
 
 

 

Does Unobservable Heterogeneity Matter for 
Portfolio-Based Asset Pricing Tests?* 

 
 

Daniel Hoechlea,b,#, Markus Schmidc, Heinz Zimmermanna  
 

a University of Basel, Department of Finance, CH-4002 Basel, Switzerland 
b Institute for Finance, FHNW School of Business, CH-4002 Basel, Switzerland 

c Swiss Institute of Banking and Finance, University of St. Gallen, CH-9000 St. Gallen, Switzerland 
 
 

This version: September 2020 
 

 
Abstract  

 
We show that portfolio sorts, as widely used in empirical asset pricing, tend to 
misattribute cross-sectional return predictability to the firm characteristic underlying 
the sort. Such misattribution arises if the sorting variable correlates with a firm-spe-
cific effect capturing unobservable heterogeneity across firms. We propose a new, 
firm-level regression approach that can reproduce the results from standard portfolio 
sorts. Besides, our method handles multivariate firm characteristics and, if firm fixed 
effects are included, is robust to misattributing cross-sectional return predictability. 
Our empirical results confirm that portfolio sorts have limited power in detecting ab-
normal returns: Several characteristics-based factors lose their predictive power when 
we control for unobservable heterogeneity across firms. 
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1. Introduction 

Portfolio sorts are a standard research methodology in empirical asset pricing. The estimation procedure 

consists of two steps. In the first step, individual assets are sorted into quintile or decile portfolios based 

on a certain firm characteristic. The second step regresses the return spread between the top portfolio 

and the bottom portfolio on a set of factors (e.g., the three Fama-French factors). If the regression inter-

cept, or "alpha", of the second step time-series regression is statistically significant, this is considered 

evidence that the firm characteristic underlying the portfolio sort predicts the cross-section of average 

stock returns. This type of analysis, to which we henceforth refer to as the "portfolio sorts approach", 

was introduced by Black, Jensen, and Scholes (1972), and has been widely used in empirical asset pric-

ing and other areas of empirical finance research ever since.1 

In this paper, we contribute to the sparse literature analyzing the econometric properties of the 

portfolio sorts approach.2 Our analysis builds on a key assumption of the portfolio sorts approach, which 

requires that firm-specific factors do not exert any meaningful impact on asset pricing tests. This as-

sumption seems innocuous and intuitive since it is well known that a broadly diversified portfolio only 

bears systematic risk, that is non-diversifiable and priced, but no unsystematic (or firm-specific) risk, 

which is diversifiable and thus not priced. Our paper challenges this assumption. We formally show and 

empirically validate that unobservable heterogeneity across firms, which is unsystematic by nature, may 

significantly impact the results of empirical asset pricing tests based on portfolio sorts. Specifically, we 

demonstrate that the portfolio sorts approach is vulnerable to misattributing cross-sectional return pre-

dictability to the firm characteristic underlying the sort.  

To gain some intuition on why the portfolio sorts approach is prone to suffer from such misattrib-

ution, we casually observe that the stellar performance of firms like Google or Apple is unlikely to be 

the result of a single firm characteristic X. It is more likely that such outstanding performance is due to 

a successful combination of a multitude of observable and potentially unobservable firm characteristics. 

This, however, stands at odds with the portfolio sorts approach for at least two reasons. First, the port-

folio sorts approach assumes by construction that the alpha of the top-versus-bottom portfolio is fully 

 
1 Recent examples of empirical asset pricing studies using the portfolio sorts approach are Novy-Marx (2013), 
Frazzini and Pedersen (2014), Ball, Gerakos, Linnainmaa, and Nikolaev (2015), Fama and French (2015), Gerakos 
and Linnainmaa (2017), Bali, Brown, and Tang (2017), Weber (2018), and van Binsbergen and Opp (2019). The 
portfolio sorts approach is also widely used in other areas of empirical finance research, such as household finance 
(e.g., Barber and Odean, 2000, 2001; Ivkovic, Sialm, and Weisbenner, 2008; Seasholes and Zhu, 2010; Korniotis 
and Kumar, 2013), research on insider trading (e.g., Jeng, Metrick, and Zeckhauser, 2003), and studies analyzing 
the performance of mutual funds and hedge funds (e.g., Kacperczyk, Sialm, and Zheng, 2008; Fung, Hsieh, Naik, 
and Ramadorai, 2008). 
2 Research covering methodological and econometric aspects of the portfolio sorts approach includes Fama (1998), 
Lyon, Barber, and Tsai (1999), Loughran and Ritter (2000), Kothari and Warner (2008), and Cochrane (2011). 
More recently, Cattaneo, Crump, Farrell, and Schaumburg (2020) analyze the statistical properties of portfolio 
sorts and apply a nonparametric estimator to obtain optimal choices for the number of portfolios. 
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attributable to the observable firm characteristic(s) underlying the sort. Second, the portfolio sorts ap-

proach assumes that all the sorted portfolios are well diversified such that any firm-specific factors are 

purely random and unsystematic. While this assumption is admissible for the market portfolio, it turns 

out to be problematic for individual quintile or decile portfolios resulting from a standard portfolio sorts 

approach. Specifically, a certain firm characteristic X, which effectively does not predict the cross-sec-

tion of average stock returns, may accidentally pack a few stocks with particularly good (poor) perfor-

mance into the top (bottom) portfolio. If this is the case, the top portfolio may well outperform the 

bottom portfolio. However, the difference between the top portfolio's alpha and the bottom portfolio’s 

alpha is then the result of unobservable heterogeneity across firms and is thus unrelated to the firm 

characteristic underlying the sort. By focusing on performance differences across seemingly well-diver-

sified portfolios, while neglecting firm-specific effects, the portfolio sorts approach may thus misattrib-

ute cross-sectional return predictability to the firm characteristic underlying the sort. As a result, empir-

ical asset pricing tests that rely on the portfolio sorts approach may have limited power in detecting 

abnormal returns. 

To test this empirically, we propose a new, alternative framework for analyzing stock returns. Our 

methodology relies on estimating a firm-level panel regression.3 The model specification is such that 

the individual firms’ monthly excess returns over the risk-free rate are regressed on a set of market 

factors (e.g., the three Fama-French factors), a series of firm characteristics (e.g., gross profitability, 

volatility, etc.), and all interaction terms between the market factors and the firm characteristics. By 

relying on standard econometrics, our technique easily handles multiple dimensions and, if firm-specific 

fixed effects are included in the analysis, is robust to misattribution of cross-sectional return predicta-

bility. Our firm-level regression approach nests all variants of the standard portfolio sorts approach as a 

special case. In fact, we prove theoretically and confirm empirically that the proposed regression ap-

proach can be specified such that it exactly reproduces the alpha and factor exposure estimates from all 

variants of sorting assets into portfolios. As a result, the proposed methodology shares all the statistical 

properties and the straightforward economic interpretation of the portfolio sorts approach. We therefore 

refer to our methodology as the “Generalized Portfolio Sorts” approach, or “GPS-model”.  

Using our GPS-model, we are able to show why portfolio sorts are prone to misattributing cross-

sectional return predictability to the firm characteristic underlying the sort. To this end, we first show 

mathematically that our GPS-model can reproduce the alpha and factor exposure estimates from stand-

ard portfolio sorts if and only if it is estimated with pooled OLS. From textbook econometrics it is, 

 
3 For ease of exposition, but without loss of generality, we simply refer to “firms” throughout the paper. However, 
note that our methodology applies to all research questions in empirical finance, where portfolio sorts have become 
a standard methodology (e.g., mutual or hedge funds, private or institutional investors, countries or districts, etc.). 
Furthermore, our technique can be used for evaluating the long-term performance of firms, funds, or investors. 
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however, well-known that the pooled OLS estimator only produces consistent coefficient estimates, if 

the so-called random effects (RE) assumption holds. As a result, empirical asset pricing tests relying on 

portfolio sorts are only meaningful if firm-specific fixed effects (if present) are uncorrelated with the 

firm characteristic(s) underlying the sort. Otherwise, standard portfolio sorts will produce alpha and 

factor exposure estimates that on average differ from their true value and, hence, are biased.  

Second, we show that firm characteristics, which successfully predict the cross-section of average 

stock returns but do not predict the time-series of returns, are particularly likely to suffer from a violation 

of the RE assumption. Thus, a firm characteristic that predicts the cross-section of average stock returns 

well should only be considered a good predictor of asset returns, if it also predicts the time-series of 

returns. This finding supports Cochrane’s (2011, p. 1062) claim that “time-series forecasting regres-

sions, cross-sectional regressions, and portfolio mean returns are really the same thing”. Utilizing our 

GPS-model, we then develop a Hausman (1978) type “portfolio sorts specification test”. This statistical 

test allows us to investigate whether the results from standard portfolio sorts are likely affected by a 

violation of the RE assumption. 

Our paper also contributes to the growing literature addressing the factor zoo issue raised by 

Cochrane (2011).4 The portfolio sorts specification test provides a simple tool for distinguishing be-

tween "valid" factors, which are robust to violations of the RE assumption, and "spurious" factors, which 

depend on the RE assumption to hold. Consequently, our portfolio sorts specification test complements 

the result of Harvey, Liu, and Zhu (2016). They argue that a new factor needs to clear a significant 

hurdle (such as having a t-statistic greater than 3.0) in order to be considered a significant determinant 

for predicting the cross-section of average stock returns. However, because the results from standard 

portfolio sorts depend on the RE assumption to hold, our formal analysis implies that a large t-statistic 

is insufficient to identify relevant factors. To qualify as a reliable predictor for stock returns, a charac-

teristic-based factor also needs to be robust to violations of the RE assumption and, hence, predict the 

cross-section of stock returns even in the presence of unobserved heterogeneity across firms, i.e., even 

if firm fixed effects are included in the analysis.5 As a consequence, empirical asset pricing tests that 

rely on fixed effects (FE) estimation are statistically more powerful than asset pricing tests relying on 

pooled OLS estimation. While standard portfolio sorts belong to the pooled OLS class of asset pricing 

 
4 Recent research addressing the factor zoo issue includes Bryzgalova (2016), Pukthuanthong, Roll, and Subrah-
manyam (2018), Harvey and Liu (2019), and Huang, Li, and Zhou (2019). Recently machine learning techniques 
are increasingly used to tame the factor zoo, see, e.g., Kozak, Nagel, and Santosh (2018); Bryzgalova, Pelger, and 
Zhu (2019), Feng, Giglio, and Xiu (2020), and Freyberger, Neuhierl, and Weber (2020). Related to the factor zoo 
literature, Harvey (2017) points out that empirical finance research relies too much on p-values, and that research-
ers are incentivized to engage in “p-hacking” in order to get their research published. Hou, Xue, and Zhang (2017) 
and Chordia, Goyal, and Saretto (2017) analyze “p-hacking” empirically. Their results imply that p-hacking is a 
serious issue, and that financial markets are more efficient than commonly assumed. 
5 Note that from econometrics it is well-known that the fixed effects (FE) estimator is robust to violations of the 
RE assumption. For details, see Cameron and Trivedi (2005, chapter 21). 
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tests, it is straightforward to estimate our GPS-model with a FE estimator. Hence, our approach responds 

to the concern of Gormley and Matsa (2014) who point out that unobserved heterogeneity constitutes a 

fundamental challenge for empirical finance research. Compared to standard portfolio sorts, which to 

date serve as a major workhorse methodology in empirical asset pricing research, the GPS-model there-

fore allows for implementing more robust asset pricing tests.6 

In addition, our GPS-model also resolves another major shortcoming of the portfolio sorts ap-

proach: Portfolio sorts are generally limited to the analysis of a small number of firm characteristics. 

Cochrane (2011, p. 1061), for instance, argues that while researchers often “sort assets into portfolios 

based on a characteristic […] we cannot do this with 27 variables”. A related concern is that the port-

folio sorts approach impedes an analysis of the functional relationship across multiple portfolios. In fact, 

researchers often just compare the top and bottom group portfolios (Patton and Timmermann, 2010). 

This, however, involves a loss of potentially valuable information when analyzing the return predicta-

bility of a certain firm characteristic.7 By allowing for the inclusion of multivariate and continuous firm 

characteristics in the analysis, the GPS-model overcomes these limitations of standard portfolio sorts.8 

In the empirical part of the paper, we investigate to what extent standard portfolio sorts tend to 

misattribute cross-sectional return predictability. To this end, we study the return predictability of four 

randomly chosen firm characteristics that have been shown to predict asset returns. The first two char-

acteristics measure a firm's profitability. Novy-Marx (2013) shows that “gross profitability”, defined as 

gross profit scaled by the book value of total assets, is a better predictor for the cross-section of average 

stock returns than alternative measures based on bottom line net income, cash flows, or dividends. Ball, 

Gerakos, Linnainmaa, and Nikolaev (2015) challenge the findings of Novy-Marx (2013). They find 

operating profitability to predict the cross-section of average stock returns even better than gross prof-

itability.9 Hence, gross and operating profitability are the first two firm characteristics considered in our 

empirical analysis. The other two characteristics are the stocks’ 52-week rolling beta and 52-week roll-

ing volatility. Ang, Hodrick, Xing, and Zhang (2006, 2009) and Baker, Bradley, and Wurgler (2011), 

among others, show that stocks with high volatility tend to deliver low risk-adjusted returns. Baker, 

 
6 The Fama and MacBeth (1973) procedure represents another major workhorse for analyzing stock returns in 
empirical asset pricing studies. Its econometric properties are studied in Petersen (2009), Vogelsang (2012), Kam-
stra (2017), and Jegadeesh, Noh, Pukthuanthong, Roll, and Wang (2019) among others. 
7 Cattaneo, Crump, Farrell, and Schaumburg (2020) develop a general framework for portfolio sorting and, based 
on a nonparametric estimator, show that the optimal number of portfolios is often larger than the common choices 
of five or 10.    
8 By estimating a single firm-level regression, the GPS-model can reproduce the results from multiple portfolio 
sorts at once. Therefore, a standard Wald test can be applied to test whether the alphas of a series of sorted portfo-
lios are jointly equal to zero. Such a Wald test constitutes an easy-to-implement, yet econometrically robust, alter-
native to the popular “GRS-test” of Gibbons, Ross, and Shanken (1989). 
9 Ball, Gerakos, Linnainmaa, and Nikolaev (2015) define operating profitability as gross profit minus selling, 
general, and administrative expenses (excluding R&D expenditures), deflated by the book value of total assets. 
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Bradley, and Wurgler (2011) and Frazzini and Pedersen (2014) show that high-beta stocks, on average, 

deliver low risk-adjusted returns. 

We start our empirical analysis by evaluating the performance difference between the top and bot-

tom quintile portfolios of stocks sorted on operating profitability. Consistent with Ball, Gerakos, Lin-

nainmaa, and Nikolaev (2015), we find that the portfolio of stocks with high operating profitability 

outperforms the low profitability portfolio by about 0.5% per month, statistically significant at the 1% 

level. We then show that our GPS-model estimated with (weighted) pooled OLS exactly replicates both 

the coefficient estimates and t-statistics from the standard portfolio sorts approach. However, when rees-

timating our GPS-regression model with the fixed effects (FE) estimator rather than with pooled OLS, 

we find that operating profitability loses its predictive power. This finding suggests that operating prof-

itability is correlated with an unobservable firm-specific factor (or firm-specific effect). Using standard 

portfolio sorts, this correlation is picked up by the regression intercept or alpha, which is biased upwards. 

Hence, it is not operating profitability per se that has true predictive power for the cross-section of 

average stock returns, but some persistent firm-specific characteristic, which is captured econometri-

cally by the inclusion of firm fixed effects. As a consequence, operating profitability will have out-of-

sample predictive power for the cross-section of average stock returns if and only if its correlation with 

the firm fixed effects persists beyond the estimation period.  

When estimating a GPS model for the other three firm characteristics using (weighted) pooled OLS, 

we again find results very similar to those reported in prior research. Specifically, we find the Fama-

French three-factor model alpha to be significantly positively related to gross profitability and negatively 

related to both volatility and beta. However, as explained above, these results are only valid if the RE 

assumption holds. To empirically test for the validity of the RE assumption, we use our GPS-model to 

perform a Hausman (1978) type specification test. The null hypothesis of the test assumes that the RE 

assumption holds. With the exception of gross profitability, this "portfolio sorts specification test" re-

jects the null hypothesis of the RE assumption at the 5% level or better for each individual firm charac-

teristic. This implies that three of the four characteristics are likely to be strongly correlated with a 

persistent, firm-specific factor. Figure 1 confirms this empirically. The figure plots GPS-model-esti-

mated firm fixed effects versus operating profitability (Panel A) and gross profitability (Panel B). While 

operating profitability is strongly positively correlated with the firm fixed effects (ρ = 0.36), gross prof-

itability is only weakly correlated with the firm fixed effects (ρ = 0.08). Hence, we would expect gross 

profitability to predict the cross-section of average stock returns more robustly than operating profita-

bility. This is confirmed when re-estimating the GPS-models using the FE estimator. Operating profit-

ability loses its predictive power when firm fixed effects are included in the analysis. In contrast, gross 

profitability remains a significant predictor for the cross-section of average stock returns. When analyz-

ing the return predictability of volatility and stock beta using a FE estimator, we find volatility to lose 
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its predictive power while stock beta turns out to be a remarkably robust predictor for the cross-section 

of average stock returns. As a result, only the low-beta part of the low-risk anomaly withstands tests that 

include firm fixed effects. 

Note that our empirical results also shed new light on the findings in McLean and Pontiff (2016). 

They analyze the out-of-sample return predictability of 97 variables, which have been documented to 

predict the cross-section of stock returns in prior academic research. Their results show that for many 

variables the return predictability declines significantly after publication. Furthermore, the post-publi-

cation predictability declines are more pronounced for variables with particularly high in-sample pre-

dictive power. McLean and Pontiff (2016) attribute this decline in predictive power to publication-in-

duced trading. Our empirical evidence offers an alternative explanation for their finding. Firm charac-

teristics with high in-sample predictive power may be highly correlated with firm-specific fixed effects 

and thus violate the RE assumption. This correlation, however, between the firm characteristics and the 

fixed effects is expected to eventually dissipate, resulting in a significant decline in predictive power 

out-of-sample. Hence, the findings in McLean and Pontiff (2016) are not only consistent with publica-

tion-induced trading, but also with a violation of the RE assumption by some predictor variables. 

In summary, our empirical analysis shows that the estimation of our GPS-model with pooled OLS, 

which is equivalent to running a standard portfolio sorts analysis, is prone to misattribute cross-sectional 

return predictability to firm characteristics lacking true predictive power. Contrary to the fundamental 

assumption of the portfolio sorts approach, our theoretical and empirical analysis thus demonstrates that 

firm-specific effects may have a significant impact on the results of empirical asset pricing tests. 

 

2. A regression-based approach to analyzing asset returns 

In this section, we first describe the general model setup, economic interpretation, and the statistical 

properties of our regression-based approach to analyzing asset returns. We then demonstrate the meth-

odology’s flexibility in handling multiple dimensions and continuous firm, fund, or investor character-

istics. Next, we develop a framework for analyzing the cross-sectional versus time-series predictability 

of asset returns and show that such an analysis is closely related to Hausman’s (1978) specification test. 

Specifically, we show that a firm characteristic that predicts the cross-section of stock returns well only 

qualifies as a good predictor for asset returns if it also has predictive power for the time-series of returns. 

 

2.1 Model setup 

We propose to analyze the cross-section of stock returns using the following firm-level regression 

model, and to draw statistical inference based on Driscoll and Kraay (1998) standard errors that are 
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robust to heteroskedasticity and general forms of cross-sectional and temporal dependence (Driscoll and 

Kraay, 1998; Hoechle, 2007): 

𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) 𝜽𝜽 + 𝑐𝑐𝑖𝑖 + 𝜈𝜈𝑖𝑖𝑖𝑖              (𝑖𝑖 = 1, … , 𝑁𝑁,    𝑡𝑡 = 1, … , 𝑇𝑇) (1) 

The dependent variable 𝑟𝑟𝑖𝑖𝑖𝑖 is the period 𝑡𝑡 (excess) return of firm 𝑖𝑖. Vector 𝒛𝒛𝑖𝑖𝑖𝑖 = [1   𝑧𝑧2,𝑖𝑖𝑖𝑖   …  𝑧𝑧𝑀𝑀,𝑖𝑖𝑖𝑖] 

comprises a constant and a set of firm characteristics 𝑧𝑧𝑚𝑚,𝑖𝑖𝑖𝑖 (𝑚𝑚 = 2, … , 𝑀𝑀) which may vary across both 

firms and time. Vector 𝒙𝒙𝑡𝑡 = [1    𝑥𝑥1𝑡𝑡   …  𝑥𝑥𝐾𝐾𝐾𝐾] consists of a constant and a series of market-level factor 

variables 𝑥𝑥𝑘𝑘,𝑡𝑡 (𝑘𝑘 = 1, … , 𝐾𝐾) which only vary over time but not across firms. Popular examples of vari-

ables in vector 𝒙𝒙𝑡𝑡 are the market excess return, the Fama and French (1993, 2015) size, value, profita-

bility and investment factors, and the Carhart (1997) momentum factor. With ⨂ denoting the Kronecker 

product, regression (1) comprises three types of explanatory variables: individual firm characteristics, 

market-level factor variables, and all interactions between firm characteristics and factor variables. Fully 

interacted regression model (1) thus consists of 𝑀𝑀 × (𝐾𝐾 + 1) explanatory variables whose regression 

coefficients are stored in coefficient vector 𝜽𝜽. Finally, 𝑐𝑐𝑖𝑖 is an unobserved firm-specific effect with 

𝐸𝐸(𝑐𝑐𝑖𝑖) = 0, and 𝜈𝜈𝑖𝑖𝑖𝑖 is the regression disturbance that is assumed to be strictly exogenous (i.e. 

𝐸𝐸[𝑣𝑣𝑖𝑖𝑖𝑖 | 𝑐𝑐𝑖𝑖 , (𝒛𝒛𝑖𝑖1 ⨂ 𝒙𝒙1), … , (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑇𝑇)] = 0 for all 𝑖𝑖 and 𝑡𝑡). 

If there is no unobserved heterogeneity across firms (i.e., if 𝑐𝑐𝑖𝑖 = 0 for all firms) or if the firm-

specific effects 𝑐𝑐𝑖𝑖 are uncorrelated with the regressors (i.e., 𝐸𝐸[𝑐𝑐𝑖𝑖|(𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡)] = 0), then regression 

model (1) can be estimated consistently with (weighted) pooled OLS estimation.10 As we detail in sec-

tion 2.2 below, regression (1) – with firm-specific effects 𝑐𝑐𝑖𝑖 excluded – can be specified such that it 

exactly reproduces the results from all types of conventional portfolio sorts. We therefore refer to re-

gression (1) as the “Generalized Portfolio Sorts” approach or, in short, the GPS-model.  

Unfortunately, the random effects assumption 𝐸𝐸[𝑐𝑐𝑖𝑖|(𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡)] = 0 cannot be generally justified. 

Given all the heterogeneity across firms in terms of size, investments, financing, business culture, or 

management quality, among others, it may well be that firm-specific effects exist, and that they are 

correlated with the explanatory variables of regression (1). In the case of 𝐸𝐸[𝑐𝑐𝑖𝑖|(𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡)] ≠ 0, the 

pooled OLS estimator, however, suffers from an omitted variables bias and, hence, should not be used 

for estimating regression (1). By contrast, the fixed effects (FE) estimator is robust to violations of the 

random effects assumption. The FE model treats firm-specific effects (𝑐𝑐𝑖𝑖) as unobservable, random var-

iables that may or may not be correlated with the explanatory variables in the regression. Therefore, the 

 
10 Note that the pooled OLS estimator is consistent under both the constant coefficients model and the random 
effects (RE) model. However, under the RE model pooled OLS is inefficient compared to the FGLS random effects 
estimator. For details, see Cameron and Trivedi (2005, chapter 21). 
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FE estimator provides a means for consistently estimating GPS-model (1) even if the firm-specific ef-

fects (𝑐𝑐𝑖𝑖) are present and correlated with the regressors (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡). 

