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Abstract

We consider seven characteristics-based asset pricing models and explore whether the non-

market components of their stochastic discount factors (SDFs) are associated with macroeco-

nomic shocks. Our analysis involves a comprehensive set of 120 macroeconomic variables and

uses machine learning techniques to mitigate the overfitting problem caused by a large number

of explanatory variables. We find that macroeconomic shocks are totally unrelated to the non-

market SDF components. This conclusion extends to several theory-motivated macroeconomic

shocks. Our results suggest that the empirical success of characteristics-based asset pricing

models is produced by their ability to identify behavioral factors in stock returns rather than

macroeconomic risks.
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1. Introduction

One of the most important and challenging objectives of asset pricing is the construction of models

that can explain the cross section of expected stock returns. The most successful among such models

are characteristics-based models whose pricing factors include the market returns and returns on

trading strategies based on firm characteristics. The prime example is the Fama-French three-

factor model (Fama and French, 1993); more recent examples include the Fama-French five-factor

model (Fama and French, 2015), q-factor model (Hou, Xue, and Zhang, 2015), and behavioral

three-factor model (Daniel, Hirshleifer, and Sun, 2020). The factors in the latest generation of

characteristics-based asset pricing models combine information from multiple firm characteristics

(e.g., Stambaugh and Yuan, 2017; Kozak, Nagel, and Santosh, 2018, 2020; Kelly, Pruitt, and Su,

2019; Gu, Kelly, and Xiu, 2020a). Although many characteristics-based asset pricing models can

concisely describe the main patterns in the cross section of expected stock returns, they all share

a serious limitation: their non-market factors lack a clear economic interpretation. In particular,

it is still an open question whether expected returns are determined by exposures of stock returns

to macroeconomic risks or investor sentiment (e.g., Nagel, 2013).

The objective of our paper is to shed new light on the characteristics-based asset pricing models

by exploring whether their non-market factors are associated with macroeconomic shocks. Although

a number of studies attempt to link characteristics-based factors to macroeconomic risks (e.g.,

Liew and Vassalou, 2000; Vassalou, 2003; Petkova, 2006; Hahn and Lee, 2006), our paper differs

from them in several crucial respects. Most importantly, instead of focusing on a few prominent

shocks, our analysis involves shocks to 120 macroeconomic variables that represent a wide range

of macroeconomic activities. Although individual shocks are only weakly related to stock returns,

taken together they are more likely to track macroeconomic risks priced by investors. However, it

is impossible to use the OLS regression to measure the joint explanatory power of so many shocks

because the results would be severely distorted by the overfitting problem.

To overcome this problem, we use the machine learning framework. We run the elastic net

regression to identify a combination of macroeconomic shocks that is correlated with asset pricing

factors not only in sample but also out of sample. Out-of-sample R2 (R2
os) produced by the elastic

net regression fitted values allows us to quantify the explanatory power of macroeconomic shocks.

To the best of our knowledge, our paper is the first finance study that uses machine learning to
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measure the explainability of one time series by a large number of others, not to predict returns or

construct a parsimonious asset pricing model.

Another distinguishing feature of our paper is the focus on the models’ stochastic discount fac-

tors (SDFs) and their non-market components rather than on individual pricing factors. Because

all factors in the characteristics-based models are returns on tradable portfolios, the SDFs con-

structed from them are also tradable and uniquely characterize the models (e.g., Cochrane, 2005;

Back, 2010). Moreover, because each model contains the market returns as one of the factors, the

SDFs can be uniquely decomposed into a component proportional to the market and an orthog-

onal non-market component that includes all other factors. In contrast, the decomposition of the

SDF into individual factors such as SMB and HML is not unique, and it is always possible to find

another set of factors with even a different number of factors that would represent exactly the

same SDF. Therefore, there might exist situations in which individual factors are associated with

macroeconomic shocks, but their linear combination in the SDF is not. By examining the SDF’s

non-market component as a whole, we avoid the potential ambiguity.

We start our analysis with constructing the SDFs and their non-market components for six

characteristics-based asset pricing models. The considered models include the Fama-French three-

and five-factor models (Fama and French, 1993, 2015), the q-factor model (Hou, Xue, and Zhang,

2015), the Barillas-Shanken six-factor model (Barillas and Shanken, 2018), the mispricing four-

factor model (Stambaugh and Yuan, 2017), and the behavioral three-factor model (Daniel, Hir-

shleifer, and Sun, 2020). For each model, we estimate its SDF by GMM. All considered models

include the market returns as one of the factors, which allows us to decompose the SDFs into market

and non-market components. Because the non-market factors are typically correlated with market

returns, the non-zero correlation is inherited by the non-market SDF components and complicates

their interpretation. Therefore, we also construct the SDFs’ non-market components that are or-

thogonal to the market. We augment the set of constructed SDFs with the market-orthogonalized

SDF of Kozak, Nagel, and Santosh (2020).

Next, we build a comprehensive set of macroeconomic shocks. For this purpose, we use 120

macroeconomic variables from FRED-MD, which is a publicly available macroeconomic data set

maintained by the Federal Reserve Bank of St. Louis. FRED-MD contains information on a broad

spectrum of economic activities, and it is designed to be a standard data set for the “big data”

macroeconomic research. We construct macroeconomic shocks as residuals of the AR(1) processes
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fitted for each macroeconomic variable.

The main objective of our analysis is to explore whether the non-market factors of characteristics-

based asset pricing models have any macroeconomic content. Conceptually, the answer to this ques-

tion can be obtained by regressing the SDFs’ non-market components on macroeconomic shocks

and measuring the macroeconomic interpretability of a model by the regression R2. This procedure

is reliable and easily implementable when the number of shocks is small. However, the OLS regres-

sion works poorly when the number of explanatory variables is large because in this case it overfits

the data, and the OLS regression R2 is a severely upward biased estimator of the population R2.

To confront overfitting, we use the elastic net regression. Elastic net imposes a regularization on

the linear regression parameters that constrains them in sample thereby mitigating overfitting and

improving the model performance out of sample. To find the regularization parameters, we use the

cross-validation, which is another standard machine learning technique.

We implement the elastic net-based estimation of the population R2 in several steps. First, we

split the whole sample into the training and testing samples. Then, using only the training sample,

we find the optimal regularization parameters of the elastic net regression through cross-validation

and estimate the regression parameters. Finally, we predict the non-market component of the

SDF in the testing sample by the fitted values from the model with the estimated parameters and

compute R2
os. Using simulations, we demonstrate that in contrast to the R2

os produced by the OLS

regression, the R2
os of the elastic net regression is a reliable estimator of the population R2.

By itself, R2
os is a statistic that depends on the particular realizations of the training and testing

samples. First, because of the finite number of observations in the testing period, the computed R2
os

may be higher or lower than it would be if we had an infinite testing sample for the same model.

Second, the observations in the training sample determine the parameter estimates, which, in turn,

determine the quality of the prediction. To assess both types of errors, we implement a bootstrap

procedure. To formally test the null hypothesis R2 = 0, we use the van de Wiel, Berkhof, and van

Wieringen (2009) test, which takes into account the randomness in splitting the observations into

the training and testing samples.

The paper contains several empirical results. Most importantly, we find that the non-market

SDF components of all considered models are almost unrelated to macroeconomic shocks: the

obtained R2
os are low and statistically insignificant. The orthogonalization of the non-market com-

ponents to the market further weakens the results: R2
os become close to zero and even negative.
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A similar conclusion holds for individual non-market factors: none of them produces R2
os larger

than 5%. Given that individual macroeconomic variables are known to be only weakly related to

stock returns, it is not surprising that the obtained R2
os are substantially below 1. However, it

is remarkable that all considered macroeconomic shocks taken together can explain none of the

variation in the non-market SDF components. This finding suggests that the empirical success of

the characteristics-based models is produced by their ability to identify behavioral factors in stock

returns rather than to describe macroeconomic risks.

To demonstrate that our results are not driven by the specifics of our analysis, we conduct a

battery of robustness tests. We find that our conclusions hold for alternatively estimated SDFs,

for alternatively defined macroeconomic shocks, for alternative compositions and sizes of training

and testing samples, and for an alternative specification of the elastic net regression. In all cases,

we obtain consistently low R2
os and high p-values of the van de Wiel, Berkhof, and van Wieringen

(2009) test. Given that the standard errors of R2
os do not exceed a few percentage points, the

results cannot be explained by a low statistical power of our analysis.

Although our list of 120 macroeconomic shocks is comprehensive, several theory-motivated

shocks that presumably determine asset prices are missing from it. In an additional set of tests,

we explore how the characteristics-based SDFs are related to the consumption growth shock and

the shock to the intermediary capital ratio; the latter together with the market return constitutes

the SDF of the intermediary asset pricing model (e.g., Adrian, Etula, and Muir, 2014; He, Kelly,

and Manela, 2017). We find that consumption growth is unrelated to the SDFs and their com-

ponents, and this result is consistent with the inability of the standard consumption-based asset

pricing model to explain the cross section of stock returns. In contrast, the intermediary capital

ratio is weakly related to the non-market SDF components of several models, and its explanatory

power can be slightly amplified by adding all other macroeconomic shocks. The latter observation

suggests that the intermediary capital ratio does not capture all pricing information contained in

the macroeconomic factors. However, the intermediary capital ratio appears to be unrelated to

the orthogonalized non-market SDF component, and the result does not change when all other

macroeconomic factors are also included.

Two comments are in order. First, our results do not imply that macroeconomic risks are

completely irrelevant for the cross section of stock returns. We only argue that the non-market

components of characteristics-based SDFs are unrelated to macroeconomic shocks. It is possible
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that the characteristics-based models and macrofinance models describe different determinants of

asset prices and complement each other’s abilities to explain expected stock returns. Second, we

do not take a stand on whether the ICAPM holds and the characteristics-based factors represent

shocks to investment opportunities. On the one hand, we include all available macroeconomic

shocks, not only those that are associated with state variables that track investment opportunities,

and allow data to speak. On the other hand, we exclude the variables like the price-dividend ratio

that are known as predictors of stock returns but that are not directly associated with interpretable

macroeconomic risks. Those variables reflect all changes in expected returns and expected cash

flows and can be driven by behavioral factors rather than macroeconomic shocks.

Our paper is closely related to the studies that aim to provide an economic interpretation to

the characteristics-based asset pricing factors. For example, Liew and Vassalou (2000) find that

HML and SMB predict the GDP growth. Vassalou (2003) shows that news about the future GDP

growth subsume the pricing power of the HML and SMB factors. Petkova (2006) relate HML and

SMB to innovations in several variables that predict investment opportunities. The conclusions

regarding the momentum factor are more controversial. Griffin, Ji, and Martin (2003) demonstrate

that momentum returns are unrelated to macroeconomic factors in 17 markets. In contrast, Liu

and Zhang (2008) find that the growth rate of industrial production explains more than half of

momentum profits. Aretz, Bartram, and Pope (2010) extended that line of research by examining

simultaneously HML, SMB, and momentum factors and considering a larger set of six macroeco-

nomic variables. Maio and Santa-Clara (2012) take a broader view on the interpretability of asset

pricing models and argue that many multifactor models do not satisfy the restrictions imposed by

the ICAPM. That conclusion is challenged by Boons (2016). Our paper differs from those stud-

ies in three ways. First, our objective is to interpret the whole non-market component of each

SDF, not the individual factors. Second, our analysis involves a much larger set of macroeconomic

shocks. Third, we simultaneously consider several models including the recent ones whose relations

to macroeconomic factors have not been studied at all.

Our paper also belongs to a rapidly growing literature that applies machine learning techniques

to various asset pricing problems such as extracting information about future returns from a large

number of variables and constructing optimal portfolios. For example, LASSO and its modifica-

tions have been used to predict country-level stock returns (e.g., Rapach, Strauss, and Zhou, 2013),

industry returns (e.g., Rapach, Strauss, Tu, and Zhou, 2019), high-frequency returns (e.g., Chinco,
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Clark-Joseph, and Ye, 2019), and the cross section of stock returns (e.g., Han, He, Rapach, and

Zhou, 2019). Freyberger, Neuhierl, and Weber (2020) use grouped LASSO to select firm charac-

teristics that provide incremental information about the cross section of stock returns and combine

them nonparametrically. DeMiguel, Martin-Utrera, Nogales, and Uppal (2020) exploit the ability

of LASSO to identify the characteristics that are incrementally important for constructing optimal

portfolios in the presence of transaction costs. More sophisticated machine learning tools such as

regression trees and neural networks have also been used for measuring conditional risk premia

on stocks (e.g., Moritz and Zimmermann, 2016; Messmer, 2017; Rossi, 2018; Gu, Kelly, and Xiu,

2020b) and bonds (e.g., Huang and Shi, 2019; Bianchi, Büchner, and Tamoni, 2020; Feng, Fulop,

and Li, 2020). Borochin and Zhao (2020) apply machine learning to forecasting implied volatilities

of individual stocks.

