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Abstract

In a seminal study, Duranton and Turner (2011) finds evidence that points to the

existence of the fundamental law of highway congestion in the US. They build a causal

model using an instrumental variable (IV) approach that yields an estimate of 1.03 for

the elasticity of vehicle miles traveled (VMT) to the stock of interstate highways in US

metropolitan areas. The result means that government efforts to alleviate traffic conges-

tion by expanding capacity are likely to fail — any increase in the stock of highways is

accompanied by a commensurate increase in VMT, leaving travel times unaffected. In

this article, we explore the impact of unobserved heterogeneity on the fundamental law.

We begin by using a simple partial equilibrium model to demonstrate how metropolitan

statistical areas (MSAs) that are identical in most respects but have different initial con-

gestion levels respond differently to added capacity due to individual differences. These

differences in MSAs gives rise to heterogeneity in the elasticity of VMT to capacity. We

derive conditions under which the elasticity decreases with the initial congestion level. We

then revisit the empirical analysis in Duranton and Turner (2011) using the instrumen-

tal variable quantile regression (IV-QR) model due to Chernozhukov and Hansen (2005,

2006, 2008). The IV-QR model allows us to incorporate variation in the elasticity due to

the presence of unobserved differences across MSAs. Moreover, it allows us to evaluate

the impact of changes in the stock of interstate highways on the entire conditional distri-

bution of VMT, not just the impact on the conditional mean as in Duranton and Turner
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(2011). The IV-QR estimates show that as predicted by the simple partial equilibrium

model, the elasticity declines as one goes up the quantile ladder, being more than one at

the lower quantiles and less than one at the higher quantiles. The median IV-QR estimate

being close to one. The IV-QR model implies that among observationally identical cities,

expanding road capacity can lower the number of cities experiencing severe congestion,

although the mean or median congestion levels are likely to remain constant. We also

estimate the impact of increased road capacity on the unconditional distribution of VMT

using the generalized quantile regression (GQR) model due to Powell (Forthcoming). The

GQR estimates mirror the IV-QR estimates, but their conclusions are starker at the upper

quantiles: building highways have no statistically significant impact on VMT at the high-

est quantiles. The GQR results imply that building roads can lower the total number of

cities having different observed characteristics experiencing severe congestion levels. We

further explore the mechanisms that drive the empirical findings by running simulations

using a spatial general equilibrium model with an extensive road network calibrated to

the Greater Los Angeles (LA) Region. In the general equilibrium model, besides com-

mute trips, consumers have to travel to different zones to acquire consumption goods.

The model considers route choice in the network and mode choice. Building roads affect

road traffic through three channels: the total amount of consumption, mode choice, and

the substitutions among goods sold at different locations. We find that the elasticity of

VMT to capacity in LA is 0.321, and the elasticity decreases consistently with the initial

congestion level. We report the welfare effect and the changes in other travel-related

variables. Our results have important policy implications in that they show that while

building roads is unlikely to change the mean or median congestion level, it can reduce

the number of cities experiencing high congestion levels.

1 Introduction

In an influential study, Duranton and Turner (2011) find evidence that confirms the existence

of the fundamental law of highway congestion in the U.S. The law implies that any increase

in road capacity will generate a proportionate increase in road traffic, leaving congestion levels

unchanged (Downs, 1962). The law has important policy implications: it means that govern-

ments cannot build their way out of the congestion problem, leaving congestion pricing the

only viable solution (Duranton and Turner, 2011).
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The primary force at work behind the fundamental law is the phenomenon of induced travel

demand. As travel times fall in a network due to additional capacity, travel demand increases

due to two reasons. First, generative demand: new trips from latent travel demand caused by

increased consumption and the required non-commute driving, or by serving previously less

accessible locations, help create new business establishments and relocate existing jobs and

residences. For example, Duranton and Turner (2012) found evidence that the construction

of highways causes jobs to increase in the U.S. Employing a quite granular dataset, Gibbons

et al. (2019) found similar evidence in the U.K. that improved accessibility brought about by

new roads lead to increases in the number of firms, jobs, and worker productivity. Second,

distributive demand: mode and route switches (Anas, 2015; Cervero, 2002).

Over the years, an extensive literature has found evidence of a positive traffic elasticity

to changes in capacity in the range of 0.2 to 0.8 (Goodwin, 1996; Cervero, 2002). However,

Duranton and Turner (2011) were the first to find an elasticity estimate close to one, 1.03 from

their preferred regression model, thus confirming the fundamental law’s existence. Using a

similar methodology, Hsu and Zhang (2014) also find that the law holds in Japan, where the

elasticity value ranges from 1.24 to 1.34.

Cities are complex systems. Their dynamics depend on historical, geographical, political,

and human behavioral factors. While researchers observe many of these features, given the

complexity of cities, it is likely that researchers do not account for many important city char-

acteristics in their data. The presence of unobserved characteristics means that even among

observationally identical cities, the demand response to an increase in road capacity can be

different. We provide a partial equilibrium analysis that demonstrates the heterogeneity in

demand response. As road capacity increases, the cost of travel falls, increasing traffic along

the demand curve. Meanwhile, the travel demand curve also shifts to a higher level due to the

presence of unobserved characteristics such as those related to historical, planning, and cultural

features, and, as we shall focus on in this paper, those related to the volume and the pattern of

non-commute trips. The heterogeneity in demand shifts potentially generates heterogeneity in

the elasticity of traffic to road capacity across metropolitan areas, and therefore, the existence

of the fundamental law may not be a universal phenomenon across cities. We explore this idea

in this paper.

Our simple partial equilibrium model echos with Heckman’s assertion in his Nobel lecture
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(Heckman, 2001): in econometric models, heterogeneity cannot be restricted to model inter-

cepts but must be included in model slopes as well. Accordingly, to explore the implications of

unobserved heterogeneity on the existence of the fundamental law, we modify the econometric

model in Duranton and Turner (2011), to a model with a nonseparable or nonadditive error

(See Matzkin, 2007). This change makes the elasticity of traffic to road capacity now depend on

unobserved city characteristics. The model in Duranton and Turner (2011) contains selection

effect: the assignment of additional road capacity to cities is not random. We, therefore, choose

the particular nonseparable model developed by Chernozhukov and Hansen (2005, 2006, 2008),

which incorporates both nonadditive errors and the selection effect.

The Chernozhukov and Hansen (2005, 2006, 2008) model uses instruments to estimate

conditional quantile functions in the presence of selection effect and is, therefore, called the

instrumental variable quantile regression (IV-QR) model. IV-QR allows us to study the im-

pact of increased road capacity on conditional quantiles of the traffic distribution, not just the

conditional mean. Besides, we also estimate the impact of increased road capacity on the un-

conditional quantiles of the traffic distribution using the generalized quantile regression (GQR)

model due to Powell (Forthcoming). The GQR model nests the IV-QR model as a special case

and allows conditioning on covariates even when interest lies in the unconditional distribution

of a variable.

Using the IV-QR model, Duranton and Turner’s (2011) preferred specification yields elas-

ticity estimates of 1.45 at the 10th percentile, 1.19 at the 25th percentile, 0.92 at the median,

0.82 at the 75th percentile, and 0.80 at the 90th percentile respectively. The elasticity estimates

monotonically decline as we go up the quantile ladder, and the fundamental law holds only

below the median. The GQR estimates concur with the IV-QR results: elasticity estimates

go down as we go to higher quantiles, and the estimates are more than one below the median

but less than one above it. Specifically, the elasticity is 1.27 at the 10th percentile, 1.22 at the

25th percentile, 1.02 at the median, 0.86 at the 75th percentile, and -0.74 at the 90th percentile,

although the last estimate is not statistically significant. The IV-QR and GQR results show

that highway construction can reduce the mass at the congestion distribution’s upper tail.

Lastly, we further explore the processes behind the empirical findings by employing a spa-

tially detailed general equilibrium model with a road network consisting of 210 nodes and 696

arcs to simulate the effect of building roads on traffic. The model is calibrated carefully to the
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Greater LA Region using multiple geocoded data sources to capture the spatial allocations of

jobs, population, income, consumption, and commute and non-work trips. Both arc choice in

the network and mode choice are modeled explicitly as well as the utility maximization that

determines location patterns of the non-work travel. By design, building new roads will impact

traffic as measured by vehicle miles traveled (VMT) via three channels. First, the number of

total trips by all modes which includes both commutes and non-work trips. A crucial assump-

tion we made in this part is that for a particular origin-destination (OD) pair, the quantity of

non-work trips between them is proportionate to the dollar amount of the purchases spent by

the residents of the two locations at the other location. For example, the number of non-work

trips between two locations A and B is a linear function of the purchases made in A by resi-

dents of B and the purchases made in B by residents of A. Any exogenous shock that lowers

the gross price (inclusive of travel costs) or increases the disposable income (net of commute

costs) would lead to more trips hence more VMT. Second, given total travel demand, VMT is

also determined by the share of car mode. Building new roads is likely to lower the relative

cost of car and induce consumers to switch to driving. Third, since the modeled region con-

tain 97 distinct zones and consumers travel to different zones to acquire consumption goods,

the changes in relative gross prices would alter the consumption bundles hence the location

patterns of the non-work trips. We find that in the baseline simulation, the VMT elasticity to

roads is 0.321 in the Greater LA Region. We also report the welfare changes brought about by

a one-percent capacity increase along with model predictions of other travel-related variables.