 

2.2 GPS-model vs. portfolio sorts 

Popularized by Fama and French’s (1993, 1996) influential research, the portfolio sorts methodology 

became a major workhorse in empirical finance. The method offers an intuitive economic interpretation 

and ensures robust statistical inference even in the presence of cross-sectional and temporal dependence 

(Lyon, Barber, and Tsai, 1999). In this section, we demonstrate that GPS-model (1) is able to reproduce 

the results of all variants of conventional portfolio sorts. The GPS-model proposed in this paper there-

fore has a sound theoretical and statistical foundation and the coefficient estimates of regression (1) 

offer a straightforward economic interpretation. 

 

2.2.1 Formal exposition of the portfolio sorts approach 

The portfolio sorts methodology involves two steps. In the first step, for each period 𝑡𝑡, the portfolio 

(excess) return 𝑟𝑟𝑝𝑝𝑝𝑝 is computed for a group of firms 𝑖𝑖 as follows: 

𝑟𝑟𝑝𝑝𝑝𝑝 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖
𝑁𝑁𝑡𝑡
𝑖𝑖=1   (2) 

𝑤𝑤𝑖𝑖𝑖𝑖 denotes the beginning of period 𝑡𝑡 portfolio weight of firm 𝑖𝑖 (𝑖𝑖 = 1, … , 𝑁𝑁𝑡𝑡), and 𝑟𝑟𝑖𝑖𝑖𝑖 refers to the firm’s 

stock (excess) return in period 𝑡𝑡. The second step of the portfolio sorts approach then evaluates the (risk-

adjusted) performance of portfolio 𝑝𝑝 by estimating a linear 𝐾𝐾-factor time-series regression with 𝑟𝑟𝑝𝑝𝑝𝑝 from 

(2) as the dependent variable: 

𝑟𝑟𝑝𝑝𝑝𝑝 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1𝑡𝑡+ . . . +𝛽𝛽𝐾𝐾𝑥𝑥𝐾𝐾𝐾𝐾 + 𝜀𝜀𝑡𝑡 (3) 

In most applications, variables 𝑥𝑥𝑘𝑘𝑘𝑘 (𝑘𝑘 = 1, … , 𝐾𝐾) are specified such that (3) represents a Jensen (1968), 

Fama and French (1993, 2015), or Carhart (1997) type factor model. The intercept term (𝛽𝛽0), which in 

this case is often referred to as the "alpha", then measures the risk-adjusted performance of portfolio 𝑝𝑝. 
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2.2.2 Evaluating the performance of a single portfolio with the GPS-model 

By estimating firm-level GPS-model (1) with pooled OLS, we can reproduce the results of time-series 

regression (3). To this end, we specify 𝒛𝒛𝑖𝑖𝑖𝑖 = [ 1 ] and 𝒙𝒙𝑡𝑡 = [ 1   𝑥𝑥1𝑡𝑡   . . .   𝑥𝑥𝐾𝐾𝐾𝐾] to obtain the following 

regression model:11 

𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) 𝜽𝜽 + 𝜈𝜈𝑖𝑖𝑖𝑖 = ([ 1 ] ⨂ [ 1   𝑥𝑥1𝑡𝑡   …   𝑥𝑥𝐾𝐾𝐾𝐾  ])𝜽𝜽 + 𝜈𝜈𝑖𝑖𝑖𝑖  

=  𝜃𝜃0 +  𝜃𝜃1 𝑥𝑥1𝑡𝑡 +  … +  𝜃𝜃𝐾𝐾  𝑥𝑥𝐾𝐾𝐾𝐾 + 𝜈𝜈𝑖𝑖𝑖𝑖 
(4) 

For ease of mathematical tractability, but without loss of generality, we limit our formal analysis to the 

case of a balanced panel with N firms, T time periods, and portfolio weights 𝑤𝑤𝑖𝑖𝑖𝑖 = 1/𝑁𝑁 (i.e., all firms 

are equally weighted).12 Under these assumptions, the following result holds true: 

Proposition 1 (Single Portfolio) 

• Part A – Coefficient estimates. Estimating linear regression (4) with pooled OLS yields coefficient 

estimates identical to estimating time-series regression (3) with OLS, i.e., 𝜃𝜃�𝑘𝑘 ≡ 𝛽̂𝛽𝑘𝑘  (∀ 𝑘𝑘 =

0, 1, … , 𝐾𝐾). 

• Part B – Standard errors. For a given lag length H, Driscoll and Kraay (1998) standard errors for 

coefficient estimates 𝜃𝜃�𝑘𝑘 in pooled OLS regression (4) are identical to Newey and West (1987) stand-

ard errors for coefficient estimates 𝛽̂𝛽𝑘𝑘 in time-series regression (3), i.e., SE(𝜃𝜃�𝑘𝑘) ≡ SE(𝛽̂𝛽𝑘𝑘)   (∀ 𝑘𝑘 =

0, 1, … , 𝐾𝐾). 

Proof: See Appendix A.1. 

Part A of Proposition 1 is an application of a well-known property from portfolio theory which says 

that the portfolio beta is equal to the weighted sum of individual asset betas. Part B of Proposition 1 is 

intuitive since the Driscoll and Kraay (1998, p. 552) “covariance matrix estimator is precisely the stand-

ard Newey and West (1987) heteroskedasticity and serial correlation consistent covariance matrix esti-

mator, applied to the sequence of cross-sectional averages” of the moment conditions.  

 

2.2.3 Using the GPS-model to obtain portfolio sorts 

In applications of the portfolio sorts approach, the analysis is usually not restricted to a single group of 

firms as discussed in Section 2.2.2 above. Rather, firms are sorted into a series of five, ten, or more 

portfolios with predefined properties. In many cases, the portfolios are constructed on the basis of a 

 
11 For consistency with the portfolio sorts approach, throughout Section 2.2 we assume 𝑐𝑐𝑖𝑖 = 0 (for all 𝑖𝑖) and omit 
the firm-specific effects 𝑐𝑐𝑖𝑖 from the analysis. This allows us to estimate GPS-model (1) with (weighted) pooled 
OLS. 
12 In our empirical analysis, we also consider unbalanced panels (i.e., time-varying cross-sections) and value 
weighted portfolios. In Section 3, we demonstrate that our theoretical results also hold in this more general setup. 
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single firm characteristic, such as the book-to-market ratio. Occasionally, researchers also form double 

(or higher dimensional) sorts in which portfolios are constructed based on multiple firm characteristics 

such as the book-to-market ratio and firm size. For each portfolio, the researcher then evaluates the risk-

adjusted performance individually by aid of a Jensen (1968), Fama and French (1993, 2015), or Carhart 

(1997) type time-series regression as described in Section 2.2.1 above. 

Formally, in this more general setup, the first step of the portfolio sorts approach groups the firms 

into characteristics-based portfolios 𝑝𝑝 for which the average month 𝑡𝑡 excess return, 𝑟𝑟𝑝𝑝𝑝𝑝, is equal to 

𝑟𝑟𝑝𝑝𝑝𝑝 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑝𝑝)𝑧𝑧𝑖𝑖𝑖𝑖

(𝑝𝑝)𝑟𝑟𝑖𝑖𝑖𝑖
𝑁𝑁𝑡𝑡
𝑖𝑖=1   (5) 

As before, 𝑟𝑟𝑖𝑖𝑖𝑖 denotes the period 𝑡𝑡 excess return of firm 𝑖𝑖, and 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑝𝑝) is the firm’s beginning-of-period 𝑡𝑡 

weight in portfolio 𝑝𝑝 (with 𝑝𝑝 = 1, … , 𝑃𝑃).  𝑧𝑧𝑖𝑖𝑖𝑖
(𝑝𝑝) is a dummy variable which is equal to one if firm 𝑖𝑖 belongs 

to portfolio 𝑝𝑝, and zero otherwise. For each portfolio 𝑝𝑝, the weights sum up to ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑝𝑝)𝑧𝑧𝑖𝑖𝑖𝑖

(𝑝𝑝)𝑁𝑁𝑡𝑡
𝑖𝑖=1 = 1, and 

the period 𝑡𝑡 cross-section comprises 𝑁𝑁𝑡𝑡 = ∑ ∑ 𝑧𝑧𝑖𝑖𝑖𝑖
(𝑝𝑝)𝑁𝑁𝑡𝑡

𝑖𝑖=1
𝑃𝑃
𝑝𝑝=1  firms. 

The second step of the portfolio sorts approach then evaluates the (risk-adjusted) performance 𝛽𝛽𝑝𝑝,0 

of portfolio 𝑝𝑝 by aid of a linear 𝐾𝐾-factor time-series regression with 𝑟𝑟𝑝𝑝𝑝𝑝 from (5) as the dependent vari-

able: 

𝑟𝑟𝑝𝑝𝑝𝑝 = 𝛽𝛽𝑝𝑝,0 + 𝛽𝛽𝑝𝑝,1𝑥𝑥1𝑡𝑡+ . . . +𝛽𝛽𝑝𝑝,𝐾𝐾𝑥𝑥𝐾𝐾𝐾𝐾 + 𝜀𝜀𝑝𝑝𝑝𝑝 (6) 

If the coefficient estimate for 𝛽𝛽𝑝𝑝,0 is positive (negative) and statistically significantly different from 

zero, then portfolio 𝑝𝑝 has a positive (negative) alpha.  

With GPS-model (1) it is possible to reproduce the results from time-series regression (6) for each 

and every portfolio 𝑝𝑝 (with 𝑝𝑝 = 1, … , 𝑃𝑃) by estimating a single firm-level regression with pooled OLS. 

As before, we specify 𝒙𝒙𝑡𝑡 = [ 1    𝑥𝑥1𝑡𝑡   . . .   𝑥𝑥𝐾𝐾𝐾𝐾  ]. When forming vector 𝒛𝒛𝑖𝑖𝑖𝑖, we recognize that the analysis 

needs to include a full set of 𝑃𝑃 portfolio dummies 𝑧𝑧𝑖𝑖𝑖𝑖
(𝑝𝑝). To avoid the dummy variables trap, we omit the 

constant from vector 𝒛𝒛𝑖𝑖𝑖𝑖 and, hence, set 𝒛𝒛𝑖𝑖𝑖𝑖 = [ 𝑧𝑧𝑖𝑖𝑖𝑖
(1)   𝑧𝑧𝑖𝑖𝑖𝑖

(2)  . . .   𝑧𝑧𝑖𝑖𝑖𝑖
(𝑃𝑃)] to obtain  

𝑟𝑟𝑖𝑖𝑖𝑖 = �� 𝑧𝑧𝑖𝑖𝑖𝑖
(1)   𝑧𝑧𝑖𝑖𝑖𝑖

(2)   …   𝑧𝑧𝑖𝑖𝑖𝑖
(𝑃𝑃)� ⊗ [ 1   𝑥𝑥1𝑡𝑡   …   𝑥𝑥𝐾𝐾𝐾𝐾  ]� 𝜽𝜽 + 𝜈𝜈𝑖𝑖𝑖𝑖 

=    𝜃𝜃1,0 𝑧𝑧𝑖𝑖𝑖𝑖
(1)      +  𝜃𝜃1,1 𝑥𝑥1𝑡𝑡𝑧𝑧𝑖𝑖𝑖𝑖

(1)        +        …       +   𝜃𝜃1,𝐾𝐾  𝑥𝑥𝐾𝐾𝐾𝐾𝑧𝑧𝑖𝑖𝑖𝑖
(1) 

+    𝜃𝜃2,0 𝑧𝑧𝑖𝑖𝑖𝑖
(2)      +  𝜃𝜃2,1 𝑥𝑥1𝑡𝑡𝑧𝑧𝑖𝑖𝑖𝑖

(2)        +        …       +   𝜃𝜃2,𝐾𝐾  𝑥𝑥𝐾𝐾𝐾𝐾𝑧𝑧𝑖𝑖𝑖𝑖
(2)   

+   … 

+    𝜃𝜃𝑃𝑃,0 𝑧𝑧𝑖𝑖𝑖𝑖
(𝑃𝑃)      +  𝜃𝜃𝑃𝑃,1 𝑥𝑥1𝑡𝑡𝑧𝑧𝑖𝑖𝑖𝑖

(𝑃𝑃)        +        …       +   𝜃𝜃𝑃𝑃,𝐾𝐾  𝑥𝑥𝐾𝐾𝐾𝐾𝑧𝑧𝑖𝑖𝑖𝑖
(𝑃𝑃)   +     𝜈𝜈𝑖𝑖𝑖𝑖 

(7) 
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Under the assumptions of Proposition 1, and provided that portfolios 𝑝𝑝 = 1, … , 𝑃𝑃 are constant over time 

(i.e., 𝑧𝑧𝑖𝑖𝑖𝑖
(𝑝𝑝) = 𝑧𝑧𝑖𝑖

(𝑝𝑝) for all 𝑡𝑡), the following result holds true:13 

Proposition 2 (Portfolio sorts) 

• Part A – Coefficient estimates. For each portfolio 𝑝𝑝, pooled OLS coefficient estimates for 𝜃𝜃𝑝𝑝,𝑘𝑘 in 

GPS-model (7) coincide with OLS coefficient estimates for 𝛽𝛽𝑝𝑝,𝑘𝑘 from time-series regression (6), i.e., 

𝜃𝜃�𝑝𝑝,𝑘𝑘 ≡ 𝛽̂𝛽𝑝𝑝,𝑘𝑘   ( ∀ 𝑘𝑘 = 0, 1, … , 𝐾𝐾  and  𝑝𝑝 = 1, … , 𝑃𝑃). 

• Part B – Standard errors. For a given lag length H, Driscoll and Kraay (1998) standard errors for 

coefficient estimates 𝜃𝜃�𝑝𝑝,𝑘𝑘 in GPS-model (7) coincide with Newey and West (1987) standard errors 

of portfolio 𝑝𝑝’s coefficient estimates 𝛽̂𝛽𝑝𝑝,𝑘𝑘 from time-series regression (6), i.e., SE(𝜃𝜃�𝑝𝑝,𝑘𝑘) ≡ SE(𝛽̂𝛽𝑝𝑝,𝑘𝑘)   

( ∀ 𝑘𝑘 = 0, 1, … , 𝐾𝐾  and  𝑝𝑝 = 1, … , 𝑃𝑃). 

Proof: See Appendix A.2. 

 

According to Proposition 2, the coefficient estimates of GPS-model (7) have a straightforward eco-

nomic interpretation: Coefficient estimate 𝜃𝜃�𝑝𝑝,0 (𝑝𝑝 = 1, … , 𝑃𝑃) measures the alpha of portfolio 𝑝𝑝 and co-

efficient estimate 𝜃𝜃�𝑝𝑝,𝑘𝑘 (with 𝑘𝑘 = 1, … , 𝐾𝐾) represents portfolio 𝑝𝑝’s exposure versus factor 𝑘𝑘. Note that 

GPS-model (7) reproduces the results of a set of 𝑃𝑃 independent time-series regressions (6) by aid of a 

single linear regression on the firm level. As a result, a standard Wald test can be applied to test whether 

the risk-adjusted performance of the 𝑃𝑃 portfolios is jointly equal to zero: 

H0: 𝜃𝜃1,0 = 𝜃𝜃2,0 = . . . = 𝜃𝜃𝑃𝑃,0 = 0         vs.       H1:  𝜃𝜃𝑝𝑝,0 ≠ 0  for at least one 𝑝𝑝 in 1, … , 𝑃𝑃 (8) 

The multiple hypothesis test in (8) offers an alternative to the widely applied Gibbons, Ross, and 

Shanken (1989) or “GRS” test, a finite-sample F-test commonly used to test the joint significance of the 

alphas across a set of (e.g., decile) portfolios. Estimating GPS-model (7) with Driscoll and Kraay (1998) 

standard errors ensures that the Wald test in (8) allows for valid statistical inference if the error terms 

(𝜈𝜈𝑖𝑖𝑖𝑖) of the regression are heteroskedastic, autocorrelated, and cross-sectionally dependent. 

 

2.2.4 Performance differences between two portfolios 

The portfolio sorts approach is widely used to test whether the alpha of the top group portfolio differs 

significantly from the alpha of the bottom group portfolio. When investigating whether, say, firms with 

 
13 For Proposition 2 to hold in the general case of an unbalanced panel with time-varying portfolios, GPS-model 
(7) needs to be estimated with weighted pooled OLS. Details on the weighting scheme reproducing the results of 
portfolio sorts with value-weighted portfolios are provided in Section 3.1.  
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top-quintile book-to-market ratios (so-called “value stocks”) outperform firms with bottom-quintile 

book-to-market ratios (so-called “growth stocks”), the first step of the analysis computes average month 

𝑡𝑡 excess returns for both the top and bottom group portfolios as follows: 

𝑟𝑟𝑝𝑝,𝑡𝑡 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑝𝑝)𝑧𝑧𝑖𝑖𝑖𝑖

(𝑝𝑝)𝑟𝑟𝑖𝑖𝑖𝑖
𝑁𝑁𝑡𝑡
𝑖𝑖=1   (9) 

As before, 𝑟𝑟𝑖𝑖𝑖𝑖 is firm 𝑖𝑖’s period 𝑡𝑡 excess return and 𝑧𝑧𝑖𝑖𝑖𝑖
(𝑝𝑝) is a dummy variable with value one if firm 𝑖𝑖 

belongs to group 𝑝𝑝 (with 𝑝𝑝 = ℎ𝑖𝑖𝑖𝑖ℎ, 𝑙𝑙𝑙𝑙𝑙𝑙), and zero otherwise.14 For both portfolios the beginning-of-

period 𝑡𝑡 portfolio weights 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑝𝑝) sum up to ∑ 𝑤𝑤𝑖𝑖𝑖𝑖

(𝑝𝑝)𝑧𝑧𝑖𝑖𝑖𝑖
(𝑝𝑝)𝑁𝑁𝑡𝑡

𝑖𝑖=1 = 1, and the cross-section considered in the 

analysis comprises a total of 𝑁𝑁𝑡𝑡
∗ = ∑ 𝑧𝑧𝑖𝑖𝑖𝑖

(𝑙𝑙𝑙𝑙𝑙𝑙) + ∑ 𝑧𝑧𝑖𝑖𝑖𝑖
(ℎ𝑖𝑖𝑖𝑖ℎ)𝑁𝑁𝑡𝑡

𝑖𝑖=1
𝑁𝑁𝑡𝑡
𝑖𝑖=1  firms. The period 𝑡𝑡 return difference be-

tween the two portfolios is thus equal to 

Δ𝑟𝑟𝑝𝑝,𝑡𝑡 = 𝑟𝑟ℎ𝑖𝑖𝑖𝑖ℎ,𝑡𝑡 − 𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡  (10) 

The second step of the portfolio sorts approach then evaluates the risk-adjusted performance of zero 

investment portfolio (10) based on a 𝐾𝐾-factor time-series regression as follows: 

Δ𝑟𝑟𝑝𝑝,𝑡𝑡 = 𝛽𝛽Δ0 + 𝛽𝛽Δ1𝑥𝑥1𝑡𝑡+ . . . +𝛽𝛽Δ𝐾𝐾𝑥𝑥𝐾𝐾𝐾𝐾 + 𝜀𝜀Δ𝑡𝑡 (11) 

If the coefficient estimate for 𝛽𝛽Δ0 is positive (negative) and significantly different from zero, then port-

folio “ℎ𝑖𝑖𝑖𝑖ℎ” is considered to outperform (underperform) portfolio “𝑙𝑙𝑙𝑙𝑙𝑙”.  

With GPS-model (1), again estimated with pooled OLS, it is possible to reproduce the results of 

time-series regression (11). For this purpose, we set  𝒛𝒛𝑖𝑖𝑖𝑖 = [ 1   𝑧𝑧𝑖𝑖𝑖𝑖
(ℎ𝑖𝑖𝑖𝑖ℎ)] and 𝒙𝒙𝑡𝑡 = [ 1   𝑥𝑥1𝑡𝑡    . . .   𝑥𝑥𝐾𝐾𝐾𝐾  ] to 

obtain the following firm-level regression model: 

𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) 𝜽𝜽 + 𝜈𝜈𝑖𝑖𝑖𝑖  

=  𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙,0           +  𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙,1 𝑥𝑥1𝑡𝑡           +       . . .       +  𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙,𝐾𝐾  𝑥𝑥𝐾𝐾𝐾𝐾 

+  𝜃𝜃Δ0 𝑧𝑧𝑖𝑖𝑖𝑖
(ℎ𝑖𝑖𝑖𝑖ℎ)  +  𝜃𝜃Δ1 𝑥𝑥1𝑡𝑡𝑧𝑧𝑖𝑖𝑖𝑖

(ℎ𝑖𝑖𝑖𝑖ℎ)  +       . . .       +  𝜃𝜃Δ𝐾𝐾  𝑥𝑥𝐾𝐾𝐾𝐾𝑧𝑧𝑖𝑖𝑖𝑖
(ℎ𝑖𝑖𝑖𝑖ℎ)   +    𝜈𝜈𝑖𝑖𝑖𝑖 

(12) 

Under the assumptions of Proposition 1, and provided that portfolios “ℎ𝑖𝑖𝑖𝑖ℎ”  and “𝑙𝑙𝑙𝑙𝑙𝑙” are constant 

over time, the following result holds true:15 

  

 
14 For simplicity but without loss of generality, we label the portfolios as “high” and “low” here. However, sub-
script 𝑝𝑝 could also refer to “IPO firms” and “mature firms”, “firms with a female CEO” and “firms with a male 
CEO”, or any other set of two portfolios that are meant to be compared. 
15 For Proposition 3 to hold in the general case of an unbalanced panel with time-varying portfolios, regression 
(12) has to be estimated with weighted pooled OLS. See Section 3.3 for details. 
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Proposition 3 (Performance difference between two groups) 

Part A – Coefficient estimates.  

- Pooled OLS coefficient estimates for 𝜃𝜃Δk in GPS-model (12) are identical to OLS coefficient esti-

mates for 𝛽𝛽Δ𝑘𝑘 in time-series regression (11), i.e., 𝜃𝜃�Δ𝑘𝑘 ≡ 𝛽̂𝛽Δ𝑘𝑘 (∀ 𝑘𝑘 = 0, 1, … , 𝐾𝐾). 

- Pooled OLS coefficient estimates for 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘 in GPS-model (12) are identical to OLS coefficient 

estimates for 𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘 in time-series regression (6) for portfolio p=“low”, i.e., 𝜃𝜃�𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘 ≡ 𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘 (∀ 𝑘𝑘 =

0, 1, … , 𝐾𝐾). 

Part B – Standard errors.  

- For a given lag length H, Driscoll and Kraay (1998) standard errors for coefficient estimates 𝜃𝜃�Δ𝑘𝑘 

in GPS-model (12) are identical to Newey and West (1987) standard errors for coefficient estimates 

𝛽̂𝛽Δ𝑘𝑘 of time-series regression (11), i.e., 𝑆𝑆𝑆𝑆(𝜃𝜃�𝛥𝛥𝑘𝑘) ≡ SE(𝛽̂𝛽Δ𝑘𝑘) ( ∀ 𝑘𝑘 = 0, 1, … , 𝐾𝐾).   

- For a given lag length H, Driscoll and Kraay (1998) standard errors for coefficient estimates 𝜃𝜃�𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘 

in GPS-model (12) are identical to Newey and West (1987) standard errors for coefficient estimates 

𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘 of time-series regression (6) for portfolio p=“low”, i.e., SE(𝜃𝜃�𝑙𝑙𝑜𝑜𝑜𝑜,𝑘𝑘) ≡ SE(𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘)  (∀ 𝑘𝑘 =

0, 1, … , 𝐾𝐾). 