Another set of papers apply machine learning methods to constructing asset pricing models.

Bryzgalova (2016) develops shrinkage-based estimators of linear factor models that are robust to

the presence of spurious factors. Kozak, Nagel, and Santosh (2020) and Kozak (2019) propose an

estimation of SDF that incorporates information from a large number of firm characteristics and

features the regularization that is similar to the elastic net regularization. Feng, Giglio, and Xiu

(2020) demonstrate how double-selection LASSO can be used for evaluating the contribution of

a new asset pricing factor relative to a high-dimensional set of existing factors. Gu, Kelly, and

Xiu (2020a) and Feng, Polson, and Xu (2020) use neural networks to build asset pricing models

that nonlinearly incorporate information from a large number of covariates. Chen, Pelger, and Zhu

(2020) construct the SDF by applying deep neural networks to the conditional information from

both firm characteristics and macroeconomic state variables. In contrast to those studies, we use

machine learning to interpret existing asset pricing models, not to propose new models or predict

returns.

The rest of the paper is organized as follows. Section 2 introduces the main idea of the paper

and our empirical methodology. In particular, it describes our estimation procedure and how it

helps to assess the ability of macroeconomic shocks to explain SDFs. Section 3 introduces the

characteristics-based asset pricing models and their SDFs, as well as the macroeconomic variables

used in the empirical analysis. Section 4 presents the main empirical results. Section 5 contains

robustness tests. Section 6 concludes the paper.
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2. Empirical framework

In this section, we describe the main idea of our study and introduce machine learning tools used

in the paper. We also conduct simulations that illustrate the ability of our approach to produce an

estimator of population R2 that is much less biased than the OLS regression R2.

2.1. SDFs and their components

According to the standard textbook argument (e.g., Cochrane, 2005), the law of one price implies

that there exists an SDF mt such that for excess returns on any asset Re
t ,

E(mtR
e
t ) = 0. (1)

Any asset pricing model is characterized by its SDF. The most popular class of asset pricing models

consists of linear factor models whose SDFs are linear functions of several factors:

mt = 1− b′(ft − E(ft)). (2)

Here ft is a vector of factor realizations at time t, and b is a vector of risk prices. Equation (1)

is invariant to rescaling of the SDF by a constant nonzero factor, so without loss of generality the

mean of the SDF in equation (2) is normalized to 1.

A popular way to construct asset pricing models is to use the market return and returns on

long-short strategies based on various firm characteristics as the pricing factors. Such models are

known as the characteristics-based factor models, and the examples include the models of Fama

and French (1993), Fama and French (2015), Hou, Xue, and Zhang (2015), Stambaugh and Yuan

(2017), Barillas and Shanken (2018), and Daniel, Hirshleifer, and Sun (2020). By construction, all

factors in the characteristics-based models are returns on tradable assets, so the SDFs are uniquely

defined.

Isolating the market factor, the SDF from equation (2) can be decomposed into the market

component mM
t and the component that combines all other factors mN

t :

mt = 1− bm(MKTt − E(MKTt))
︸ ︷︷ ︸

mM
t

− b′
f̃
(f̃t − E(f̃))

︸ ︷︷ ︸

mN
t

, (3)
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where MKTt and f̃t are the market factor and the vector of non-market factors, respectively, and

bm and bf are the corresponding prices of risk. Note that even though asset pricing models are

typically described in terms of the individual factors f̃t, only the combination of the factors mN
t

is relevant for pricing the assets. Thus, any two sets of factors that produce the same mN
t should

be interpreted as representing the same asset pricing model. Below we mostly consider mt and

mN
t , which determine the pricing ability of the model, not individual factors. The latter are often

inspired by asset pricing anomalies and may be hard to interpret.

There is an alternative way to decompose the SDF into the market and non-market compo-

nents. Many individual characteristics-based factors are correlated with the market factor, and

the correlation is likely to be inherited by mN
t . Noting that mN

t can always be represented as

mN
t = bN (MKTt−E(MKTt))+m⊥

t , where m
⊥
t is orthogonal to MKTt, we can rewrite the SDF as

mt = 1− (bm + bN )(MKTt − E(MKTt))−m⊥
t . (4)

In this representation, m⊥
t represents the factors whose pricing ability is unrelated to the market.

2.2. Main idea

The main objective of our paper is to identify the economic content of characteristics-based asset

pricing models by examining their SDFs and the SDF components mN
t and m⊥

t . In particular, we

ask to which extent the variation in mt, m
N
t , and m⊥

t can be explained by macroeconomic shocks.

Because the ability of macroeconomic factors to explain mt and mN
t can result from the correlation

between the factors and market returns, we base our main conclusions on the evidence for m⊥
t .

To quantify the ability of macroeconomic shocks to explain mt, m
N
t , and m⊥

t , it is natural to

consider a linear regression model with one of those variables as a dependent variable and shocks

as independent variables. By definition, the fraction of the variation in the dependent variable

explained by macro shocks is measured by the population R2, which is our main object of interest.

However, the number of potentially relevant shocks is large, and the OLS regression would suffer

from the overfitting problem. As a result, the standard OLS R2 would be a severely upward biased

estimator of the population R2: it can be large even when the shocks are unrelated to the SDF and

its components.1

1The adjusted R2 is not much better: the adjustment corrects for finite sample biases in the estimates of total
variation and unexplained variation that determine R2 but not for model overfitting.
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To construct a better estimator of the population R2 in the presence of many explanatory vari-

ables, we propose an alternative procedure, which is motivated by the machine learning framework.

The procedure is implemented through the following steps: (i) split the whole sample into two

subsamples referred to as training and testing samples, (ii) find the best explanatory model for

the dependent variable using only the training sample and penalizing the model complexity, (iii)

construct the estimator of the population R2 as the out-of-sample R2 of the obtained model in

the testing sample. The construction of the best explanatory model in the second step ensures

that all relevant information from the shocks is used and R2 is not underestimated. The penalty

imposed on the model complexity reduces overfitting thereby decreasing the model’s explanatory

power in the training sample but increasing it in the testing sample.2 The use of an independent

testing sample to assess the explanatory power of the model further minimizes the concerns about

overfitting and resulting upward bias in the estimator for R2. The simulations conducted in Section

2.7 demonstrate good performance of the obtained estimator in a sample commensurate with our

empirical sample of SDFs and macroeconomic shocks.

2.3. Training and testing samples

In our empirical analysis, we assign two thirds of the time periods to the training sample and the

rest of them to the testing sample. The assigning process is deterministic: every two subsequent

periods of the training sample are followed by a period assigned to the testing sample. This

procedure ensures that all years are equally represented in both samples, and the results are not

driven by special periods such as recessions, crisis years, etc. Note that because our objective is

to explain the target variable by contemporaneous shocks, not to predict it, the alternation of

training and testing periods over time does not create a look-ahead bias. As robustness tests, we

also implement the versions of our estimation procedure with alternative sizes of the training and

testing samples and alternative allocation of observations to them.

2.4. Elastic net

As the explanatory model, we use the elastic net regression (Zou and Hastie, 2005). It is a linear

regression with a regularization that penalizes a large number of non-zero regression slopes and

2Mitigation of the overfitting problem by using various regularization schemes that restrict the complexity of the
fitted model is a standard machine learning method. See Hastie, Tibshirani, and Friedman (2016) for a textbook
introduction to machine learning.
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substantial heterogeneity among them. Denote the realization of the target variable at time t

as yt (it is mt, mN
t , or m⊥

t in our analysis) and the realizations of Q explanatory variables as

xit, i = 1, . . . , Q (they are macroeconomic shocks in our analysis). Each xit is assumed to be

demeaned and standardized using its mean and standard deviation in the training sample. The

elastic net-based predictor ŷt is constructed as a linear combination ŷt = β̂0 +
∑Q

i=1 xitβ̂i, where

the intercept β̂0 and slopes β̂i, i = 1, . . . , Q, minimize the mean-squared error (MSE) augmented

with a regularization term:

(β̂0, . . . , β̂Q) = argmin
β0,...,βQ









1

T

T∑

s=1

(

ys − β0 −

Q
∑

i=1

βixis

)2

︸ ︷︷ ︸

mean-squared error

+λα

Q
∑

i=1

|βi|

︸ ︷︷ ︸

L1 penalty

+λ(1− α)

Q
∑

i=1

β2
i

︸ ︷︷ ︸

L2 penalty









. (5)

The objective function in equation (5) has two additional parameters (tuning parameters).

The parameter λ ≥ 0 controls the tightness of the regularization: when λ = 0, the regularization

disappears, the objective function in (5) reduces to the MSE, and the elastic net reduces to the OLS

regression. The parameter α ∈ [0, 1] determines the relative importance of the two components of

the regularization term, which are associated with LASSO (L1 penalty) and ridge regression (L2

penalty), respectively.

When α = 1, elastic net reduces to LASSO (Tibshirani, 1996). Because LASSO minimizes the

MSE on a polytope, corner solutions are very typical: from multiple predictors LASSO usually

selects only few, and the slopes of the others are zero. In particular, if there is a group of several

highly correlated predictors, LASSO tends to pick only one predictor from the group, and the

information contained in the others is completely ignored. As a result, LASSO may demonstrate

suboptimal prediction performance when predictors are highly correlated.

When α = 0, elastic net reduces to the ridge regression (Hoerl and Kennard, 1970). Because

of the L2 penalty, the ridge regression shrinks all parameters toward zero and each other without

dropping any predictor. On the one hand, the use of all predictors allows the ridge regression to

better exploit the information from highly correlated predictors than LASSO does. On the other

hand, the ridge regression suffers from useless predictors that would be discarded by LASSO. By

incorporating both the L1 and L2 penalties, elastic net combines the advantages of LASSO and

ridge regression: it can simultaneously produce a parsimonious model like LASSO and efficiently

handle correlated predictors like the ridge regression.
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There are several reasons why elastic net is an appropriate tool for our analysis of discount fac-

tors. First, in contrast to more flexible machine learning techniques such as regression trees, random

forests, and neural networks, it predicts the target variable by linear combinations of individual

predictors. Therefore, it preserves the structure of linear factor models. Second, the macroeconomic

shocks are correlated within several groups, and the ability of elastic net to efficiently aggregate

information from correlated predictors reduces the chance that we underestimate the ability of

macroeconomic shocks to explain discount factors. Third, many macroeconomic shocks are likely

to be irrelevant for asset prices, and the ability of elastic net to discard weak predictors likely

diminishes the amount of noise in the estimated model parameters.

To choose the elastic net regularization parameters λ and α, we use the cross-validation, which

is another standard technique in machine learning. First, we randomly split the training sample

into ten equal parts (folds).3 Second, we choose a grid in the space of the parameters (λ, α) with

100 values of λ and 10 values of α. Third, for each combination of the parameters we compute the

cross-validated MSE. To do that, we sequentially exclude the fold k, k = 1, 2, ..., 10 and solve the

optimization problem (5) on the remaining nine folds. For each observation s from the training

sample, denote by β̂−s
0 (λ, α) and β̂−s

i (λ, α) the results of the minimization on all folds excluding

the one containing s. The cross-validated MSE is defined as

MSECV (λ, α) =
1

T

T∑

s=1

(

ys − β̂−s
0 (λ, α) −

Q
∑

i=1

β̂−s
i (λ, α)xis

)2

. (6)

By construction, MSECV (λ, α) uses all observations from the training sample, but for each obser-

vation the prediction is out of sample. Finally, we choose λ and α that minimize the cross-validated

MSE and use them for estimating the parameters of the model in the whole training sample.

2.5. Out-of-sample R
2 and its standard errors

To estimate the population R2 that measures the explanatory power of macroeconomic shocks, we

use R2 of the constructed predictor computed for the testing period as

R2
os = 1−

∑

t∈{testing period}(yt − ŷt)
2

∑

t∈{testing period}(yt − ȳ)2
,

3The decision about the number of folds involves the trade-off between the variance and bias of the constructed
predictor. The five- or ten-fold cross-validation is recommended as a good compromise (Tibshirani, 1996).
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where yt is either mt, or mN
t , or m⊥

t , ȳ is its training sample average, and ŷt is the constructed

predictor. We will refer to such R2 as out-of-sample R2. By construction, the observations from

the testing period are not involved in the estimation of the model coefficients, so R2
os does not

suffer from the upward bias produced by overfitting, and in small samples it is likely to be a much

better estimator of the population R2 than the standard in-sample R2. Note that in contrast to

the in-sample R2, R2
os can be negative.