We then carry out a sequence of simulations that differ only in the number of non-work trips

and VMTs in the starting points and are otherwise identical. We find that the VMT elasticity

to capacity decreases consistently (from 0.356 to 0.291) in initial VMT, and this qualitative

outcome is robust against different values of the mode choice elasticity and the elasticity of

substitution among shopping locations.

2 The source of heterogeneity: a partial equilibrium

analysis

Travel demand. Suppose that N + x is the aggregate demand for VMT. Total VMT can

be thought of as consists of two parts: inelastic travel demand N and discretionary travel
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demand x. Specifically, N is determined by factors such as the size of the workforce in the

metropolitan area, urban sprawl, and relevant topological and planning features. For example,

one source contributing to urban areas having different levels of N is population. Empirical

evidence suggests that travel demand derived from commutes is quite inelastic. For instance,

using data from Germany, Gutierrez–i–Puigarnau and van Ommeren (2010) estimated that

commute distance, hence travel time, has a positive but numerically very weak effect on the

number of days workers choose to work. Evidence such as this suggests that a MSA with a

larger workforce tend to have a larger N that can be treated as exogenous and independent of

congestion level. Other important sources that contribute to MSAs having different levels of

N are those related to density, historical land prices, geographic characteristics, climate, and

culture. x, on the other hand, represents the portion of VMT that is elastic and varies with

congestion level. VMT derived from shopping trips is such an example. Because driving is

generally perceived as a disutility, when facing severe traffic, consumers may cancel a shopping

trip or reduce the number of such trips by accomplishing more tasks in each trip, thereby

reducing VMT.

Another fact that motivated the inverse demand function in this paper is that the consumer’s

willingness to pay, even at the same level of VMT, is unlikely to remain constant across different

metropolitan areas. If we plotted the inverse demand curves of different urban areas in the same

graph, it is likely that these curves will not overlap. A general example that causes different

locations to have different demand curves is the amenities attached to various locations, denoted

by A. We therefore write the inverse demand for VMT as P (N + x,A). To recognize the fact

that the inverse demand can be shifted by amenities which include infrastructures is crucial

in that the source of heterogeneity investigated here is indeed the heterogeneous responses in

demand to changing levels in A. We assume that:

Pn =
∂P (N + x,A)

∂(N + x)
< 0 (1)

PA > 0 (2)

Assumption (1) simply states the well-established fact that the willingness to pay decreases

with VMT. Assumption (2) says that the willingness to pay is higher in places with higher

amenity levels. Moreover, we further assume that amenity level is an increasing function of
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road capacity k and city size N1 (positive agglomeration externality):

Ak > 0, AN > 0 (3)

Travel cost. The private average cost of driving, C(N + x, k), takes the usual form that is

increasing and convex in VMT, and it is assumed that the cost goes down as capacity increases.

That is:

Cn =
∂C (N + x, k)

∂ (N + x)
> 0, Cnn > 0, Ck < 0 (4)

FIGURE 1 HERE

Equilibrium. The equilibrium VMT is determined by the intersect of the downward sloping

inverse demand and the upward sloping private average cost curve in the $-VMT space, as

shown in Figure 1. In previous analyses of infrastructure improvements such as Duranton and

Turner (2011), building new roads is captured by an outward shift and the flattening of the cost

curve, which would move the equilibrium VMT along the demand curve. We argue, however,

that this is only part of picture. Building new roads and improving upon existing ones will

most likely create more accessible locations and make driving relatively more enjoyable, which,

in turn, results in a higher demand given the level of willingness to pay. In other words, road

improvements not only shifts and flattens the cost curve, it also shifts the inverse demand

curve. To see how improving road capacity would affect the equilibrium VMT, note that the

equilibrium condition is given by:

P [N + x(N, k), A] = C [N + x(N, k), k] (5)

where x(N, k) is the equilibrium level of discretionary travel demand.

Simple comparative statics yields:

xk =
PAAk − Ck
Cn − Pn

> 0 (6)

The inequality in the above follows as long as assumptions (1)-(4) are satisfied. Note that (6)

says that discretionary travel demand x as well as total travel demand N+x increase with road

1City size here should be interpreted broadly: it reflects the size of the workforce, the geographic expanse,
and other location-specific characteristics that affect the inelastic portion of the travel demand.
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capacity, and that the magnitude of this increase is greater if the willingness to pay is more

sensitive to amenities and road capacities, which is to say, that if PAAk > 0, which is captured

by an capacity-induced outward shift of the inverse demand curve, is greater. The magnitude

is also greater if travel cost reduction, Ck < 0, is large (more negative) given a certain amount

of capacity expansion, which is shown as the outward shift of the cost curve in Figure 1. The

adjustment in equilibrium VMT is also shown in Figure 1. Note that (Cn − Pn) > 0 measures

the gap between the marginal cost and the marginal willingness to pay in the extensive margin

(changes along the curves). The condition described by the equation (Cn − Pn)xk = PAAk−Ck

says that when there is a capacity shock to the equilibrium, the total change in the difference

between the cost and the willingness to pay in the extensive margin equals the total change in

the difference between the cost and the willingness to pay in the intensive margin (PAAk−Ck >

0).

Next we turn to the effect of N on equilibrium VMT. As noted before, N can be interpreted

as the size of the workforce in the metropolitan area, it can also represents the base VMT level

that is inelastic due to economic and planning characteristics. Differentiate (5) with respect to

N gives us the following:

1 + xN =
PAAN
Cn − Pn

> 0. (7)

Equation (7) says that total equilibrium travel demand N + x(N, k) increases with N . This

outcome is once again guaranteed as long as assumptions (1)-(4) are met. Note that we could

write (7) as:

d [N + x (N, k)]

dN
= 1 + xN =

PAAN
Cn − Pn

> 0. (8)

While it is possible that xN < 0, which says that discretionary travel demand goes down as the

inelastic portion of the travel demand increase, the net effect on total travel demand as defined

by the sum of inelastic demand and elastic demand will always be positive and xN > −1 will

always hold. The reason for this is that the demand curve will always be shifted rightward

due to the amenity effect caused by a larger N , as can be seen in Figure 2. The equation

(Cn − Pn) (1 + xN) = PAAN states that as N changes, the change in the difference between

the cost and the willingness to pay in the extensive margin (the left-hand side) is equal to the

change in the willingness to pay induced by adjustments in amenities (the right-hand side).
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FIGURE 2 HERE

We are interested in the elasticity of aggregate VMT with respect to capacity and how this

elasticity reacts to variations in N , or the initial level of VMT. First note that the elasticity of

VMT with respect to capacity is given by:

εVMT, k =
d [N + x(N, k)]

dk

k

N + x(N, k)

=
k

N + x(N, k)
· xk > 0 (9)

Take the derivative of εVMT, k with respect to N :

dεVMT, k

dN
= xkN ·

k

N + x (N, k)
− xkxN ·

k

[N + x (N, k)]2
(10)

=

[
xkN −

xkxN
N + x(N, k)

]
k

N + x (N, k)
(11)

FIGURE 3 HERE

FIGURE 4 HERE

First notice that the term multiplying the bracket in (11) is always positive. The sign of

dεVMT, k/dN is therefore determined by the relative magnitudes of the two terms inside the

bracket. In Appendix 8.1, we discuss the sufficient conditions for xkN < 0 and it can be seen

that these conditions are met under not at all restrictive assumptions. When xkN is negative,

and if the second term in the bracket is not a large positive number, the elasticity of VMT

with respect to k decreases in N . This is likely to be true in big metropolitan areas. One could

think of a case where city size or inelastic VMT demand N is very large, so that Cnn � 0,

which implies that xkN will be sufficiently negative (see Appendix 8.1). Meanwhile, a very

large N also makes the second term in the bracket in equation (11) goes to zero. Therefore, a

sufficiently large N would guarantee that
dεVMT, k

dN
< 0.