Proof: See Appendix A.3. 

Proposition 3 shows how to specify the GPS-model when analyzing the relative performance of 

two portfolios. This result can be further generalized to the comparison of a certain base portfolio’s (e.g., 

portfolio 𝑝𝑝 = 1) performance with the performance of each other (e.g., quintile or decile) portfolio. 

Assuming that portfolio 𝑝𝑝 = 1 is the base portfolio, we set 𝒛𝒛𝑖𝑖𝑖𝑖 = [ 1    𝑧𝑧𝑖𝑖𝑖𝑖
(2)  . . .   𝑧𝑧𝑖𝑖𝑖𝑖

(𝑃𝑃)] and 𝒙𝒙𝑡𝑡 =

[ 1   𝑥𝑥1𝑡𝑡   . . .   𝑥𝑥𝐾𝐾𝐾𝐾  ] to obtain the following firm-level regression: 

𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) 𝜽𝜽 + 𝜈𝜈𝑖𝑖𝑖𝑖  

=  𝜃𝜃1,0                           +  𝜃𝜃1,1 𝑥𝑥1𝑡𝑡                         +      …     +   𝜃𝜃1,𝐾𝐾  𝑥𝑥𝐾𝐾𝐾𝐾 

+  𝜃𝜃Δ(2→1),0 𝑧𝑧𝑖𝑖𝑖𝑖
(2)   + 𝜃𝜃Δ(2→1),1 𝑥𝑥1𝑡𝑡𝑧𝑧𝑖𝑖𝑖𝑖

(2)   +      …     +   𝜃𝜃Δ(2→1),K 𝑥𝑥𝐾𝐾𝐾𝐾𝑧𝑧𝑖𝑖𝑖𝑖
(2)  

+   … 

+    𝜃𝜃Δ(𝑃𝑃→1),0 𝑧𝑧𝑖𝑖𝑖𝑖
(𝑃𝑃)      +  𝜃𝜃Δ(𝑃𝑃→1),1 𝑥𝑥1𝑡𝑡𝑧𝑧𝑖𝑖𝑖𝑖

(𝑃𝑃)       +      …      +   𝜃𝜃Δ(𝑃𝑃→1),𝐾𝐾  𝑥𝑥𝐾𝐾𝐾𝐾𝑧𝑧𝑖𝑖𝑖𝑖
(𝑃𝑃)   +     𝜈𝜈𝑖𝑖𝑖𝑖   

(13) 
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A direct consequence of Propositions 2 and 3 is as follows: 

Corollary 1 (Relative performance versus a base portfolio) 

- The pooled OLS coefficient estimate for 𝜃𝜃Δ(𝑝𝑝→1),𝑘𝑘 in GPS-model (13) coincides with the OLS coef-

ficient estimate for 𝛽𝛽Δ𝑘𝑘 in time-series regression (11) where portfolio 𝑝𝑝 (with 𝑝𝑝 = 2, … , 𝑃𝑃) is com-

pared with portfolio 1, i.e., 𝜃𝜃�Δ(𝑝𝑝→1),𝑘𝑘 ≡ 𝛽̂𝛽Δ𝑘𝑘 (∀ 𝑘𝑘 = 0, 1, … , 𝐾𝐾). 

- For a given lag length H, the Driscoll and Kraay (1998) standard error for coefficient estimate 

𝜃𝜃�Δ(𝑝𝑝→1),𝑘𝑘 in GPS-model (13) coincides with the Newey and West (1987) standard error for coeffi-

cient estimate 𝛽̂𝛽Δ𝑘𝑘 of time-series regression (11) where portfolio 𝑝𝑝 (with 𝑝𝑝 = 2, … , 𝑃𝑃) is compared 

with portfolio 1, i.e., 𝑆𝑆𝑆𝑆(𝜃𝜃�Δ(𝑝𝑝→1),𝑘𝑘) ≡ SE(𝛽̂𝛽Δ𝑘𝑘) ( ∀ 𝑘𝑘 = 0, 1, … , 𝐾𝐾). 

 ∎ 

 

2.3 Applications of the GPS-model beyond the scope of traditional portfolio sorts 

Conventional portfolio sorts have a series of drawbacks. First, they are generally limited to the analysis 

of a small number of firm characteristics (Cochrane, 2011). Hence, using portfolio sorts, it is challenging 

to test for competing hypotheses. Second, it is difficult to assess the functional relationship across mul-

tiple portfolios. Researchers applying the portfolio sorts approach therefore often focus on a comparison 

of the top and bottom group portfolios for simplicity (Patton and Timmermann, 2010). Third, the results 

in Section 2.2 show that the portfolio sorts approach crucially depends on the random effects (RE) as-

sumption to hold. This directly follows from the fact that GPS-model (1) needs to be estimated with 

pooled OLS (which is only consistent under the RE assumption) to replicate the results from portfolio 

sorts. Therefore, statistical results from portfolio sorts are biased when firm-specific effects are present 

and correlated with the explanatory variables.  

The GPS-model proposed in this paper has no such limitations and, hence, facilitates the analysis 

of research questions that are beyond the scope of conventional portfolio sorts. We now consider a series 

of such applications. Our analysis starts by discussing how to interpret the results from GPS-models that 

include multivariate and continuous firm characteristics. Next, we apply GPS-model (1) to study the 

cross-section versus time-series predictability of stock returns and demonstrate that such an analysis is 

closely related to performing a Hausman (1978) type specification test. Finally, we discuss the consistent 

estimation of GPS-models in the presence of firm-specific effects, and we derive a statistical test for 

analyzing whether the results from portfolio sorts are valid.  
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2.3.1 Multivariate and continuous firm characteristics 

GPS-model (1) can be specified such that vector 𝒛𝒛𝑖𝑖𝑖𝑖 contains multivariate binary or continuous firm 

characteristics. As a result, the GPS-model offers a natural solution to the “multidimensional challenge” 

of conventional portfolio sorts (Cochrane, 2011), and it provides a simple framework for analyzing for-

mal tests of competing hypotheses as well as for implementing robustness checks.  

Notwithstanding this flexibility, the GPS-model retains a clear-cut economic interpretation even if 

multiple firm characteristics are included in the analysis. To demonstrate this, we consider the case of a 

CAPM factor structure and two firm characteristics.16 Denoting the period 𝑡𝑡 market return in excess of 

the risk-free return by 𝑟𝑟𝑚𝑚𝑚𝑚, we specify 𝒙𝒙𝑡𝑡 = [ 1    𝑟𝑟𝑚𝑚𝑚𝑚] and 𝒛𝒛𝑖𝑖𝑖𝑖 = � 1    𝑧𝑧1,𝑖𝑖𝑖𝑖    𝑧𝑧2,𝑖𝑖𝑖𝑖 �. Absent firm-specific 

effects, we thus obtain the following GPS-model: 

𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) 𝜽𝜽 + 𝜈𝜈𝑖𝑖𝑖𝑖 = �� 1     𝑧𝑧1,𝑖𝑖𝑖𝑖      𝑧𝑧2,𝑖𝑖𝑖𝑖  � ⊗ [ 1     𝑟𝑟𝑚𝑚𝑚𝑚  ]� 𝜽𝜽+𝜈𝜈𝑖𝑖𝑖𝑖 

= �𝜃𝜃𝛼𝛼,0  +  𝜃𝜃𝛼𝛼,1𝑧𝑧1,𝑖𝑖𝑖𝑖  +  𝜃𝜃𝛼𝛼,2𝑧𝑧2,𝑖𝑖𝑖𝑖�   +    �𝜃𝜃𝛽𝛽,0 +  𝜃𝜃𝛽𝛽,1𝑧𝑧1,𝑖𝑖𝑖𝑖  +  𝜃𝜃𝛽𝛽,2𝑧𝑧2,𝑖𝑖𝑖𝑖� × 𝑟𝑟𝑚𝑚𝑚𝑚  + 𝜈𝜈𝑖𝑖𝑖𝑖 

= 𝛼𝛼𝑖𝑖𝑖𝑖  +  𝛽𝛽𝑖𝑖𝑖𝑖 ×  𝑟𝑟𝑚𝑚𝑚𝑚  +  𝜈𝜈𝑖𝑖𝑖𝑖 

(14) 

where 𝛼𝛼𝑖𝑖𝑖𝑖 =  𝜃𝜃𝛼𝛼,0 + 𝜃𝜃𝛼𝛼,1𝑧𝑧1,𝑖𝑖𝑖𝑖  + 𝜃𝜃𝛼𝛼,2𝑧𝑧2,𝑖𝑖𝑖𝑖 and 𝛽𝛽𝑖𝑖𝑖𝑖 = 𝜃𝜃𝛽𝛽,0 + 𝜃𝜃𝛽𝛽,1𝑧𝑧1,𝑖𝑖𝑖𝑖  + 𝜃𝜃𝛽𝛽,2𝑧𝑧2,𝑖𝑖𝑖𝑖. The last two rows in 

(14) show that the GPS-model linearly decomposes the risk-adjusted performance (𝛼𝛼𝑖𝑖𝑖𝑖) and the factor 

exposure (𝛽𝛽𝑖𝑖𝑖𝑖) with respect to the firm characteristics in 𝒛𝒛𝑖𝑖𝑖𝑖. The Jensen alpha (𝛼𝛼𝑖𝑖𝑖𝑖) and beta (𝛽𝛽𝑖𝑖𝑖𝑖) in 

GPS-model (14) therefore represent conditional measures. A simple example can illustrate this. Assume 

that an estimation of regression (14) yields the following result: 

𝑟𝑟𝑖𝑖𝑖𝑖 = 𝛼𝛼�𝑖𝑖𝑖𝑖  +  𝛽̂𝛽𝑖𝑖𝑖𝑖 ×  𝑟𝑟𝑚𝑚𝑚𝑚 + 𝜈𝜈𝑖𝑖𝑖𝑖  

= (0.2 + 0.5𝑧𝑧1 − 0.8𝑧𝑧2)  +  (0.8 − 0.3𝑧𝑧1 + 0.1𝑧𝑧2) × 𝑟𝑟𝑚𝑚𝑚𝑚 + 𝜈𝜈𝑖𝑖𝑖𝑖 

In this particular case, the Jensen alpha loads positively on firm characteristic 𝑧𝑧1 and negatively on 𝑧𝑧2 

such that the higher the value of 𝑧𝑧1 and the lower the value of 𝑧𝑧2 the higher is 𝛼𝛼�𝑖𝑖𝑖𝑖. The (conditional) 

Jensen alpha for company A with 𝑧𝑧1 = 1 and 𝑧𝑧2 = 0.5 is equal to 𝛼𝛼�𝐴𝐴 =  0.2 + 0.5 × 1 − 0.8 × 0.5 =

0.3. The alpha for firm B, with 𝑧𝑧1 = −0.2 and 𝑧𝑧2 = 0.5, is 𝛼𝛼�𝐵𝐵 =  0.2 + 0.5 × (−0.2) − 0.8 × 0.5 =

−0.3. The (conditional) beta for firm 𝑖𝑖 is derived analogously.  

When firm-specific effects are present and correlated with the firm characteristics in vector 𝒛𝒛𝑖𝑖𝑖𝑖, 

(weighted) pooled OLS estimation produces biased, invalid statistical results. In this case, GPS-model 

(14) needs to be estimated with the fixed effects (FE) estimator to allow for valid statistical inference. 

 
16 Note that the specification of vectors 𝒙𝒙𝑡𝑡 and 𝒛𝒛𝑖𝑖𝑖𝑖 can easily be extended to comprise multiple factor variables or 
firm characteristics without changing the logic of how to interpret the results from estimating a GPS-model. 
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This, however, does not affect the interpretation of the GPS-model results. To see this, note that the 

analysis in GPS-model (14) focuses on slope coefficients 𝜃𝜃𝛼𝛼,1 and 𝜃𝜃𝛼𝛼,2 which measure by how much 

the Jensen alpha changes if firm characteristics 𝑧𝑧1,𝑖𝑖𝑖𝑖 and 𝑧𝑧2,𝑖𝑖𝑖𝑖 change by one unit. By contrast, the coef-

ficient estimate for 𝜃𝜃𝛼𝛼,0 depends on the sample means of 𝑧𝑧1,𝑖𝑖𝑖𝑖 and 𝑧𝑧2,𝑖𝑖𝑖𝑖 and, hence, is of minor interest. 

When regression (14) is estimated with firm fixed effects, the intercept term cannot be identified and 

“drops out” of the regression as part of the within-transformation. However, the slope coefficients, 

which matter for the analysis, are consistently estimated. Therefore, interpretation of GPS-model coef-

ficients remains the same, irrespective of whether the model is estimated with or without firm fixed 

effects. 

 

2.3.2 Time-series versus cross-section predictability 

In empirical asset pricing, an important question concerns the time-series versus cross-sectional predict-

ability of asset returns (Cochrane, 2011). We now apply GPS-model (1) to formally test how well firm 

characteristic 𝑧𝑧𝑖𝑖𝑖𝑖 predicts the time-series of asset returns as compared to the cross-section of returns. For 

this purpose, we start by decomposing firm characteristic 𝑧𝑧𝑖𝑖𝑖𝑖 as 

𝑧𝑧𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖̅𝑖 + 𝑧̃𝑧𝑖𝑖𝑖𝑖 (15) 

where 𝑧𝑧𝑖̅𝑖 = 𝑇𝑇𝑖𝑖
−1 ∑ 𝑧𝑧𝑖𝑖𝑖𝑖

𝑇𝑇𝑖𝑖
𝑡𝑡=1  refers to firm 𝑖𝑖’s time-series average of characteristic 𝑧𝑧𝑖𝑖𝑖𝑖, and 𝑧̃𝑧𝑖𝑖𝑖𝑖 = 𝑧𝑧𝑖𝑖𝑖𝑖 − 𝑧𝑧𝑖̅𝑖 

quantifies by how much the firm’s period 𝑡𝑡 value of 𝑧𝑧𝑖𝑖𝑖𝑖 deviates from 𝑧𝑧𝑖̅𝑖. Econometrically speaking, 𝑧̃𝑧𝑖𝑖𝑖𝑖 

represents the within-transformed (or time-series demeaned) version of 𝑧𝑧𝑖𝑖𝑖𝑖. Based on (15), we therefore 

set vector 𝒛𝒛𝑖𝑖𝑖𝑖 to 𝒛𝒛𝑖𝑖𝑖𝑖 = [1     𝑧𝑧𝑖̅𝑖      𝑧̃𝑧𝑖𝑖𝑖𝑖]. When specifying vector 𝒙𝒙𝑡𝑡, we account for the fact that in the 

application at hand we focus on analyzing asset returns (rather than risk-adjusted performance) and, 

hence, set 𝒙𝒙𝑡𝑡 = [1]. Assuming 𝑐𝑐𝑖𝑖 = 0 for all 𝑖𝑖, we obtain the following GPS-model: 

𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) 𝜽𝜽 + 𝜈𝜈𝑖𝑖𝑖𝑖 = ([1     𝑧𝑧𝑖̅𝑖      𝑧̃𝑧𝑖𝑖𝑖𝑖] ⊗ [1]) 𝜽𝜽 + 𝜈𝜈𝑖𝑖𝑖𝑖 =  𝜃𝜃0 + 𝜃𝜃𝐵𝐵𝑧𝑧𝑖̅𝑖 + 𝜃𝜃𝑊𝑊𝑧̃𝑧𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑖𝑖𝑖𝑖 (16) 

Note that in regression (16), 𝜃𝜃𝐵𝐵 measures pure cross-sectional return predictability of firm characteristic 

𝑧𝑧𝑖𝑖𝑖𝑖 and 𝜃𝜃𝑊𝑊 quantifies the characteristic’s time-series return predictability. In fact, GPS-model (16) is 

structured as Neuhaus and Kalbfleisch’s (1998) variant of Mundlak’s (1978) approach. Pooled OLS 

estimation of regression (16) thus yields the between estimate for coefficient 𝜃𝜃𝐵𝐵 and the within (or fixed 

effects) estimate for coefficient 𝜃𝜃�𝑊𝑊.17 GPS-model (16) thus constitutes a “hybrid” model that combines 

 
17 Note that in the case of a balanced panel, pooled OLS estimation of regression (16) yields results identical to 
estimation with the (efficient) FGLS random effects estimator. If the panel is unbalanced, however, estimation 
results from pooled OLS for 𝜃𝜃�𝐵𝐵 differ slightly from those of the FGLS random effects estimator. The reason is that 
the between estimator, contained in the FGLS random effects estimator, weights each firm 𝑖𝑖 equally, independently 
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the between (BE) estimator with the fixed effects (FE) estimator in a single regression (Allison, 2009). 

For our purposes, this setup is useful as it allows us to formally test how the time-series predictability 

(𝜃𝜃�𝑊𝑊) of firm characteristic 𝑧𝑧𝑖𝑖𝑖𝑖 relates to the cross-sectional predictability (𝜃𝜃�𝐵𝐵).  

Testing for 𝜃𝜃�𝐵𝐵 = 𝜃𝜃�𝑊𝑊 is important for at least two reasons. First, referring to the managed-portfolio 

theorem, Cochrane (2011, p. 1062) argues that “time-series forecasting regressions, cross-sectional re-

gressions, and portfolio mean returns are really the same thing. […] An instrument 𝑧𝑧𝑡𝑡 in a time-series 

test 0 = 𝐸𝐸[(𝑚𝑚𝑡𝑡+1𝑅𝑅𝑡𝑡+1
𝑒𝑒 )𝑧𝑧𝑡𝑡] corresponds to a managed-portfolio return 𝑅𝑅𝑡𝑡+1

𝑒𝑒 𝑧𝑧𝑡𝑡 in an unconditional test 

0 = 𝐸𝐸[𝑚𝑚𝑡𝑡+1(𝑅𝑅𝑡𝑡+1
𝑒𝑒 𝑧𝑧𝑡𝑡)].” As a result, testing for 𝜃𝜃�𝐵𝐵 = 𝜃𝜃�𝑊𝑊 is of economic relevance. Second, the test is 

important from an econometric point of view. If the hypothesis of 𝜃𝜃�𝐵𝐵 = 𝜃𝜃�𝑊𝑊 is rejected, then the differ-

ence between the within estimate (𝜃𝜃�𝑊𝑊) and the between estimate (𝜃𝜃�𝐵𝐵) is statistically significant such that 

the random effects (RE) assumption cannot be assumed to hold. GPS-model (16) therefore provides an 

alternative to Hausman’s (1978) specification test. With 𝜃𝜃�𝐵𝐵 ≠ 𝜃𝜃�𝑊𝑊, variable 𝑧𝑧𝑖𝑖𝑖𝑖 is likely to be correlated 

with other firm characteristics not included in the regression. As a result, rejection of hypothesis 𝜃𝜃�𝐵𝐵 =

𝜃𝜃�𝑊𝑊 implies that pooled OLS estimation of GPS-model 𝑟𝑟𝑖𝑖𝑖𝑖 = ([1   𝑧𝑧𝑖𝑖𝑖𝑖] ⊗ [1]) 𝜽𝜽 + 𝜈𝜈𝑖𝑖𝑖𝑖 =  𝜃𝜃0 + 𝜃𝜃1𝑧𝑧𝑖𝑖𝑖𝑖 +

𝑣𝑣𝑖𝑖𝑖𝑖 suffers from an omitted variables bias and, hence, produces biased coefficient estimates for 𝜃𝜃0 and 

𝜃𝜃1. An analysis of return predictability of firm characteristic 𝑧𝑧𝑖𝑖𝑖𝑖 in this case needs to account for firm 

fixed effects in order to ensure valid statistical inference. Put differently, a firm characteristic that pre-

dicts the cross-section of returns well should only be considered a good predictor for expected returns 

if it also successfully predicts the time-series of asset returns. We therefore conclude that asset pricing 

tests should focus on time-series return predictability, which can consistently be estimated with the 

within-estimator, rather than on cross-sectional return predictability, which is at risk of suffering from 

an omitted variables bias. 

 

2.3.3 GPS-model specification test for the presence of fixed effects 

Building on our analysis in Section 2.3.2, we now derive a Hausman (1978) type specification test, 

which allows us to investigate whether the random effects (RE) assumption for any given specification 

of a GPS-model holds. Our testing procedure starts with GPS-model (1): 

𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) 𝜽𝜽 + 𝑐𝑐𝑖𝑖 + 𝜈𝜈𝑖𝑖𝑖𝑖 = �[1   𝑧𝑧2,𝑖𝑖𝑖𝑖   …  𝑧𝑧𝑀𝑀,𝑖𝑖𝑖𝑖] ⨂[1    𝑥𝑥1𝑡𝑡   …  𝑥𝑥𝐾𝐾𝐾𝐾]� 𝜽𝜽 + 𝑐𝑐𝑖𝑖 + 𝜈𝜈𝑖𝑖𝑖𝑖 

Relying on Mundlak’s (1978) correlated RE assumption we model firm-specific effect 𝑐𝑐𝑖𝑖 as 

 
of the number of observations in the sample. By contrast, in pooled OLS, the weight of firm 𝑖𝑖 depends on the 
length of its time-series. 
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𝑐𝑐𝑖𝑖 = � � 𝜉𝜉𝑚𝑚,0 𝑧𝑧𝑚̅𝑚,𝑖𝑖𝑖𝑖

𝑀𝑀

𝑚𝑚=2

  +   � � 𝜉𝜉𝑚𝑚,𝑘𝑘 𝑞𝑞�𝑖𝑖
(𝑚𝑚,𝑘𝑘)

𝐾𝐾

𝑘𝑘=1

𝑀𝑀

𝑚𝑚=2

� + 𝑢𝑢𝑖𝑖 ≡ 𝒒𝒒�𝒊𝒊𝝃𝝃 + 𝑢𝑢𝑖𝑖 (17) 

where 𝑢𝑢𝑖𝑖 is a mean zero firm-specific effect that is assumed to be uncorrelated with explanatory varia-

bles (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡).  𝑧𝑧𝑚̅𝑚,𝑖𝑖𝑖𝑖 refers to firm 𝑖𝑖’s time-series average of characteristic 𝑧𝑧𝑚𝑚,𝑖𝑖𝑖𝑖, and 𝑞𝑞�𝑖𝑖
(𝑚𝑚,𝑘𝑘) =

𝑇𝑇𝑖𝑖
−1 ∑ (𝑧𝑧𝑚𝑚,𝑖𝑖𝑖𝑖𝑥𝑥𝑘𝑘𝑘𝑘)𝑇𝑇𝑖𝑖

𝑡𝑡=1  represents the firm’s time-series average of the interaction term between firm char-

acteristic 𝑧𝑧𝑚𝑚,𝑖𝑖𝑖𝑖 and factor variable 𝑥𝑥𝑘𝑘𝑘𝑘. For ease of notation, we collect all the time-series averages in 

row vector 𝒒𝒒�𝒊𝒊 and store the 𝜉𝜉𝑚𝑚,𝑘𝑘 coefficients in column vector 𝝃𝝃.18 

Replacing firm-specific effect 𝑐𝑐𝑖𝑖 in GPS-model (1) by the expression in (17), we obtain the follow-

ing regression model: 

𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) 𝜽𝜽 + 𝒒𝒒�𝒊𝒊𝝃𝝃 + 𝑢𝑢𝑖𝑖 + 𝜈𝜈𝑖𝑖𝑖𝑖 (18) 

GPS-model (18) is structured as a correlated RE model (Mundlak, 1978). Therefore, estimating (18) 

with pooled OLS will yield the fixed effects (or “within”) coefficient estimates for vector 𝜽𝜽. Likewise, 

pooled OLS coefficient estimates for vector 𝝃𝝃 quantify by how much the between estimator differs from 

the fixed effects estimator. Following Wooldridge (2010, p. 332), we can therefore test for   

H0:    𝝃𝝃 = 0         vs.       H1:  𝝃𝝃 ≠ 0  (19) 

to obtain a regression-based variant of Hausman’s (1978) specification test for GPS-model (1). To en-

sure robust statistical inference of our GPS-model specification test, we estimate regression (18) with 

Driscoll and Kraay (1998) standard errors that are robust to cross-sectional dependence, autocorrelation, 

and heteroskedasticity. If the null hypothesis of 𝝃𝝃 = 0 cannot be rejected, the random effects (RE) as-

sumption is considered to hold. In this case, estimating GPS-model (1) with (weighted) pooled OLS 

allows for valid statistical inference. However, if the Wald test in (19) rejects the null hypothesis of 𝝃𝝃 =

0, estimating the GPS-model with (weighted) pooled OLS is likely to produce inconsistent results. In 

the latter case of  𝝃𝝃� ≠ 0, GPS-model (1) should be estimated with the fixed effects estimator to ensure 

valid statistical inference. 