The obtained R2
os is only an estimate of the population R2, and it is affected by two types of

errors. First, the training sample is finite, so the model coefficients are estimated with an error,

which depends on the realization of the training sample. As a result, even having an infinite testing

sample, it is impossible to uncover the population R2; we can get only a very precise estimate

of it produced by the estimated model. Second, the testing sample is finite, so even for a model

with known coefficients we can estimate the population R2 only with an error, which depends on

the realization of the testing sample. To find the dispersion of the estimated R2
os produced by the

randomness of training and testing samples, we implement the following bootstrap-type procedure.

First, we construct a bootstrapped training sample by randomly drawing with replacement the

periods from the original training sample, and similarly draw a bootstrapped testing sample using

only the observations from the original testing sample. By construction, the bootstrapped training

and testing samples never overlap. Then, using the bootstrapped training sample, we estimate

the linear model coefficients by elastic net with the regularization parameters obtained by ten-fold

cross-validation on the empirical sample. Note that the bootstrapped training sample is likely to

contain repeating observations, and using the fixed regularization parameters allows us to avoid

conducting cross-validation with the same observations in the estimation and validation folds. The

one-time tuning of elastic net also substantially reduces the computational burden of the procedure.

Finally, we compute R2
os of the estimated model on the bootstrapped testing sample. Repeating

this procedure 1,000 times, we obtain a sample of simulated R2
os. As usual, the standard errors of

the empirical R2
os are estimated as sample standard deviations of simulated R2

os.

We also implement two modifications of this procedure. In the first modification, we bootstrap

only the training sample and use the empirical testing sample to find R2
os. In the second modifica-

tion, we bootstrap only the testing sample and use the empirical training sample to estimate the

model parameters. Those modifications allow us to separately estimate how the randomness of the

training sample and randomness of the testing sample contribute to the distribution of R2
os.
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2.6. Testing

Along with the computation of standard errors for R2
os, we formally test the hypothesis that the

macroeconomic shocks are totally unrelated to the SDFs, that is, the population R2 is zero. The

latter implies that the explanatory power of the best model with macroeconomic shocks is equal to

the explanatory power of the SDF average. To construct the test, we employ the approach proposed

by van de Wiel, Berkhof, and van Wieringen (2009). Its main idea is to consider the distributions

of the squared errors (yt− ŷt)
2 and (yt− ȳ)2 on the testing sample and state the null hypothesis as

H0: (yt − ȳ)2 − (yt − ŷt)
2 are symmetrically distributed around zero.4 The hypothesis is tested by

the one-sided Wilcoxon signed-rank test: H0 is rejected when the test statistic exceeds the critical

value obtained from the asymptotic distribution of the Wilcoxon signed-rank statistic under the

null.

Although this procedure provides a valid p-value for the given split of the whole sample into

the training and testing samples, it might be sensitive to how the split is conducted, and this fact

invalidates the inference.5 To deal with this problem, van de Wiel, Berkhof, and van Wieringen

(2009) propose to consider multiple random splits of the data into training and testing samples

and use the median of the obtained p-values for the ultimate inference. In our empirical analysis,

we implement this approach with 100 random splits: for each split, we train elastic net on the

training sample, compute (yt − ŷt)
2 and (yt − ȳ)2 on the testing sample, and obtain the p-value

of the Wilcoxon signed-rank test. The null hypothesis is rejected if the median of the p-values is

below the nominal size of the test.

2.7. Simulations

To illustrate the ability of the proposed procedure to estimate the population R2 of linear regression

models with different numbers of regressors, we conduct a simulation analysis. We fix the population

R2 at the selected level R2
p and produce N samples with T time periods generated by a linear

regression model with Q regressors. Then, in each sample, we find R2
os as described above. The

mean and dispersion of the simulated R2
os characterize the ability of our procedure to estimate R2

p.

For consistency with our empirical analysis in Section 4, we set T = 700 (this is approximately the

length of our empirical sample) and consider Q in the range from 1 to 120 (the latter is the number

4Obviously, this condition implies that E(yt − ȳ)2 = E(yt − ŷt)
2.

5The general testing procedures that eliminate the sensitivity of inference to data splitting are discussed by
Romano and DiCiccio (2019).
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of macro shocks). We separately explore how our estimation works for R2
p = 0 and R2

p = 0.2. To

maintain a reasonable balance between the precision of simulated results and their computational

feasibility, we set N = 200.

To generate each sample, we (i) simulate Q predictors xqt, q = 1, . . . , Q, with the observations

at t = 1, . . . , T by randomly drawing each realization of xqt from the standard normal distribution,

(ii) simulate bq, q = 1, . . . , Q, as random draws from the standard normal distribution, (iii) define

the population slopes of the linear regression model as

βq =
bq

√

R2
p

√
∑Q

q=1 b
2
q

, (7)

and (iv) simulate the target variable yt as

yt =

Q
∑

q=1

xqtβq + ut, (8)

where ut are randomly drawn from the normal distribution with the mean 0 and standard deviation
√

1−R2
p. The procedure implies that each simulated sample is produced by a different model with

different coefficients βq. However, equations (7) and (8) ensure that the population R2 of each

model is R2
p:

R2 =
V ar

(
∑Q

q=1 xqtβq

)

V ar(yt)
=

∑Q
q=1 β

2
q

∑Q
q=1 β

2
q + V ar(ut)

=
R2

p

R2
p + 1−R2

p

= R2
p.

Moreover, because
∑Q

q=1 β
2
q = R2

p and bq are independent standard normal random variables, βq

are uniformly distributed on the (Q − 1)-dimensional sphere with the radius
√

R2
p (e.g., Muller,

1959). Therefore, all models with the given R2 appear with equal probabilities, and it is unlikely

that the results are driven by particular types of them (for example, by models with sparsity).

For each simulated sample, we apply our estimation procedure and compute R2
os. To compare

the in- and out-of-sample performance of the estimated model, we also compute the model’s in-

sample R2 (R2
is) on the training sample. In addition, we consider the estimates of R2 (both R2

is

and R2
os) when the elastic net regression is replaced with the standard OLS regression.

[FIGURE 1 IS HERE]
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Figure 1 shows the averages of the simulated R2
os and R2

is as functions of the number of the

regressors Q. We also plot the corresponding 95% confidence bands. Consider first the case with

R2
p = 0 presented in Panel A. When there are only few regressors in the model, the OLS regression

produces accurate results: both R2
os and R2

is are close to zero. However, as Q increases, R2
os and

R2
is diverge: average R2

is increases and for Q = 120 becomes close to 30%, whereas average R2
os

decreases and approaches −40%.6 This pattern clearly demonstrates the inability of the OLS R2

to estimate the population R2 when the number of regressors is large compared to the number of

observations. The increasing R2
is shows that the OLS regression overfits the data as the flexibility of

the model (the number of the parameters) increases. However, the parameter estimation adds only

noise to the fitted values out of sample. As a result, they explain the target variable even worse

than the average ȳ (which is very close to zero in our case), and the average R2
os becomes negative.7

Moreover, the amount of noise grows with Q, and starting from approximately 60 regressors, the

probability to get a positive R2
os is less than 2.5%.

The results are drastically different for the elastic net regression. In this case, both R2
os and R2

is

are very close to zero for all numbers of regressors, and zero always lies within the 95% confidence

band of R2
os. Intuitively, elastic net suppresses the estimation noise by forcing many coefficients

to be zero and shrinking others toward zero. As a result, elastic net provides much more reliable

estimates of the population R2 than the OLS regression when R2
p = 0, and this fact justifies its use

in our empirical analysis.

There might be a concern that the case R2
p = 0 is special, and the results are different when

the regressors can at least partially explain the variation in the target variable. To alleviate it,

we also consider the case with R2
p = 0.2 and present the results in Panel B of Figure 1. As

before, the average R2
is and R2

os produced by the OLS regression are close to R2
p for small Q but

move away from R2
p as Q increases: R2

is increases, and for Q = 120 it is slightly above 40%. In

contrast, R2
os decreases, and for Q = 120 it drops below -10%. The results for the elastic net

regression are starkly different: it produces R2
os and R2

is that are close to 0.2 for all Q, although

both estimators are slightly biased and underestimate R2
p when Q is large. Note that due to the

noise in the estimated model coefficients, the dispersions of R2
os and R2

is are larger than in the case

with R2
p = 0. However, they are still moderate and smaller than that produced by R2

os of the OLS

6We have also computed the adjusted in-sample R2 and obtained the results that are very similar to those produced
by R2

is.
7This intuition is justified more formally by Hansen and Timmermann (2015).
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regression. More importantly, the confidence bands are tight enough to exclude zero unless Q is

really large, but even in those cases the probability to get low R2
os is small. Thus, the inference

based on R2
os is likely to be powerful enough to detect even weak ability of macroeconomic shocks

to explain SDFs and their components.

3. Asset pricing models and macroeconomic shocks

3.1. Characteristics-based asset pricing models

In our empirical analysis, we explore whether macroeconomic shocks can explain the SDFs of seven

characteristics-based asset pricing models. The selected models are listed below.

• FF3: Fama-French three-factor model (Fama and French, 1993) with the factors MKT, SMB,

and HML;

• FF5: Fama-French five-factor model (Fama and French, 2015) with the factors MKT, SMB,

HML, RMW, and CMA;

• Q4: q-factor model (Hou, Xue, and Zhang, 2015) with the factors MKT, ME, IA, and ROE;

• BS6: Barillas-Shanken six-factor model (Barillas and Shanken, 2018) with the factors MKT,

SMB, HMLm, IA, ROE and UMD;

• M4: mispricing four-factor model (Stambaugh and Yuan, 2017) with the factors MKT, SMB,

MGMT, and PERM;

• BF3: behavioral three-factor model (Daniel, Hirshleifer, and Sun, 2020) with the factors MKT,

FIN, and PEAD;

• KNS: multi-characteristic model of Kozak, Nagel, and Santosh (2020).

Although the list of the considered models is not exhaustive, it covers a broad spectrum of

the models proposed in the literature. Along with the classic FF3 model, it includes its recent

popular modifications such as FF5 and Q4, which highlight the importance of the profitability and

investment factors. In the BS6 model, the factors are selected from a pool of prominent factors using

the Bayesian approach. The BF3 model features behavior factors. In the M4 model, the factors are
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constructed from many characteristics. The KNS model makes a step further and directly specifies

the SDF rather than individual factors.

The construction of all factors is described in Appendix A. The data on the market fac-

tor, SMB, HML, RMW, CMA, and UMD have been downloaded from Ken French’s data li-

brary at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html. The factors

of the q-factor model are available at http://global-q.org/factors.html. The HMLm factor is

provided by Andrea Frazzini at http://people.stern.nyu.edu/afrazzin/data library.htm. Robert

Stambaugh’s website http://finance.wharton.upenn.edu/∼stambaug/ is the source of the factors

MGMT and PERM. The factors FIN and PEAD have been downloaded from Lin Sun’s website

https://sites.google.com/view/linsunhome. The non-market SDF of the Kozak, Nagel, and San-

tosh (2020) model has been computed using the code provided by Serhiy Kozak on his website

https://sites.google.com/site/serhiykozak/. All variables are measured at the monthly frequency.

3.2. Estimation of the SDFs and their non-market components

The starting point of our analysis is the SDFs of the selected characteristics-based asset pricing

models. Because the characteristics-based factors are returns on tradable portfolios, linear combi-

nations of them are also tradable, and the SDFs constructed from them uniquely characterize the

models. However, for all models except KNS the SDFs should be estimated.8 To do that, we first

estimate the risk prices bm and bf̃ from equation (3) by GMM using the factors themselves as test

assets whose returns must be explained by the model. This is the minimal and most conservative

choice of test assets that produces a sufficient number of moment conditions. Although the inclu-

sion of other assets would increase the precision of the GMM estimates, it would also increase the

chance that some moment conditions are misspecified. Indeed, none of the six asset pricing mod-

els for which we construct SDFs can perfectly price all tradable assets, and including anomalous

portfolios in the estimation may distort the results. Moreover, by having a just-identified set of

moment conditions, we avoid the problem of choosing the GMM weighting matrix.