Capacity elasticity of VMT decreasing in N has significant implications. If instead we

take this elasticity as a constant, the conclusion one naturally arrives at is that one could

indiscriminatingly adopt building roads as an effective means to alleviate congestion if the

elasticity is small, or forgo such a costly strategy as a remedy for congestion. However, as
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shown in this section, the capacity elasticity of VMT in general varies with metropolitan area

sizes and, specifically, with the portion of VMT demand that is inelastic. Such variations are

substantiated and quantified in the IV-QR estimations and simulated in a more comprehensive

and realistic general equilibrium model in the next sections. The variations in the elasticity

stem from the fact that the demand response to a capacity change — a shift of the demand

for VMT — grew weaker as initial VMT increases. The intuition is that as metropolitan

areas become more congested, newly built roads are met with muted demand increases because

congestion is already at a high level. On the other hand, if new roads/lanes are added in a less

congested location, the generative demand is most likely to be greater than that in a previously

congested location. We depict such a situation in Figure 3 and 4. In Figure 3, the increase

in road capacity induces a relatively large shift in demand and, while the cost reduction is

relatively small as initial congestion is mild, the demand effect and the cost effect together

significantly increase the equilibrium VMT. In Figure 4, since initial VMT and congestion in

the large city is high, although the cost reduction due to building new roads is stronger than

that in the small city, the demand response is weaker. The percent increase in equilibrium

VMT, as a result, is also smaller than that in the small city given the same percent increase in

capacity.

3 The IV-QR and GQR methods

3.1 IV: Estimation of the conditional mean function under selection

bias

In their article, Duranton and Turner (2011) (DT from now on) are interested in estimating the

causal impact of “an increase in the stock of roads on driving in cities” (Duranton and Turner,

2011, Page 2619). In Equation (12), we reproduce their regression model in the potential

outcome framework2, where Y denotes Vehicle Miles Traveled (VMT), d denotes stock of

interstate highways lane miles, x denotes a vector of controls3, U captures unobserved MSA

2See Heckman and Robb (1986); Imbens and Angrist (1994); Chernozhukov and Hansen (2005).
3The controls include observable MSA characteristics such as present and past populations, geographical

features (elevation range, ruggedness, heating degree days, cooling degree days, sprawl), socioeconomic features
(share of population with at least some college education, log mean income, share poor, share of manufacturing
employment, and an index of segregation), census division dummies, and year dummies. See the appendix in
Duranton and Turner (2011) for more details.
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characteristics, i index MSAs and t index years4. The goal of DT was to consistently estimate

α: the elasticity of MSA VMT to interstate highway lane miles in MSA.

ln(Y d
it ) = αln(dit) + βxit + Ud

it (12)

In the potential outcome framework, Equation (12) refers to the structural model which relates

the potential outcome Y d to a particular realization of the treatment variable D = d and

controls X = x, plus an unobservable Ud. Equation (12) describes a mechanism that produces

a distribution of the outcome variable: VMT, among observationally identical cities. In the

potential outcome framework, α =
∂E[ln(Y dit)]
∂ln(dit)

is interpreted as the structural treatment effect

as both y and d are real valued variables, where α measures the impact of the treatment on

the conditional mean of the outcome variable.

Another feature of the potential outcome framework is that it separates the definition of the

causal effect we are trying to measure: α, from the treatment assignment mechanism. As DT

point out, the assignment of roads to cities is not random but it in fact depends on contempo-

raneous travel demand in these cities. For example, Equation (13) might represent the supply

function for roads in cities, where z represents a vector of observed city characteristics which

determine the stock of highways but not VMT, and W represents unobserved city characteristic

impacting the stock of highways.

ln(Dit) = ζln(yit) + ηxit + θzit +Wit (13)

In equilibrium, for every observational unit, the observed VMT Yit and observed highway

capacity Dit must satisfy both Equations (12) and (13), giving rise to endogeneity or selection

effect in the structural model as represented by Equation (14).

ln(Dit) =
ζβ + η

1− αζ
Xit +

θ

1− αζ
Zit +

ζ

1− αζ
Uit +

1

1− αζ
Wit (14)

Given a random sample {Yit, Dit, Xit, Zit}i=1,...,N ;t=1,...T the observed model can therefore be

written as a system of equations.

ln(Yit) = αln(Dit) + βXit + Uit (15)

4Capital letters denote random variables and lower case letters denote realizations of those random variables.
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ln(Dit) = µXit + σZit + Vit (16)

As Equation (14) shows, Dit is correlated with Uit, therefore OLS estimates of α based on

Equation (15) is not consistent since the orthogonality condition: E (Uit|Dit, Xit) = 0 is vio-

lated. In order to get a consistent estimate of α in the presence of selection effect, DT rely

on an instrumental variable (IV) estimator. Their instruments include: the routes of major

expeditions of exploration between 1835 and 1850, major rail routes in 1898, and the proposed

routes of interstate highways in a preliminary plan of the network (Baum-Snow, 2007). For

these variables to be valid instruments for the stock of interstate highways, they must satisfy

three conditions: 1) They must not appear in Equation (12), 2) Cov(Zit, Uit) = 0, 3) The

coefficients in front of Zit in Equation (15) cannot be all zero (See Wooldridge, 2010).

Before we move on it is important to mention one more point. DT observe the same

metropolitan area over three decades (1983, 1993, and 2003), which allowed them to also use

certain panel data regression models (fixed effects and first-difference) to estimate α. However,

as DT mention, while these panel data estimators can remove biases due to the presence of

time invariant components in U, they do not remove biases emanating from the presence of

selection effect, which appear as time variant components in U . Given our goal in this paper to

incorporate MSA level heterogeneity in the estimation of α, we chose to use methods which do

not exploit the panel nature of data to remove selection biases, but instead rely on instrumental

variable techniques. However, we must mention that we could have used the panel structure

of the data to reach our goal, for example, by using the non-linear panel data model with

interactive fixed effects described in Freyberger (2018). This model would have allowed us

to incorporate both temporal and spatial heterogeneity in α and address selection bias more

satisfactorily than traditional panel data models. The interactive fixed effect models allow for

time variant components in U that can be correlated with the treatment variable (Bai, 2009)

and their presence have been shown remove a substantial amount of estimation bias (Moon et

al., 2018).
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3.2 IV-QR: Estimation of the conditional quantile function under

selection bias

In Equation (12), Ud
it is a scalar random variable that captures all unobserved MSA character-

istics, and appears as an additive term in the structural equation. It therefore has no impact

on the structural treatment effect α. To allow for heterogeneity in the treatment effect due

to unobserved city characteristics we borrow from the literature on econometric models with

nonseparable errors (See Matzkin, 2003, 2007)5, and rewrite Equation (12) as Equation (17),

where the model parameters are now random variables being functions of Ud
it.

ln(Y d
it ) = α

(
Ud
it

)
ln(dit) + β

(
Ud
it

)
xit (17)

Given the presence of selection bias in our model, we follow the assumptions made in

Chernozhukov and Hansen (2005) (CH from now on) regarding the data generating process, in

which case the nonseparable error model in Equation (17) can be interpreted as a conditional

quantile function. As CH mentions, in the absence of selection bias: if the assignment of roads

to cities were random, Equation (17) is the standard quantile regression model and estimation

can proceed as laid out in Koenker and Bassett (1978). However, in the presence of selection

bias the appropriate model is the instrumental variable quantile regression model (IV-QR)

developed by Chernozhukov and Hansen in a series of papers (Chernozhukov and Hansen,

2005, 2006, 2008).6

The IV-QR model comprises primarily of five assumptions:

1. Potential Outcomes: Conditional on X = x, for each d, Yd = q (d, x, Ud), where Ud ∼

U(0, 1) and q (d, x, τ) is strictly increasing in τ .

2. Independence: Given X = x, Ud is independent of Z.

3. Selection: D ≡ δ (Z,X, V ) for some unknown function δ and random vector V.

4. Rank Invariance or Rank Similarity: Given X = x, Z = z, for some d and d′; (a) Ud = Ud′ ,

(b) Ud ∼ Ud′ , are identically distributed.

5For an alternative but similar approach, called the linear correlated random coefficients model (see Masten
and Torgovitsky, 2016; Hoderlein et al., 2017), where the coefficients in the linear model are also assumed to
be random and are allowed to be correlated with some of the observable factors affecting the outcome variable.

6See Autor et al. (2017) for applications of the IV-QR model.
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5. Observed Variables: Y ≡ q (D,X,UD) , D ≡ δ (Z,X, V ) , X, Z.

Below we briefly explain these assumptions since they are important in understanding the

regression estimates we present later.

The assumptions 1-5 puts certain restrictions on the data generating process behind the IV-

QR model. Assumption 1, comprises of a monotonicity and scalar heterogeneity assumption.7

It implies that a scalar random variable U captures all of the unobserved characteristics of the

city, however, this random variable does not enter the model additively, unlike in Equation 1.

Besides, U is uniformly distributed and takes values between 0 and 1: U is a rank variable,

it ranks observationally identical cities in terms of VMT. The strict monotonicity assumption

rules out VMT functions for cities with the same observed covariates and treatment levels but

different rank variables from crossing one another.