 

 
18 Note that we assume that all characteristics 𝑧𝑧𝑚𝑚,𝑖𝑖𝑖𝑖 vary both across firms as well as over time. If 𝑧𝑧𝑚𝑚,𝑖𝑖𝑖𝑖 is time-
invariant, then GPS-model (1) can only be estimated with (weighted) pooled OLS and, hence, needs to rely on the 
RE assumption. This is a direct consequence of the fact that the within estimator is unable to estimate the regression 
coefficients of time-invariant variables since time-invariant variables are absorbed by the firm-specific effect. For 
details, see Cameron and Trivedi (2005, Chapter 21). 
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2.3.4 Testing the validity of conventional portfolio sorts 

The results from Section 2.2 demonstrate that GPS-model (1) estimated with pooled OLS nests all var-

iants of conventional portfolio sorts as a special case. As the pooled OLS estimator is only consistent 

under the random effects (RE) assumption, this implies that the portfolio sorts approach also depends 

on the RE assumption to hold. Put differently, if firm-specific effects are present and correlated with the 

characteristic underlying the portfolio sort, the results from conventional portfolio sorts may inadvert-

ently misattribute part of the alpha to the firm characteristic underlying the portfolio sort.  

Based on our results from Section 2.3.3, we propose a Hausman (1978) type test for analyzing 

whether results from conventional portfolio sorts are statistically valid. To this end, we rely on GPS-

model (13) which compares the performance of a certain base portfolio to the performance of each other 

portfolio in the sort. Correspondingly, we specify 𝒙𝒙𝑡𝑡 = [ 1   𝑥𝑥1𝑡𝑡   . . .   𝑥𝑥𝐾𝐾𝐾𝐾  ] and 𝒛𝒛𝑖𝑖𝑖𝑖 = [ 1    𝑧𝑧𝑖𝑖𝑖𝑖
(2)  . . .   𝑧𝑧𝑖𝑖𝑖𝑖

(𝑃𝑃)]. 

Modelling the firm-specific effects as in (17) and storing the variables containing the firm-specific time-

series averages in vector 𝒒𝒒�𝒊𝒊, we estimate regression (18) with (weighted) pooled OLS and perform the 

Wald test in (19). If the null hypothesis of 𝝃𝝃 = 0 cannot be rejected, the random effects (RE) assumption 

underlying the sorted portfolios is likely to hold and, hence, the statistical results of the portfolio sorts 

approach can be considered valid. However, if null hypothesis 𝝃𝝃 = 0 is rejected, the portfolio sorts ap-

proach is likely to suffer from an omitted variables bias. In this latter case, estimation of a GPS-model 

with firm fixed effects should be preferred to performing a portfolio sorts analysis. 

Note that the “portfolio sorts specification test” proposed here offers a novel approach for address-

ing the factor-zoo-issue raised by Cochrane (2011). This test allows to distinguish between valid factors 

(where the RE assumption underlying the sorted portfolios is likely to hold) and invalid factors (which 

are vulnerable to an omitted variables bias). 

 

3. Empirical Analysis using the GPS-model 

In this section, we illustrate the importance of accounting for firm fixed effects in empirical asset pricing 

tests. To this end, we study the return predictability of four randomly chosen firm characteristics that 

are widely used in recent asset pricing studies: gross profitability (Novy-Marx, 2013), operating profit-

ability (Ball, Gerakos, Linnainmaa, and Nikolaev, 2015), the stocks’ 52-week rolling volatility (Ang, 

Hodrick, Xing, and Zhang, 2006, 2009; Baker, Bradley, and Wurgler, 2011), and 52-week rolling beta 

(Baker, Bradley, and Wurgler, 2011; Frazzini and Pedersen, 2014). 
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Novy-Marx (2013) shows that gross profit scaled by the book value of total assets, henceforth referred 

to as “gross profitability”, is a better predictor of the cross-section of average stock returns than alterna-

tive measures that are based on bottom line net income, cash flows, or dividends. He argues that the 

good performance of gross profitability in predicting the cross-section of average stock returns is mainly 

due to its numerator, gross profit, being a cleaner measure of economic profitability than, say, net in-

come. Ball, Gerakos, Linnainmaa, and Nikolaev (2015), henceforth abbreviated as BGLN, challenge 

the findings of Novy-Marx (2013). Their critique centers on the observation that Novy-Marx (2013) 

deflates net income by the book value of equity while deflating gross profit by the book value of total 

assets. BGLN demonstrate that the predictive power of net income and gross profit is comparable if the 

same deflator is used. Furthermore, they suggest an alternative profitability measure, operating profita-

bility, which more closely relates current expenses to current revenues. Defining operating profitability 

as gross profit minus selling, general, and administrative expenses (excluding R&D expenditures) de-

flated by the book value of total assets, BGLN find this profitability measure to predict the cross-section 

of average stock returns even better than gross profitability. 

Which characteristic is a better predictor of asset returns, gross profitability or operating profitabil-

ity? We contribute to this debate by utilizing several variants of GPS-model (1). After an empirical 

validation of Propositions 1 to 3, we show that the inclusion of firm fixed effects in the analysis may 

significantly impact the result. We also perform Hausman (1978) type specification tests to analyze 

whether the results from the portfolio sorts approach, which assumes the random effects assumption to 

hold, allow for valid statistical inference. Next, we demonstrate the flexibility of GPS-model (1) in han-

dling multivariate and continuous firm characteristics. At this point, we introduce the other two charac-

teristics-based factors, the stocks’ 52-week rolling volatility (Ang, Hodrick, Xing, Zhang, 2006, 2009; 

Baker, Bradley, and Wurgler, 2011) and 52-week rolling beta (Baker, Bradley, and Wurgler, 2011; 

Frazzini and Pedersen, 2014). Finally, we conduct a horse race to examine which firm characteristics 

withstand a multivariate test and are robust to the inclusion of firm fixed effects. Our empirical analysis 

relies on the CRSP-Compustat merged database and spans the sample period from July 1963 through 

December 2016. We prepare the sample data as described in BGLN. 

3.1 The performance of a single portfolio 

To validate Proposition 1 empirically, we start with the portfolio sorts approach. Each year at the end of 

June, we sort the stocks into quintiles based on NYSE breakpoints and hold the portfolios for the sub-

sequent year. For each portfolio 𝑝𝑝 (𝑝𝑝 = 1, … ,5), we then compute monthly value-weighted portfolio 

excess returns (𝑟𝑟𝑝𝑝𝑝𝑝) as 

𝑟𝑟𝑝𝑝𝑝𝑝 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑝𝑝) 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(𝑝𝑝) 𝑟𝑟𝑖𝑖𝑖𝑖
𝑁𝑁𝑡𝑡
𝑖𝑖=1   (20) 
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where 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑝𝑝) refers to the beginning-of-month 𝑡𝑡 portfolio weight of stock 𝑖𝑖 in quintile portfolio 𝑝𝑝, 𝑟𝑟𝑖𝑖𝑖𝑖 

denotes stock 𝑖𝑖’s month 𝑡𝑡 excess return, 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(𝑝𝑝) is a dummy variable with value one if stock 𝑖𝑖 in month 

𝑡𝑡 belongs to operating profitability portfolio 𝑝𝑝, and 𝑁𝑁𝑡𝑡 refers to the overall month 𝑡𝑡 number of stocks in 

the sample.  

Using 𝑟𝑟𝑝𝑝𝑝𝑝 from (20) as the dependent variable, we then estimate the Fama and French (1993) three-

factor model as follows: 

𝑟𝑟𝑝𝑝𝑝𝑝 = 𝛼𝛼 + 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡  +   𝛽𝛽𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡  +  𝛽𝛽𝐻𝐻𝐻𝐻𝐻𝐻  𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡  + 𝜀𝜀𝑡𝑡 (21) 

where 𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡 is the market excess return, 𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡 denotes the return of a zero-investment size portfolio, 

and 𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡 refers to the return of a zero-investment book-to-market portfolio. 

According to Proposition 1, the results from estimating time-series regression (21) for portfolio 𝑝𝑝 

can be reproduced by aid of GPS-model (1) being specified as follows: 

𝑟𝑟𝑖𝑖𝑖𝑖 = 𝜃𝜃𝛼𝛼  +  𝜃𝜃𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡   +   𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡   +   𝜃𝜃𝐻𝐻𝐻𝐻𝐻𝐻  𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡  +  𝜈𝜈𝑖𝑖𝑖𝑖 (22) 

Due to the focus on a single portfolio 𝑝𝑝, GPS-model (22) only considers the subset of observations for 

which 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(𝑝𝑝) = 1 (i.e., observations on stocks that are included in operating profitability portfolio 𝑝𝑝). 

To reproduce the results of time-series regression (21) with GPS-model (22), we need to account for 

two things. First, the portfolio sorts approach typically considers value-weighted rather than equal-

weighted portfolios. Second, the CRSP-Compustat database constitutes an unbalanced panel with time-

varying cross-sections. Therefore, GPS-model (22) needs to be estimated with weighted pooled OLS, 

where observation weights are fixed such that they match the (implicit) weighting scheme underlying 

portfolio 𝑝𝑝’s value-weighted return from expression (20). Consequently, we set the weight of observa-

tion 𝑖𝑖𝑖𝑖 equal to the beginning-of-month 𝑡𝑡 value weight of stock 𝑖𝑖 in operating profitability portfolio 𝑝𝑝:  

𝑤𝑤𝑖𝑖𝑖𝑖 =
𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(𝑝𝑝)𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖

∑ �𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(𝑝𝑝)𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖�𝑁𝑁𝑡𝑡

𝑖𝑖=1

 (23) 

where 𝑀𝑀𝐸𝐸𝑖𝑖𝑖𝑖 refers to stock 𝑖𝑖’s beginning-of-month 𝑡𝑡 market value of equity. 

The results of the top-quintile portfolio sorted on operating profitability are reported in Table 1. 

The first row (“Portfolio sorts approach”) reports the results from estimating portfolio-level time-series 

regression (21) with OLS. Statistical inference is based on Newey and West (1987) standard errors with 

a lag-length of three months. In line with BGLN, the top quintile portfolio has a statistically significantly 

positive Fama and French (1993) alpha of +0.225% per month, or +2.7% per year. In the second row, 

labelled as “GPS-model (weighted pooled OLS)”, we report the results of estimating GPS-model (22) 
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with weighted pooled OLS, where observation weights are set equal to the stocks’ beginning-of-month 

t value-weights. Statistical inference relies on Driscoll and Kraay (1998) standard errors with a lag-

length of three months. The results from estimating GPS-model (22) are identical with those from esti-

mating time-series regression (21) reported in the first row.19 This empirically validates our Proposition 

1 from Section 2.2.2. 

The third row, labelled “GPS-model (standard pooled OLS)”, estimates GPS-model (22) with 

standard pooled OLS, where all stocks are equally weighted such that microcaps receive the same weight 

as large caps. As a consequence, the SMB factor loading in this case is large (+0.79) and statistically 

significant. Moreover, the change in weights also affects the alpha which increases to +0.31% per month 

(or +3.75% per year). This confirms Fama and French’s (2008) concern that small- and microcap stocks 

can be influential for the results when observationsare equally-weighted. 

 

3.2 Analyzing portfolio sorts with the GPS-model 

According to Proposition 2, GPS-model (1) can be specified such that it reproduces the results of mul-

tiple sorted portfolios with a single regression on the firm-level. To validate Proposition 2 empirically, 

we apply the portfolio sorts procedure from Section 3.1 to each of the five quintile portfolios sorted on 

operating profitability. The results are reported in Panel A of Table 2. In line with BGLN, the alphas of 

the sorted portfolios monotonically increase with operating profitability. While the low profitability 

(𝑝𝑝 = 1) portfolio has a significantly negative alpha of -0.32% per month, the top-quintile (𝑝𝑝 = 5) port-

folio shows a significantly positive alpha of +0.23% per month. 

To reproduce the results of the portfolio sorts analysis with the GPS-model, we estimate regression 

(7) with weighted pooled OLS, where the weight of observation 𝑖𝑖𝑖𝑖 is set equal to stock 𝑖𝑖’s period 𝑡𝑡 

value-weight in the respective operating profitability portfolio. Panel B of Table 2 reports the results in 

a two-dimensional matrix. The portfolio dummy variables in vector 𝒛𝒛𝑖𝑖𝑖𝑖 = � 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(1)     𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(2)    ⋯    𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(5)� 

define the columns and the factor variables in vector 𝒙𝒙𝑡𝑡 = [ 1   𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡    𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡    𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡] identify the 

rows. All elements in the results matrix thus represent the coefficient estimates (and t-statistics) of the 

interaction term between firm-characteristic 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(𝑝𝑝) and factor variable (or constant) 𝑥𝑥𝑘𝑘𝑘𝑘. A comparison 

of the results in Panels A and B of Table 2 shows that both the coefficient estimates and t-statistics 

 
19 Note that the number of observations included in the estimation differs across models. The time-series regression 
of the portfolio sorts approach comprises 642 monthly observations whereas the weighted pooled OLS estimation 
of the firm-level GPS-model includes 412,443 firm-month observations. 
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(based on Driscoll-Kraay standard errors) of the GPS-model coincide with those from applying the port-

folio sorts approach (independently) to the five quintile portfolios sorted on operating profitability. This 

empirically confirms the theoretical result stated in Proposition 2 in Section 2.2.3. 

The GPS-model can also be specified such that it reproduces the results from “two-way portfolio 

sorts” by aid of a single regression on the firm-level. To illustrate this, we reproduce parts of the analysis 

in Table 8 of BGLN. Relying on NYSE breakpoints, we sort the stocks into quintiles based on operating 

profitability and market capitalization.20 As before, we form the portfolios at the end of each June and 

then hold them for the subsequent year. Panel A of Table 3 reports the results for the two-way sorted 

portfolios. For brevity, we only show the coefficient estimates (and t-values) of the alpha from estimat-

ing time-series regression (21) for each of the 25 two-way sorted portfolios. Despite a slightly different 

sample period, the coefficient estimates and t-values match closely with those in BGLN. 

Next, we turn to GPS-model (1) and show how to replicate the results of all the two-way sorted 

portfolios by estimating a single regression on the firm-level. To this end, we specify 𝒛𝒛𝑖𝑖𝑖𝑖 as follows:  

𝒛𝒛𝑖𝑖𝑖𝑖 = ��𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(1)  …  𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(5)�  ⨂ �𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖
(1) …    𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖

(5)�  �   

Here, 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(𝑝𝑝) (𝑝𝑝 = 1, … , 5) refers to a dummy variable with value one if stock 𝑖𝑖 in month 𝑡𝑡 belongs to 

operating profitability portfolio 𝑝𝑝, and 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖
(𝑞𝑞) (𝑞𝑞 = 1, … , 5) is a dummy variable with value one if stock 

𝑖𝑖 in month 𝑡𝑡 belongs to market capitalization quintile 𝑞𝑞. As before, vector 𝒙𝒙𝑡𝑡 includes a constant and the 

three Fama-French factors and, hence, is specified as 𝒙𝒙𝑡𝑡 = [ 1    𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡     𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡     𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡]. To reproduce 

the results of the portfolio sorts approach, we estimate the GPS-model with weighted pooled OLS, where 

observation weights are fixed such that they match the value-weights of the stocks in the two-way sorted 

portfolios. 

Panel B of Table 3 reports the regression coefficients decomposing the alpha, i.e., for the coefficient 

estimates (and t-statistics) of the variables in vector 𝒛𝒛𝑖𝑖𝑖𝑖.21 The results are reported in a two-dimensional 

matrix with the operating profitability quintile dummies, 𝑂𝑂𝑂𝑂𝑖𝑖𝑡𝑡
(𝑝𝑝), identifying the rows and the market 

capitalization quintile dummies, 𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖
(𝑞𝑞), defining the columns. Element (p, q) in the results matrix thus 

represents the coefficient estimate (and t-statistic) of the interaction term between operating profitability 

quintile dummy p and market cap quintile dummy q. When comparing the results from estimating the 

 
20 Following BGLN, the sorts are carried out independently of each other. BGLN use these two-way portfolio sorts 
to investigate whether the predictive power of operating profitability for the cross-section of average returns is a 
market-wide phenomenon or if it is confined to certain size groups. 
21 Note that the characteristics in vector 𝒛𝒛𝑖𝑖𝑖𝑖 in fact represent the interaction terms of the variables in 𝒛𝒛𝑖𝑖𝑖𝑖 with the 
constant in 𝒙𝒙𝑡𝑡.  
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GPS-model (Panel B) with the results from the two-way sorted portfolios (Panel A), it is evident that 

they match perfectly. This provides further empirical evidence for Proposition 2. 

 

3.3 Top versus bottom portfolio performance 

To validate Proposition 3 empirically, we first apply the portfolio sorts approach to evaluate the perfor-

mance difference between the top (𝑝𝑝 = 5) and bottom (𝑝𝑝 = 1) quintile portfolios of stocks sorted on 

operating profitability. To this end, we first compute the month 𝑡𝑡 excess returns (𝑟𝑟𝑝𝑝𝑝𝑝) for the top and 

bottom quintile portfolios as outlined in expression (20) above. We then evaluate the performance dif-

ference between the two portfolios by estimating portfolio-level time-series regression (21) with Δ

𝑟𝑟𝑝𝑝𝑝𝑝 = 𝑟𝑟5,𝑡𝑡 − 𝑟𝑟1,𝑡𝑡 as the dependent variable. Panel A of Table 4 reports the results. On a risk-adjusted 

basis, the portfolio of stocks with high operating profitability outperforms the low profitability portfolio 

by a significant +0.54% per month (or +6.48% per year). Despite a slightly different sample period, the 

coefficient estimates and t-values are very similar to those reported in Table 6 of BGLN. 

To replicate the results of the portfolio sorts approach with a regression on the individual firm-

level, we estimate GPS-model (12) with weighted pooled OLS. In this analysis, we only consider ob-

servations on stocks with top (𝑝𝑝 = 5) or bottom (𝑝𝑝 = 1) quintile operating profitability and set obser-

vation weights equal to the stocks’ value-weights in their operating profitability portfolio. Panel B of 

Table 4 displays the results in a two-dimensional matrix. The elements of firm characteristics’ vector 

𝒛𝒛𝑖𝑖𝑖𝑖 = � 1   𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(5)� define the columns while the factor variables in 𝒙𝒙𝑡𝑡 = [ 1    𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡    𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡    𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡  ] 

identify the rows. All elements in the results matrix thus represent the coefficient estimates (and t-sta-

tistics based on Driscoll-Kraay standard errors) for the interactions between the elements in vector 𝒛𝒛𝑖𝑖𝑖𝑖 

and those in vector 𝒙𝒙𝑡𝑡. The results from estimating GPS-model (12) with weighted pooled OLS (Panel 

B) coincide with the results of the portfolio sorts approach in Panel A. This empirically confirms Prop-

osition 3.  

 

3.4 Do firm fixed effects matter for the prediction of stock returns? 

The analysis in Panel A of Table 4, and by extension in Panel B of Table 4, depends on the assump-

tion that firm-specific effects (if present) are uncorrelated with the explanatory variables in 𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡, 

i.e., that the random effects (RE) assumption holds. In Panel C of Table 4, we reproduce the analysis 

from Panel B, but estimate the GPS-models with the fixed effects (or “within”) estimator that is robust 

to violations of the RE assumption.  

Most important, we find that operating profitability no longer statistically significantly predicts the 

cross-section of average stock returns when firm fixed effects are accounted for. Hence, the results in 
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Panel C suggest that operating profitability is correlated with the firm fixed effects resulting in a signif-

icant fraction of the alpha reported in Panels A and B being misattributed to operating profitability. In 

other words, it is not operating profitability that has predictive power, but a time-invariant component 

of it that is absorbed by the firm fixed effects. As a consequence, operating profitability is expected to 

have out-of-sample predictive power only if its correlation with the unobservable firm-specific factor 

persists beyond our sample period, such that operating profitability remains correlated with the fixed 

effects that drive the results in Panels A and B. In summary, the results in Table 4 suggest that firm fixed 

effects can have a major impact on the results from empirical asset pricing tests. 

 

3.5 Using the GPS-model to test the validity of conventional portfolio sorts 

As shown above, GPS-model (1), estimated with (weighted) pooled OLS, is able to reproduce the results 

from conventional portfolio sorts. This, however, implies that the results from conventional portfolio 

sorts are valid if and only if the random effects assumption holds. We now investigate whether firm-

specific effects (if present) indeed are uncorrelated with the characteristic(s) underlying the portfolio 

formation. To examine whether the results from conventional portfolio sorts are valid, we rely on the 

portfolio sorts specification test developed in Section 2.3.4.  

We first analyze whether portfolio sorts on operating profitability are sensitive to the random ef-

fects assumption. To this end, we specify GPS-model (1) with 𝒛𝒛𝑖𝑖𝑖𝑖 = [ 1    𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(2)  . . .   𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(5) ] and 𝒙𝒙𝑡𝑡 =

[ 1    𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡    𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡     𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡]. We then add the firm-specific time-series averages (which we store in 

vector 𝒒𝒒�𝒊𝒊) of all variables in (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) that vary across both firms and time to the regression. The 

resulting regression model 𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) 𝜽𝜽 + 𝒒𝒒�𝒊𝒊𝝃𝝃 + 𝜀𝜀𝑖𝑖𝑖𝑖 constitutes our first specification of regres-

sion (18), which forms the basis of our portfolio sorts specification test. Panel A of Table 5 reports the 

results from estimating the respective regression with pooled OLS, where observation weights are set 

equal to the beginning-of-month 𝑡𝑡 value-weights of the stocks in the quintile portfolios sorted on oper-

ating profitability. The results are displayed in matrix form. The first block of results, labeled as “Coef-

ficient estimates on explanatory variables 𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡”, contains the estimation results for vector 𝜽𝜽. With 

the portfolio dummies from 𝒛𝒛𝑖𝑖𝑖𝑖 defining the columns and the factor variables in 𝒙𝒙𝑡𝑡 defining the rows, 

element (𝑝𝑝, 𝑘𝑘) in the results matrix represents the coefficient estimates (and t-statistics) for the interac-

tion term between firm characteristic (or constant) 𝑧𝑧𝑝𝑝,𝑖𝑖𝑖𝑖 and factor variable (or constant) 𝑥𝑥𝑘𝑘𝑘𝑘. Hence, the 

results in the first column are for the bottom-quintile profitability portfolio while the remaining columns 

show by how much the results of profitability quintile portfolio 𝑝𝑝 (𝑝𝑝 = 2, 3, 4, 5) differ from those of 

the bottom-quintile portfolio. As explained in Section 2.3, the coefficient estimates for 𝜽𝜽 represent fixed 

effects (FE) estimates that allow for valid statistical inference even if firm-specific effects are correlated 

with the variables in 𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡. The results in row “1 (Intercept)” show that when controlling for firm 
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fixed effects, the Fama-French three-factor model alpha of the top-quintile portfolio sorted on operating 

profitability is no longer statistically significantly different from that of the bottom-quintile profitability 

portfolio. The difference between the two portfolios’ alpha now amounts to only +0.02% per month, 

which is consistent with results in Panel C of Table 4, but stands in stark contrast to the highly significant 

+0.54% per month alpha-difference obtained in a conventional portfolio sorts analysis that ignores firm 

fixed effects (see Panels A and B of Table 4). 

