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Motivation & Objective

ACommonProblem in Practice. In economic applications, it is common to have a discrete endoge-

nous variable (D) and an instrument (Z) taking on fewer values:

Return to education. D: Multiple levels of education. Z : Whether lived near a college or not

(binary).

Program evaluation. D: Multiple training programs. Z : A lottery granting access to a certain

program (binary).

NoSufficientVariation in IV,No Identification. LetY ,X andU be theoutcomevariable, covariates,

and theunobservable. ThemodelY = g(D, X, U) is under-identifiedby the IVwhen the cardinality

of the support of D is greater than that of Z (|S(D)| > |S(Z)|). For example (Newey and Powell,

2003):

S(D) = {1, 2, 3} and S(Z) = {0, 1}.
Suppose g(D, X, U) =

∑
d∈S(D) 1(D = d)m∗

d(X) + U .

For some covariates valueX = x0, ifEU |XZ(x0, Z) = 0, then for every z ∈ S(Z),∑
d∈S(D)

m∗
d(x0)pd(x0, z) = EY |XZ(x0, z) (1)

where pd(x, z) ≡ P(D = d|X = x0, Z = z) is the generalized propensity score.
TWO linear equations (z = 0, 1) for THREE unknowns (m∗

1(x0), m∗
2(x0), m∗

3(x0)):
Underidentified.

Objective: Achieve point identification by supplementing instruments with covariates.

Model

A triangular model with S(D) = {1, 2, 3} and S(Z) = {0, 1}:

Outcome eq.: Y =
∑

d

1(D = d)m∗
d(X) + U (SP)

OR: Y =
∑

d

1(D = d)g∗
d(X, U) (NSP)

Selection eq.: D = d iff hd(X, Z, V ) = 1,
∑

d

hd = 1 (SL)

The outcome heterogeneityU is a scalar.
D-dependent outcome heterogeneity is allowed. See the paper for more details.

The selection heterogeneity can be vector-valued.

No notion of monotonicity is required for selection.

Main Idea

TakeModel-SP as an example.

Consider a different value of covariatesxm such that equation (1) also holds atxm.

Four equations but six unknowns.

Identification is possible if∆d(x0, xm) ≡ m∗
d(xm) − m∗

d(x0) is known for all d ∈ S(D): One

can substitutem∗
d(xm) = m∗

d(x0) + ∆d(x0, xm) into the equations form∗
d(xm), and then:

Only three unknowns.

Such special covariate values xm arematching points of x0. The paper shows how to find them

for givenx0s and how identification is restored using them.

Identification of Model-SP

Definition. Matching pointxm ofx0: for z, z′ ∈ S(Z) and for all d ∈ S(D):

hd(x0, z, V ) = hd(xm, z′, V ) a.s.

EU |V XZ(V , xm, Z) = EU |V XZ(V , x0, Z) a.s.

(V |xm, Z) and (V |x0, Z) are identically distributed.

Mainmessage of the definition: Selection patterns are the same at the covariates-IV combinations

in a matching pair. Covariates need NOT to be exogeneous, but equal dependence of (U, V ) on X
atx0 andxm is required.

Key implication. Under exogeneity ofZ , the definition of a matching point implies that:

EU |DXZ(d, x0, z) = EU |V (hd(x0, z, V ) = 1) = EU |V
(
hd(xm, z′, V ) = 1

)
= EU |DXZ(d, xm, z′)

⇓
EY |DXZ(d, x0, z) − m∗

d(x0) = EY |DXZ(d, xm, z′) − m∗
d(xm)

Identification. Substituting this into the equations in the form of (1) for xm yields the following

equation system form∗(x0) ≡ (m∗
1(x0), m∗

2(x0), m∗
3(x0)): p1(x0, z) p2(x0, z) p3(x0, z)

p1(x0, z′) p2(x0, z′) p3(x0, z′)
p1(xm, z) p2(xm, z) p3(xm, z)

 · m∗(x0) =

EY |XZ(x0, z)
EY |XZ(x0, z′)
EY |XZ(xm, z)

+

 0
0∑3

d=1
[
EY |DXZ(d, x0, z) − EY |DXZ(d, xm, z′)

]
pd(xm, z)


The combination (xm, z) is treated as if it was a third instrumental value.