[TABLE 1 IS HERE]

The GMM estimation results are reported in Table 1. As expected, almost all estimated risk

8Kozak, Nagel, and Santosh (2020) do not explicitly include the market factor in the SDF but orthogonalize all
factors with respect to the market return instead and directly obtain m⊥

t , which is the main focus of our analysis.
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prices b̂ are positive and statistically different from zero. The notable exception is the HML factor in

the FF5 model, whose risk price is negative and statistically insignificant. This result is consistent

with Fama and French (2015), who note the redundancy of the HML factor in the presence of the

RMW and CMA factors. Another observation is that the risk prices associated with all factors

included in multiple models (MKT, SMB, HML) vary across the models. This is a consequence of

non-trivial correlations between the factors.

Having the estimated risk prices, we construct the SDFs mt and their non-market components

mN
t according to equations (2) and (3), in which the population values of b are replaced with the

estimates b̂, and the factor expectations are replaced with the factor averages. The non-market

components m⊥
t are obtained as residuals from the regressions of mN

t on the market returns. The

exception is the KNS model, for which m⊥
t is directly available. The summary statistics for mt,

mN
t , and m⊥

t are reported in Table 2.

[TABLE 2 IS HERE]

Panel A of Table 2 shows that the SDFs of the considered asset pricing models are substantially

correlated. The positive correlations are not surprising because all SDFs contain the market factor,

and many of them share identical or highly correlated other factors. Also, the ordering of the

correlations looks reasonable: the highest correlation is observed between FF5 and Q4, which both

include the size, profitability, and investment factors, whereas the lowest correlation is between

FF3 and BF3, which arguably contain rational and behavioral factors, respectively.

A more interesting observation is that the correlation matrices in Panels A and B of Table

2 are almost identical, that is, the exclusion of the market component from the SDFs leaves the

correlations between the SDFs almost unchanged. Thus, the similarity of the considered models

goes far beyond the fact that they all include the market factor.

Because the characteristics-based factors are typically correlated with the market, the non-

market components mN
t are likely to be correlated with the market as well. Indeed, as reported in

Panel B of Table 2, the market and non-market components tend to be negatively correlated, and

the correlation coefficient can reach −0.5. Interestingly, mN
t of the behavioral models M4 and BF3

tend to be stronger negatively correlated with the market than the corresponding components of

the more conventional FF3, FF5, Q4, and BS6 models.
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The correlations between the orthogonalized non-market components m⊥
t reported in Panel

C of Table 2 are typically lower than their non-orthogonalized counterparts, but they are still

quite high. Thus, even after removing their exposure to market shocks, the SDFs still appear to

contain common information. The result is not completely surprising given that the non-market

components mN
t and m⊥

t are highly correlated.

Finally, Table 2 reports the volatilities of the SDFs and their components. Because the non-

market component mN
t is negatively correlated with the market, the removal of the latter has only

a weak effect on the volatility of the SDFs, and the sign of the effect varies across the models.

Our results also indicate that the volatilities of mt, m
N
t , and m⊥

t tend to be lower for rational

models (FF3, FF5, and Q4) and higher for behavioral models (M4, BF3). Because E(mt) = 1, the

standard deviation of mt is the upper bound on the Sharpe ratios (Hansen and Jagannathan, 1991).

According to our estimates, those bounds are not tight: even for the FF3 model the annualized

σ(mt) exceeds 0.7, and it is close to 1.8 for the BF3 model. Those results are consistent with

the general observation that the portfolios produced by factor investing are more mean-variance

efficient than the market portfolio.

3.3. Macroeconomic shocks

Next, we construct a comprehensive set of macroeconomic shocks using FRED-MD, which is a large

publicly available macroeconomic data set. FRED-MD is maintained by the Federal Reserve Bank

of St. Louis and described in McCracken and Ng (2016). The variables contained in FRED-MD

measure a broad spectrum of economic activities and can be classified in eight categories: (1) out-

put and income, (2) labor market, (3) housing, (4) consumption, orders, and inventories, (5) money

and credit, (6) interest rates and exchange rates, (7) prices, and (8) stock market. FRED-MD is up-

dated monthly and can be downloaded from https://research.stlouisfed.org/econ/mccracken/fred-

databases/. We use the data vintage from October 2020, which contains monthly realizations of 128

macro variables. We have dropped four variables (ACOGNO, ANDENOx, TWEXAFEGSMTHx,

and UMCSENTx) whose values are missing in the early part of the sample period. To avoid discov-

ering a mechanical relation between the SDFs and explanatory variables, we have also excluded the

composite stock price index (S&P 500), stock price index of industrials (S&P: indust), dividend

yield (S&P div yield), and price-earnings ratio (S&P PE ratio), which are directly determined

by stock market prices. The remaining 120 variables are listed in Appendix B. Because many
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macroeconomic indicators are announced with one- or even two-month delay, we take lags of those

variables so that each value is assigned to the month in which it becomes publicly available.

Next, we transform nonstationary variables into stationary ones. In particular, we remove

stochastic trends by taking a first- or second-order difference. When a variable changes in relative

rather than absolute terms, we difference its logarithm. Each variable is treated individually, and

the appropriate transformation is chosen following McCracken and Ng (2016). Those transforma-

tions are indicated in Appendix B.9 Finally, we winsorize the outliers that deviate from the sample

median by more than ten interquartile ranges.

By definition, macroeconomic shocks are unexpected innovations in a macroeconomic variable.

Because the majority of macroeconomic indicators are highly persistent, their own lags are strong

predictors of future realizations. Therefore, to preserve simplicity, we construct macroeconomic

shocks as AR(1) residuals. To avoid the look-ahead bias, in each period the AR(1) model is

estimated using the realized observations available in that period.

The constructed set of macroeconomic shocks contains a small number of standard shocks that

are frequently used in the empirical asset pricing literature, as well as many other shocks. The

standard shocks include the innovations in the consumption expenditure, industrial production, oil

price, the term spread, default spread, one-month Treasury Bill rate, and inflation (e.g., Chen, Roll,

and Ross, 1986). The shocks to the last four variables are often interpreted as innovations in the

economic state variables that predict future investment opportunities (e.g., Maio and Santa-Clara,

2012; Boons, 2016).

[FIGURE 2 IS HERE]

Figure 2 shows a heat map of absolute pairwise correlations between various macroeconomic

shocks. The ordering of the shocks coincides with the ordering of macroeconomic variables in

Appendix B, and a darker shade corresponds to a larger correlation. The figure shows that there

are several clusters of non-trivial correlations that correspond to macroeconomic shocks from the

same category. However, the vast majority of the correlations are surprisingly low. Therefore,

the considered shocks are likely to represent relatively unrelated aspects of the economy, and the

majority of them are not redundant when considered jointly. The latter fact justifies using all

shocks as potential explanatory variables for the SDFs.

9McCracken and Ng (2016) is supplemented by the Matlab code that performs those transformations.
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4. Empirical results

4.1. Explaining mt, m
N
t , and m

⊥
t

Our main objective is to explore the joint ability of macroeconomic shocks to explain the variation

in the SDFs and their non-market components mN
t and m⊥

t of seven asset pricing models. Having

the SDFs and their components obtained in Section 3.2 and macroeconomic shocks constructed

in Section 3.3, we apply the machine learning-based estimation of the linear regression model R2

described in Section 2.2. The results are reported in Table 3.

[TABLE 3 IS HERE]

Panel A of Table 3 shows that only the SDFs of the FF3 and FF5 models have detectable

relations to the macroeconomic shocks: the obtained R2
os are around 19% and 4% respectively, and

the null hypothesis R2 = 0 is reliably rejected in both cases. Although R2
os of the M4 and BF3

models are also positive, they are not statistically significant. The R2
os of the Q4 and BS6 models

are indistinguishable from zero.

The conclusions are more uniform for the non-market components mN
t and m⊥

t : the macroe-

conomic shocks have no power to explain them, and Panels B and C of Table 3 show that this

result holds for all considered asset pricing models. In particular, the obtained R2
os for mN

t are

zero or negative in the case of the FF3, FF5, Q4, and BS6 models. Although, the R2
os for the M4

and BF3 models are positive, the p-values of the van de Wiel, Berkhof, and van Wieringen (2009)

test are high. The obtained R2
os for m⊥

t are closer to zero than those for mN
t , and none of them

is statistically significant. Moreover, for the Q4, BS6, M4, and KNS models, R2
os are exactly zero

because the cross-validated elastic net does not include the macroeconomic shocks at all.

There might be a concern that the obtained high p-values result from a low statistical power

of the van de Wiel, Berkhof, and van Wieringen (2009) test caused by a low precision of R2
os as

an estimator of the population R2. However, this is an unlikely explanation for our results. The

magnitudes of R2
os are consistently low across the models for both mN

t and m⊥
t , which would not be

the case if R2
os were an inefficient estimator. To provide further evidence, we estimate the standard

errors of R2
os using bootstrap as described in Section 2.5. The randomness in R2

os is produced by

the randomness in the estimated model parameters and by the finiteness of the testing sample, and
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both of them are taken into account when both samples are bootstrapped. Table 3 demonstrates

that the standard errors of R2
os do not exceed several percentage points, and they are particularly

small when R2
os is close to zero. In the vast majority of the cases, zero is within one standard error

from the empirical R2
os.

We also consider the distributions of R2
os when only either the training or testing sample is

bootstrapped. Not surprisingly, the dispersions of those distributions are smaller than in the

case when both samples are bootstrapped. More interestingly, the estimation and testing errors

comparably contribute to the dispersion of R2
os, although in the case of non-market components

the standard errors when only the training sample is bootstrapped tend to be slightly larger than

when only the testing sample is bootstrapped.

Along with the bootstrapped standard errors of R2
os, we also report the means of the boot-

strapped R2
os, which themselves can be viewed as estimates of the population R2. Table 3 shows

that in the main case with bootstrapped training and testing samples, the mean R2
os are almost

always lower than the empirical R2
os. This result is likely to be produced by the finiteness of the

training sample and the noise that the parameter estimation introduces to the bootstrap-based

estimator. Indeed, in all panels of Table 3, the means of the bootstrapped R2
os are close to the

empirical R2
os when only the testing sample is bootstrapped, but they are substantially lower when

only the training sample is bootstrapped.

Overall, our results indicate that the macroeconomic shocks are largely unrelated to the SDFs

of the considered asset pricing models. This finding casts doubts on the possibility to attribute

the empirical success of characteristics-based asset pricing models to their ability to identify priced

macroeconomic risks. Instead, it suggests that the characteristics-based asset pricing factors are

likely to have the behavioral nature.

4.2. Explaining individual asset pricing factors

The inability of macroeconomic shocks to explain the SDFs and their components might be caused

by an imprecise estimation of the risk prices and the resulting noise in the SDFs. To partially

alleviate this concern, we explore whether the macroeconomic shocks are related to the individual

characteristics-based asset pricing factors by conducting the same analysis as in the previous section

with the individual factors from Section 3.1 used as the left hand side variables.
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[TABLE 4 IS HERE]

The results are reported in Panel A of Table 4, which shows that the highest R2
os are obtained

for SMB and ME (4.23% and 4.58%, respectively), and the null hypothesis R2 = 0 is rejected for

SMB, ME, MGMT, and FIN at the 10% confidence level. For the other factors, the results are

much weaker: none of the R2
os is statistically different from zero, and for two factors the R2

os are

negative. As in the case of the SDFs and their components, the bootstrap results demonstrate that

the uncertainty in the R2
os is produced both by the estimation errors in the model parameters and

by the finiteness of the testing sample.

It is well known that many characteristics-based asset pricing factors are correlated with the

market. Therefore, as in the case of the SDFs, we also consider orthogonalized factors constructed

as residuals from the time series regression of factor returns on the market. Panel B of Table 4

shows that after the orthogonalization, R2
os substantially drop for the vast majority of the factors

and equals to zero for six of them. Accordingly, the p-values from testing R2 = 0 do not fall below

39%. Thus, even assuming that the estimated standard errors are too large and some positive

R2
os in Panel A of Table 4 are not spurious, we still have to attribute those R2

os to the relations

between the macroeconomic shocks and market returns, not to the ability of the shocks to track

the non-market parts of the factors.

To summarize, the lack of the relations between the macroeconomic shocks and SDFs is unlikely

to result from an imprecise estimation of the prices of risk. Instead, it appears to be an intrinsic

property of the characteristics-based asset pricing models.