The second block of Panel A in Table 5, labeled as “Coefficient estimates on time-series averages”, 

contains the estimation results for vector 𝝃𝝃. The structure of the estimation results in this block is similar 

to that of 𝜽𝜽 discussed before. The coefficient estimates for the elements in 𝝃𝝃 quantify by how much the 

between (BE) estimator differs from the fixed effects (FE) estimator. The results show that the difference 

between BE and FE coefficient estimates is particularly pronounced for the coefficient estimates quan-

tifying the difference of quintile portfolio 𝑝𝑝’s alpha (𝑝𝑝 = 2,3,4,5) versus the bottom-quintile portfolio. 

For instance, the BE estimate for the alpha-difference between the top- and bottom-quintile portfolios 

deviates by a significant +1.10% per month from the respective FE estimate. As a consequence, the 

evaluation of operating profitability as a predictor of asset returns critically hinges on the random effects 

(RE) assumption. To test for the validity of the RE assumption, we perform the Wald test in (19). This 

portfolio sorts specification test has an F-statistic of 4.61 and rejects the null hypothesis of 𝝃𝝃 = 0 at all 

conventional levels of statistical significance. For portfolio sorts on operating profitability the random 

effects assumption can therefore not be considered to hold, invalidating the results from conventional 

portfolio sorts. 

Panel B of Table 5 reproduces the analysis from Panel A for portfolio sorts on gross profitability, 

defined as gross profit divided by total assets (Novy-Marx, 2013). We specify 𝒛𝒛𝑖𝑖𝑖𝑖 =

[ 1    𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖
(2)  . . .   𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖

(5) ], where 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖
(𝑝𝑝) represents a dummy variable with value of one if stock 𝑖𝑖 in month 

𝑡𝑡 belongs to quintile portfolio 𝑝𝑝 sorted on gross profitability. The results are quite different from those 

on operating profitability. Specifically, the coefficient estimate measuring by how much the alpha of the 

top-quintile portfolio differs from that of the bottom-quintile portfolio of +0.42% per month is positive 

and statistically significant. Furthermore, the differences between BE and FE coefficient estimates (i.e., 

the coefficient estimates for 𝝃𝝃) are less pronounced than in Panel A when sorting on operating profita-

bility. Correspondingly, the “portfolio sorts specification test” no longer rejects the null hypothesis of 

𝝃𝝃 = 0. The respective Wald test has an F-statistic of 1.19 which corresponds to a p-value of 0.27. We 

therefore conclude that the statistical results from portfolio sorts on gross profitability are reliable. All 

else equal, stocks with high gross profitability outperform stocks with low gross profitability. 
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3.6 Firm fixed effects and continuous and multivariate firm characteristics 

We now demonstrate that the GPS-model provides a versatile framework for investigating the predict-

ability of stock returns as well as for analyzing the role of firm fixed effects. To determine which prof-

itability and volatility measures offer return predictability, we estimate (subsets of) the following GPS-

model: 

𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) 𝜽𝜽 + 𝑒𝑒𝑖𝑖𝑖𝑖 

= ([1    𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖     𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖     𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖      𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖𝑖𝑖] ⊗ [ 1    𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡     𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡    𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡]) 𝜽𝜽 + 𝑒𝑒𝑖𝑖𝑖𝑖 
(24) 

where 𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖 is operating profitability, 𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖 measures gross profitability, 𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎𝑖𝑖𝑖𝑖 is the standard deviation 

of 52 weekly stock returns ending on the last Friday prior to the end of month 𝑡𝑡, and 𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖𝑖𝑖 is the 

CAPM-beta of weekly stock returns estimated over the 52 weeks ending on the last Friday prior to the 

end of month 𝑡𝑡. The variables in vector 𝒙𝒙𝑡𝑡 = [ 1   𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡    𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡    𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡] represent a constant and the 

three Fama and French (1993) factors.  

Panel A of Table 6 presents the results from estimating GPS-model (24) with weighted pooled 

OLS, where observation weights are set equal to the firms’ month 𝑡𝑡 value weights. For brevity, only the 

estimates for the regression coefficients decomposing the Fama-French three-factor model alpha are 

reported.22 In column (1), we estimate regression (24) with 𝒛𝒛𝑖𝑖𝑖𝑖 = [1  𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖]. The results show that alpha 

increases with operating profitability. The coefficient estimate is positive (+1.74) and highly statistically 

significant. A qualitatively similar result is obtained when estimating GPS-model (24) with 𝒛𝒛𝑖𝑖𝑖𝑖 =

[1  𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖] (column 2). By contrast, the alpha decreases with volatility (column 3) and the stock beta 

(column 4). In summary, these univariate results are in line with the findings from previous research. 

Columns (5) and (6) take advantage of the GPS-model’s capability to handle multivariate firm charac-

teristics. When estimating GPS-model (24) with 𝒛𝒛𝑖𝑖𝑖𝑖 = [1    𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖     𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖     𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖      𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖𝑖𝑖], we find that 

only operating profitability (coefficient estimate: +1.11) and the stock beta (coefficient estimate: -0.30) 

statistically significantly predict stock returns while the coefficient estimates on gross profitability and 

volatility are insignificant. 

The analysis in Panel A of Table 6 depends on the random effects assumption to hold. Next, we 

use our GPS-model specification test developed in Section 2.3.3 to test for the existence of firm fixed 

effects in each regression specification of Panel A. For this purpose, we extend regression (24) with the 

firm-level time-series averages of all variables that vary cross-sectionally and over time. We then em-

ploy a Wald test to examine whether the coefficient estimates for the time-series average variables are 

jointly equal to zero. If this null hypothesis cannot be rejected, the RE assumption can be assumed to 

 
22 Note that conditional on firm 𝑖𝑖’s characteristics in period 𝑡𝑡, the Fama-French three-factor model alpha is obtained 
as 𝛼𝛼�𝑖𝑖𝑖𝑖 =  𝜃𝜃�0 + 𝜃𝜃�1 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇𝑖𝑖𝑖𝑖 + 𝜃𝜃�2 × 𝐺𝐺𝐺𝐺𝐺𝐺𝑇𝑇𝑖𝑖𝑖𝑖 + 𝜃𝜃�3 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 + 𝜃𝜃�4 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖. For details, see Section 2.3.1. 
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hold and GPS-model (24) can be estimated with (weighted) pooled OLS. The results from the GPS-

model specification test are reported in Panel B of Table 6. With the exception of the GPS-model spec-

ification in column (2), where vector 𝒛𝒛𝑖𝑖𝑖𝑖 is specified as 𝒛𝒛𝑖𝑖𝑖𝑖 = [1  𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖], the GPS-model specification 

test rejects the RE assumption for all specifications in Panel A at the 5% confidence level or better. As 

a result, the statistical results from estimating GPS-model (24) with pooled OLS are likely to be invalid. 

In Panel C of Table 6, we reestimate the analysis in Panel A using the fixed effects estimator, which 

allows firm-specific effects to be correlated with the explanatory variables in (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡). For some of 

the specifications, we observe considerable differences between the results in Panel C and those in Panel 

A. Specifically, in column (1), we find that operating profitability no longer statistically significantly 

predicts the cross-section of average stock returns when firm fixed effects are accounted for. Further-

more, in the multivariate analysis of column (6), which specifies vector 𝒛𝒛𝑖𝑖𝑖𝑖 as 𝒛𝒛𝑖𝑖𝑖𝑖 =

[1    𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖    𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖     𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖      𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖𝑖𝑖], the coefficient estimate of operating profitability changes sign and 

assumes a significantly negative value of -1.58. This result for operating profitability stands in contrast 

to the findings for gross profitability, whose coefficient estimate remains positive and statistically sig-

nificant even when estimating regression (24) with firm fixed effects. These findings suggest that gross 

profitability is a more robust predictor for stock returns than operating profitability. When comparing 

the return predictability of volatility with that of the stock beta, we find the stock beta to be a remarkably 

robust predictor for the cross-section of average stock returns. Irrespective of the regression specifica-

tion in Panel C of Table 6, the coefficient estimate for the stock beta is around -0.40, and statistically 

significant at the 1% level. In contrast, when accounting for firm fixed effects, volatility no longer has 

predictive power for the Fama-French three-factor model alpha. We therefore conclude that the 52-week 

rolling stock beta is a more robust predictor for stock returns than 52-week rolling volatility. More gen-

erally, we conclude that firm fixed effects can have a major impact on the results from empirical asset 

pricing tests. 

 

4. Conclusion 

Addressing recent concerns about the robustness of abnormal returns, we propose a novel, regression-

based alternative to the popular portfolio sorts approach for analyzing asset returns. Our “GPS-model” 

relies on estimating a linear panel regression on the individual firm level, and on drawing statistical 

inference based on Driscoll and Kraay (1998) standard errors that are robust to heteroskedasticity as 

well as cross-sectional and temporal dependence. Our technique easily handles continuous and multi-

variate firm characteristics. Most importantly, it allows for the inclusion of firm fixed effects. Using 

formal econometric analysis, we show that our approach nests all variants of the widely-applied portfolio 

sorts approach. Moreover, we prove formally that alpha and factor exposure estimates from standard 
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portfolio sorts are valid if and only if the random effects (RE) assumption holds. This is a direct conse-

quence of the fact, that to exactly reproduce the results from portfolio sorts, our GPS-model needs to be 

estimated with pooled OLS (which depends on the RE assumption). Using our methodology, we also 

develop a Hausman (1978) type specification test that allows us to analyze whether the results from 

portfolio sorts are likely to be affected by unobservable heterogeneity across firms.  

In the empirical part of the paper, we examine the relevance of accounting for firm fixed effects in 

empirical asset pricing tests. We do so by considering four randomly chosen characteristics that have 

been shown to predict asset returns: operating profitability, gross profitability, volatility, and beta. Our 

empirical results reveal that two of the four tested characteristics-based factors, operating profitability 

and low volatility, do not withstand tests accounting for firm fixed effects. We therefore conclude that 

the RE assumption implicitly underlying the portfolio sorts approach in fact matters. Specifically, our 

results suggest that operating profitability and (low) volatility are significantly correlated with an unob-

servable, firm-specific component. As a result, the predictive power for the cross-section of average 

stock returns of these two characteristics-based factors will only continue beyond our sample period if 

operating profitability and (low) volatility keep their correlation pattern with the firm-specific effects.  

In summary, our results suggest that firm-specific effects can have a major impact on the results 

from empirical asset pricing tests. The GPS-model proposed in this paper addresses and resolves this 

issue. Relying on a simple yet econometrically robust framework, the GPS-model can easily be esti-

mated with the fixed effects estimator, ensuring valid statistical inference even in the case of the RE 

assumption being violated. 
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Figure 1: Relationship between firm-specific fixed effects and firm characteristics 

This figure plots firm fixed effects versus operating profitability (Panel A) and gross profitability (Panel B). The 
sample period goes from July 1963 through December 2016. The firm fixed effects are inferred from estimating a 
firm-level panel regression as shown in equation (1) with the fixed effects (FE) estimator. The market-level vari-
ables in vector 𝒙𝒙𝑡𝑡 comprise a constant and the three Fama and French (1993) factors, i.e., RMRF (market excess 
return), SMB (small minus big), and HML (high minus low). In Panel A, regression (1) is estimated with vector 
𝒛𝒛𝑖𝑖𝑖𝑖 containing five quintile dummy variables for operating profitability, defined as gross profit minus selling, gen-
eral, and administrative expenses (excluding research and development expenditures) deflated by the book value 
of total assets. The quintile dummy variables for operating profitability are based on NYSE breakpoints at the end 
of each June and then remain constant for the subsequent year. The correlation between the (estimated) firm fixed 
effects and operating profitability is 0.36. In Panel B, vector 𝒛𝒛𝑖𝑖𝑖𝑖 contains five quintile dummy variables for gross 
profitability, defined as gross profit deflated by the book value of total assets. The quintile dummy variables for 
gross profitability are based on NYSE breakpoints at the end of each June and remain constant for the subsequent 
year. The correlation between the (estimated) firm fixed effects and gross profitability is 0.08. The charts do not 
display the top and bottom 1% of observations for the firm fixed effects, as well as for operating profitability and 
gross profitability, respectively. 

Panel A: Firm fixed effects versus operating profitability 

 

Panel B: Firm fixed effects versus gross profitability 
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Table 1: Single portfolio analysis 
 

        Operating profitability: Top-quintile portfolio 
  Average 

Return 

 Three-factor model  Three-factor model statistics 

       a bRMRF bSMB bHML   R-squared N Obs. N Stocks. 
            

(1) Portfolio sorts approach 0.574***  0.225*** 0.950*** -0.075*** -0.316***  0.949 642    
(3.10)  (4.92) (73.78) (-4.44) (-18.60) 

    

            

(2) GPS-model (weighted pooled OLS) 0.574***  0.225*** 0.950*** -0.075*** -0.316***  0.261 412,443 6,831 
  (3.10)  (4.92) (73.78) (-4.44) (-18.60) 

    

            

(3) GPS-model (standard pooled OLS) 1.070***  0.313*** 1.037*** 0.790*** -0.028  0.150 412,443 6,831 
  (3.92)  (4.73) (50.53) (13.08) (-0.63) 

    

                        
 
This table reports the average return as well as the 3-factor model alpha along with RMRF (market), SMB (small minus big), and HML (high minus low) 
factor loadings for portfolios sorted by operating profitability, defined as gross profit minus selling, general, and administrative expenses (excluding re-
search and development expenditures) deflated by the book value of total assets. The portfolio sort is based on NYSE breakpoints at the end of each June 
and the portfolio is held for the subsequent year. The sample period goes from July 1963 through December 2016. All results are for the quintile 5 (high) 
portfolio comprising the stocks with top quintile operating profitability. Row (1) reports the results from a conventional portfolio sort where the portfolio’s 
excess return is regressed on the three Fama and French (1993) factors. Rows (2) and (3) present the results from estimating GPS-model (22). In Row (2), 
the regression is estimated with weighted pooled OLS, where observation weights are set equal to the beginning-of-time t value-weights of the stocks. In 
Row (3), the regression is estimated with standard pooled OLS, where all observations are equally weighted. t-statistics from testing for significance against 
a value of zero are presented in parentheses. Statistical inference for the portfolio sorts approach in Row (1) is based on Newey and West (1987) standard 
errors with a lag-length of three. The GPS-models in Rows (2) and (3) are estimated with Driscoll and Kraay (1998) standard errors with a lag-length of 
three. ***, **, and * indicate significance at the 1, 5, and 10 percent levels (two-tailed).  
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Table 2: Analysis of quintile portfolios sorted on operating profitability    

Panel A: Conventional portfolio sorts 

 Quintile Portfolio 

  1 (low) 2 3 4 5 (high) 
      

𝑎𝑎 -0.318*** -0.116* 0.038 0.046 0.225*** 

 (-4.26) (-1.86) (0.73) (0.88) (4.92) 
      

bRMRF 1.092*** 0.957*** 0.943*** 1.009*** 0.950*** 

 (48.10) (48.78) (58.71) (63.60) (73.78) 
      

bSMB 0.212*** 0.061 -0.054* -0.048* -0.075*** 

 (7.65) (1.37) (-1.73) (-1.66) (-4.44) 
      

bHML 0.175*** 0.256*** 0.135*** 0.047 -0.316*** 

 (4.24) (5.80) (5.27) (1.61) (-18.60) 
            

R-squared 0.897 0.891 0.916 0.933 0.949 
N Obs. 642 642 642 642 642 

Panel B: GPS-model 

Vector 𝒛𝒛𝑡𝑡   → 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(1)  𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(2)  𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(3)  𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(4)  𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(5)  

Vector 𝒙𝒙𝑡𝑡  ↓ 
      

1 (Intercept) -0.318*** -0.116* 0.036 0.046 0.225*** 

 (-4.26) (-1.86) (0.73) (0.88) (4.92) 
      

𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡 1.092*** 0.957*** 0.943*** 1.009*** 0.950*** 

 (48.10) (48.78) (58.71) (63.60) (73.78) 
      

𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡 0.212*** 0.061 -0.054* -0.048* -0.075*** 

 (7.65) (1.37) (-1.73) (-1.66) (-4.44) 
      

𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡 0.175*** 0.256*** 0.135*** 0.047 -0.316*** 

 (4.24) (5.80) (5.27) (1.61) (-18.60) 
            

R-squared 0.230     
N Obs. 1,969,221     

N Stocks 16,244         

This table reports value-weighted 3-factor model alphas along with RMRF (market excess return), SMB (small 
minus big), and HML (high minus low) factor loadings for portfolios sorted by operating profitability, defined as 
gross profit minus selling, general, and administrative expenses (excluding research and development expendi-
tures) deflated by the book value of total assets. Panel A reports the results from conventional portfolio sorts where 
a portfolio’s excess return is regressed on the three Fama and French (1993) factors. Panel B presents the results 
from estimating a single GPS-model with weighted pooled OLS, where observation weights are set equal to the 
beginning-of-time t value-weights of the stocks. Coefficient estimates and t-statistics (in parentheses) in Panel B 
(GPS-model) are for the interaction of the (market-level) variables and a constant contained in vector 𝒙𝒙𝑡𝑡 (displayed 
on the vertical axis) and the quintile dummy variables 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(𝑞𝑞) (𝑞𝑞 = 1, … ,5) for operating profitability in vector 𝒛𝒛𝑖𝑖𝑖𝑖 
(displayed on the horizontal axis). The quintile portfolios (Panel A) and dummy variables (Panel B) are formed 
based on NYSE breakpoints at the end of each June and then remain unchanged throughout the subsequent year. 
The sample period goes from July 1963 through December 2016. Statistical inference on the portfolio sorts (Panel 
A) is based on Newey and West (1987) standard errors with a lag-length of three. The GPS-model in Panel B is 
estimated with Driscoll and Kraay (1998) standard errors with a lag-length of three. ***, **, and * indicate signif-
icance at the 1, 5, and 10 percent levels (two-tailed). 
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Table 3: Two-way portfolio sorts on operating profitability and market capitalization 

Panel A: Conventional portfolio sorts 

Operating 
profitability 

Market capitalization 
Q1  Q2  Q3  Q4  Q5        

Q1 -0.40*** -0.38*** -0.30*** -0.26**   -0.25**   
 (-3.76)     (-4.10)     (-3.26)     (-2.57)     (-2.43)           

Q2 -0.04     -0.05     -0.06     -0.05     -0.14*   
 (-0.60)     (-0.69)     (-0.66)     (-0.67)     (-1.84)           
Q3 0.08     0.08     -0.01     -0.02     0.06     
 (1.20)     (1.09)     (-0.15)     (-0.21)     (1.08)           
Q4 0.10*     -0.01     0.10    0.09     0.04     
 (1.70)     (-0.04)     (1.39)     (1.21)     (0.70)           
Q5 0.31*** 0.25*** 0.18***   0.28*** 0.23*** 
 (3.72)     (3.50)     (2.59)     (3.43)     (4.28)           

Panel B: GPS-model   

Operating 
profitability 

Market capitalization 

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖
(1)  

 

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖
(2) 

 

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖
(3)  

    
𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖

(4) 
 

𝑀𝑀𝑀𝑀𝑖𝑖𝑖𝑖
(5) 

  
 
 

     
𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(1)  -0.40*** -0.38*** -0.30*** -0.26**   -0.25**    
(-3.76)     (-4.10)     (-3.26)     (-2.57)     (-2.43)     

 
 

 

     
𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(2)  -0.04     -0.05     -0.06     -0.05     -0.14*   
 (-0.60)     (-0.69)     (-0.66)     (-0.67)     (-1.84)     
 

 
 

     
𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(3)  0.08     0.08     -0.01     -0.02     0.06     
 (1.20)     (1.09)     (-0.15)     (-0.21)     (1.08)     

 
 

 

     
𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(4)  0.10*     -0.01     0.10    0.09     0.04     
 (1.70)     (-0.04)     (1.39)     (1.21)     (0.70)     

 
 

 

     
𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(5)  0.31*** 0.25*** 0.18***   0.28*** 0.23*** 
 (3.72)     (3.50)     (2.59)     (3.43)     (4.28)     
            R-squared 0.207         

N Obs. 1,969,221           
N Stocks 16,244     

 
This table reports value-weighted three-factor model alphas and t-statistics (in parentheses) for portfolios sorted 
by market capitalization and operating profitability, defined as gross profit minus selling, general, and administra-
tive expenses (excluding research and development expenditures) deflated by the book value of total assets. Panel 
A reports the results from conventional portfolio sorts where a portfolio’s excess return is regressed on the Fama 
and French (1993) market (RMRF), size (SMB), and value (HML) factors. Panel B presents the results from esti-
mating a single GPS-model with weighted pooled OLS, where observation weights are set equal to the beginning-
of-time t value-weights of the stocks. Coefficient estimates and t-statistics (in parentheses) for the GPS-model are 
for the product of the market capitalization quintile dummy variables and quintile dummy variables for operating 
profitability. The dummy variables (Panel B) and two-way sorted portfolios (Panel A) are formed based on NYSE 
breakpoints at the end of each June and remain unchanged throughout the subsequent year. The market capitaliza-
tion and operating profitability sorts are independent of each other. The sample period is from July 1963 through 
December 2016. Statistical inference for the portfolio sorts approach (Panel A) is based on Newey and West (1987) 
standard errors with a lag-length of three. The GPS-model in Panel B is estimated with Driscoll and Kraay (1998) 
standard errors with a lag-length of three. ***, **, and * indicate significance at the 1, 5, and 10 percent levels 
(two-tailed).  
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Table 4: Comparison of high vs. low quintile portfolios sorted on operating profitability 

Panel A: Conventional portfolio sorts   Panel B: GPS-model (Pooled WLS estimation)   Panel C: GPS-model (weighted FE estimation) 
 Q1 (low) Q5 - Q1   Vector  𝒛𝒛𝑖𝑖𝑖𝑖    →    1  𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(5)   Vector  𝒛𝒛𝑖𝑖𝑖𝑖    →       1  𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(5) 

              
 a -0.318*** 0.542***  

←
  V

ec
to

r  
𝒙𝒙 𝑡𝑡

   1 (Intercept) -0.318*** 0.542***  

←
  V

ec
to

r  
𝒙𝒙 𝑡𝑡

 1 (Intercept) -0.064 0.031 
 (-4.26) (5.48)   (-4.26) (5.48)   (-0.66) (0.19) 
           

bRMRF 1.092*** -0.143***  𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡  1.092*** -0.143***  𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡  1.091*** -0.142*** 
 (48.10) (-4.99)   (48.10) (-4.99)   (48.90) (-5.03) 
           

bSMB 0.212*** -0.287***  𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡  0.212*** -0.287***  𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡  0.209*** -0.283*** 
 (7.65) (-8.19)   (7.65) (-8.19)   (7.69) (-8.24) 
           

bHML 0.175*** -0.491***  𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡  0.175*** -0.491***  𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡  0.187*** -0.503*** 
 (4.24) (-10.35)   (4.24) (-10.35)   (4.86) (-11.25) 

             

  

       

  