Assumption 2 rules out any correlation between the rank variable U and the instruments

Z. It is similar to the conditional independence assumption made in additive linear IV models.

Assumption 3 is just a restatement of Equation (5) in the IV-QR setting. It allows the IV-QR

model to incorporate selection bias: the treatment effect is allowed to be determined by both

observed and unobserved city characteristics.

As Chernozhukov and Hansen (2005) stress, Assumption 4 is the most important in the list

of assumptions mentioned above. Assumption 4(a), the rank invariance assumption implies

that U is constant and does not change with different treatment levels. According to Cher-

nozhukov and Hansen (2005), this assumption is more likely to hold if one has a rich set of

controls. As Chernozhukov and Hansen (2005) argue, since U is assumed to capture multi-

dimensional unobserved characteristics, the rank invariance assumption might be too strong.

This is certainly true in our case where we observe the same city in different decades, most likely

unobserved characteristics change of time. The rank similarity assumption: 4(b), assumes U

to be IID random variable and allows it to deviate across treatment levels in a non-systematic

way, from some typical U .8

Assumption 4 also rules out serial correlation in our model. It also has some important

implications for the interpretation of the treatment effect α (τ). If rank invariance holds then

7Hoderlein and Mammen (2007) presents a model with nonseparable error without the assumption of scalar
heterogeneity and monotonicity and discusses the conditions under which the marginal effect is identified.
However, that model does not allow for a selection effect on the observed variable whose marginal effect we are
interested to estimate.

8Dong and Shen (2018) propose a test for rank invariance or similarity.
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increasing the stock of interstate highways by one percent will increase VMT by α(τ) percent

for cities at the τ th conditional quantile. However, if rank similarity holds, then α(τ) is the

treatment effect at the τ th conditional quantile: we can infer the effect of treatment on the

conditional distribution of VMT but we cannot exactly pinpoint the treatment effect on a

particular city.

The five assumptions mentioned above yields Equation (18) (See Theorem 1 in Cher-

nozhukov and Hansen, 2005), which can be interpreted as saying that 0 is the τ ′th quantile of

Y − q(D,X, τ). The estimation problem is then to find a function such that 0 is the solution to

the quantile regression of Y − q(D,X, τ) on X,Z as shown in Equation (19). In the appendix

we detail the IV-QR estimation steps which can be seen as a 2SLS version for instrumental

variable quantile regression.

P [Y < q(D,X, τ)|X,Z] = τ (18)

0 ε arg min
fεF

Eρτ [Y − q(D,X, τ)− f(X,Z)] (19)

GQR: Estimation of the unconditional quantile function

under selection bias

It is important to understand that the IV-QR model estimates the conditional treatment effect:

α (τ) shows how the distribution of VMT changes at different percentiles in response to changes

in road capacity, conditional on observed city characteristics. However, for policy makers it

might be more interesting to know the unconditional treatment effect. As Powell (Forthcoming)

notes, unlike the unconditional mean function, the unconditional quantile function cannot be

derived from the conditional quantile function. For example, since higher population is related

to higher VMT, the 10th percentile of the distribution of VMT conditional on city population,

say at 1 million, is likely to be much higher than the 10th percentile of the unconditional

distribution of VMT . This means that the conditional treatment effect α (τ) does not provide

any information on the unconditional treatment effect.

To estimate the unconditional treatment effect we use the Generalized Quantile Regression

(GQR) model due to Powell (Forthcoming), which still allows the researcher to condition on
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covariates and has the advantage that it nests the IV-QR model as a special case. In the GQR

model, the covariates do not necessarily need to appear as additive terms unlike in the IV-QR

model. Instead, the covariates can now influence the distribution of the rank variable

Ud∗
it = f

(
Ud
it, Xit

)
where Ud∗

it is still an uniform random variable taking values strictly between zero and one.

However, now the distribution of the rank variable depends on the observed covariates of the

cities. The modified regression model is shown in Equation (20).

ln(Y d
it ) = α0 + α1

(
Ud∗
it

)
ln(dit) (20)

Just like IV-QR, the GQR model is built on five assumptions:

1. Potential Outcomes: Yd is the outcome given policy variables given d; q (d, τ) represents

the τ th quantile of Yd.

2. Conditional Independence: Yd|X,Z ∼ Yd|X for all d.

3. Selection: D = δ(Z,X, V ) for some unknown function δ and random vector V .

4. Rank Similarity: P (Yd < q (d, τ) |X,Z, V ) = P (Yd′ < q (d′, τ) |X,Z, V ) for all d, d′.

5. Observed random vectors consists of Y := YD, D,X,Z.

These assumptions yield a set of two conditions shown in Equations (21) and (22) which

can be used to estimate the GQR model parameters. The details of the estimation procedure

are given in the appendix.

P (Y ≤ q(D, τ)|X,Z) = P (Y ≤ q(D, τ)|X) (21)

P (Y ≤ q(D, τ)) = τ (22)

Equation (21) states that the instruments do not provide any additional information on the

probability that the outcome variable is less than or equal to the quantile function. Equation

(22) is the unconditional counterpart to the Equation (18) in the IV-QR setting. Note, that

16
Electronic copy available at: https://ssrn.com/abstract=3674793



if the researcher does not have any control variables and all the variables are included in the

model as treatment variables, Equation (21) and Equation (22) reduces to Equation (23) which

is exactly condition (18). Therefore, the GQR model nests the IV-QR model as a special case.

P (Y ≤ q(D, τ)|Z) = P (Y ≤ q(D, τ)) = τ (23)

4 Estimation results

In this section, we report elasticity estimates of MSA VMT to IH lane miles from quantile

regression (QR), instrumental variables quantile regression, and generalized quantile regression

models. We focus only on the effect of IH lane miles since it is the only measure of road capacity

that is comparable across decades in the DT data set. All the regression estimates presented

in this section have counterparts in DT, the only difference being that we use the quantile

regression framework while DT work under the classical regression setting. As we proceed, we

always compare our results with the corresponding results from DT.

Before we proceed it will be useful to mention what trends are we are looking for in the

elasticity estimates. In DT, the authors were looking to find if the mean elasticity estimate

is greater than, equal to or less than one. In addition, they were checking if the elasticity

estimates were changing over the three decades that comprised there data set. In our case we

are interested in some additional trends. First, as per the simple partial equilibrium model,

we check if the elasticity estimates decline as we move to higher quantiles. Second, we check

if the median elasticity is greater than, equal to or less than one, and compare it against the

mean estimates of DT. Points one and two taken together imply that we are looking to see if

the elasticity estimates are greater than one below the median and lower than one above the

median. This is in addition to checking if the elasticity estimates are changing over time.

TABLE 1 HERE

We begin with decade wise elasticity estimates based on univariate quantile regressions

(Table 1). For comparison purposes, we also present mean estimates from OLS regressions

as in DT. There are a few trends that are clear in Table 1. First, at every quantile, the

elasticity estimate is greater than one, meaning that congestion increases in response to highway

construction at every point in the conditional distribution function of MSA VMT. Second, the
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mean and median estimates are reasonably close in every decade, implying that the conditional

distribution is symmetric. Third, in every decade we mostly observe elasticity falling as one

moves to higher quantiles: while congestion increases in response to highway construction at

every point in the conditional distribution of VMT, it rises less at the higher quantiles as

compared to the lower quantiles. Finally, the elasticity estimates in the 25th-75th percentile

range decline as we go forward in time.

TABLE 2 HERE

As a next step, following DT, we estimate several decade wise multivariate regressions whose

results are shown in Table 2. Adding controls lowers the elasticity estimates across the board

to less than one. Again, the mean and median elasticity are reasonably close–being around

0.92 in 1983, and around 0.76 in 1993 and 2003 respectively. In Table 2, the monotonic decline

in elasticity is visible prominently in Columns (2) and (8), corresponding to DT preferred

specification9. The heterogeneity in elasticity when it declines monotonically, and as measured

by the difference in elasticity between the 10th and 90th percentile, is around 0.32 in Column

(2) and around 0.14 in Column (8) respectively. In Table 2, elasticity declines between 1983

and 1993 across model specifications, but is stable between 1993 and 2003.

TABLE 3 HERE

In Table 3, we present elasticity estimates from different model specifications based on

pooling the cross-sectional units across time. One side effect of this approach is that we lose

the time variation in elasticity as seen in Tables 1 and 2. In Column 1 in Table 3, a model

with only time dummies as controls, we see that the elasticity estimates are always greater

than one but they decline monotonically from 1.40 at the 10th percentile to 1.19 at the 90th

percentile. The median elasticity in Column 1 is equal to 1.25, again close to the mean elasticity

estimate from a pooled OLS regression. In Columns 2-4, with additional controls, the elasticity

estimates are always less than one, being around 0.80 at the median, but declining as we go

up the quantiles. The largest variation in elasticity is seen in DT’s preferred specification in

Column 3 where the estimates go down from 0.99 at the 10th percentile to 0.72 at the 90th

percentile. The picture changes completely when we add MSA fixed effects in Columns 5-9.

