mistakes in one of 

day, month, or year of birth 

4. Exact match on LEA or county, last name, and date of birth, allow for close first name or 

nickname 

5. Exact match on LEA or county, first name, and date of birth, allow for close last name 

6. Exact match on last name, date of birth, allow for close first name or nickname 

7. Exact match on first name, date of birth, allow for close last name 

8. Exact match on first and last name, but allow for mistakes in one of day, month, or year 

of birth 

9. Exact match on first and last name 

 

Table B1: Match Results     

(1) 

Match Step 

(2) 

Number of Tests 

(3) 

Share 

1 1352623 0.606457 

2 431987 0.193684 

3 24098 0.010804 

4 104751 0.046966 

5 190154 0.085257 

6 32860 0.014733 

7 44963 0.020159 

8 5168 0.002317 

9 43765 0.019622 

Notes: This table reports the additional number of tests matched at each step. Column 1 reports the match step, 

Column 2 reports the number of standardized tests, and Column 3 reports the share of children with each of these. 
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B2. Sibling Identification Algorithm 

 

In this data appendix, we describe the algorithm used to identify siblings using students’ 

geocoded home addresses. 

There are 4.38 million unique students in the NCERDC data. Of these, about 740,000 do 

not have a home address and another 640,000 do not have birthday information. Since both home 

addresses and birthdays are crucial for identifying siblings, we drop these observations when 

running the linkage algorithm. We also ignore about 660,000 students who never share a home 

address with another student and therefore do not have siblings in our data.  

We further restrict our sample to include home addresses with at most four students in 

any given year. We do this for several reasons. First, the geocoded address variable provided by 

NCERDC is based on street address and does not distinguish between different units that share 

the same street address. This means that students living in different apartment units within the 

same building appear to be living at the same home address. Because of this, we observe 

addresses with hundreds of students in a given year, and it is implausible that these students are 

siblings. Second, we observe that students who share a geocoded address with many other 

students often move across addresses. We suspect some of these students are in the foster care 

system and therefore it is difficult to identify their siblings with certainty. Three, according to the 

2000 Census, the average number of children per family in North Carolina is 1.75, and thus we 

are conservative in limiting the number of children living together in any given year to at most 

four. Four, the algorithm speed is decreasing in the number of students living together in any 

given year. Thus, we apply our algorithm to addresses with no more than four students in a given 

year. This selection eliminates about 211,000 students, 80,000 of which always share an address 

with at least four other children.   

We are left with about 2.12 million students on which we run the sibling identifying 

algorithm. The following steps summarize the process:  

1. Identify all students who live together at any point or could be living together by 

transitivity and assign a tentative family identifier to these students. For example, Ana 

and Bob are observed living together in some years, Bob and Claire are observed living 

together in other years, but Ana and Claire are never observed living together. We 

temporarily assign Ana, Bob, and Claire to the same family.  
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2. For each potential sibling pair within the temporary families, check if the students are 

ever observed living at different addresses in the same year and if they are born between 

2 and 240 days of each other.14 If at least one of these holds, the students cannot be 

siblings. This step produces a dummy variable for each student within the temporary 

family that equals 1 whenever another student within the temporary family is a potential 

sibling, and zero otherwise. Table B2 shows a simple scenario for a tentative family with 

three students where all three can be siblings to one another. In such cases, we assign the 

temporary family a permanent household identifier.  

Table B2  Table B3 

Student Student1 Student2 Student3  Student Student1 Student2 Student3 

1 1 1 1  1 1 1 0 

2 1 1 1  2 1 1 1 

3 1 1 1  3 0 1 1 

 

3. Table B3 shows a tentative family where not all students can be siblings to one another: 

student 1 could be a sibling to student 2 but not to student 3, while student 2 could be a 

sibling to both students 1 and 3. Based on the indices, we conclude there are two potential 

true sibling groups: either students 1 and 2 are siblings, or students 2 and 3 are siblings. 

For each potential sibling group, we calculate a score based on the number of years 

students live together, the number of students in the subgroup, and the span of years for 

which the students are observed. Specifically:  

𝑠𝑐𝑜𝑟𝑒𝑔 =  
(∑ ∑ 𝕀𝑗≠𝑖,𝑦𝑖,𝑗∊𝑔𝑦 )

2

𝑁𝑔
+  

∑ ∑ 𝕀𝑗≠𝑖,𝑦𝑖,𝑗∊𝑔𝑦

𝑁𝑦
 

where i and j denote students in subgroup g, and y denotes year. 𝕀𝑗≠𝑖,𝑦  equals 1 if student 

i and student j are observed living together in year y. ∑ ∑ 𝕀𝑗≠𝑖,𝑦𝑖,𝑗∊𝑔𝑦  equals the number of 

times students in the subgroup live with each other, allowing for double counting. 

𝑁𝑔 denotes the number of students in subgroup g. Ny the is the difference between the 

first and last year subgroup g is observed. For example, if a subgroup is first observed 

living together in 2000 and last observed in 2005, Ny equals 5. The first term of the index 

gives more weight to subgroups where students are observed living together more often 

 
14 We allow students to be born on the same or consecutive days to account for twins. 
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per student. The second term gives more weight to subgroups observed living together in 

consecutive years as opposed to many years apart. The subgroup with the highest score is 

assigned a permanent family identifier, and the step is repeated until all students in the 

temporary family are assigned a family identifier.  

Table B4 shows the distribution of children across family size produced by our algorithm. 

Almost half of the children have only one sibling (columns 2 and 3), and about 84 percent of 

families have at most two children (column 5). Dividing the total number of children by the total 

number of families gives an average number of children per family of 1.80, which is similar to 

the figure provided by the Census.  

Table B4: Distribution of children across family size 

(1) (2) (3) (4) (5) 

Family size # of children % of children # of families % of families 

1        457,796  21.56%        457,796  38.97% 

2     1,054,842  49.68%        527,421  44.90% 

3        458,760  21.61%        152,920  13.02% 

4        127,036  5.98%          31,759  2.70% 

5          19,960  0.94%            3,992  0.34% 

6            3,798  0.18%               633  0.05% 

7               791  0.04%               113  0.01% 

8               144  0.01%                 18  0.00% 

9                 45  0.00%                   5  0.00% 

Total      2,123,172  100%     1,174,657  100% 

 

B3. Sample Selection and Variable Construction 

Sample selection criteria: We drop children who are singletons or who live in very large 

buildings such that we are unable to determine who their siblings are for our main analysis 

sample. However, all children are used to determine cohort and class size, as well as the 

percentages of EBLLs, ED students, and Black and Hispanic students by cohort. 

Test scores: We standardize mathematics and reading test scores at the grade-year level, 

and we average the two. When one is missing, we retain the non-missing test score. 

Lead exposure definition: Capillary tests are more prone to false positives than venous 

tests. Thus, to identify lead-poisoned children we used the highest venous test result if available 

and the highest capillary test result if no venous test was performed. 
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We construct two measures of peer exposure, one at the cohort, that is school-grade, level 

and one at the classroom level. To measure class membership we compute the average 

mathematics classroom size over third through fifth grade. 