R-squared 0.897 0.335  R-squared 0.224  
 within R-squared 0.225  

N Obs. 642 642  N Obs. 1,025,809  
 N Obs. 1,025,809  

        N Stocks 14,705     N Stocks 14,705   

This table reports value-weighted 3-factor model alphas along with RMRF (market excess return), SMB (small minus big), and HML (high minus low) factor loadings for 
portfolios sorted on operating profitability, defined as gross profit minus selling, general, and administrative expenses (excluding research and development expenditures) 
deflated by the book value of total assets. Panel A reports the results from conventional portfolio sorts where the bottom quintile portfolio’s excess return (first column) or 
the return difference between the top quintile and the bottom quintile profitability portfolio (second column) is regressed on the three Fama and French (1993) factors. 
Statistical inference for the conventional portfolio sorts approach is based on Newey and West (1987) standard errors with a lag-length of three. Panel B reproduces the 
results from the conventional portfolio sorts by aid of GPS-model (12). The GPS-model is estimated with weighted pooled OLS, where observation weights are set equal 
to the beginning-of-time t value-weights of the stocks in the bottom- and the top-quintile profitability portfolio, respectively. Panel C presents the results from estimating 
GPS-model (12) with firm fixed effects (i.e., with the fixed effects estimator). Observation weights are set equal to those in Panel B. Coefficient estimates and t-statistics 
(in parentheses) for the GPS-models in Panels B and C are for the product of the market-level factor variables (plus a constant) contained in vector 𝒙𝒙𝑡𝑡 (displayed on the 
vertical axis) and firm-characteristics vector 𝒛𝒛𝑖𝑖𝑖𝑖. Vector 𝒛𝒛𝑖𝑖𝑖𝑖 comprises a constant and dummy variable 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(5), which is one for stocks with top-quintile profitability (based 
on NYSE breakpoints at the end of each June) and zero otherwise. The GPS-models in Panels B and C only include firms, which belong to the top- or bottom-quintile 
groups of firms sorted on operating profitability. Statistical inference on the GPS-models is based on Driscoll and Kraay (1998) standard errors with a lag-length of three. 
The sample period is from July 1963 through December 2016. ***, **, and * indicate significance at the 1, 5, and 10 percent levels (two-tailed). 
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Table 5: Portfolio sorts specification test 

Panel A: Operating profitability                   

  Coefficient estimates on explanatory variables 𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡 
(coefficient vector 𝜽𝜽)   Coefficient estimates on time-series averages 

(coefficient vector 𝝃𝝃) 
  1 𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖

(2) 𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖
(3) 𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖

(4) 𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖
(5)   𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖

(2) 𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖
(3) 𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖

(4) 𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖
(5) 

           
1 (Intercept) -0.715*** 0.034 0.055 -0.073 0.018  0.983*** 0.712** 1.041*** 1.099*** 
                     (-4.79) (0.33) (0.53) (-0.59) (0.13) 

 
(2.98) (2.41) (3.68) (3.42) 

           
RMRF                 1.092*** -0.135*** -0.149*** -0.083*** -0.143***  -0.210 -0.138 -0.183 -0.122 
                     (47.89) (-4.31) (-5.12) (-2.71) (-4.97) 

 
(-1.16) (-0.83) (-0.78) (-0.43) 

           
SMB                  0.213*** -0.153*** -0.269*** -0.262*** -0.288***  0.407** 0.511** 0.393 0.285 
                     (7.66) (-2.90) (-6.35) (-6.20) (-8.18) 

 
(2.09) (2.00) (1.46) (0.90) 

           
HML                  0.175*** 0.083 -0.037 -0.128** -0.491***  -0.693*** -0.581** -0.016 -0.244 
                     (4.23) (1.21) (-0.69) (-2.08) (-10.39) 

 
(-2.80) (-2.04) (-0.05) (-0.72) 

                     

R-squared 0.228    Portfolio sorts specification test: F(16, 641) 4.612 
N Obs. 1,969,221 

       
p-value 0.000 

Panel B: Gross profitability                   

  Coefficient estimates on explanatory variables 𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡 
(coefficient vector 𝜽𝜽)   Coefficient estimates on time-series averages 

(coefficient vector 𝝃𝝃) 
  1 𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖

(2) 𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖
(3) 𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖

(4) 𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖
(5)   𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖

(2) 𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖
(3) 𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖

(4) 𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖
(5)            

1 (Intercept) -0.265*** -0.074 0.078 0.130 0.420**  0.325 0.075 0.332 0.277 
                     (-2.96) (-0.69) (0.61) (0.82) (2.56) 

 
(1.37) (0.34) (0.97) (0.82) 

           
RMRF                 0.940*** 0.077*** 0.062** 0.074*** -0.029  0.092 0.064 -0.140 -0.070 
                     (51.13) (2.85) (2.28) (2.76) (-0.91) 

 
(0.46) (0.36) (-0.56) (-0.24) 

           
SMB                  0.007 -0.069 0.029 -0.013 -0.050  0.517** 0.772*** 0.534** 0.282 
                     (0.26) (-1.37) (0.69) (-0.29) (-1.13) 

 
(2.49) (3.05) (2.29) (0.95) 

           
HML                  0.197*** -0.020 -0.148*** -0.431*** -0.487***  -0.556** -0.141 -0.295 -0.449 
                     (5.87) (-0.35) (-3.37) (-9.94) (-8.71) 

 
(-2.02) (-0.46) (-0.80) (-1.17) 

                      

R-squared 0.236    Portfolio sorts specification test: F(16, 641) 1.194 
N Obs. 1,969,221 

       
p-value 0.267 
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Table 5 – continued 

This table reports the results from estimating regression 𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) 𝜽𝜽 + 𝒒𝒒�𝒊𝒊𝝃𝝃 + 𝜀𝜀𝑖𝑖𝑖𝑖. Panel A contains the results for portfolio sorts on operating profitability, defined as gross 
profit minus selling, general, and administrative expenses (excluding research and development expenditures) deflated by the book value of total assets. Vector 𝒛𝒛𝑖𝑖𝑖𝑖 is specified 
as 𝒛𝒛𝑖𝑖𝑖𝑖 = [ 1    𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(2)  . . .   𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖
(5) ], where 𝑂𝑂𝑂𝑂𝑖𝑖𝑖𝑖

(𝑝𝑝) (𝑝𝑝 = 2, … ,5) is a dummy variable with value one if firm 𝑖𝑖 belongs to operating profitability quintile portfolio 𝑝𝑝. Panel B presents 
the results for portfolio sorts on gross profitability, defined as gross profit deflated by the book value of total assets. Here, vector 𝒛𝒛𝑖𝑖𝑖𝑖 is specified as 𝒛𝒛𝑖𝑖𝑖𝑖 = [ 1    𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖

(2)  . . .   𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖
(5) ] 

where 𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖
(𝑝𝑝) (𝑝𝑝 = 2, … ,5) is a dummy variable with value one if firm 𝑖𝑖 belongs to gross profitability quintile portfolio 𝑝𝑝. In both panels, vector 𝒙𝒙𝑡𝑡 is set to 𝒙𝒙𝑡𝑡 =

[ 1     𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡     𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡    𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡 ] with RMRF (market excess return), SMB (small minus big), and HML (high minus low) representing monthly Fama and French (1993) factor 
returns. Vector 𝒒𝒒�𝒊𝒊 comprises the firm-specific time-series averages from all variables in (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) that vary across both firms and time. Estimation results for coefficient vectors 
𝜽𝜽 and 𝝃𝝃 are reported in matrix form. Each coefficient estimate and t-statistic (in parentheses) is for the product of the market-level factor variable in vector 𝒙𝒙𝑡𝑡 (displayed on the 
vertical axis) and the portfolio dummy variable (or constant) in vector 𝒛𝒛𝑖𝑖𝑖𝑖 (left panel), or for the time-series average of the interaction between the factor variable in 𝒙𝒙𝑡𝑡 and the 
portfolio dummy variable in 𝒛𝒛𝑖𝑖𝑖𝑖 (right panel). The regressions are estimated with weighted pooled OLS, where observation weights are set equal to the beginning-of-time t value-
weights of the stocks in the quintile portfolios sorted on operating profitability (Panel A) and gross profitability (Panel B), respectively. The portfolio sorts specification test 
displayed in the lower right part of each Panel is a Wald-test on 𝐻𝐻0: 𝝃𝝃 = 0. Statistical inference is based on Driscoll and Kraay (1998) standard errors with a lag-length of three 
months. The sample period is from July 1963 through December 2016. ***, **, and * indicate significance at the 1, 5, and 10 percent levels (two-tailed). 
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Table 6: Continuous and multivariate firm characteristics 

  (1) (2) (3) (4) (5) (6) 
       

Panel A: GPS-models estimated with weighted pooled OLS 
       

Constant -0.317*** -0.248*** 0.275** 0.343*** 0.096 -0.008  
(-4.22) (-3.46) (2.54) (3.02) (0.80) (-0.06) 

       

Operating Profitability 1.743***     1.105*** 

 
(4.97) 

    
(2.61) 

       

Gross Profitability  0.778***   0.719*** 0.338 

 

 
(4.47) 

  
(4.14) (1.58) 

       

Volatility   -5.423*   -0.142 

 

  
(-1.94) 

  
(-0.05) 

       

Beta    -0.290** -0.315*** -0.303** 

 

   
(-2.57) (-2.75) (-2.52) 

              
R-squared 0.236 0.235 0.264 0.281 0.286 0.295 
N Obs. 2,115,518 2,115,518 2,289,867 2,275,370 2,073,983 2,059,734 
N Stocks 17,008 17,008 19,109 19,124 16,949 16,908 

       

Panel B: GPS-model specification test 

F(4, 641) 4.429*** 2.110* 3.486*** 2.400** 2.957*** 5.466*** 
p-value of specification test 0.002 0.078 0.008 0.049 0.003 0.000 

       

Panel C: GPS-models including firm fixed effects (weighted FE estimation) 
       
Constant -0.0826 -0.335*** 0.0440 0.422*** 0.093 -0.063  

(-0.82) (-3.32) (0.33) (3.05) (0.58) (-0.37) 
       

Operating profitability 0.614     -1.583***  
(1.31) 

    
(-2.63) 

       
Gross profitability  1.003***   0.913*** 1.744***   

(3.99) 
  

(3.75) (5.40) 
       

52w rolling Vola   0.269   4.672    
(0.08) 

  
(1.60) 

       
52w rolling Beta    -0.370*** -0.385*** -0.420***     

(-2.67) (-2.72) (-2.95) 
              
within R-squared 0.237 0.236 0.265 0.282 0.287 0.296 
N Obs. 2,115,518 2,115,518 2,289,867 2,275,370 2,073,983 2,059,734 
N Stocks 17,008 17,008 19,109 19,124 16,949 16,908 
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Table 6 – continued 

This table reports the coefficient estimates and t-statistics (in parentheses) from GPS-models with multivariate and 
continuous firm characteristics in vector 𝒛𝒛𝑖𝑖𝑖𝑖. The GPS-model is specified as 

𝑟𝑟𝑖𝑖𝑖𝑖 = (𝒛𝒛𝑖𝑖𝑖𝑖 ⨂ 𝒙𝒙𝑡𝑡) 𝜽𝜽 + 𝜈𝜈𝑖𝑖𝑖𝑖 = ([1    𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖    𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖    𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖   𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖𝑖𝑖] ⊗ [ 1    𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡    𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡   𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡]) 𝜽𝜽 + 𝜈𝜈𝑖𝑖𝑖𝑖 

𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖 is operating profitability (defined as gross profit minus selling, general, and administrative expenses (excluding 
research and development expenditures) deflated by the book value of total assets). 𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖  is gross profit deflated by 
the book value of total assets. 𝑂𝑂𝐴𝐴𝑖𝑖𝑖𝑖 and 𝐺𝐺𝐴𝐴𝑖𝑖𝑖𝑖 are formed at the end of each June and then remain unchanged through-
out the subsequent year. 𝑉𝑉𝑉𝑉𝑉𝑉𝑎𝑎𝑖𝑖𝑖𝑖 refers to the standard deviation of weekly returns measured over rolling 52 weeks 
ending on the last Friday (or, in case of a bank holiday, the subsequent trading day) prior to the end of month 𝑡𝑡. 
Likewise, 𝐵𝐵𝐵𝐵𝐵𝐵𝑎𝑎𝑖𝑖𝑖𝑖 is the CAPM-beta of weekly returns measured over rolling 52 weeks ending on the last Friday (or, 
in case of a bank holiday, the subsequent trading day) prior to the end of month 𝑡𝑡. The table only displays the results 
for coefficient estimates (of subsets) of the variables in vector 𝒛𝒛𝑖𝑖𝑖𝑖. The Fama-French three-factor model alpha (as a 
measure of the risk-adjusted performance) conditional on firm 𝑖𝑖’s characteristics in period 𝑡𝑡 is obtained as 𝛼𝛼�𝑖𝑖𝑖𝑖 =
 𝜃𝜃�0 + 𝜃𝜃�1 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇𝑖𝑖𝑖𝑖 + 𝜃𝜃�2 × 𝐺𝐺𝐺𝐺𝐺𝐺𝑇𝑇𝑖𝑖𝑖𝑖 + 𝜃𝜃�3 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 + 𝜃𝜃�4 × 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑖𝑖𝑖𝑖. The results for the interactions of vector 𝒛𝒛𝑖𝑖𝑖𝑖 firm 
characteristics with the market (𝑅𝑅𝑅𝑅𝑅𝑅𝐹𝐹𝑡𝑡), 𝑆𝑆𝑆𝑆𝐵𝐵𝑡𝑡  (small minus big), and 𝐻𝐻𝐻𝐻𝐿𝐿𝑡𝑡 (high minus low) factors are not 
shown in the table. The sample period is from July 1963 through December 2016. The GPS-models in Panel A are 
estimated with weighted pooled OLS, where observation weights are set equal to the beginning-of-time t value-
weights of the stocks. Panel B displays the results from the GPS-model specification test discussed in Section 2.3.3. 
To this end, the GPS-models from Panel A are extended with a series of control variables. These control variables 
are the firm-level time averages for all variables that vary over both the cross-section and time. The GPS-model 
specification test then tests by aid of a standard Wald test whether the coefficient estimates for the control variables 
are jointly equal to zero. Panel C reports the results from estimating the GPS-models from Panel A with the fixed 
effects (FE) estimator, where observation weights are set equal to the beginning-of-time t value-weights of the 
stocks. t-statistics test for significance against a value of zero. Statistical inference is based on Driscoll and Kraay 
(1998) standard errors with a lag-length of three. ***, **, and * indicate significance at the 1, 5, and 10 percent 
levels (two-tailed). 
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Appendix A: Proof of Propositions 1 to 3 

In this appendix, we first set the ground by rewriting both the GPS-model and the portfolio sorts ap-

proach in matrix notation. We then perform a series of basic transformations that apply to all three 

propositions stated in Section 2. Finally, we proof Propositions 1 to 3 mathematically. For ease of math-

ematical tractability and as outlined in Section 2, we thereby restrict our formal analysis to the case of a 

balanced panel (𝑁𝑁 firms with 𝑇𝑇 regularly spaced observations), time-constant firm characteristics (i.e., 

𝒛𝒛𝑖𝑖𝑖𝑖 ≡ 𝒛𝒛𝑖𝑖), and equally weighted portfolios (i.e., 𝑤𝑤𝑖𝑖𝑖𝑖 = 1/𝑁𝑁). Under these simplifying assumptions, the 

GPS-model can reproduce the results of the portfolio sorts approach by aid of standard pooled OLS 

where all observations are equally weighted. 

 

A.1  Matrix notation and proof of Proposition 1 

A.1.1  Coefficient estimates and standard errors for the GPS-model 

Applying matrix notation, we can write the GPS-model in (1) as23  

⎣
⎢
⎢
⎢
⎢
⎡

𝑟𝑟11
𝑟𝑟12

⋮
𝑟𝑟1𝑇𝑇
𝑟𝑟21

⋮
𝑟𝑟𝑁𝑁𝑁𝑁⎦

⎥
⎥
⎥
⎥
⎤

= ��
𝒛𝒛1 
𝒛𝒛2 
⋮

𝒛𝒛𝑁𝑁 

� ⨂ �
 𝒙𝒙1

⋮
 𝒙𝒙𝑇𝑇

��  𝜽𝜽 +

⎣
⎢
⎢
⎢
⎢
⎡

𝜈𝜈11
𝜈𝜈12

⋮
𝜈𝜈1𝑇𝑇
𝜈𝜈21

⋮
𝜈𝜈𝑁𝑁𝑁𝑁⎦

⎥
⎥
⎥
⎥
⎤

 (A1) 

or, more briefly: 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑹𝑹) = �
𝜸𝜸1 
𝜸𝜸2 

⋮
𝜸𝜸𝑁𝑁 

� = (𝒁𝒁⨂𝑿𝑿) 𝜽𝜽 + 𝝂𝝂 (A2) 

where 𝑣𝑣𝑣𝑣𝑣𝑣(𝑹𝑹) represents a (𝑁𝑁𝑁𝑁 × 1)-vector of the firms’ period 𝑡𝑡 (excess) returns,  𝒛𝒛𝑖𝑖 is a (1 × 𝑀𝑀)-

vector of firm characteristics (which are assumed to remain constant over time), 𝒙𝒙𝑡𝑡 = [1  𝑥𝑥1𝑡𝑡   ⋯   𝑥𝑥𝐾𝐾𝐾𝐾] 

refers to a (1 × (𝐾𝐾 + 1))-vector of market-level variables (which apart from the constant change over 

time but do not vary in the cross-section), and (𝒁𝒁⨂𝑿𝑿) denotes the Kronecker product of (𝑁𝑁 × 𝑀𝑀)-di-

mensional matrix 𝒁𝒁 = �𝒛𝒛1
′

 … 𝒛𝒛𝑁𝑁
′ �′ with (𝑇𝑇 × (𝐾𝐾 + 1))-dimensional matrix 𝑿𝑿 = [𝒙𝒙1

′ … 𝒙𝒙𝑇𝑇
′ ]′. Es-

timating regression model (A2) with pooled OLS, and applying the calculus rules for the Kronecker 

product, yields the following coefficient estimates for 𝜽𝜽: 

𝜽𝜽� = �(𝒁𝒁⨂𝑿𝑿)′(𝒁𝒁⨂𝑿𝑿)�−1(𝒁𝒁⨂𝑿𝑿)′𝑣𝑣𝑣𝑣𝑣𝑣(𝑹𝑹) 

= (𝒁𝒁′𝒁𝒁⨂𝑿𝑿′𝑿𝑿)−1(𝒁𝒁′⨂𝑿𝑿′)𝑣𝑣𝑣𝑣𝑣𝑣(𝑹𝑹) 

= ((𝒁𝒁′𝒁𝒁)−1𝒁𝒁′⨂(𝑿𝑿′𝑿𝑿)−1𝑿𝑿′)𝑣𝑣𝑣𝑣𝑣𝑣(𝑹𝑹) (A3) 

 
23 Throughout Appendix A, we assume 𝑐𝑐𝑖𝑖 = 0 (for all 𝑖𝑖) and omit the firm-specific effects 𝑐𝑐𝑖𝑖 from the analysis. 
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Next, we use the following Lemma from linear algebra (e.g., see Sydsaeter, Strom, and Berck, 2000, p. 

146): 

Lemma 1. For any three matrices 𝑨𝑨 ∈ ℝ𝑟𝑟,𝑟𝑟, 𝑩𝑩 ∈ ℝ𝑟𝑟,𝑠𝑠, and 𝑪𝑪 ∈ ℝ𝑠𝑠,𝑠𝑠 it holds true that 𝑣𝑣𝑣𝑣𝑣𝑣(𝑨𝑨𝑨𝑨𝑨𝑨) =

(𝑪𝑪′⨂𝑨𝑨)𝑣𝑣𝑣𝑣𝑣𝑣(𝑩𝑩). 

Applying Lemma 1 to expression (A3) above yields 

𝜽𝜽� = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝑹𝑹𝑹𝑹(𝒁𝒁′𝒁𝒁)−1 (A4) 

Here, 𝜽𝜽� refers to the ((𝐾𝐾 + 1) × 𝑀𝑀)-dimensional matrix of coefficient estimates 𝜃𝜃�𝑘𝑘,𝑚𝑚 for the interaction 

of firm characteristic 𝑚𝑚 (with 𝑚𝑚 = 1, … , 𝑀𝑀) from vector 𝒛𝒛𝑖𝑖 and market-level factor variable 𝑘𝑘 (with 𝑘𝑘 =

0, … , 𝐾𝐾) in vector  𝒙𝒙𝑡𝑡. 

We now turn to the Driscoll and Kraay (1998) covariance matrix estimator for the pooled OLS regres-

sion model in (A1). For 𝐻𝐻 lags, it has the following structure: 

𝑽𝑽��𝜽𝜽�� =  �(𝒁𝒁⨂𝑿𝑿)′(𝒁𝒁⨂𝑿𝑿)�−1𝑺𝑺�𝑻𝑻�(𝒁𝒁⨂𝑿𝑿)′(𝒁𝒁⨂𝑿𝑿)�−1 

= ((𝒁𝒁′𝒁𝒁)−1⨂(𝑿𝑿′𝑿𝑿)−1) 𝑺𝑺�𝑻𝑻 ((𝒁𝒁′𝒁𝒁)−1⨂(𝑿𝑿′𝑿𝑿)−1) (A5) 

with  𝑺𝑺�𝑻𝑻 = 𝛀𝛀� 0 +  ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻  �𝛀𝛀�𝑗𝑗 + 𝛀𝛀�𝑗𝑗
′�𝐻𝐻

𝑗𝑗=1  , 𝛀𝛀�𝑗𝑗 = ∑ 𝒉𝒉𝜏𝜏�𝜽𝜽��𝑇𝑇
𝜏𝜏=𝑗𝑗+1 𝒉𝒉𝜏𝜏−𝑗𝑗

′ �𝜽𝜽�� ,    

and 𝒉𝒉𝜏𝜏�𝜽𝜽�� = (𝒁𝒁⨂𝒙𝒙𝜏𝜏)′ 𝝂𝝂�     

 

The modified Bartlett weights 𝜔𝜔𝑗𝑗,𝐻𝐻 = 1 − 𝑗𝑗/(𝐻𝐻 + 1) ensure positive semi-definiteness of 𝑺𝑺�𝑻𝑻 and 

smooth the sample autocovariance function such that higher order lags receive less weight. 

 

A.1.2  Coefficient estimates and standard errors for the portfolio sorts approach 

The portfolio sorts approach comprises two steps. The first step involves computing the month 𝑡𝑡 average 

return for portfolio 𝑝𝑝 as outlined in Equation (5). In our case of a balanced panel, time-constant firm 

characteristics, and equally weighted portfolios (i.e., 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑁𝑁𝑝𝑝
−1 = �∑ 𝑧𝑧𝑖𝑖

(𝑝𝑝)𝑁𝑁
𝑖𝑖=1 �

−1
), we can rewrite 

Equation (5) as follows: 

𝑟𝑟𝑝𝑝𝑝𝑝 = 1
𝑁𝑁𝑝𝑝

∑ 𝑧𝑧𝑖𝑖
(𝑝𝑝)𝑟𝑟𝑖𝑖𝑖𝑖 = 𝒓𝒓𝑡𝑡

′ 𝒅𝒅𝑝𝑝�𝒅𝒅𝑝𝑝
′ 𝒅𝒅𝑝𝑝�−1𝑁𝑁

𝑖𝑖=1   (A6) 

with  𝒓𝒓𝑡𝑡
′ = [𝑟𝑟1𝑡𝑡     𝑟𝑟2𝑡𝑡   …    𝑟𝑟𝑁𝑁𝑁𝑁]  and  𝒅𝒅𝑝𝑝

′ = �𝑧𝑧1
(𝑝𝑝)    𝑧𝑧2

(𝑝𝑝)   …    𝑧𝑧𝑁𝑁
(𝑝𝑝)�. 