9The controls in this specification are unambiguously exogenous unlike socioeconomic characteristics which
may be endogenous themselves
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The elasticity estimates no longer show any variation around the median and are close to one

at every quantile, being slightly lower than the respective mean estimates. However, as argued

by Koenker (2004), in a quantile regression setting including fixed effects may not make sense

especially when the number of time units per cross-sectional unit is small as is the case in DT’s

analysis. One must keep in mind that no within transformation is available in the quantile

regression setting unlike in linear panel data models and one must estimate the individual

fixed effects as parameters.

TABLE 4 HERE

TABLE 5 HERE

TABLE 6 HERE

TABLE 7 HERE

The presence of fixed effects in the models in Table 3 controls for additive time-invariant

unobserved MSA characteristic, and accounts for its correlation with the treatment variable,

but it does not resolve the bias due to the presence of selection effect: the correlation of the

unobserved MSA characteristic with the treatment variable. To address this problem, DT use a

pooled IV estimator. In Table 4, we present DT’s 2SLS estimates along with our corresponding

pooled IV-QR10 results. In Tables 5-7 we replicate the regressions mentioned in Table 4, but use

only one instrument in each model, namely, 1947 planned interstates in Table 5, 1898 railroads

in Table 6, and 1835 exploration routes in Table 7 respectively. Across all the models in Table

4, elasticity declines monotonically as we go up the quantiles. In addition, as can be seen

from the values of the Kolmogorov-Smirnov statistic, this variation in elasticity is statistically

significant, except for the model in Column (2). Further, we see that except Column 1, where

the elasticity estimates are greater than one at all the quantiles, the pattern that emerges is

one where elasticity is greater than one at the 10th and 25th percentile, elasticity is close to

one at the median, and less than one at the 75th and 90th percentiles. In particular, the model

in Column 3, which is DT’s preferred model, the elasticity is 1.45 at the 10th percentile, 1.19

at the 25th percentile, 0.92 at the median, 0.82 at the 75th percentile, and 0.80 at the 90th

percentile. Figure 5 shows the monotonically declining pattern of elasticity corresponding to

10See Chen (2019) for details on the R package used to generate the results.
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Column (3) in Tables 4-10 for percentiles between 0.02 and 0.98 at intervals of 0.01 with the

associated 95% confidence interval.

TABLE 8 HERE

TABLE 9 HERE

TABLE 10 HERE

FIGURE 5 HERE

In Table 5 and 6, DT’s preferred specification yields similar results. In Table 7 however,

the IV-QR model with only 1835 exploration routes as instrument, the elasticity from DT’s

preferred model (Column 3) is much lower at the 75th and 90th percentile as compared to Tables

4, 5, and 6 — being 0.67 at the 75th percentile and 0.63 at the 90th percentile respectively. This

is generally true for all the models when only 1835 exploration routes is used as instrument.

Across Tables 5-7, the heterogeneity in elasticity is also statistically significant in Column (3).

In Tables 8-10, following DT, we report results from decade wise IV-QR models, with ln 1898

railroads, and ln 1947 planned interstates as instruments. In 1983 and 1993, DT’s preferred

specification: Column (3), does not yield a clear monotonic decline in elasticity and cluster

near one, being always greater than one in 1983. The 2003 elasticity estimates corresponding to

Column (3), however, shows a clear monotonic decline in elasticity with the median elasticity

at 0.81 and the elasticity at 75th and 90th percentile being 0.72 and 0.59 respectively.

TABLE 11 HERE

In Table 11, we present elasticity estimates from the GQR model using all three instruments.

First, across all models in Table 11, the elasticity generally declines as we move up the quantiles.

Second, the GQR results show that the elasticity is almost always greater than one at the 10th,

25th, and 50th percentiles. Interestingly, except in Column (1), the elasticity at the median is

very close to the mean effect found in DT: 1.03. However, except Column (1), for all other

models elasticity declines below one at the 75th and 90th percentiles. In fact, in Columns (3),

(4), and (5), the elasticity at the 90th percentile is negative but not statistically significant

from zero. For comparison purposes, in Figure 6 we plot the elasticity at different quantiles

corresponding to Column (3) or DT’s preferred specification.

FIGURE 6 HERE
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5 The simulation model

5.1 Spatial details of the model: the Greater LA Region

In the next two sections, we turn to a general equilibrium model with a road network, hereafter

the LA TRAN model, to explore the effect of increased capacity and how this capacity effect is

related to the initial VMT, or more generally, to city size before the infrastructure improvement.

Since LA TRAN is a spatial general equilibrium model, we shall first briefly describe the Greater

LA Region to which the model is calibrated. Then sections 5.2 - 5.5 discuss the model in detail.

Section 5.6 explains calibration. We report simulation results in Section 6.

FIGURE 7 HERE

FIGURE 8 HERE

In our model, the Greater LA Region is divided into 97 zones11 which span six counties12

as shown in Figure 7. Connecting these 97 zones, is the LA TRAN road network which include

210 nodes (Figure 9) that represent the zones and waypoints and 696 arcs (Figure 8) that are

aggregations of real-world roads. We therefore have a 97-by-97 origin-destination (OD) matrix.

5.2 The model structure I: A short description

The consumers in the model consist of both employed and unemployed consumers. The residen-

tial locations and employment locations are assumed to be fixed. In essence, this assumption

exclude the possibility of relocations so that any changes in VMT could only stem from adjust-

ments in the demand for consumption bundles, mode choices, and arc choices, i.e. consumption

and driving behaviors. In doing so, we can focus on a well-defined short-run capacity elasticity

of VMT, whereas in the long run such an elasticity is also a function of many confounding

factors that are of income, technological, demographic, regulatory nature which also drive relo-

cations. For example, Baum-Snow (2010) documented that roads connecting city centers and

suburban areas are responsible for the suburbanization pattern in the U.S. where both jobs

and residences are relocated from central cities to suburbs. Using a spatial general equilibrium

model RELU-TRAN, Anas (2015) illustrated that as employment and residential real estate

11See Li et al. (2014).
12These six counties are Imperial, Los Angeles, Orange, Riverside, San Bernardino, Ventura.
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developments are suburbanized as a result of new roads and cheaper land prices, jobs and res-

idences chase each other in space in a cyclical fashion which keeps the travel times at a stable

and tolerable level so that the suburbanization process becomes sustainable. However, these

long-run effects are beyond the scope of the present study.

In our model, employed consumers commute daily on workdays. Besides commute trips,

both employed and unemployed consumers make discretionary non-work trips between their

residential location and various shopping locations. Non-work trips are required for acquiring

consumption goods. We assume that the number of non-work trips between a residential

location i and a shopping location j is linearly related to the dollar amount of expenditure spent

in j by consumers from i. Specifically, the consumer maximizes utility over consumption of

housing and goods while taking into account transportation costs incurred by consumption and

commuting. Goods sold at different locations (zones) are considered imperfect substitutes with

constant elasticity of substitution and the utility-maximizing consumer chooses the optimal

bundle of goods sold at different locations, hence the shopping trip patterns.

Given travel demands generated by commute trips and shopping trips, the probability of

choosing a particular mode of travel between each origin-destination (OD) pair is determined

by the generalized costs of different modes. It is assumed that the costs of travel are exogenous

for modes other than driving. In general, if travel demand is increased between a particular

OD pair, worsening congestion will cause driving to become more expensive, and the change

in relative costs would lead to some drivers switching to other modes of travel.

With the OD matrix generated by the utility-maximizing consumers and the mode choice

probabilities determined by the relative costs of different modes of travel, it remains to deter-

mine the vehicle traffic flow equilibrium on the LA TRAN network. There are 210 nodes in

the road network, 97 of which represent the zones, and the rest are waypoints that represent

intersections of roads. There are 696 arcs connecting the 210 nodes so that for every OD pair,

there are multiple paths that each consists of a series of arcs. For a trip originates from i and

terminates in j, a driver faces multiple choices of arc combinations that could take him from

the origin to the destination. Given travel demand (OD matrix), the network equilibrium is a

probabilistic traffic flow assignment on all the arcs such that the expected disutility of travel

is the lowest for all OD pairs.
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5.3 Solving the model

As shown in Figure 10, the LA TRAN model can be viewed as consisting of several interrelated

parts that are solved sequentially and iteratively. To solve the model, for example, the sequence

could start with the utility maximization problem (UMP) which we will describe in detail below.

Solving the UMP gives us the non-work trips matrix. Because each consumer’s residential and

employment locations are assumed to be fixed, simply adding the exogenous commute trips

and the endogenous shopping trips gives us the OD matrix.