4.3. Adding theory-motivated shocks

Although we consider a large number of macroeconomic shocks, there is still a chance that a shock

that can provide additional information about the characteristics-based SDFs is missing. In this

section, we explore the ability of theory-motivated shocks such as the consumption growth shock

and the shock to the capital of financial intermediaries to explain the SDFs of the characteristics-

based asset pricing models.
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4.3.1. Consumption growth shock

The most popular macroeconomic shock in asset pricing is the consumption growth shock, which is

the cornerstone of consumption-based asset pricing models (e.g., Breeden, 1979). To construct the

shock, we use the consumption data from the National Income and Product Accounts (NIPA). Fol-

lowing Jagannathan and Wang (2007), we first obtain monthly nominal consumption expenditure

on nondurables and services from NIPA Table 2.8.5. Then, we convert the two series into their per

capita analogs using the population numbers from NIPA Table 2.6 and adjust for inflation using

the corresponding price deflators from NIPA Table 2.8.4. Finally, we aggregate the obtained real

per capita consumption and expenditure on nondurables and services to get a series of monthly

consumption. The consumption growth is defined as the log growth rate of the obtained series.10

The first question we ask is whether the variation in the SDFs and their non-market components

can be explained by the consumption growth alone. Because overfitting is not an issue in this case,

we use the standard OLS regression to construct predictors of the target variables. The results are

presented in Table 5. To save space, we report the mean and standard deviation of bootstrapped

R2
os only in the case when both training and testing samples are bootstrapped.

[TABLE 5 IS HERE]

Table 5 demonstrates that consumption growth is unrelated to the SDFs of the considered

theories, and R2
os are particularly small for m⊥

t . This result is consistent with a poor ability

of the consumption growth shock to explain the cross section of stock returns (e.g., Lettau and

Ludvigson, 2001). Adding all other macroeconomic shocks reduces the majority of the p-values

and even allows us to reject the hypothesis R2 = 0 for mt of the FF3 and FF5 models. However,

the obtained results are almost identical to those reported in Table 3, and this observation holds

for both SDFs and their non-market components. Thus, our results are insensitive to including the

consumption growth shock as one of the macroeconomic factors.

4.3.2. Intermediary capital shock

Another theory-motivated macroeconomic shock is a shock to the capital of financial intermediaries.

In contrast to the consumption growth shock, the exposure of returns to this shock has been

10There is also a consumption growth variable in FRED-MD, but it is constructed from monthly real personal
consumption expenditures, which include all types of consumption and which are reported in NIPA Table 2.8.3.
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shown to have explanatory power for the cross section of expected returns on various assets (e.g.,

Adrian, Etula, and Muir, 2014; He, Kelly, and Manela, 2017). In particular, He, Kelly, and Manela

(2017) propose a two-factor model whose factors are the excess market return and the shock to

the financial intermediaries’ equity capital ratio. The latter is defined as the ratio of the primary

dealers’ aggregate market equity to the sum of their aggregate market equity and aggregate book

debt. The shocks constructed as AR(1) innovations in the equity capital ratio divided by the

lagged ratio constitute the intermediary asset pricing factor.11 Because the intermediary asset

pricing model and the characteristics-based asset pricing models have the excess market return as

one of the factors, we only explore the ability of the intermediary asset pricing factor to explain

the non-market SDF components.

As in the case of consumption growth, we first construct contemporaneous predictors for mN
t

and m⊥
t as fitted values from the OLS regression of those variables on the intermediary asset pricing

factor alone. The results are presented in Table 6.

[TABLE 6 IS HERE]

Panel A of Table 6 demonstrates that although for all models the intermediary asset pricing

factor can explain mN
t with a positive R2

os, the standard errors are large, and only for M4 the

hypothesis R2 = 0 is reliably rejected. As in the case of other macroeconomic shocks, the results

are much weaker for m⊥
t . As reported in Panel B of Table 6, R2

os is negative for FF5, BF3, and

KNS, and even when it is positive, it is not statistically different from zero. Therefore, the weak but

still detectable relation between the intermediary asset pricing factor and mN
t should be attributed

to the fact that both of them are correlated with the market. After removing the exposure to the

market, the SDFs of the considered models appear to be unrelated to the intermediary asset pricing

factor.

Table 6 also reports the results of explaining the characteristics-based SDFs by a combination

of the intermediary asset pricing factor and all other 120 macroeconomic shocks. In the case of mN
t ,

the results are qualitatively and quantitatively similar to those with a single intermediary factor.

In the case of m⊥
t , they are noticeably weaker in the presence of all macroeconomic shocks, and

11We are grateful to Asaf Manela for making the intermediary asset pricing factors available on his website
http://apps.olin.wustl.edu/faculty/manela/data.html. The sample starts in January 1970, and we adjust our sample
of the SDFs and macroeconomic shocks accordingly.
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for five models R2
os becomes zero. This result is likely to be explained by noise created by useless

factors. Indeed, the standard errors of R2
os are typically higher when all macroeconomic shocks are

included as explanatory variables.

To summarize, the intermediary asset pricing model and the considered characteristics-based

asset pricing models describe different aspects of the cross section of expected stock returns, and

their SDFs cannot be reduced to each other. Therefore, the intermediary asset pricing factor cannot

be viewed as a missing macroeconomic factor capable of explaining the SDFs of the characteristics-

based models.

5. Robustness tests

This section contains several additional tests that demonstrate the robustness of our conclusions

to several modifications of the estimation and testing procedures used in the main analysis.

5.1. Alternative estimation of the SDFs

In the first robustness test, we consider an alternative way to construct the SDFs. In the main

analysis, we estimate the prices of risk only assuming that the SDF correctly prices the returns on

the factor portfolios. However, adding more assets that are presumably priced by the given model

would increase the precision of the estimates. Therefore, we expand the set of the test assets by

augmenting the factor portfolios with the Fama-French 25 size and book-to-market portfolios, 10

price-to-earnings portfolios, and 10 industry portfolios. The returns on the additional portfolios

have been downloaded from Ken French’s data library.

Having excess returns on each test portfolio Re
t , we estimate the SDFs of all models except KNS

by the two-stage GMM with the standard moment conditions

E[(1− b′(ft − E(ft)))R
e
t ] = 0.

As in the main analysis, we use the estimated prices of risk to construct the SDFs and their

components mN
t and m⊥

t . Then, we apply the estimation procedure from Section 2.2 and find R2
os

produced by the macroeconomic shocks. The results are reported in Panel A of Table 7. To save

space, we only present the results for mN
t and m⊥

t but not for mt. Also, we do not bootstrap the

training and testing samples individually.
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[TABLE 7 IS HERE]

Consistent with the main results from Table 3, the macroeconomic shocks are only weakly

related to the non-market component mN
t for two out of six models, and even in those cases the

p-values are higher than 10%. However, the relation is almost undetectable for m⊥
t : for one model

(BF3) the empirical R2
os is negative, and for all others it is identical to zero. Thus, we obtain

another evidence that the inability of macroeconomic shocks to explain the characteristics-based

SDFs should not be attributed to poorly estimated prices of risk.

5.2. Alternative construction of macroeconomic shocks from real-time data

Macroeconomic data that are publicly revealed by various government agencies are typically re-

vised in the future, and FRED-MD contains the most recent information. Because of that, the

macroeconomic shocks in our analysis may not adequately represent the real-time innovations in

the macroeconomic variables as they are observed by investors, which potentially can explain the

disconnect between macroeconomic shocks and asset prices. This concern is exacerbated by several

recent studies that demonstrate the importance of using the real-time macroeconomic data for fore-

casting macroeconomic variables and bond returns (e.g., Faust and Wright, 2009; Ghysels, Horan,

and Moench, 2018; Feng, Fulop, and Li, 2020; Huang, Jiang, Tong, and Zhou, 2020). To show that

our results are insensitive to the revisions in the macroeconomic data, we repeat the analysis using

real-time macroeconomic shocks.

To construct those shocks, we use the ALFRED database, which is maintained by the Federal

Reserve Bank of St. Louis and downloadable from https://alfred.stlouisfed.org/. ALFRED pro-

vides time-stamped vintages of macroeconomic data and allows researchers to retrieve real-time

realizations of the variables. Unfortunately, many data vintages contain different sets of the vari-

ables. To get a balanced data set of 120 macroeconomic variables in the considered time period,

we use the revised data from FRED-MD to estimate the AR(1) models and compute expectations

but the real-time data from ALFRED to find shocks. All macroeconomic variables are transformed

as indicated in Appendix B period by period. Also, we winsorize the transformed variables in each

period so that the outliers are detected and removed in real time.

We present the results in Panel B of Table 7, which shows that for both mN
t and m⊥ the

R2
os tend to be higher than their counterparts from Table 3. This observation indicates that the
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real-time macroeconomic shocks indeed have a better chance to explain the SDFs than the shocks

based on more accurate but unavailable to investors information. Nevertheless, the magnitudes of

R2
os are still very low, and only for the BS6 and KNS models the p-values drop below 5%. Even

in those two cases we exercise caution and do not interpret the results as evidence of statistical

significance because we simultaneously test R2 of multiple models, and multiple testing distorts the

sizes of the tests with the standard critical values.

5.3. Alternative construction of macroeconomic shocks from a FAVAR model

Because macroeconomic shocks are unexpected innovations in macroeconomic variables, their real-

izations depend on the chosen model for the variable expectations. In particular, the AR(1) model

used in our main analysis can be too restrictive since the lagged variable represents only a small

subset of information available to market participants. As a result, the macroeconomic shocks

may be poorly measured and erroneously appear as unrelated to the discount factors. To alleviate

this concern, we repeat the analysis with the macroeconomic shocks constructed as residuals of a

factor-augmented vector autoregression (FAVAR). The FAVAR model, which has been developed

by Bernanke, Boivin, and Eliasz (2005), extends the standard VAR model by augmenting it with

a small number of estimated factors that concisely summarize the information from a large set of

macroeconomic variables. Therefore, the FAVAR-based expectations of macroeconomic variables

encompass a much larger information set and are less likely to be misspecified than the AR(1)-based

expectations.

To construct the FAVAR-based expectations, we apply the two-step procedure of Bernanke,

Boivin, and Eliasz (2005) to our set of 120 macroeconomic variables. As before, the variables have

been transformed to induce stationarity as indicated in Appendix B. In the first step, we find the

three principal components (PCs) of the variables, which beforehand have been standardized to

have zero means and unit standard deviations. In the second step, we estimate the predictive

regression for each (non-standardized) macroeconomic variable using its lag and the lagged realiza-

tions of the three PCs obtained in the first step as predictors.12 The difference between the realized

macroeconomic variable and the fitted value from our model represents the macroeconomic shock.

To avoid the look-ahead bias, in each period, both steps of the estimation use only the observations

12Because our objective is only to find the expectations of the macroeconomic variables, not to estimate the whole
FAVAR model for the selected observable variables and latent factors, we do not orthogonalize the factors and
variables as prescribed in Bernanke, Boivin, and Eliasz (2005).
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available in that period.

The results are presented in Panel C of Table 7. Compared to Table 3, the FAVAR-based

macroeconomic shocks produce zero R2
os for a larger number of the models in the case of mN

t ,

whereas R2
os for m⊥

t are barely affected. Thus, the ability of macroeconomic shocks to explain the

non-market components of the characteristics-based SDFs cannot be improved by enlarging the

information set relative to which the shocks are defined.

5.4. Alternative specification of the elastic net regression

In our main analysis, we assume that the slopes of macroeconomic shocks are constant over time.

However, as recognized by conditional asset pricing models, the contribution of each shock into

the SDF may depend on the state of the economy. To entertain such a possibility, we repeat our

analysis augmenting the macroeconomic shocks with the interactions of all shocks with potential

state variables. As those variables, we choose (1) the yield spread between ten-year Treasury

bond rate and the one-month Federal Fund Rate, (2) the yield spread between BAA and AAA

corporate bonds from Moody’s, (3) the one-month Treasury Bill rate, (4) the inflation rate, (5)

the consumption growth rate, and (6) the industrial productivity growth rate. Those variables are

stationary, and they are commonly used in the conditional asset pricing models (e.g., Ferson and

Harvey, 1993; Jagannathan and Wang, 1996; Ferson and Harvey, 1999). The chosen state variables

are available in FRED-MD, and we construct 720 interactions of each lagged state variable with

120 macroeconomic shocks. In total, we end up with 840 explanatory variables in the elastic net

regression. Because the number of regressors exceeds the number of observations (which is around

700 in our sample), the OLS regression cannot be run, which underlines the importance of using

elastic net in our estimation procedure.