The term in red offsets the change caused by conditioning on a different value of the

non-excluded covariates.

Identification is achieved as long as the generalized propensity score matrix is full-rank.

Over-identification is possible because multiple matching points may exist.

Finding the Matching Point

Two different approaches depending on howmuch we know aboutModel-SL.

If the selection model is known/specified. Find the matching point by solving hd(x0, z, v) =
hd(xm, z′, v).
Example. Ordered choice with linear cutoffs. h1(X, Z, V ) = 1(V < κ1 + Zα + X ′β) and
h3(X, Z, V ) = 1(V ≥ κ2 + Zα + X ′β) with κ1 < κ2. Then matching points can be obtained by

solving zα + x′
0β = z′α + x′

mβ.

If the selection model is unknown/unspecified. Obtain the matching points by matching the gen-

eralized propensity scores under the following assumption:

pd(x0, z) = pd(xm, z′) ∀d =⇒ hd(x0, z, V ) = hd(xm, z′, V ) a.s. ∀d

Theassumptionholds inmanywidelyusedselectionmodels likeparametric/nonparametricordered

choice or discrete choice models.

Remark. These two approaches apply to bothModel-SP andModel-NSP.

Identification of Model-NSP

U ∼ Unif[0, 1].
g∗

d(X, ·) : [0, 1] 7→ S(Y |d, X) strictly increasing for all realizations ofX for all d.

Matching point (strengthened): (U, V |x0, Z) and (U, V |xm, Z) are identically distributed.

Key implication. For the conditional CDFs FU |DXZ and FY |DXZ for all u ∈ [0, 1] and d ∈ S(D):

FU |DXZ(u|d, x0, z) = FU |V (u|hd(x0, z, V ) = 1) = FU |V
(
u|hd(xm, z′, V ) = 1

)
= FU |DXZ(u|d, xm, z′)

⇓
FY |DXZ(g∗

d(x0, u)|d, x0, z) = FY |DXZ(g∗
d(xm, u)|d, xm, z′)

Inverting the CDF yields the relationship between g∗
d(x0, u) and g∗

d(xm, u) for all u and d. Then for
each u, obtain threemoment equationsΨ(g∗(x0, u)) = u.

Ψ(·) : R3 7→ R3 is continuous everywhere and strictly increasing onΠdS(Y |d, x0).
A typical element inΨ(g∗(x0, u)) is

3∑
d=1

pd(x, z) · FY |DXZ(ϕd(g∗
d(x0, u); x)|d, x, z)

(x, z) = (x0, z), (x0, z′), (xm, z).
ϕd(y; x) = F −1

Y |DXZ
(FY |DXZ(y|d, x0, z)|d, x, z1)where (x0, z) and (x, z1) are a matching pair.

Threemoments conditions for three unknowns at each u: Under-identification solved!

A New Global Uniqueness Theorem. These moment conditions nest Chernozhukov and Hansen

(2005). We prove a new global uniqueness theorem under weaker conditions.

Theorem. If Y is bounded at least from one side and the Jacobian ofΨ is full rank at g∗(x0, u) for all
u, then g∗(x0, ·) is the unique solution (path) toΨ(y(u)) = u for all u among all increasing functions

on [0, 1].

Exploited monotonicity and continuity of g∗
d(X, ·) andΨ.

The condition is minimal: Only full-rankness is required without which local identification at

some u is even not guaranteed.

Idea of Proof. Below is the key idea to show uniqueness among increasing functions whose range

isΠdS(Y |d, x0). The general case is shown in the paper.
By boundedness of Y , all candidate solution paths start or end at the same point, so they must in-

tersect with the true solution paths at least for once. There are then two cases.

Figure 1. Case 1. Figure 2. Case 2

Case 1: The difference between two solution paths is continuous. Impossible because they

must enter the local-uniqueness region by continuity.

Case 2: The difference is discontinuous. Then the alternative solution path must jump up for

some d. But bymonotonicity and continuity ofΨ, there must exist a d′ for which the alternative
solution path jumps down tomake the equation still hold, violating monotonicity.
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