FIGURE 10 HERE

Suppose that mode choice probabilities are known, the OD matrix of car trips can be

obtained from multiplying the all-modes OD matrix by mode choice probabilities. The car

trips matrix is then loaded onto the road network to solve for equilibrium flows, travel times,

and monetary costs on all arcs. We assume that the time and monetary costs of other (non-

driving) modes remain unchanged.

TABLE 12 HERE

TABLE 13 HERE

Now that the generalized travel costs of all modes are known, mode choice probabilities and

the across-modes average travel times and costs between all location pairs can be calculated.

Next, the UMP needs to be solved again using updated travel costs, which, in turn, will

generate an updated shopping trip matrix that will be used to update the all-modes OD

matrix and the car trip matrix. The updated traffic flow equilibrium would give updated mode

choice probabilities. This iterative process continues until all model variables converge to the

equilibrium.13 The rest of this section will explain in detail the three parts of the model and

the welfare analysis.

5.4 The model structure II: A detailed description

5.4.1 The consumer

In the rest of sections 5 and 6, many symbols will be used and all of them are listed in Table

12 and Table 13 for reference. The UMP of a consumer whose residential and job locations are

13The model is considered converged once the maximum of the errors of all model variables between two
consecutive iterations is below a tight tolerance level.
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in model zone i and j, respectively, and whose income belongs to type-f is given by:

max
Zz|ijf ,hijf

Uijf = αif ln

(∑
z

ιz|ijf ·
(
Zz|ijf

)σf) 1
σ
f

+ βif ln (hijf ) + γijfGijf (24)

The budget constraint:

∆j ·
[
days · hours · wjf ·

(
1− tijf

)
− days · gijf

]
+mif ·

(
1− tijf

)
≥
∑
z

Pz|ifZz|ijf +Rihijf (25)

where i and j represent residential and employment locations with j = 0 indicating a consumer

being unemployed. f denotes the income group to which a consumer belongs. Zz|ijf is the

consumption of goods purchased in zone z by a consumer of type (i, j, f). 1/(1 − σ) is the

elasticity of substitution among goods sold at different locations with σ < 1. ιz|ijf is a cali-

brated parameter that captures the attractiveness of location z to consumer-(i, j, f). hijf is the

consumption of housing goods of a consumer who lives in location i, works in location j, and

is of type f . Gijf is the two-way across-modes weighted average travel time between location i

and j for consumer f . αif and βif are expenditure share parameters. γijf determines both the

magnitude of the disutility from commute times and value of time (VOT), i.e. the marginal

rate of substitution between average travel time and disposable income:
∂U/∂Gijf
∂U/∂Mijf

, where

Mijf = ∆j ·
[
days · hours · wjf ·

(
1− tijf

)
− days · gijf

]
+mif ·

(
1− tijf

)
(26)

is the disposable income.

In the budget constraint of the consumer, ∆j=0 = 0 and ∆j=1,...,97 = 1 because unemployed

consumers do not earn wage income, neither do they incur commute cost. wjf is the hourly

wage payment offered at location j for worker type f , tijf the associated income tax rate, gijf

the two-way monetary travel cost between i and j for road user f . days and hours are the

number of work days in a year and the first bracket in the budget constraint is the wage income

after commuting cost. mif is the non-wage income, Ri the rent.

For each unit of the consumption good, consumers pay a price inclusive of transportation

cost, or delivered price Pz|if :

Pz|if = pz(1 + tsz)(1 + sizfgizf ) (27)
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where pz is mill price of goods sold in zone z, tsz the sales tax rate at location z. The parameter

sizf represents the number of trips required for each dollar spent on goods at z. We calibrate

this parameter in the initial equilibrium so that the model-generated non-work trips computed

from observed consumer expenditure data matches observed non-work trips. Solving the utility

maximization problem yields:

Ũijf = αif lnαif + βif ln βif + lnMijf − βif lnRi

+
αif (1− σf )

σf
ln

(∑
z

ι
1

1−σf
z|if P

σf
σf−1

z|if

)
+ γijfGijf

(28)

We can then compute the daily travel demand from location i to z:

TRIPizf = N e
izf +

sizf
days

97∑
j=0

NijfPz|ifZz|ijf (29)

where N e
izf is the number of daily two-way commute trips between i and z. Note that N e

izf

also represents the number of employed consumers of type (i, z, f). The Walrasian demand for

goods is solved from the UMP:

Zz|ijf =
ι

1
1−σf
z|if P

1
σf−1

z|if∑97
z′ ι

1
1−σf
z′|if P

σf
σf−1

z′|if

αifMijf (30)

The summed term in Equation (29) is the total dollar value of consumption spent in zone z

by consumers who live in zone i and of income group f . Hence the entire second term in (29)

is the number of daily two-way shopping trips between location i and z by f type consumers.

Also note that in our model daily commute trips are fixed for all OD pairs, whereas shopping

trips are endogenous and are functions of travel costs.

It is useful to point out that in LA TRAN, besides a convex congestion function, which will

be explained later in Section 5.4.3, travel demand in terms of both the number of trips and

the location pattern (OD-matrix) will also change as a result of infrastructure improvements.

Similar to the partial equilibrium example given in Section 2, an increase in density or capacity

of roads, ceteris paribus, will not only flatten the average cost curve, the demand curve will also

be shifted to the right due to the lowering of transportation costs.14 Given the same change in

14For example, see Small and Verhoef (2007).
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the average cost function, if the demand response differs by MSAs, then the same increase in

road capacities at different locations will result in different responses in VMT. The heterogeneity

in the demand responses across geographic units is what is driving the heterogeneity in the

elasticity of VMT with respect to infrastructure provisions.

5.4.2 Mode choice

There are four modes of travel in the LA TRAN model. Besides driving (m = 1), m = 2, 3, 4

represent bus, rail, and other, respectively. Once travel demands are generated from the UMP,

the endogenous probabilities of choosing driving for all OD pairs are given by:

PROBm=1|ijf =
exp

{
Θ
(
℘ji|f + ℘ij|f

)
+ K1|ijf

}
exp

{
Θ
(
℘ji|f + ℘ij|f

)
+ K1|ijf

}
+

4∑
m′=2

exp
{

Θ
(
GCm′|ji +GCm′|ij

)
+ Km′|ijf

}
(31)

where, in (31), Θ is the dispersion parameter in the multinomial logit model, ℘ji|f is the

generalized one-way travel cost of driving that includes both time and pecuniary costs between

j and i (more on this later, in Equation 40). Km|jif is the exogenous disutility associated with

each choice situation. For m = 2, 3, 4, GCm|ji represent the exogenous generalized travel costs

of non-driving modes which are the sum of the monetized time cost of TIMEm|ji and the

exogenous pecuniary cost MCOSTm|ji:

GCm|ji = votf ·
TIMEm|ji

60
+MCOSTm|ji; m = 2, 3, 4. (32)

Similarly, the probabilities of choosing rail, bus, and other (m = 2, 3, 4) are:

PROBm 6=1|ijf =
exp

{
Θ
(
GCm|ji +GCm|ij

)
+ Km|ijf

}
exp

{
Θ
(
℘ji|f + ℘ij|f

)
+ K1|ijf

}
+

4∑
m′=2

exp
{

Θ
(
GCm′|ji +GCm′|ij

)
+ Km′|ijf

}
(33)

Next, one-way vehicle trips, which will be loaded onto the road network, can be calculated

using the all-modes OD matrix TRIPizf given above and mode choice probabilities:

AUTOTRIPizf =
TRIPizf × PROB1|izf + TRIPzif × PROB1|zif

passengers per vehiclef
(34)
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5.4.3 Network equilibrium

Now that Equation (29) gives us the trip matrix Tripijf generated by the endogenous consump-

tion patterns and the exogenous residential and job locations, and that Equation (31) and (33)

describe how mode choice is determined for each OD pair (i, j), the endogenous travel demand

by car can be loaded onto the road network of 210 nodes and 696 arcs to compute the traffic

assignment equilibrium. In this network equilibrium, each OD pair chooses a series of arcs, i.e.

a route, in the network that give the lowest expected disutility of travel. This procedure is an

extension of the Markovian dynamic programming algorithm based on Baillon and Cominetti

(2008) and later adapted in the applications of the spatial GE model RELU-TRAN such as

Anas (2020).