The results are presented in Panel D of Table 7. They demonstrate that making the slopes of

macroeconomic shocks state dependent does not improve their ability to explain the SDFs’ non-

market components: the R2
os and p-values for mN

t and m⊥
t are qualitatively, and for many models

even quantitatively, comparable to their counterparts in Table 3.

5.5. Alternative training and testing samples

The next robustness test explores the sensitivity of our results to the particular split of the whole

sample into the training and testing samples. In the main analysis, we assign the first two months
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of each quarter to the training sample and the last month of each quarter to the testing sample.

Because of this convention, our results may not be representative for the whole sample if there is

a seasonal variation in the ability of macroeconomic factors to proxy SDFs. To demonstrate that

this is not the case, we repeat the main steps of our analysis after assigning the first month of

each quarter to the testing sample and the other two months to the training sample. The results

are reported in Panel E of Table 7. It shows that although the obtained R2
os are slightly different

compared to their counterparts from Table 3, there is no discernible pattern in those differences.

Most importantly, all p-values are still large for both mN
t and m⊥

t and for all models. Thus, the

inability of macroeconomic shocks to explain SDFs cannot be attributed to the peculiarities of our

allocation of time periods to the training and testing samples.

5.6. Alternative size of the training sample

In the main analysis, two thirds of the observations are allocated to the training sample, and the rest

of them are used for testing. Although such a split is standard in the machine learning literature, it

may not be optimal from the perspective of maximizing the efficiency of R2
os as an estimator of the

population R2. In particular, it might be possible to improve the estimation precision and the power

of our tests by increasing the size of the training sample, which would possibly allow us to better

estimate the elastic net coefficients without compromising the assessment of the model’s predictive

ability in the testing sample. To ensure that our results are not produced by a suboptimally chosen

split, we consider an alternative split in which we assign four fifths of the observations to the

training sample. As in the main analysis, the split is deterministic: every four subsequent periods

of the training sample are followed by a period assigned to the testing sample. The results obtained

in this setting are presented in Panel F of Table 7.

Compared to the results from Table 3, a larger training sample on average leads to a smaller

number of models for which the cross-validation excludes all shocks and R2 in the testing sample

is exactly zero. However, the inclusion of more shocks does not improve the explanatory power

of elastic net regressions: many non-zero R2
os are negative for both mN

t and m⊥
t . Accordingly,

the p-values for all models and SDF components are high, and the hypothesis R2 = 0 cannot be

rejected. Thus, we conclude that our main results are not produced by a suboptimal allocation of

observations to the training and testing samples.
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6. Conclusion

The characteristics-based factor models are popular in empirical asset pricing because they are

the most successful in explaining the cross-sectional variation in expected stock returns. However,

their factors lack economic interpretation, and it is unclear which economic shocks they represent.

In this paper, we explore whether a large number of macroeconomic shocks can at least partially

approximate the SDFs of seven representative characteristics-based asset pricing models and use

machine learning tools to mitigate the overfitting problem. Our paper makes both empirical and

methodological contributions to the literature. On the empirical side, we find that the relations

between the SDFs of the considered models and macroeconomic shocks are tenuous at best, and

where detectable, they are produced by the correlation between market returns and the shocks.

This result indicates that behavioral factors are likely to be responsible for the empirical success

of the characteristics-based models, not macroeconomic risks. On the methodological side, we

demonstrate how machine learning techniques can be used not only for forecasting but also for

measuring the explainability of one variable by many others.

Our results suggest several directions for future research. First, an important methodological

question is how to construct an estimator of the population R2 that is better than the R2
os of elastic

net. As our simulations demonstrate, the latter clearly outperforms the in- and out-of-sample

R2 from the OLS regression when the number of regressors is large compared to the number of

observations, but R2
os still underestimates positive population R2. Second, it might be interesting to

further explore and validate the bootstrap-based computation of standard errors. Third and most

importantly, our results imply that the search for an economic interpretation of the characteristics-

based asset pricing models is far from being over, and additional work is needed to understand the

pricing ability of the characteristics-based factors.
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Table 1
The table presents the GMM estimates of risk prices and their standard errors for six characteristics-
based factor models: FF3, FF5, Q4, BS6, M4, and BF3. The models are described in Section 3.1.
The samples are from July 1963 to December 2019 for FF3 and FF5, from January 1967 to December
2019 for Q4 and BS6, from July 1963 to December 2016 for M4, and from July 1972 to December
2019 for BF3.

FF3

MKT SMB HML

b̂ 3.43 1.55 5.68
s.e. 1.04 1.33 1.45

FF5

MKT SMB HML RMW CMA

b̂ 5.39 3.68 -0.63 10.01 12.97
s.e. 1.14 1.48 2.09 2.15 3.06

Q4

MKT ME IA ROE

b̂ 5.78 5.14 16.09 12.41
s.e. 1.19 1.64 2.71 2.06

BS6

MKT SMB HMLm IA ROE UMD

b̂ 6.21 6.54 12.25 6.11 16.09 6.43
s.e. 1.29 1.77 2.56 3.63 2.46 1.77

M4

MKT SMB MGMT PERF

b̂ 8.55 7.40 16.53 7.63
s.e. 1.44 1.62 2.18 1.50

BF3

MKT FIN PEAD

b̂ 8.01 10.09 20.50
s.e. 1.45 1.50 2.52
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Table 2
The table shows the summary statistics of the SDFs mt (Panel A), their non-market compo-
nents mN

t (Panel B), and the orthogonalized non-market components m⊥
t (Panel C) for seven

characteristics-based factor models: FF3, FF5, Q4, BS6, M4, BF3, and KNS. The models are
described in Section 3.1. The samples are from July 1963 to December 2019 for FF3 and FF5,
from January 1967 to December 2019 for Q4 and BS6, from July 1963 to December 2016 for M4,
from July 1972 to December 2019 for BF3, and from November 1973 to December 2019 for KNS.
σ(mt), σ(m

N
t ), and σ(m⊥

t ) are the standard deviations of the corresponding variables; ρ(mM
t ,mN

t )
and ρ(mN

t ,m⊥
t ) are the correlations between the corresponding components, and mM

t is defined
in equation (3). The bottom parts of the panels report the correlations of the SDFs and their
components across the models.

Panel A: SDFs mt

FF3 FF5 Q4 BS6 M4 BF3 KNS

σ(mt) 0.20 0.31 0.41 0.48 0.47 0.50 −

Correlations
FF3 1.00
FF5 0.63 1.00
Q4 0.43 0.74 1.00
BS6 0.55 0.70 0.89 1.00
M4 0.46 0.68 0.63 0.64 1.00
BF3 0.29 0.40 0.47 0.47 0.56 1.00

Panel B: non-market components mN
t

FF3 FF5 Q4 BS6 M4 BF3 KNS

σ(mN
t ) 0.16 0.31 0.42 0.49 0.53 0.53 −

ρ(mM
t ,mN

t ) -0.17 -0.37 -0.33 -0.32 -0.50 -0.44 −

Correlations
FF3 1.00
FF5 0.55 1.00
Q4 0.36 0.74 1.00
BS6 0.53 0.71 0.90 1.00
M4 0.44 0.71 0.66 0.67 1.00
BF3 0.24 0.45 0.50 0.51 0.64 1.00

Panel C: orthogonalized non-market components m⊥
t

FF3 FF5 Q4 BS6 M4 BF3 KNS

σ(m⊥
t ) 0.15 0.29 0.40 0.46 0.46 0.48 0.16

ρ(mN
t ,m⊥

t ) 0.99 0.93 0.94 0.95 0.87 0.90 −

Correlations
FF3 1.00
FF5 0.53 1.00
Q4 0.33 0.71 1.00
BS6 0.51 0.68 0.88 1.00
M4 0.41 0.65 0.61 0.62 1.00
BF3 0.18 0.34 0.43 0.44 0.53 1.00
KNS 0.46 0.65 0.63 0.70 0.64 0.46 1.00
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Table 3
This table presents R2

os produced by elastic net regressions of SDFs and their components on
macroeconomic shocks for seven characteristics-based factor models. The p-values correspond to
the van de Wiel, Berkhof, and van Wieringen (2009) test of the null hypothesis R2 = 0. The table
also reports the means and standard deviations of R2

os computed for bootstrapped training samples,
bootstrapped testing samples, and bootstrapped both training and testing samples.

Panel A: SDFs mt

FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 19.06 4.39 0.00 0.00 1.79 1.74 −

p-value 0.00 0.05 0.72 0.44 0.28 0.47 −

Bootstrapped training sample Mean(R2
os),% 15.53 -0.68 -0.06 -0.04 -0.01 -0.03 −

Std(R2
os),% 2.99 5.44 1.15 1.60 2.53 2.55 −

Bootstrapped testing sample Mean(R2
os),% 19.10 4.51 0.00 0.00 1.82 1.60 −

Std(R2
os),% 4.58 2.53 0.00 0.00 1.07 2.52 −

Bootstrapped training and
testing sample

Mean(R2
os),% 15.49 -0.43 -0.02 -0.05 -0.02 -0.32 −

Std(R2
os),% 6.24 6.85 1.55 1.97 3.46 4.41 −

Panel B: non-market components mN
t

FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 0.00 -6.18 -0.36 0.00 1.72 8.45 −

p-value 1.00 0.84 0.59 1.00 0.30 0.09 −

Bootstrapped training sample Mean(R2
os),% -0.93 -12.88 -7.13 -2.59 -1.92 6.61 −

Std(R2
os),% 2.29 7.90 5.01 2.84 4.31 3.39 −

Bootstrapped testing sample Mean(R2
os),% 0.00 -6.21 -0.38 -0.04 1.63 8.27 −

Std(R2
os),% 0.00 3.02 3.33 0.80 2.08 2.73 −

Bootstrapped training and
testing sample

Mean(R2
os),% -0.90 -12.83 -7.19 -2.60 -1.92 6.26 −

Std(R2
os),% 2.88 9.44 6.87 3.48 5.59 4.92 −

Panel C: orthogonalized non-market components m⊥
t

FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 0.00 -2.86 0.00 0.00 0.00 -0.04 0.00

p-value 0.89 0.99 0.98 1.00 0.82 0.59 0.92

Bootstrapped training sample Mean(R2
os),% 0.23 -6.90 -0.66 -1.17 -0.36 -0.11 0.19

Std(R2
os),% 2.09 5.12 1.20 1.74 0.95 1.71 1.71

Bootstrapped testing sample Mean(R2
os),% 0.00 -2.79 0.00 0.00 0.00 -0.09 0.00

Std(R2
os),% 0.00 1.57 0.00 0.00 0.00 0.69 0.00

Bootstrapped training and
testing sample

Mean(R2
os),% 0.28 -6.65 -0.62 -1.16 -0.35 -0.30 0.17

Std(R2
os),% 2.64 5.99 1.57 2.04 1.23 2.56 2.28
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Table 4
This table presents R2

os produced by elastic net regressions of individual asset pricing factors (Panel A) and the factors orthogonalized to the
market factor (Panel B) on 120 macroeconomic shocks. The p-values correspond to the van de Wiel, Berkhof, and van Wieringen (2009) test of
the null hypothesis R2 = 0. The table also reports the means and standard deviations of bootstrapped R2

os computed for bootstrapped training
samples, bootstrapped testing samples, and bootstrapped both training and testing samples.