Here, 𝑧𝑧𝑖𝑖
(𝑝𝑝) is a dummy variable with value one if firm 𝑖𝑖 belongs to portfolio 𝑝𝑝, and zero otherwise. In 

the second step of the procedure, 𝑟𝑟𝑝𝑝𝑝𝑝 from (A6) is regressed on a constant and the 𝐾𝐾 factor variables as 

outlined in Equation (6). This yields OLS coefficient estimates as follows:  
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𝜷𝜷�𝑝𝑝 = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′ �
𝑟𝑟𝑝𝑝1 

⋮
𝑟𝑟𝑝𝑝𝑝𝑝 

� = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′ �
𝒓𝒓1

′ 𝒅𝒅𝑝𝑝�𝒅𝒅𝑝𝑝
′ 𝒅𝒅𝑝𝑝�−1

⋮
𝒓𝒓𝑇𝑇

′ 𝒅𝒅𝑝𝑝�𝒅𝒅𝑝𝑝
′ 𝒅𝒅𝑝𝑝�−1

� 

= (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′ �
𝒓𝒓1

′

⋮
𝒓𝒓𝑇𝑇

′
� 𝒅𝒅𝑝𝑝�𝒅𝒅𝑝𝑝

′ 𝒅𝒅𝑝𝑝�−1 = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′[𝜸𝜸1   𝜸𝜸2    …    𝜸𝜸𝑁𝑁]𝒅𝒅𝑝𝑝�𝒅𝒅𝑝𝑝
′ 𝒅𝒅𝑝𝑝�−1 

= (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝑹𝑹𝒅𝒅𝑝𝑝�𝒅𝒅𝑝𝑝
′ 𝒅𝒅𝑝𝑝�−1

 (A7) 

The formula for computing the Newey and West (1987) covariance matrix with lag length 𝐻𝐻 for the 

regression model in Equation (6) has the following structure:  

 𝑽𝑽��𝜷𝜷�𝑝𝑝� = (𝑿𝑿′𝑿𝑿)−1𝑺𝑺�𝑻𝑻(𝑿𝑿′𝑿𝑿)−1  

with  𝑺𝑺�𝑻𝑻 = ∑ 𝜀𝜀𝑝̂𝑝𝑝𝑝
2𝑇𝑇

𝑡𝑡=1 𝒙𝒙𝑡𝑡
′ 𝒙𝒙𝑡𝑡 + ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻  ∑ �𝜀𝜀𝑝̂𝑝𝑝𝑝𝜀𝜀𝑝̂𝑝𝑝𝑝−𝑗𝑗�𝒙𝒙𝜏𝜏

′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + 𝒙𝒙𝜏𝜏−𝑗𝑗
′ 𝒙𝒙𝜏𝜏��𝑇𝑇

𝜏𝜏=𝑗𝑗+1
𝐻𝐻
𝑗𝑗=1  (A8) 

Restricting the sample to two portfolios (or groups of firms), arbitrarily denoted as 𝑝𝑝 = “ℎ𝑖𝑖𝑖𝑖ℎ” and 𝑝𝑝 =

“𝑙𝑙𝑙𝑙𝑙𝑙”, we can use matrix notation to rewrite Equation (10) computing the month 𝑡𝑡 return difference as 

follows: 

Δ𝑟𝑟𝑝𝑝,𝑡𝑡 = 𝑟𝑟ℎ𝑖𝑖𝑖𝑖ℎ,𝑡𝑡 − 𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡 = 𝒓𝒓𝑡𝑡
′ 𝒁𝒁(𝒁𝒁′𝒁𝒁)−1𝒆𝒆2 = �𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡     Δ𝑟𝑟𝑝𝑝,𝑡𝑡� �0

1�  (A9) 

where matrix 𝒁𝒁 is specified as  𝒁𝒁 = [𝚤𝚤 𝒅𝒅ℎ𝑖𝑖𝑖𝑖ℎ] and 𝚤𝚤 is a (𝑁𝑁 × 1)-dimensional vector of ones. When 

regressing Δ𝑟𝑟𝑝𝑝,𝑡𝑡 from (A9) on a constant and the 𝐾𝐾 factor variables according to Equation (11), one 

obtains the following OLS coefficient estimates: 

𝜷𝜷�Δ = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′ �
Δ𝑟𝑟𝑝𝑝,1

⋮
Δ𝑟𝑟𝑝𝑝,𝑇𝑇

� = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝑹𝑹𝑹𝑹(𝒁𝒁′𝒁𝒁)−1𝒆𝒆2  (A10) 

The Newey and West (1987) covariance matrix estimator for the coefficient estimates in (A10) has the 

same structure as the one displayed in Equation (A8), with 𝜀𝜀Δ̂𝑡𝑡 replacing 𝜀𝜀𝑡̂𝑡 in the formula. 

 

A.1.3  Proof of Proposition 1 

Proposition 1 states that the GPS-model can reproduce the results of the portfolio sorts approach for the 

case of a single portfolio if vector 𝒛𝒛𝑖𝑖 ≡ 𝒛𝒛𝑖𝑖𝑖𝑖 is specified as 𝒛𝒛𝑖𝑖 = [ 1 ]. In this case, matrix 𝒁𝒁 in Equation 

(A2) is given as 𝒁𝒁 = 𝚤𝚤. As a result, the coefficient estimates of the GPS-model in this case are 

𝜽𝜽� = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝑹𝑹𝚤𝚤(𝚤𝚤′𝚤𝚤)−1 (A11) 

When there is only a single subject group, then 𝑧𝑧𝑖𝑖
(𝑝𝑝) for all firms 𝑖𝑖 is equal to 1, i.e., 𝒅𝒅𝑝𝑝 = 𝚤𝚤. Conse-

quently, the coefficient estimates for the portfolio sorts approach in Equation (A7) are equal to 
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𝜷𝜷� = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝑹𝑹𝚤𝚤(𝚤𝚤′𝚤𝚤)−1 (A12) 

As stated in Part A of Proposition 1, we thus have 𝜽𝜽� ≡ 𝜷𝜷�. This completes the first part of the proof. ∎ 

We next turn to the standard errors for the coefficient estimates. With 𝑟𝑟𝑝𝑝𝑝𝑝 = 𝑁𝑁−1 ∑ 𝑟𝑟𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1  and 𝜽𝜽� = 𝜷𝜷�, 

the (estimated) residual 𝜀𝜀𝑡̂𝑡 in Equation (3) is equal to 

𝜀𝜀𝑡̂𝑡 = 𝑁𝑁−1 ∑ 𝑣𝑣�𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 ≡ 𝑁𝑁−1𝑉𝑉𝑡𝑡  (A13) 

where 𝑣𝑣�𝑖𝑖𝑖𝑖 is the (estimated) residual from pooled OLS regression (4). Replacing 𝜀𝜀𝑡̂𝑡 in (A8) by the cor-

responding term from (A13) yields 

𝑁𝑁2 𝑺𝑺�𝑻𝑻 = ∑ 𝑉𝑉𝑡𝑡
2𝑇𝑇

𝑡𝑡=1 𝒙𝒙𝑡𝑡
′ 𝒙𝒙𝑡𝑡 + ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻  ∑ �𝑉𝑉𝜏𝜏𝑉𝑉𝜏𝜏−𝑗𝑗�𝒙𝒙𝜏𝜏

′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + 𝒙𝒙𝜏𝜏−𝑗𝑗
′ 𝒙𝒙𝜏𝜏��𝑇𝑇

𝜏𝜏=𝑗𝑗+1
𝐻𝐻
𝑗𝑗=1   (A14) 

In case of the GPS-model, we plug in 𝒁𝒁 = 𝚤𝚤 in Equation (A5). This gives 

𝑽𝑽��𝜽𝜽�� = ((𝚤𝚤′𝚤𝚤)−1⨂(𝑿𝑿′𝑿𝑿)−1) 𝑺𝑺�𝑻𝑻 ((𝚤𝚤′𝚤𝚤)−1⨂(𝑿𝑿′𝑿𝑿)−1) = (𝑿𝑿′𝑿𝑿)−1 𝑺𝑺�𝑻𝑻

𝑁𝑁2 (𝑿𝑿′𝑿𝑿)−1 (A15) 

Comparing 𝑽𝑽��𝜽𝜽�� in (A15) with 𝑽𝑽��𝜷𝜷�� from (A8) in case of a single subject group, we hence have to 

show that 𝑁𝑁−2𝑺𝑺�𝑻𝑻 = 𝑺𝑺�𝑻𝑻. Rewriting  𝒉𝒉𝜏𝜏�𝜽𝜽�� in (A5), we obtain: 

𝒉𝒉𝜏𝜏�𝜽𝜽�� = (𝚤𝚤⨂𝒙𝒙𝜏𝜏)′ 𝝂𝝂� = [𝒙𝒙𝜏𝜏
′ ⋯ 𝒙𝒙𝜏𝜏

′ ]𝝂𝝂� =

⎣
⎢
⎢
⎡ ∑ 𝑣𝑣�𝑖𝑖𝑖𝑖

𝑁𝑁
𝑖𝑖=1

𝑥𝑥1𝜏𝜏 ∑ 𝑣𝑣�𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1
⋮

𝑥𝑥𝐾𝐾𝐾𝐾 ∑ 𝑣𝑣�𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 ⎦

⎥
⎥
⎤

= 𝒙𝒙𝜏𝜏
′ 𝑉𝑉𝜏𝜏  (A16) 

From (A16) it follows for 𝛀𝛀�𝑗𝑗 in (A5) that 𝛀𝛀�𝑗𝑗 = ∑ 𝒉𝒉𝜏𝜏�𝜽𝜽��𝑇𝑇
𝜏𝜏=𝑗𝑗+1 𝒉𝒉𝜏𝜏−𝑗𝑗

′ �𝜽𝜽�� = ∑ 𝑉𝑉𝜏𝜏𝑉𝑉𝜏𝜏−𝑗𝑗𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏−𝑗𝑗

𝑇𝑇
𝜏𝜏=𝑗𝑗+1 , and 

consequently 

𝑺𝑺�𝑻𝑻 = ∑ 𝑉𝑉𝑡𝑡
2𝒙𝒙𝑡𝑡

′ 𝒙𝒙𝑡𝑡
𝑇𝑇
𝑡𝑡=1 + ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻  ∑ �𝑉𝑉𝜏𝜏𝑉𝑉𝜏𝜏−𝑗𝑗�𝒙𝒙𝜏𝜏

′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + 𝒙𝒙𝜏𝜏−𝑗𝑗
′ 𝒙𝒙𝜏𝜏��𝑇𝑇

𝜏𝜏=𝑗𝑗+1
𝐻𝐻
𝑗𝑗=1 ≡ 𝑁𝑁2 𝑺𝑺�𝑻𝑻   (A17) 

This completes the proof. ∎ 

 

A.2  Proof of Proposition 2 

Proposition 2 states that the GPS-model can reproduce the results of the portfolio sorts approach for 

multiple sorted portfolios by estimating a single pooled OLS regression on the individual firm level. To 

this end, we specify vector 𝒛𝒛𝑖𝑖 as 𝒛𝒛𝑖𝑖 = [ 𝑧𝑧𝑖𝑖
(1)   𝑧𝑧𝑖𝑖

(2)  . . .   𝑧𝑧𝑖𝑖
(𝑃𝑃)]. Using the definition of 𝒅𝒅𝑝𝑝 in (A6), 

(𝑁𝑁 × 𝑃𝑃)-matrix 𝒁𝒁 in equation (A2) is given as follows:  
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𝒁𝒁 = �
𝒛𝒛1 
⋮

𝒛𝒛𝑁𝑁 

� = �
𝑧𝑧1

(1) ⋯ 𝑧𝑧1
(𝑃𝑃)

⋮ ⋮
𝑧𝑧𝑁𝑁

(1) ⋯ 𝑧𝑧𝑁𝑁
(𝑃𝑃)

� = [𝒅𝒅1 ⋯ 𝒅𝒅𝑃𝑃]   (A18) 

The coefficient estimates for the GPS-model are derived in (A4). Specifying matrix 𝒁𝒁 according to 

(A18) thus results in a ((𝐾𝐾 + 1) × 𝑃𝑃)-dimensional matrix of coefficient estimates 𝜽𝜽�. The 𝑝𝑝-th column 

of results matrix  𝜽𝜽� can be obtained as follows: 

𝜽𝜽�𝑝𝑝 = 𝜽𝜽�𝒆𝒆𝑝𝑝 = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝑹𝑹𝑹𝑹(𝒁𝒁′𝒁𝒁)−1𝒆𝒆𝑝𝑝 (A19) 

where 𝒆𝒆𝑝𝑝 is a 𝑃𝑃-dimensional vector of zeroes with a one on position 𝑝𝑝. Proposition 2 claims that 𝜽𝜽�𝑝𝑝 ≡

𝜷𝜷�𝑝𝑝 where 𝜷𝜷�𝑝𝑝 refers to the portfolio 𝑝𝑝 coefficient estimates from estimating the second-step time-series 

regression of the portfolio sorts approach. The respective coefficient estimates have been derived in 

Equation (A7). We thus have to proof that 𝜽𝜽�𝑝𝑝 ≡ 𝜷𝜷�𝑝𝑝 = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿′𝑹𝑹𝒅𝒅𝑝𝑝�𝒅𝒅𝑝𝑝
′ 𝒅𝒅𝑝𝑝�−1

 or, equivalently, that 

𝒁𝒁(𝒁𝒁′𝒁𝒁)−1𝒆𝒆𝑝𝑝 ≡ 𝒅𝒅𝑝𝑝�𝒅𝒅𝑝𝑝
′ 𝒅𝒅𝑝𝑝�−1

 (A20) 

To show that (A20) indeed is an identity, we note that 𝒅𝒅𝑝𝑝 = 𝒁𝒁𝒆𝒆𝒑𝒑 and that (𝒁𝒁′𝒁𝒁)−1 is a diagonal matrix 

with element (𝒁𝒁′𝒁𝒁)𝑝𝑝,𝑝𝑝
−1 = �𝒅𝒅𝑝𝑝

′ 𝒅𝒅𝑝𝑝�−1
. With (𝒁𝒁′𝒁𝒁)−1𝒆𝒆𝒑𝒑 = �𝒅𝒅𝑝𝑝

′ 𝒅𝒅𝑝𝑝�−1𝒆𝒆𝒑𝒑 = 𝒆𝒆𝒑𝒑�𝒅𝒅𝑝𝑝
′ 𝒅𝒅𝑝𝑝�−1

 it therefore 

holds true that 

𝒁𝒁(𝒁𝒁′𝒁𝒁)−1𝒆𝒆𝑝𝑝 = 𝒁𝒁𝒆𝒆𝒑𝒑�
𝒅𝒅𝑝𝑝

�𝒅𝒅𝑝𝑝
′ 𝒅𝒅𝑝𝑝�−1 = 𝒅𝒅𝑝𝑝�𝒅𝒅𝑝𝑝

′ 𝒅𝒅𝑝𝑝�−1
 (A21) 

This shows that 𝜽𝜽�𝑝𝑝 ≡ 𝜷𝜷�𝑝𝑝 and, hence, completes the first part of the proof of Proposition 2. ∎ 

Next, we turn to the standard errors for the coefficient estimates. With 𝑟𝑟𝑝𝑝𝑝𝑝 = 𝑁𝑁𝑝𝑝
−1 ∑ 𝑧𝑧𝑖𝑖

𝑝𝑝𝑟𝑟𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1  and 𝜽𝜽�𝑝𝑝 =

𝜷𝜷�𝑝𝑝, the (estimated) residual 𝜀𝜀𝑝̂𝑝𝑝𝑝 for the portfolio sorts approach in equation (6) is equal to 

𝜀𝜀𝑝̂𝑝𝑝𝑝 = 𝑁𝑁𝑝𝑝
−1 ∑ 𝑧𝑧𝑖𝑖

(𝑝𝑝)𝑣𝑣�𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 ≡ 𝑁𝑁𝑝𝑝

−1𝑉𝑉𝑝𝑝𝑡𝑡  (A22) 

where 𝑣𝑣�𝑖𝑖𝑖𝑖 is the (estimated) residual from pooled OLS regression (7). Replacing 𝜀𝜀𝑝̂𝑝𝑝𝑝 in (A8) by the 

corresponding term from (A22) yields 

𝑁𝑁𝑝𝑝
2 𝑺𝑺�𝑻𝑻 = ∑ 𝑉𝑉𝑝𝑝𝑝𝑝

2𝑇𝑇
𝑡𝑡=1 𝒙𝒙𝑡𝑡

′ 𝒙𝒙𝑡𝑡 + ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻  ∑ �𝑉𝑉𝑝𝑝𝑝𝑝𝑉𝑉𝑝𝑝,𝜏𝜏−𝑗𝑗�𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + 𝒙𝒙𝜏𝜏−𝑗𝑗

′ 𝒙𝒙𝜏𝜏��𝑇𝑇
𝜏𝜏=𝑗𝑗+1

𝐻𝐻
𝑗𝑗=1 ≡ 𝑺𝑺�𝑻𝑻

(𝑝𝑝)  (A23) 

As a consequence, we finally obtain the Newey and West (1987) standard errors in case of the portfolio 

sorts approach as follows: 

𝑽𝑽��𝜷𝜷�𝑝𝑝� = 𝑁𝑁𝑝𝑝
−2(𝑿𝑿′𝑿𝑿)−1𝑺𝑺�𝑻𝑻

(𝑝𝑝)(𝑿𝑿′𝑿𝑿)−1  (A24) 
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We now consider the GPS-model with matrix 𝒁𝒁 being defined according to Equation (A18). The 

�𝑃𝑃 × (𝐾𝐾 + 1)�-dimensional column vector 𝒉𝒉𝜏𝜏�𝜽𝜽�� from (A5) in this case is equal to 

𝒉𝒉𝜏𝜏�𝜽𝜽�� = (𝒁𝒁′⨂𝒙𝒙𝜏𝜏
′ ) 𝝂𝝂� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ∑ 𝑧𝑧𝑖𝑖

(1)𝑣𝑣�𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1

𝑥𝑥1𝜏𝜏 ∑ 𝑧𝑧𝑖𝑖
(1)𝑣𝑣�𝑖𝑖𝑖𝑖

𝑁𝑁
𝑖𝑖=1

⋮
𝑥𝑥𝐾𝐾𝐾𝐾 ∑ 𝑧𝑧𝑖𝑖

(1)𝑣𝑣�𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1

∑ 𝑧𝑧𝑖𝑖
(2)𝑣𝑣�𝑖𝑖𝑖𝑖

𝑁𝑁
𝑖𝑖=1

𝑥𝑥1𝜏𝜏 ∑ 𝑧𝑧𝑖𝑖
(2)𝑣𝑣�𝑖𝑖𝑖𝑖

𝑁𝑁
𝑖𝑖=1

⋮
𝑥𝑥𝐾𝐾𝐾𝐾 ∑ 𝑧𝑧𝑖𝑖

(𝑃𝑃)𝑣𝑣�𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝑉𝑉1𝜏𝜏
𝑥𝑥1𝜏𝜏𝑉𝑉1𝜏𝜏

⋮
𝑥𝑥𝐾𝐾𝐾𝐾𝑉𝑉1𝜏𝜏

𝑉𝑉2𝜏𝜏
𝑥𝑥1𝜏𝜏𝑉𝑉2𝜏𝜏

⋮
𝑥𝑥𝐾𝐾𝐾𝐾𝑉𝑉𝑃𝑃𝑃𝑃⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

= (𝑰𝑰𝑃𝑃⨂𝒙𝒙𝜏𝜏
′ ) �

𝑉𝑉1𝜏𝜏
⋮

𝑉𝑉𝑃𝑃𝑃𝑃

� ≡ (𝑰𝑰𝑃𝑃⨂𝒙𝒙𝜏𝜏
′ )𝑽𝑽𝜏𝜏  (A25) 

where 𝑰𝑰𝑃𝑃 is the 𝑃𝑃-dimensional identity matrix. With (A25) it follows for 𝛀𝛀�𝑗𝑗 in Equation (A5) that  

𝛀𝛀�𝑗𝑗 = ∑ (𝑰𝑰𝑃𝑃⨂𝒙𝒙𝜏𝜏
′ )𝑽𝑽𝜏𝜏𝑽𝑽𝜏𝜏−𝑗𝑗

′ �𝑰𝑰𝑃𝑃⨂𝒙𝒙𝜏𝜏−𝑗𝑗�𝑇𝑇
𝜏𝜏=𝑗𝑗+1 = ∑ �𝑽𝑽𝜏𝜏𝑽𝑽𝜏𝜏−𝑗𝑗

′ �⨂�𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏−𝑗𝑗�𝑇𝑇

𝜏𝜏=𝑗𝑗+1   (A26) 

As a result, matrix 𝑺𝑺�𝑻𝑻 in (A5) can be written as follows: 

𝑺𝑺�𝑻𝑻 =   �(𝑽𝑽𝑡𝑡𝑽𝑽𝑡𝑡
′ )⨂(𝒙𝒙𝑡𝑡

′ 𝒙𝒙𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

+  � 𝜔𝜔𝑗𝑗,𝐻𝐻 � ��𝑽𝑽𝜏𝜏𝑽𝑽𝜏𝜏−𝑗𝑗
′ �⨂�𝒙𝒙𝜏𝜏

′ 𝒙𝒙𝜏𝜏−𝑗𝑗� + �𝑽𝑽𝜏𝜏−𝑗𝑗𝑽𝑽𝜏𝜏
′ �⨂�𝒙𝒙𝜏𝜏−𝑗𝑗

′ 𝒙𝒙𝜏𝜏��
𝑇𝑇

𝜏𝜏=𝑗𝑗+1

𝐻𝐻

𝑗𝑗=1

 

(A27) 

We next define 𝑺𝑺�𝑻𝑻
(𝑝𝑝,𝑞𝑞) as follows 

𝑺𝑺�𝑻𝑻
(𝑝𝑝,𝑞𝑞) ≡   � 𝑉𝑉𝑝𝑝𝑝𝑝𝑉𝑉𝑞𝑞𝑞𝑞(𝒙𝒙𝑡𝑡

′ 𝒙𝒙𝑡𝑡)
𝑇𝑇

𝑡𝑡=1

+  � 𝜔𝜔𝑗𝑗,𝐻𝐻 � �𝑉𝑉𝑝𝑝𝑝𝑝𝑉𝑉𝑞𝑞,𝜏𝜏−𝑗𝑗�𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏−𝑗𝑗� + 𝑉𝑉𝑝𝑝,𝜏𝜏−𝑗𝑗𝑉𝑉𝑞𝑞𝑞𝑞�𝒙𝒙𝜏𝜏−𝑗𝑗

′ 𝒙𝒙𝜏𝜏��
𝑇𝑇

𝜏𝜏=𝑗𝑗+1

𝐻𝐻

𝑗𝑗=1

 (A28) 

where 𝑉𝑉𝑝𝑝𝑝𝑝 is a scalar as in (A22) above. Consequently, matrix 𝑺𝑺�𝑻𝑻 is equal to  

𝑺𝑺�𝑻𝑻 =   �
𝑺𝑺�𝑻𝑻

(1,1) ⋯ 𝑺𝑺�𝑻𝑻
(1,𝑃𝑃)

⋮ ⋱ ⋮
𝑺𝑺�𝑻𝑻

(𝑃𝑃,1) ⋯ 𝑺𝑺�𝑻𝑻
(𝑃𝑃,𝑃𝑃)

� (A29) 

Moreover, with matrix 𝒁𝒁 being defined according to (A18), 𝒁𝒁′𝒁𝒁 now is a (𝑃𝑃 × 𝑃𝑃)-dimensional diagonal 

matrix with element (𝑝𝑝, 𝑝𝑝) equal to 𝑁𝑁𝑝𝑝 and all off-diagonal elements equal to zero. With 𝑺𝑺�𝑻𝑻 structured 

according to Expression (A29), we can thus rewrite 𝑽𝑽��𝜽𝜽�� in (A5) as follows: 

𝑽𝑽��𝜽𝜽�� =  �
𝑁𝑁1

−2(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑺𝑺�𝑻𝑻
(1,1)(𝑿𝑿′𝑿𝑿)−𝟏𝟏 ⋯ 𝑁𝑁1

−1𝑁𝑁𝑃𝑃
−1(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑺𝑺�𝑻𝑻

(1,𝑃𝑃)(𝑿𝑿′𝑿𝑿)−𝟏𝟏

⋮ ⋱ ⋮
𝑁𝑁1

−1𝑁𝑁𝑃𝑃
−1(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑺𝑺�𝑻𝑻

(𝑃𝑃,1)(𝑿𝑿′𝑿𝑿)−𝟏𝟏 ⋯ 𝑁𝑁𝑃𝑃
−2(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑺𝑺�𝑻𝑻

(𝑃𝑃,𝑃𝑃)(𝑿𝑿′𝑿𝑿)−𝟏𝟏
� (A30) 

The second part of Proposition 2 claims that SE(𝜃𝜃�𝑝𝑝,𝑘𝑘) = SE(𝛽̂𝛽𝑝𝑝,𝑘𝑘) for 𝑘𝑘 = 0, 1, … , 𝐾𝐾 and 𝑝𝑝 = 1, … , 𝑃𝑃. 