The congested travel time timea (measured in minutes) on a particular arc, a, is given by

the Bureau of Public Roads (BPR) power function:15

timea = timefree−flowa

[
1 + ba

(∑
f flowaf

capacitya

)C]
(35)

where timefree−flowa is the free-flowing travel time on arc a; ba and C are the congestion pa-

rameters, capacitya is arc (road) capacity and flowaf the traffic flow of drivers from income

group f on arc a. Note that capacitya is an abstract value calibrated to match model generated

congested travel times with observed driving times in the initial equilibrium. The monetary

costs per passenger on arc a is given by:

mcostaf =
[pricefuel × F (speeda)]× lengtha

passengers per vehiclef
(36)

where speeda = lengtha
timea/60

is the average speed on arc a measured in mile-per-hour as a function

of the length of the arc and the congested travel time. pricefuel is gasoline price, F (speeda) is

technological fuel intensity (TFI), or gasoline usage per mile as a function of speed:16

F (speeda) =
6∑

n=0

(−1)ncnspeed
n
a =

1

FE
(37)

where FE stands for fuel efficiency as measured by mile/gallon. In the above fitted polynomial

15Bureau of Public Roads (1964).
16c0 = 0.122619, c1 = 0.0117211, c2 = 0.0006413, c3 = 0.000018732, c4 = 0.0000003, c5 = 0.0000000024718,

c6 = 0.000000000008233. See Davis et al. (2009).
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function, if we plotted speed on the horizontal axis and TFI on the vertical axis, the TFI takes

a U-shaped form with its minimum at around 45 mile/hour. Below this speed, a slower speed

caused by congestion means a higher TFI (or lower fuel efficiency); above this speed, a higher

speed which may be induced by improvements in infrastructure or mitigated congestion means

a higher TFI, i.e. less congestion is causing more gasoline use.

The non-linear relationship between vehicle speed and TFI described by Equation (37) is

the source of a special kind of externality: the externality in gasoline use. To our knowledge,

we are the first to consider this type of externality in economic modelings of congestion. For

example, in our calibrated model, the average speed over major roads and local roads in the

initial equilibrium are around 43 and 30 mile/hour17, respectively. Since both speeds are

slower than 45 mile/hour, the optimal (minimum) TFI speed, an overall relief of congestion

that speeds up traffic would not only lower each driver’s use of gasoline — a reduction in

the private average cost ; it would also cause the extra gasoline use of all drivers imposed by

each individual driver to go down — a reduction in the social marginal cost. This gasoline

use externality caused by the non-linearity of the TFI function is calculated and presented

alongside with the familiar time delay externality in our simulations. Its magnitude, as it turns

out, is numerically inconsequential given the parameters in our model.

The generalized vehicle cost gcosta on arc a is defined as the sum of monetary and time

costs:

gcostaf = votf ×
timea

60
+mcostaf (38)

For each trip set out from its origin to destination, it sequentially chooses which road (arc)

to take at every intersection (node) that they reach during the journey. Each trip chooses a

route that consists of roads that give the lowest expected disutility for the trip. The process

is iterated updating travel times and monetary costs until an equilibrium is reached. Baillon

and Cominetti (2008) showed that a unique equilibrium exists for the network model. The

multinomial logit probability of choosing arc a at node o, given destination node d and driver

income type f is:

17These speeds are not unrealistically slow, especially in the Greater LA Region, because they are the average
speed that has taken into account not only congestion, but also road characteristics such as stops, bottlenecks,
and other planning and topological features.
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Pra|df =
exp

[
−Ωdf

(
gcostaf + ℘π(a)|df

)]
∑

a′∈A+
o

exp
[
−Ωdf

(
gcosta′f + ℘π(a′)|df

)] , ∑
a∈Ao+

Pa|d = 1, ∀d; a ∈ Ao (39)

For a trip leaving node o for destination d, Pra|df is the probability of choosing road a, π(a)

is the end node of the road a, A+
o the set of all roads that are outgoing from node o. Ωdf is

the dispersion parameter of the disutility shock, gcostaf the generalized vehicle cost on road a

given by Equation (38) and ℘o|df the expected disutility of driving between nodes o and d for

a traveler of type f is given by:

℘o|df = − 1

Ωdf

 ∑
a′∈A+

o

exp
[
−Ωdf

(
gcosta′f + ℘π(a′)|df

)] (40)

Note the iterative nature of Equation (40): in
(
gcosta′f + ℘π(a′)|df

)
, gcosta′f is the generalized

vehicle cost given that road a′ is chosen, and ℘π(a′)|df is the expected disutility from the end

node of a′ to the destination node d, and A+
o is the set of all a′ that are available for the driver

at the intersection o. Notice that, in equilibrium, from a node i to a destination node d, the

total number of car trips, xi|df , equals the sum of car trips that originated from i and other

trips started elsewhere whose path crosses i and terminates at d:

xi|df = TRIPi|df +
∑
a∈A−o

va|df (41)

where, in Equation (41), the first term on the right is the total daily trips from i to d by f

consumers that was given by Equation (29). Similar to A+
o which stands for the set of all

outgoing arcs from node o, A−o is the set of all incoming arcs to node o. The second term,

therefore, represents the traffic that is passing through (instead of originated from) node i and

will terminate at node d. It follows that traffic volume on arc a with destination d, va|df , is

given as follows:

va|df = xi(a)|dfPra|df (42)

where the subscript i(a) means that i is the starting node of arc a. Equation (42) states that

total traffic volume on arc a equals total vehicle trips from i to d times the probability of

choosing arc a given d and f . Finally, we sum over all destination nodes to get the daily flow

on arc a by type f consumers:
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flowaf =
∑
d

va|df (43)

The network model solves for equilibrium flows, flowaf , on all the arcs in the network such

that, for each OD pair, the series of arcs chosen would give the lowest disutility of travel. Using

equilibrium flowaf , expected network equilibrium travel times τid and expected monetary cost

between i and d µidf can be computed easily.

Moreover, since the model also treats zonal congestion in each model zone,18 we assume

there is one intrazonal arc in each model zone and the flow on each zonal arc, Zflowi, is given

by:

Zflowi = AUTOTRIPii + ACCESS AUTOTRIPi + EGRESS AUTOTRIPi (44)

In Equation (44), ACCESS AUTOTRIPi is a fraction of all vehicle trips leaving i for all

destinations and, similarly, EGRESS AUTOTRIPi a fraction of all vehicle trips arriving i

from all origins.

Given the length, free-flowing time, and capacity of local arcs, local congested travel times

can be calculated in a similar fashion as we did for network equilibrium (Equation 35). Then,

to calculate the equilibrium driving time inclusive of intrazonal driving between i and d, Tid,

we add together network equilibrium vehicle travel time (not including intrazonal travel) τid,

intrazonal vehicle travel time in origin zone Ztimeii, and intrazonal vehicle travel time in

destination zone Ztimedd:

Tid = weightaccess × Ztimeii + τid + weightegress × Ztimedd (45)

The equilibrium monetary vehicle cost between i and d for a consumer from income group f ,

Midf , which includes both network and local monetary costs, is calculated in the same manner:

Midf = weightaccess × Zmcostiif + µidf + weightegress × Zmcostddf (46)

in which Zmcostiif is the intrazonal monetary cost in zone i. Lastly, the two-way across-modes

average travel time Gizf and across-modes average monetary travel cost gizf are given by the

18This can be thought of as congestion that takes place within each model zone i.
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following equations:

Gizf = PROB1|izf × (Tiz + Tzi) +
∑
m>1

PROBm|izf ×
(
TIMEm|iz + TIMEm|zi

)
(47)

gizf = PROB1|izf × (Mizf + Mzif ) +
∑
m>1

PROBm|izf ×
(
MCOSTm|iz +MCOSTm|zi

)
(48)

5.5 Welfare analysis

We measure welfare changes in three parts. The first part is the change in utility levels measured

by equivalent variations (EVs). The second and third parts are dollar values of the time delay

and gasoline use externalities. We give a breakdown of the derivations in the welfare analysis

in the rest of this section.

5.5.1 Equivalent variations (EVs).

Recall the indirect utility function (28), which is repeated here for convenience:

Ũijf = αif lnαif + βif ln βif − βif lnRi

+ lnMijf

+
αif (1− σf )

σf
ln

(∑
z

ι
1

1−σf
z|if P

σf
σf−1

z|if

)
+ γijfGijf

(49)

First note that rent and mill prices of goods are exogenous in the model. When there is a shock

such as an increase in road capacity, as the network model re-equilibrates, the new equilibrium

traffic flows on arcs yield new equilibrium arc choice probabilities (Equation 39), mode choice

probabilities (Equation 31, 33), congested travel times (Equation 45, 47), monetary travel costs

(Equation 36, 48).

In turn, any adjustments in travel times and costs will affect utility via three channels:

First, disposable income after commute cost (Mijf , given by Equation 26), which appears in

the second line of Equation (49); secondly, prices of goods inclusive of transportation costs
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(Pz|if , given by Equation 27), which appears in the third line of (49); and, thirdly, average

across-modes travel time (Gijf , given by Equation 47), that appears in the fourth line of

Equation (49).