Panel A: original factors

SMB HML HMLm RMW CMA ME IA ROE UMD MGMT PERF FIN PEAD

Empirical sample R2
os,% 4.23 0.00 -0.18 0.64 1.03 4.58 0.08 2.41 -0.37 3.37 1.07 3.36 0.00

p-value 0.08 1.00 0.85 0.44 0.46 0.07 0.52 0.31 0.96 0.09 0.71 0.10 0.82

Bootstrapped
training sample

Mean(R2
os),% 1.97 -0.14 -1.01 -0.22 -0.97 0.17 -2.96 -0.21 -1.81 2.01 0.92 0.80 0.24

Std(R2
os),% 3.43 0.59 1.76 1.32 2.07 4.01 3.09 3.49 2.13 2.09 0.77 3.23 0.37

Bootstrapped
testing sample

Mean(R2
os),% 4.42 0.00 -0.15 0.72 0.98 4.74 0.08 2.28 -0.35 3.35 1.02 3.35 0.00

Std(R2
os),% 5.43 0.75 2.86 2.05 3.41 6.18 4.47 5.68 3.40 3.03 1.54 4.28 0.51

Bootstrapped
both samples

Mean(R2
os),% 1.90 -0.13 -1.04 -0.23 -1.05 -0.01 -2.90 -0.39 -1.89 2.03 0.83 0.72 0.20

Std(R2
os),% 5.43 0.75 2.86 2.05 3.41 6.18 4.47 5.68 3.40 3.03 1.54 4.28 0.51

Panel B: orthogonalized factors

SMB HML HMLm RMW CMA ME IA ROE UMD MGMT PERF FIN PEAD

Empirical sample R2
os,% -1.63 0.00 0.41 -0.29 0.91 -1.63 -1.70 -0.59 0.00 0.00 0.00 0.00 0.00

p-value 0.51 0.72 0.39 0.80 0.48 0.49 0.71 0.44 1.00 0.64 1.00 0.95 0.95

Bootstrapped
training sample

Mean(R2
os),% -4.25 0.20 -0.47 -1.14 -0.81 -5.14 -4.54 -1.94 -0.01 0.29 0.03 -0.19 0.19

Std(R2
os),% 3.45 0.65 1.74 1.45 2.21 2.64 3.45 3.22 0.20 0.61 0.12 0.56 0.30

Bootstrapped
testing sample

Mean(R2
os),% -1.60 0.00 0.46 -0.22 0.95 -1.64 -1.67 -0.65 0.00 0.00 0.00 0.00 0.00

Std(R2
os),% 4.77 0.86 2.96 2.23 3.20 4.76 4.87 4.58 0.47 0.84 0.24 0.77 0.44

Bootstrapped
both samples

Mean(R2
os),% -4.43 0.22 -0.49 -1.19 -0.78 -5.49 -4.43 -2.06 -0.01 0.31 0.03 -0.21 0.15

Std(R2
os),% 4.77 0.86 2.96 2.23 3.20 4.76 4.87 4.58 0.47 0.84 0.24 0.77 0.44
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Table 5
This table presents R2

os produced by elastic net regressions of SDFs mt and their non-market components mN
t and m⊥

t on the consumption
growth and 120 macroeconomic shocks for seven characteristics-based factor models. The p-values correspond to the van de Wiel, Berkhof,
and van Wieringen (2009) test of the null hypothesis R2 = 0. The table also reports the means and standard deviations of R2

os computed for
bootstrapped training and testing samples.

Panel A: SDFs mt

consumption growth consumption growth + macro shocks

FF3 FF5 Q4 BS6 M4 BF3 KNS FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 2.29 1.38 0.75 0.43 0.45 -0.25 − 20.46 4.56 0.00 0.00 1.79 1.74 −

p-value 0.45 0.39 0.39 0.37 0.53 0.72 − 0.00 0.05 0.73 0.44 0.27 0.47 −

Bootstrapped
samples

Mean(R2
os),% 1.82 0.98 0.44 0.00 -0.08 -0.83 − 15.25 0.25 -0.01 -0.04 -0.02 -0.34 −

Std(R2
os),% 2.27 1.86 1.49 1.43 1.47 1.85 − 7.24 6.65 1.55 1.97 3.46 4.40 −

Panel B: non-market components mN
t

consumption growth consumption growth + macro shocks

FF3 FF5 Q4 BS6 M4 BF3 KNS FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 0.03 0.41 0.24 0.35 0.96 1.58 − 0.00 -6.18 -0.36 0.00 1.72 8.97 −

p-value 0.76 0.62 0.53 0.44 0.39 0.54 − 1.00 0.84 0.58 1.00 0.29 0.10 −

Bootstrapped
samples

Mean(R2
os),% -0.48 -0.07 -0.13 -0.12 0.37 0.89 − -0.90 -12.80 -7.18 -2.58 -1.80 6.70 −

Std(R2
os),% 1.35 1.40 1.17 1.42 1.92 3.08 − 2.87 9.41 6.85 3.48 5.55 4.93 −

Panel C: orthogonalized non-market components m⊥
t

consumption growth consumption growth + macro shocks

FF3 FF5 Q4 BS6 M4 BF3 KNS FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% -0.07 0.04 0.06 0.01 0.00 -0.01 -0.01 0.00 -2.86 0.00 0.00 0.00 -0.04 0.00

p-value 0.59 0.70 0.60 0.74 0.73 0.67 0.71 0.88 0.98 0.99 1.00 0.82 0.61 0.92

Bootstrapped
samples

Mean(R2
os),% -0.54 -0.36 -0.25 -0.43 -0.53 -0.63 -0.47 0.27 -6.65 -0.62 -1.16 -0.35 -0.31 0.17

Std(R2
os),% 1.42 1.25 1.11 1.27 1.33 2.30 1.51 2.63 5.99 1.57 2.05 1.23 2.57 2.28
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Table 6
This table presents R2

os produced by elastic net regressions of the non-market components of SDFs mN
t andm⊥

t on the intermediary asset pricing
factor and 120 macroeconomic shocks for seven characteristics-based factor models. The p-values correspond to the van de Wiel, Berkhof,
and van Wieringen (2009) test of the null hypothesis R2 = 0. The table also reports the means and standard deviations of R2

os computed for
bootstrapped training and testing samples.

Panel A: non-market components mN
t

intermediary factor intermediary factor + macro shocks

FF3 FF5 Q4 BS6 M4 BF3 KNS FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 0.25 4.81 0.46 2.00 11.18 10.27 − 0.00 3.84 1.58 2.06 12.27 11.50 −

p-value 0.64 0.24 0.37 0.24 0.01 0.10 − 1.00 0.13 0.27 0.16 0.00 0.06 −

Bootstrapped
samples

Mean(R2
os),% -0.33 4.33 0.16 1.80 10.63 9.69 − -0.46 1.29 -0.19 -0.57 8.94 10.46 −

Std(R2
os),% 1.58 4.10 4.25 3.76 6.52 5.40 − 2.52 4.39 3.74 4.05 7.56 4.94 −

Panel B: orthogonalized non-market components m⊥
t

intermediary factor intermediary factor + macro shocks

FF3 FF5 Q4 BS6 M4 BF3 KNS FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 3.13 -0.43 0.34 0.05 0.28 -0.10 -1.84 0.00 0.00 0.00 0.00 -0.93 0.60 0.00

p-value 0.17 0.15 0.21 0.38 0.79 0.80 0.11 0.85 1.00 1.00 1.00 1.00 0.73 0.90

Bootstrapped
samples

Mean(R2
os),% 2.46 -0.89 -0.02 -0.30 -0.19 -0.47 -2.23 0.86 -1.19 -0.94 -1.28 -2.49 0.11 0.18

Std(R2
os),% 2.89 1.68 1.14 1.22 1.23 1.45 3.04 2.48 2.20 1.84 2.23 3.61 3.07 2.32
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Table 7
The table reports the results of robustness tests. In Panel A, the SDFs of the models are estimated using excess returns on the Fama-French
25 size and book-to-market portfolios, 10 price-to-earnings portfolios, and 10 industry portfolios as additional priced assets. In Panel B, the
macroeconomic shocks are constructed from the real-time data. In Panel C, the macroeconomic shocks are obtained from the FAVAR model.
In Panel D, we include the interactions of all macroeconomic shocks with six state variables as additional regressors in the elastic net. In Panel
E, the first month of each quarter is assigned to the testing sample and the other two months represent the training sample. In Panel F, every
fifth month is assigned to the testing sample and all other months constitute the training sample.

Panel A: Alternative estimation of the SDFs

non-market components mN
t orthogonalized non-market components m⊥

t

FF3 FF5 Q4 BS6 M4 BF3 FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 0.00 0.00 -0.91 -0.11 1.37 8.54 0.00 0.00 0.00 0.00 0.00 -0.02 0.00

p-value 1.00 0.99 0.76 0.97 0.31 0.10 0.85 1.00 0.98 1.00 0.76 0.53 0.92

Bootstrapped samples
Mean(R2

os),% -0.82 -1.21 -7.63 -3.70 -2.28 6.23 0.24 -1.30 -0.51 -1.00 -0.33 -0.31 0.17
Std(R2

os),% 2.60 2.09 6.83 4.28 5.62 4.95 2.44 2.14 1.50 1.81 1.18 2.56 2.28

Panel B. Real-time macroeconomic shocks

non-market components mN
t orthogonalized non-market components m⊥

t

FF3 FF5 Q4 BS6 M4 BF3 FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 0.00 -0.56 3.42 2.42 2.13 2.10 0.00 -1.02 1.53 2.04 0.17 1.91 4.47

p-value 0.76 0.66 0.24 0.05 0.34 0.09 0.66 0.75 0.12 0.03 0.82 0.15 0.00

Bootstrapped samples
Mean(R2

os),% -0.17 -3.73 -0.36 1.64 0.05 0.88 0.06 -4.03 -1.43 -0.02 -2.47 1.23 1.05
Std(R2

os),% 1.08 5.82 4.25 2.73 4.42 5.12 0.95 5.36 3.69 3.26 4.96 2.75 6.36

Panel C. FAVAR-based macroeconomic shocks

non-market components mN
t orthogonalized non-market components m⊥

t

FF3 FF5 Q4 BS6 M4 BF3 FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 0.00 0.00 0.00 0.00 2.96 3.23 0.69 -0.61 0.00 0.00 0.00 0.41 -0.38

p-value 1.00 0.96 0.70 0.99 0.23 0.10 0.89 1.00 0.99 1.00 1.00 0.46 0.98

Bootstrapped samples
Mean(R2

os),% -0.09 -0.53 0.04 -1.19 1.37 1.81 -0.05 -1.62 -0.40 -1.20 -0.04 0.13 -1.92
Std(R2

os),% 0.95 1.74 1.93 2.01 3.05 4.36 2.12 2.17 0.97 1.71 1.02 2.42 4.04
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Table 7 (continuation)

Panel D: Alternative set of regressors

non-market components mN
t orthogonalized non-market components m⊥

t

FF3 FF5 Q4 BS6 M4 BF3 FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 0.03 0.00 -0.97 -0.62 1.60 5.02 0.73 0.00 -0.14 0.00 0.00 -0.34 0.00

p-value 0.90 0.81 0.87 0.99 0.20 0.16 0.84 0.84 0.99 1.00 1.00 0.95 1.00

Bootstrapped samples
Mean(R2

os),% -1.49 -0.12 -6.42 -3.84 0.09 -0.41 -1.00 -0.75 -1.86 -0.42 -0.71 -1.65 -0.85
Std(R2

os),% 2.98 1.33 5.05 3.40 3.37 6.84 2.79 1.71 2.65 1.03 2.24 3.26 2.59

Panel E: Alternative training and testing samples

non-market components mN
t orthogonalized non-market components m⊥

t

FF3 FF5 Q4 BS6 M4 BF3 FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 0.00 0.00 0.00 0.00 3.05 0.37 0.55 -0.51 0.00 0.00 0.51 -1.14 0.71

p-value 1.00 0.84 0.59 1.00 0.30 0.09 0.89 0.99 0.98 1.00 0.82 0.59 0.92

Bootstrapped samples
Mean(R2

os),% -0.22 -0.49 0.07 -1.46 0.84 -0.61 -0.11 -1.17 -0.36 -1.56 -0.33 -1.19 -0.98
Std(R2

os),% 1.01 1.79 1.66 2.37 3.53 5.07 1.92 2.15 0.99 2.04 1.91 4.10 3.48

Panel F: Alternative size of the training sample

non-market components mN
t orthogonalized non-market components m⊥

t

FF3 FF5 Q4 BS6 M4 BF3 FF3 FF5 Q4 BS6 M4 BF3 KNS

Empirical sample R2
os,% 0.00 -0.08 -0.20 0.29 2.34 -4.81 -0.69 0.00 -1.39 0.00 -0.65 -7.52 0.00

p-value 1.00 0.84 0.50 0.94 0.21 0.18 0.75 0.85 0.92 1.00 0.71 0.63 0.98

Bootstrapped samples
Mean(R2

os),% -0.30 -0.76 -5.77 -3.27 -1.26 -12.46 -3.72 -0.11 -3.69 -1.05 -3.92 -12.65 -1.07
Std(R2

os),% 2.05 2.31 6.37 4.86 5.52 13.45 7.16 1.92 4.36 1.89 5.88 8.68 2.97
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Figure 1
This figure plots the simulated average in-sample R2, R2

is, (solid line) and the simulated average
out-of-sample R2, R2

os, (dashed line) estimated by the OLS and elastic net regressions for different
numbers of explanatory variables Q. The figure also shows the 95% confidence bands for R2

is and
R2

os.