To proof that this holds true, it is sufficient to show that 𝑁𝑁𝑝𝑝
−2(𝑿𝑿′𝑿𝑿)−𝟏𝟏𝑺𝑺�𝑻𝑻

(𝑝𝑝,𝑝𝑝)(𝑿𝑿′𝑿𝑿)−𝟏𝟏 in Expression (A30) 
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is identical to 𝑽𝑽��𝜷𝜷�𝑝𝑝� in Equation (A24) for every 𝑝𝑝 = 1, … , 𝑃𝑃.  This in turn is equivalent to demonstrat-

ing that 𝑺𝑺�𝑻𝑻
(𝑝𝑝) from (A23) coincides with 𝑺𝑺�𝑻𝑻

(𝑝𝑝,𝑝𝑝) in (A28). By comparing the two expressions we see that 

this holds true, which completes the proof. ∎ 

A.3  Proof of Proposition 3 

Proposition 3 states that the GPS-model can reproduce the results of the portfolio sorts approach for the 

case of performance differences between two portfolios. In order to compare the performance of firms 

in group “high” with that of firms belonging to group “low”, we have to specify vector 𝒛𝒛𝑖𝑖 as 𝒛𝒛𝑖𝑖 =

[ 1   𝑧𝑧𝑖𝑖
(ℎ𝑖𝑖𝑖𝑖ℎ)] such that the (𝑁𝑁 × 2)-dimensional matrix 𝒁𝒁 comprising the characteristics of all 𝑁𝑁 firms 

is equal to 𝒁𝒁 = [𝚤𝚤 𝒅𝒅ℎ𝑖𝑖𝑖𝑖ℎ]. This matches the definition of matrix 𝒁𝒁 in Expression (A9) which is used 

for deriving the results of performance differences in case of the portfolio sorts approach. Estimating 

the GPS-model in (A2) with pooled OLS yields the coefficient estimates, structured as a ((𝐾𝐾 + 1) × 2)-

dimensional matrix, in Equation (A4). 

The second column of 𝜽𝜽� in (A4) contains the coefficient estimates for the interaction terms between 

dummy variable 𝑧𝑧𝑖𝑖
(ℎ𝑖𝑖𝑖𝑖ℎ) and the factor variables in vector 𝒙𝒙𝑡𝑡. In Equation (12), those coefficient esti-

mates are named 𝜃𝜃�Δ𝑘𝑘. To extract the coefficient estimates for 𝜃𝜃�Δ𝑘𝑘 from 𝜽𝜽�, we post-multiply Expression 

(A4) with 𝒆𝒆2. The resulting term coincides with the one in Equation (A10) for the portfolio sorts ap-

proach. This shows that 𝛽̂𝛽Δ𝑘𝑘 ≡ 𝜃𝜃�Δ𝑘𝑘 (∀ 𝑘𝑘 = 0, 1, … , 𝐾𝐾).  

The first column of 𝜽𝜽� in (A4) comprises the coefficient estimates for subject group “low”. In Equation 

(12), the respective coefficient estimates are labeled as 𝜃𝜃�𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘 (with 𝑘𝑘 = 0, 1, … , 𝐾𝐾). The coefficient es-

timates for 𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘  are retrieved by post-multiplying (A4) with 𝒆𝒆1. In case of the portfolio sorts approach, 

we obtain the coefficient estimates for the “low” portfolio (𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘) by repeating the analysis of (A9) and 

(A10) with 𝒆𝒆1 replacing 𝒆𝒆2. The resulting expressions for the portfolio sorts approach and the GPS-

model again coincide. This demonstrates 𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘 ≡ θ�𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘 (∀ 𝑘𝑘 = 0, 1, … , 𝐾𝐾) and, hence, completes the 

first part of the proof. ∎ 

For the second part of the proof, we note that due to 𝑟𝑟ℎ𝑖𝑖𝑖𝑖ℎ,𝑡𝑡 = 𝑟𝑟𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡 + Δ𝑟𝑟𝑝𝑝,𝑡𝑡 the following corollary 

holds true: 

Corollary 2.        𝛽̂𝛽ℎ𝑖𝑖𝑖𝑖ℎ,𝑘𝑘 = 𝛽̂𝛽𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘 + 𝛽̂𝛽Δ𝑘𝑘 = θ�𝑙𝑙𝑙𝑙𝑙𝑙,𝑘𝑘 + 𝜃𝜃�Δ𝑘𝑘   for all 𝑘𝑘 = 0, 1, … , 𝐾𝐾. (A31) 

Based on Corollary 2 and Proposition 2, and because of 𝑟𝑟𝑝𝑝𝑝𝑝 = 𝑁𝑁𝑝𝑝
−1 ∑ 𝑧𝑧𝑖𝑖

(𝑝𝑝)𝑟𝑟𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1  (for 𝑝𝑝 = “low”, “high”), 

residual 𝜀𝜀Δ̂𝑡𝑡 in the second-step time-series regression (11) of the portfolio sorts approach is equal to 

𝜀𝜀Δ̂𝑡𝑡 = 𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ
−1 ∑ 𝑧𝑧𝑖𝑖

(ℎ𝑖𝑖𝑖𝑖ℎ)𝑣𝑣�𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 − 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙

−1 ∑ 𝑧𝑧𝑖𝑖
(𝑙𝑙𝑙𝑙𝑙𝑙)𝑣𝑣�𝑖𝑖𝑖𝑖

𝑁𝑁
𝑖𝑖=1 ≡ 𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ

−1 𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝑡𝑡 − 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙
−1 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡  (A32) 
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where 𝑣𝑣�𝑖𝑖𝑖𝑖 is the (estimated) residual from pooled OLS regression (7). Replacing 𝜀𝜀Δ̂𝑡𝑡 in the Newey and 

West (1987) covariance matrix estimator (A8) for the coefficient estimates in (A10) by the respective 

expression in (A32) yields 

 𝑺𝑺�𝑻𝑻 = � �
𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝑡𝑡

𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ
−

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙
�

2𝑇𝑇

𝑡𝑡=1

𝒙𝒙𝑡𝑡
′ 𝒙𝒙𝑡𝑡 

+ � 𝜔𝜔𝑗𝑗,𝐻𝐻  � ��
𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏

𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ
−

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙
� �

𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏−𝑗𝑗

𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ
−

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏−𝑗𝑗

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙
� �𝒙𝒙𝜏𝜏

′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + 𝒙𝒙𝜏𝜏−𝑗𝑗
′ 𝒙𝒙𝜏𝜏��

𝑇𝑇

𝜏𝜏=𝑗𝑗+1

𝐻𝐻

𝑗𝑗=1

 

(A33) 

We now turn to the GPS-model with matrix 𝒁𝒁 being defined as 𝒁𝒁 = [𝚤𝚤 𝒅𝒅ℎ𝑖𝑖𝑖𝑖ℎ]. The �2 × (𝐾𝐾 + 1)�-

dimensional column vector 𝒉𝒉𝜏𝜏�𝜽𝜽�� from (A5) in this case is equal to 

𝒉𝒉𝜏𝜏�𝜽𝜽�� = (𝒁𝒁′⨂𝒙𝒙𝜏𝜏
′ ) 𝝂𝝂� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ∑ 𝑣𝑣�𝑖𝑖𝑖𝑖

𝑁𝑁
𝑖𝑖=1

𝑥𝑥1𝜏𝜏 ∑ 𝑣𝑣�𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1
⋮

𝑥𝑥𝐾𝐾𝐾𝐾 ∑ 𝑣𝑣�𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1

∑ 𝑧𝑧𝑖𝑖
(ℎ𝑖𝑖𝑖𝑖ℎ)𝑣𝑣�𝑖𝑖𝑖𝑖

𝑁𝑁
𝑖𝑖=1

𝑥𝑥1𝜏𝜏 ∑ 𝑧𝑧𝑖𝑖
(ℎ𝑖𝑖𝑖𝑖ℎ)𝑣𝑣�𝑖𝑖𝑖𝑖

𝑁𝑁
𝑖𝑖=1

⋮
𝑥𝑥𝐾𝐾𝐾𝐾 ∑ 𝑧𝑧𝑖𝑖

(ℎ𝑖𝑖𝑖𝑖ℎ)𝑣𝑣�𝑖𝑖𝑖𝑖
𝑁𝑁
𝑖𝑖=1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

= �𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏

′

𝒙𝒙𝜏𝜏
′ 𝟎𝟎′� �

𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏
𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏

� ≡ �𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏

′

𝒙𝒙𝜏𝜏
′ 𝟎𝟎′� 𝑽𝑽𝜏𝜏  (A34) 

From (A34) and 𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏 + 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏 ≡ 𝑉𝑉𝜏𝜏 it follows for 𝛀𝛀�𝑗𝑗 in Equation (A5) that  

𝛀𝛀�𝑗𝑗 = � �
𝑉𝑉𝜏𝜏𝑉𝑉𝜏𝜏−𝑗𝑗𝒙𝒙𝜏𝜏

′ 𝒙𝒙𝜏𝜏−𝑗𝑗 𝑉𝑉𝜏𝜏𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏−𝑗𝑗𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏−𝑗𝑗

𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏𝑉𝑉𝜏𝜏−𝑗𝑗𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏−𝑗𝑗 𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏−𝑗𝑗𝒙𝒙𝜏𝜏

′ 𝒙𝒙𝜏𝜏−𝑗𝑗
�

𝑇𝑇

𝜏𝜏=𝑗𝑗+1

 (A35) 

As a result, matrix 𝑺𝑺�𝑻𝑻 in (A5) can be written in block form as follows: 

𝑺𝑺�𝑻𝑻 = �
𝑺𝑺�𝑻𝑻

(𝟏𝟏,𝟏𝟏) 𝑺𝑺�𝑻𝑻
(𝟏𝟏,𝟐𝟐)

𝑺𝑺�𝑻𝑻
(𝟐𝟐,𝟏𝟏) 𝑺𝑺�𝑻𝑻

(𝟐𝟐,𝟐𝟐)�  (A36) 

where 

𝑺𝑺�𝑻𝑻
(𝟏𝟏,𝟏𝟏) = ∑ 𝑉𝑉𝑡𝑡

2(𝒙𝒙𝑡𝑡
′ 𝒙𝒙𝑡𝑡)𝑇𝑇

𝑡𝑡=1 +  ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻 ∑ �𝑉𝑉𝜏𝜏𝑉𝑉𝜏𝜏−𝑗𝑗�𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + 𝒙𝒙𝜏𝜏−𝑗𝑗

′ 𝒙𝒙𝜏𝜏��𝑇𝑇
𝜏𝜏=𝑗𝑗+1

𝐻𝐻
𝑗𝑗=1   

𝑺𝑺�𝑻𝑻
(𝟏𝟏,𝟐𝟐) = ∑ 𝑉𝑉𝑡𝑡𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝑡𝑡(𝒙𝒙𝑡𝑡

′ 𝒙𝒙𝑡𝑡)𝑇𝑇
𝑡𝑡=1 +  ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻 ∑ �𝑉𝑉𝜏𝜏𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏−𝑗𝑗𝒙𝒙𝜏𝜏

′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + 𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏𝑉𝑉𝜏𝜏−𝑗𝑗𝒙𝒙𝜏𝜏−𝑗𝑗
′ 𝒙𝒙𝜏𝜏�𝑇𝑇

𝜏𝜏=𝑗𝑗+1
𝐻𝐻
𝑗𝑗=1   

𝑺𝑺�𝑻𝑻
(𝟐𝟐,𝟏𝟏) = ∑ 𝑉𝑉𝑡𝑡𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝑡𝑡(𝒙𝒙𝑡𝑡

′ 𝒙𝒙𝑡𝑡)𝑇𝑇
𝑡𝑡=1 +  ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻 ∑ �𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏𝑉𝑉𝜏𝜏−𝑗𝑗𝒙𝒙𝜏𝜏

′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + 𝑉𝑉𝜏𝜏𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏−𝑗𝑗𝒙𝒙𝜏𝜏−𝑗𝑗
′ 𝒙𝒙𝜏𝜏�𝑇𝑇

𝜏𝜏=𝑗𝑗+1
𝐻𝐻
𝑗𝑗=1   

𝑺𝑺�𝑻𝑻
(𝟐𝟐,𝟐𝟐) = ∑ 𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝑡𝑡

2 (𝒙𝒙𝑡𝑡
′ 𝒙𝒙𝑡𝑡)𝑇𝑇

𝑡𝑡=1 +  ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻 ∑ �𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏−𝑗𝑗�𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + 𝒙𝒙𝜏𝜏−𝑗𝑗

′ 𝒙𝒙𝜏𝜏��𝑇𝑇
𝜏𝜏=𝑗𝑗+1

𝐻𝐻
𝑗𝑗=1   

 

Next, we rewrite matrix (𝒁𝒁′𝒁𝒁)−1⨂(𝑿𝑿′𝑿𝑿)−1 in (A5) as  

(𝒁𝒁′𝒁𝒁)−1⨂(𝑿𝑿′𝑿𝑿)−1 =  �
𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙

−1 (𝑿𝑿′𝑿𝑿)−1 −𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙
−1 (𝑿𝑿′𝑿𝑿)−1

−𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙
−1 (𝑿𝑿′𝑿𝑿)−1 �𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙

−1 + 𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ
−1 �(𝑿𝑿′𝑿𝑿)−1� (A37) 
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and insert (A37) into the Driscoll and Kraay (1998) covariance matrix estimator of (A5) to obtain 

𝑽𝑽��𝜽𝜽�� = ((𝒁𝒁′𝒁𝒁)−1⨂(𝑿𝑿′𝑿𝑿)−1) 𝑺𝑺�𝑻𝑻 ((𝒁𝒁′𝒁𝒁)−1⨂(𝑿𝑿′𝑿𝑿)−1) = �𝑽𝑽�(1,1) 𝑽𝑽�(1,2)

𝑽𝑽�(2,1) 𝑽𝑽�(2,2)�  (A38) 

where  

𝑽𝑽�(1,1) = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙
−2 (𝑿𝑿′𝑿𝑿)−1 �𝑺𝑺�𝑻𝑻

(𝟏𝟏,𝟏𝟏) − 𝑺𝑺�𝑻𝑻
(𝟏𝟏,𝟐𝟐) − 𝑺𝑺�𝑻𝑻

(𝟐𝟐,𝟏𝟏) + 𝑺𝑺�𝑻𝑻
(𝟐𝟐,𝟐𝟐)� (𝑿𝑿′𝑿𝑿)−1  

𝑽𝑽�(1,2) = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙
−1 𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ

−1 (𝑿𝑿′𝑿𝑿)−1 �𝑺𝑺�𝑻𝑻
(𝟏𝟏,𝟐𝟐) − 𝑺𝑺�𝑻𝑻

(𝟐𝟐,𝟐𝟐)� (𝑿𝑿′𝑿𝑿)−1 − 𝑽𝑽�(1,1)  

𝑽𝑽�(2,1) = 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙
−1 𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ

−1 (𝑿𝑿′𝑿𝑿)−1 �𝑺𝑺�𝑻𝑻
(𝟐𝟐,𝟏𝟏) − 𝑺𝑺�𝑻𝑻

(𝟐𝟐,𝟐𝟐)� (𝑿𝑿′𝑿𝑿)−1 − 𝑽𝑽�(1,1)  

𝑽𝑽�(2,2) = 𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ
−2 (𝑿𝑿′𝑿𝑿)−1𝑺𝑺�𝑻𝑻

(𝟐𝟐,𝟐𝟐)(𝑿𝑿′𝑿𝑿)−1 − 𝑽𝑽�(1,1) − 𝑽𝑽�(1,2) − 𝑽𝑽�(2,1)  

 

According to the second part of Proposition 3, we have to show that 𝑽𝑽�(2,2) in (A38) coincides with the 

Newey-West covariance matrix estimator in (A10) with  𝑺𝑺�𝑻𝑻 specified according to (A33). Therefore, we 

simplify the “sandwich” expressions in (A38) as follows 

𝑺𝑺�𝑻𝑻
(𝟏𝟏,𝟏𝟏) − 𝑺𝑺�𝑻𝑻

(𝟏𝟏,𝟐𝟐) − 𝑺𝑺�𝑻𝑻
(𝟐𝟐,𝟏𝟏) + 𝑺𝑺�𝑻𝑻

(𝟐𝟐,𝟐𝟐) = ∑ 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡
2 (𝒙𝒙𝑡𝑡

′ 𝒙𝒙𝑡𝑡)𝑇𝑇
𝑡𝑡=1 +  ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻 ∑ �𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏−𝑗𝑗�𝒙𝒙𝜏𝜏

′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + 𝒙𝒙𝜏𝜏−𝑗𝑗
′ 𝒙𝒙𝜏𝜏��𝑇𝑇

𝜏𝜏=𝑗𝑗+1
𝐻𝐻
𝑗𝑗=1   

𝑺𝑺�𝑻𝑻
(𝟏𝟏,𝟐𝟐) − 𝑺𝑺�𝑻𝑻

(𝟐𝟐,𝟐𝟐) = ∑ 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝑡𝑡(𝒙𝒙𝑡𝑡
′ 𝒙𝒙𝑡𝑡)𝑇𝑇

𝑡𝑡=1 +  ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻 ∑ ��𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏−𝑗𝑗�𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + �𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏−𝑗𝑗𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏�𝒙𝒙𝜏𝜏−𝑗𝑗

′ 𝒙𝒙𝜏𝜏�𝑇𝑇
𝜏𝜏=𝑗𝑗+1

𝐻𝐻
𝑗𝑗=1   

𝑺𝑺�𝑻𝑻
(𝟐𝟐,𝟏𝟏) − 𝑺𝑺�𝑻𝑻

(𝟐𝟐,𝟐𝟐) = ∑ 𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝑡𝑡𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡(𝒙𝒙𝑡𝑡
′ 𝒙𝒙𝑡𝑡)𝑇𝑇

𝑡𝑡=1 +  ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻 ∑ ��𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏−𝑗𝑗�𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + �𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏−𝑗𝑗𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏�𝒙𝒙𝜏𝜏−𝑗𝑗

′ 𝒙𝒙𝜏𝜏�𝑇𝑇
𝜏𝜏=𝑗𝑗+1

𝐻𝐻
𝑗𝑗=1   

and insert the resulting expressions into 𝑽𝑽�(2,2) from (A38). This finally yields 

𝑽𝑽�(2,2) = (𝑿𝑿′𝑿𝑿)−1 𝑸𝑸�𝑻𝑻
𝛥𝛥 (𝑿𝑿′𝑿𝑿)−1   

with 

𝑸𝑸�𝑻𝑻
𝛥𝛥 =  � �

𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝑡𝑡

𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ
−

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙
�

2𝑇𝑇

𝑡𝑡=1

𝒙𝒙𝑡𝑡
′ 𝒙𝒙𝑡𝑡 

+ � 𝜔𝜔𝑗𝑗,𝐻𝐻  � ��
𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏

𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ
−

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙
� �

𝑉𝑉ℎ𝑖𝑖𝑖𝑖ℎ,𝜏𝜏−𝑗𝑗

𝑁𝑁ℎ𝑖𝑖𝑖𝑖ℎ
−

𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏−𝑗𝑗

𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙
� �𝒙𝒙𝜏𝜏

′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + 𝒙𝒙𝜏𝜏−𝑗𝑗
′ 𝒙𝒙𝜏𝜏��

𝑇𝑇

𝜏𝜏=𝑗𝑗+1

𝐻𝐻

𝑗𝑗=1

 

(A39) 

Since 𝑸𝑸�𝑻𝑻
𝛥𝛥 in (A39) and  𝑺𝑺�𝑻𝑻 in (A33) coincide, this shows that SE(𝜃𝜃�Δ𝑘𝑘) = SE(𝛽̂𝛽Δ𝑘𝑘) for all  𝑘𝑘 =

0, 1, … , 𝐾𝐾.  

The last part of Proposition (3) claims that 𝑽𝑽�(1,1) in (A38) coincides with the Newey-West covariance 

matrix estimator for the second-step time-series regression of the portfolio sorts approach applied to 

portfolio “low”. The respective Newey-West covariance estimator has been derived in Expression (A24) 

above with 𝑝𝑝 = “low”. By replacing 𝑺𝑺�𝑻𝑻
(𝟏𝟏,𝟏𝟏) − 𝑺𝑺�𝑻𝑻

(𝟏𝟏,𝟐𝟐) − 𝑺𝑺�𝑻𝑻
(𝟐𝟐,𝟏𝟏) + 𝑺𝑺�𝑻𝑻

(𝟐𝟐,𝟐𝟐) with the corresponding term derived 

above, we finally obtain the following expression for 𝑽𝑽�(1,1): 

𝑽𝑽�(1,1) = (𝑿𝑿′𝑿𝑿)−1 𝑸𝑸�𝑻𝑻
ℎ𝑖𝑖𝑖𝑖ℎ (𝑿𝑿′𝑿𝑿)−1  (A40) 

with 
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𝑸𝑸�𝑻𝑻
ℎ𝑖𝑖𝑖𝑖ℎ =  ∑ 𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙

−2 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝑡𝑡
2𝑇𝑇

𝑡𝑡=1 𝒙𝒙𝑡𝑡
′ 𝒙𝒙𝑡𝑡 + ∑ 𝜔𝜔𝑗𝑗,𝐻𝐻  ∑ �𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙

−2 𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏𝑉𝑉𝑙𝑙𝑙𝑙𝑙𝑙,𝜏𝜏−𝑗𝑗�𝒙𝒙𝜏𝜏
′ 𝒙𝒙𝜏𝜏−𝑗𝑗 + 𝒙𝒙𝜏𝜏−𝑗𝑗

′ 𝒙𝒙𝜏𝜏��𝑇𝑇
𝜏𝜏=𝑗𝑗+1

𝐻𝐻
𝑗𝑗=1   

Since 𝑸𝑸�𝑻𝑻
ℎ𝑖𝑖𝑖𝑖ℎ in (A40) and  𝑺𝑺�𝑻𝑻 for portfolio 𝑝𝑝 = “low” in (A23) are identical, this demonstrates that 

SE(𝜃𝜃�low,𝑘𝑘) = SE(𝛽̂𝛽low,𝑘𝑘) for all  𝑘𝑘 = 0, 1, … , 𝐾𝐾. This completes the proof of Proposition 3. ∎ 
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