Panel A: R2
p = 0

OLS Elastic Net

Panel B: R2
p = 0.2

OLS Elastic Net
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Figure 2
This figure provides a heat map of absolute correlations between macroeconomic shocks. The darker
shade represents a stronger correlation. The macroeconomic shocks are ordered as in Appendix B.
The sample is from January 1963 to December 2019.
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Appendix A. Asset pricing factors

This appendix provides definitions of the asset pricing factors from the considered asset pricing

models.

CMA is an investment factor, which is constructed using the 2-by-3 value-weighted portfolios formed

on size and investment. The factor realizations are the average returns on the two conservative

investment portfolios minus the average returns on the two aggressive investment portfolios.

FIN is a long-term financing factor, which is constructed using the 2-by-3 value-weighted portfolios

formed on size and financing characteristics. The factor realizations are the average returns on the

two high financing characteristics portfolios minus the the average returns on the two low financing

characteristics portfolios.

HML is a value factor, which is constructed using the 2-by-3 value-weighted portfolios formed on

size and book-to-market ratio. The factor realizations are the average returns on the two high

book-to-market portfolios minus the average returns on the two low book-to-market portfolios.

HMLm is a modified value factor constructed similar to HML but using book-to-market ratios with

the most recent monthly stock price in the denominator.

IA is an investment factor, which is constructed using the 2-by-3-by-3 value-weighted portfolios

formed on size, investment-to-assets, and return-on-equity. The factor realizations are the aver-

age returns on the six low investment-to-asset portfolios minus average returns on the six high

investment-to-asset portfolios.

ME is a size factor, which is constructed using the value-weighted returns on 18 portfolios that

are sorted 2-by-3-by-3 independently based on size, investment-to-asset, and return-on-equity. The

factor realizations are the average returns on the nine small size portfolios minus the average returns

on the nine big portfolios.

MGMT is a management anomaly factor, which is constructed using the 2-by-3 value-weighted

portfolios formed on size and firms’ average ranking based on a cluster of six asset pricing anomalies

that represent quantities that firms’ managements can affect directly. The factor realizations are

the average returns on the two high management anomalies portfolios minus the average returns

on the two low management anomalies portfolios.

MKT is the market factor defined as the value-weighted excess return on all CRSP firms incorpo-

rated in the U.S. and listed on the NYSE, AMEX, or NASDAQ.

PEAD is a short-term post earning announcement drift factor, which is constructed using the 2-by-

2 value-weighted portfolios formed on size and the sign of post earnings announcement drift. The
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factor realizations are the returns on the two positive post earnings announcement drift portfolios

minus the average returns on the two negative post earnings announcement drift portfolios.

PERM is a performance anomaly factor, which is constructed using the 2-by-3 value-weighted

portfolios formed on size and firms’ average ranking based on a cluster of five asset pricing anomalies

that represent quantities that are related to firm performance. The factor realizations are the

average returns on the two high performance anomalies portfolios minus the average returns on the

two low performance anomalies portfolios.

ROE is a profitability factor, which is constructed using value-weighted returns on 18 portfolios

that are sorted 2-by-3-by-3 independently based on size, investment-to-asset, and return-on-equity.

The factor realizations are the average returns on the six high return-on-equity portfolios minus

the average returns on the six low return-on-equity portfolios.

RMW is a profitability factor, which is constructed using the 2-by-3 value-weighted portfolios

formed on size and operating profitability. The factor realizations are the average returns on the

two robust operating profitability portfolios minus the average returns on the two weak operating

profitability portfolios.

SMB is a size factor, which is constructed using the 2-by-3 value-weighted portfolios formed on

size and book-to-market ratio. The factor realizations are the average returns on the three small

portfolios minus the average returns on the three big portfolios.

UMD is a momentum factor, which is constructed using the 2-by-3 value-weighted portfolios formed

on size and prior 2-12 month stock returns. The factor realizations are the average returns on the

two high return portfolios minus the average returns on the two low return portfolios.

Appendix B. Macroeconomic variables

The table below lists the 120 macroeconomic variables used in our analysis. The names and

descriptions directly follow McCracken and Ng (2016). “T-Code” indicates how each variable

has been transformed: (1) = no transformation, (2) = first-order difference, (3) = second-order

difference, (4) = logarithm, (5) = first-order difference in the log value, (6) = second-order difference

in the log value, (7) = first-order difference in the relative change.

Variable T-Code Description

Category 1: Output and income

1 RPI 5 Real Personal Income

2 W875RX1 5 Real Personal Income Ex Transfer Receipts

3 INDPRO 5 IP Index
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Variable T-Code Description

4 IPFPNSS 5 IP: Final Products and Nonindustrial Supplies

5 IPFINAL 5 IP: Final Products (Market Group)

6 IPCONGD 5 IP: Consumer Goods

7 IPDCONGD 5 IP: Durable Consumer Goods

8 IPNCONGD 5 IP: Nondurable Consumer Goods

9 IPBUSEQ 5 IP: Business Equipment

10 IPMAT 5 IP: Materials

11 IPDMAT 5 IP: Durable Materials

12 IPNMAT 5 IP: Nondurable Materials

13 IPMANSICS 5 IP: Manufacturing (SIC)

14 IPB51222S 5 IP: Residential Utilities

15 IPFUELS 5 IP: Fuels

16 CUMFNS 2 Capacity Utilization: Manufacturing

Category 2: Labor market

17 HWI 2 Help-Wanted Index for United States

18 HWIURATIO 2 Ratio of Help Wanted/No. Unemployed

19 CLF16OV 5 Civilian Labor Force

20 CE16OV 5 Civilian Employment

21 UNRATE 2 Civilian Unemployment Rate

22 UEMPMEAN 2 Average Duration of Unemployment (Weeks)

23 UEMPLT5 5 Civilians Unemployed - Less Than 5 Weeks

24 UEMP5TO14 5 Civilians Unemployed for 5-14 Weeks

25 UEMP15OV 5 Civilians Unemployed - 15 Weeks & Over

26 UEMP15T26 5 Civilians Unemployed for 15-26 Weeks

27 UEMP27OV 5 Civilians Unemployed for 27 Weeks and Over

28 CLAIMSx 5 Initial Claims

29 PAYEMS 5 All Employees: Total nonfarm

30 USGOOD 5 All Employees: Goods-Producing Industries

31 CES1021000001 5 All Employees: Mining and Logging: Mining

32 USCONS 5 All Employees: Construction

33 MANEMP 5 All Employees: Manufacturing

34 DMANEMP 5 All Employees: Durable goods

35 NDMANEMP 5 All Employees: Nondurable goods

36 SRVPRD 5 All Employees: Service-Providing Industries

37 USTPU 5 All Employees: Trade, Transportation & Utilities

38 USWTRADE 5 All Employees: Wholesale Trade

39 USTRADE 5 All Employees: Retail Trade

40 USFIRE 5 All Employees: Financial Activities

41 USGOVT 5 All Employees: Government

42 CES0600000007 1 Avg Weekly Hours : Goods-Producing

43 AWOTMAN 2 Avg Weekly Overtime Hours : Manufacturing

44 AWHMAN 1 Avg Weekly Hours : Manufacturing

45 CES0600000008 6 Avg Hourly Earnings : Goods-Producing

46 CES2000000008 6 Avg Hourly Earnings : Construction

47 CES3000000008 6 Avg Hourly Earnings : Manufacturing
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Variable T-Code Description

Category 3: Housing

48 HOUST 4 Housing Starts: Total New Privately Owned

49 HOUSTNE 4 Housing Starts, Northeast

50 HOUSTMW 4 Housing Starts, Midwest

51 HOUSTS 4 Housing Starts, South

52 HOUSTW 4 Housing Starts, West

53 PERMIT 4 New Private Housing Permits (SAAR)

54 PERMITNE 4 New Private Housing Permits, Northeast (SAAR)

55 PERMITMW 4 New Private Housing Permits, Midwest (SAAR)

56 PERMITS 4 New Private Housing Permits, South (SAAR)

57 PERMITW 4 New Private Housing Permits, West (SAAR)

Category 4: Consumption, orders, and inventories

58 DPCERA3M086SBEA 5 Real personal consumption expenditures

59 CMRMTSPLx 5 Real Manu. and Trade Industries Sales

60 RETAILx 5 Retail and Food Services Sales

61 AMDMNOx 5 New Orders for Durable Goods

62 AMDMUOx 5 Unfilled Orders for Durable Goods

63 BUSINVx 5 Total Business Inventories

64 ISRATIOx 2 Total Business: Inventories to Sales Ratio

Category 5: Money and credit

65 M1SL 6 M1 Money Stock

66 M2SL 6 M2 Money Stock

67 M2REAL 5 Real M2 Money Stock

68 AMBSL 6 St. Louis Adjusted Monetary Base

69 TOTRESNS 6 Total Reserves of Depository Institutions

70 NONBORRES 7 Reserves Of Depository Institutions

71 BUSLOANS 6 Commercial and Industrial Loans

72 REALLN 6 Real Estate Loans at All Commercial Banks

73 NONREVSL 6 Total Nonrevolving Credit

74 CONSPI 2 Nonrevolving consumer credit to Personal Income

75 MZMSL 6 MZM Money Stock

76 DTCOLNVHFNM 6 Consumer Motor Vehicle Loans Outstanding

77 DTCTHFNM 6 Total Consumer Loans and Leases Outstanding

78 INVEST 6 Securities in Bank Credit at All Commercial Banks N.A.

Category 6: Interest rates and exchange rates

79 FEDFUNDS 2 Effective Federal Funds Rate

80 CP3Mx 2 3-Month AA Financial Commercial Paper Rate

81 TB3MS 2 3-Month Treasury Bill

82 TB6MS 2 6-Month Treasury Bill

83 GS1 2 1-Year Treasury Rate

84 GS5 2 5-Year Treasury Rate

85 GS10 2 10-Year Treasury Rate

86 AAA 2 Moody’s Seasoned Aaa Corporate Bond Yield
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Variable T-Code Description

87 BAA 2 Moody’s Seasoned Baa Corporate Bond Yield

88 COMPAPFFx 1 3-Month Commercial Paper Minus FEDFUNDS

89 TB3SMFFM 1 3-Month Treasury C Minus FEDFUNDS

90 TB6SMFFM 1 6-Month Treasury C Minus FEDFUNDS

91 T1YFFM 1 1-Year Treasury C Minus FEDFUNDS

92 T5YFFM 1 5-Year Treasury C Minus FEDFUNDS

93 T10YFFM 1 10-Year Treasury C Minus FEDFUNDS

94 AAAFFM 1 Moody’s Aaa Corporate Bond Minus FEDFUNDS

95 BAAFFM 1 Moody’s Baa Corporate Bond Minus FEDFUNDS

96 EXSZUSx 5 Switzerland / U.S. Foreign Exchange Rate

97 EXJPUSx 5 Japan / U.S. Foreign Exchange Rate

98 EXUSUKx 5 U.S. / U.K. Foreign Exchange Rate

99 EXCAUSx 5 Canada / U.S. Foreign Exchange Rate

Category 7: Prices

100 WPSFD49207 6 PPI: Finished Goods

101 WPSFD49502 6 PPI: Finished Consumer Goods

102 WPSID61 6 PPI: Intermediate Materials

103 WPSID62 6 PPI: Crude Materials

104 OILPRICEx 6 Crude Oil, spliced WTI and Cushing

105 PPICMM 6 PPI: Metals and metal products

106 CPIAUCSL 6 CPI : All Items

107 CPIAPPSL 6 CPI : Apparel

108 CPITRNSL 6 CPI : Transportation

109 CPIMEDSL 6 CPI : Medical Care

110 CUSR0000SAC 6 CPI : Commodities

111 CUUR0000SAD 6 CPI : Durables

112 CUSR0000SAS 6 CPI : Services

113 CPIULFSL 6 CPI : All Items Less Food

114 CUUR0000SA0L2 6 CPI : All items less shelter

115 CUSR0000SA0L5 6 CPI : All items less medical care

116 PCEPI 6 Personal Cons. Expend.: Chain Index

117 DDURRG3M086SBEA 6 Personal Cons. Exp: Durable goods

118 DNDGRG3M086SBEA 6 Personal Cons. Exp: Nondurable goods

119 DSERRG3M086SBEA 6 Personal Cons. Exp: Services

Category 8: Stock market

120 VXOCLSx 1 VXO
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