In the general equilibrium context considered here, it is appropriate to use the EV or

compensating variation (CV)19 to approximate the dollar value of changes in utility levels. An

important assumption we maintain is that both mode and arc choices are outcomes of the

network equilibrium, in the sense that the impact of one consumer’s mode and arc choices

on the across-modes average travel times Gizf are negligible. In other words, Gizf are the

market equilibrium average travel times that are external to individual consumers. With this

assumption, Gizf is treated as an exogenous parameter in the UMP (Equation 24), and the

utility levels are deterministic in nature as opposed to be stochastic.

Let the initial indirect utility level be Ũ base and suppose that the indirect utility level reaches

Ũpolicy after the policy shock, which, in this case, is an expansion in road capacities. Then,

using Equation (49), EVijf can be calculated as follows:

EVijf = exp [Ũpolicy
ijf − αif lnαif − βif ln βif + βif lnRi

− αif (1− σf )
σf

ln

∑ ι
1

1−σf
z|ijf

[
pz (1 + tsz)

(
1 + sizf · gbaseizf

)]︸ ︷︷ ︸
Pz|if

σf
σf−1


− γfGbase

ijf ]−M base
ijf

(50)

5.5.2 Externalities

Time delay externality. The time delay externality imposed by one extra driver on arc a

is the difference between the social marginal cost and the driver’s private average cost. It is

straightforward to compute the externality measured in minutes from Equation (35). To include

this externality as part of the welfare change, we have to convert time delay into dollar value

using flow-weighted VOTs. Although the marginal rate of substitution between disposable

income and across-modes travel time varies as the model transitions to a new equilibrium after

a policy shock, we keep VOTs as constants throughout the simulations, which are set to 50% of

hourly wages.20 We verified that assuming away the endogeneity of VOTs — that is, treating

19we compute both the EVs and the CVs, which give highly similar numerical results. We present only EVs
here.

20See Small (2012) for a comprehensive review of the valuation of travel time.
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VOTs as constants as opposed to using the endogenous marginal rate of substitution between

income and travel time as VOT — has a negligible effect on our numerical results. Using

Equation (35), it is easy to show that the time delay externality imposed by one driver on arc

a is:

externalitytimea = SocialMarginalCosttimea − PrivateAverageCosttimea

= c · ba · timefree−flowa ·
(∑

f flowaf
capacitya

)c
·
∑

f flowaf · votf∑
f flowaf

(51)

Gasoline use externality. As explained before, because the TFI (gasoline use per mile) is a

U-shaped non-linear function of vehicle speed which reaches its minimum around 45 mile/hour,

each extra driver on arc a imposes an externality in gasoline consumption because the driver

would change the average flow speed on the arc. This externality can be derived from the TFI

function given by(37):

externalitygasolinea

= SocialMarginalCostgasolinea − PrivateAverageCostgasolinea

= pfuel ·

(
6∑

n=0

(−1)n+1n · cn · speedn+1
a

)
· 60 · ba · c · tfree−flowa ·

(∑
f flowaf

capacitya

)c (52)

5.6 Calibration

5.6.1 Calibration approach

All variables and parameters in the simulation model are either observed or calibrated to rep-

resent as realistic as possible a starting equilibrium point. Whenever possible, we set variables

to observed values. Some parameters are set in a way such that the model-generated vari-

ables (such as non-work trips) match exactly the target values. Other parameters are set to

match target elasticities. We draw on existing econometric work to set the target elasticities

within well-accepted ranges. In the case that a parameter is neither observable nor does a func-

tional relation exist between its value and a target value, we make reasonable and necessary

assumptions.
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5.6.2 Data

The 2000 Census Transportation Planning Package (CTPP) and Southern California Associa-

tion of Governments (SCAG) data were used to estimate the model’s commuting flows between

zones. The US Census of Population and Housing was used to calibrate expenditure shares

(between housing and goods), non-work income by residence location, and population at the

census tract level. The census tract level data are then aggregated to the model zone level. Us-

ing the observed location choice patterns, we derive the location distributions (among 97 zones)

of the population (11.8 million) and of jobs (6.6 million). As noted before, the residence-job

location patterns are assumed to be fixed throughout the simulations.

5.6.3 The value and disutility of travel times

The value of time votf is an important parameter as it determines the magnitude of the

pecuniary benefit of time savings. It is set exogenously to half of the hourly wage (see, for

example, Abrantes and Wardman, 2011; Small, 2012) at the outside of the simulations. Another

related parameter we calibrate is the coefficient of commute time disutility. Given the value

of γijf (< 0) in the utility function (Equation 28), the consumer’s marginal rate of substitution

between average travel time and disposable income:

− ∂Mijf

∂Gijf

=
60

days · hours

∑
ij

NijfMijfγijf∑
ij

Nijf

= votf (53)

We calibrate the values for γijf so that the weighted average marginal rate of substitution

between travel time and income for each income group equals votf .
21

5.6.4 Elasticity of substitution and the demand elasticity

The elasticity of substitution among goods sold at different zones is 1
1−σf

. The elasticity of

demand for goods of course also depends on σf :

∂ lnZz|ijf
∂ lnPz|if

= − 1

1− σf

1− σf
ι

1
1−σf
z|if P

σf
σf−1

z|if∑97
z′ ι

1
1−σf
z′|if P

σf
σf−1

z′|if

 (54)

21Since both Mijf and Gijf are endogenous variables in the model, we also experimented replacing the
exogenous votf with the endogenous value of ∂Mijf/∂Gijf , but the difference in the numerical results is
negligible.
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Note that the second term in parentheses approaches to zero when the number of zones is

large. The demand elasticity with respect to own price is therefore approximately − 1
1−σf

.

The two elasticities determined by σf are consequential since, firstly, the demand elasticity

determines how sensitive consumption, hence non-work trips (and total trips) are to gross price

changes, and, secondly, the elasticity of substitution affects how consumers adjust the shopping

destination combinations as relative prices change. The demand elasticity has an impact on the

extensive margin of VMT while the elasticity of substitution changes VMT on the intensive

margin. Unfortunately, we do not know what is the value of σf but we experimented with

different elasticities and as it turns out, the simulation results are robust with regard to σf due

to the effects on the extensive and intensive margins cancelling out each other. We set σf = 0.5

so that the elasticity of substitution is 2 and the demand elasticity is approximately −2.

5.6.5 Mode choice elasticity

Besides the total number of trips and the shopping location patterns, another important margin

of adjustment in VMT following a capacity shock is mode choice. The probability of choosing

car was given by Equation (31). We can use it to derive the choice elasticity with respect to

expected disutility of driving:22

∂ lnPROBm=1|ijf

∂ ln(℘ij + ℘ji)
= Θ(℘ij + ℘ji)(1− PROBm=1|ijf ) (55)

Indra (2014) found that the left-hand side of (55) to be −0.1 in LA. Hence we calibrate the

value of Θ so that the trip-weighted average elasticity is equal to −0.1.

5.6.6 Congestion parameters and arc capacities

Recall that the congested time on a segment of road is calculated from the BPR function (35).

We observe the value of timefree−flowa and set ba to the standard 0.15. More crucial is the value

of parameter C which captures how rapidly traffic slows down with increasing flows. While

it is common to set C = 4 in engineering studies, any value of C that is greater than one is

consistent with the convexity of the private average cost of driving. We settled on C = 1.2 in

order to match the model-generated average congestion index timea
timefree−flowa

with the Texas A&M

Transportation Institute (TTI) congestion index for the LA region in 2000. The TTI index for

22See Train (2009).
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LA during peak hours is 1.37. With C = 1.2, the model-generated all-day congestion index is

1.26.

Moreover, given the parameter values in the BPR function (35), arc capacities are cali-

brated as follows: Since we observe from CTPP and SCAG datasets zone-to-zone daily flows

and travel times, we choose a vector of arc capacities to minimize the Weighted (by flow) Av-

erage Percentage Error between model-generated times and observed times. In simulations,

building roads is realized by universally increasing the exogenous capacities of all arcs by a

given percentage.

6 Simulation results

We present the simulation results in two parts. The first part explains the baseline simulation

in which we simply increase the capacity for all arcs in the network by one percent. We examine

the changes in the new equilibrium brought about by the capacity expansion as well as how and

why welfare components change. The second part presents results of multiple simulations —

runs with different initial VMT levels and are otherwise the same — with a one-percent capacity

increase. These simulations are designed to simulate different MSAs with everything similar

except initial non-work trips. One of the critical findings in the second part of this section is

that the increase in VMT in response to road capacity expansion decreases with initial VMT.

Put it differently, given the same percent increase in capacity, the increase in driving distance

is smaller if the pre-expansion congestion level is higher. This qualitative conclusion is robust

within reasonably wide ranges of several key elasticities.

6.1 Baseline simulation: the effect of capacity increase

We perturb the initial equilibrium by a one-percent road capacity increase. Table 14 reports key

findings. The first thing we should notice is that aggregate VMT increases by 0.321 percent

following the one-percent capacity expansion. Two points should be made clear about the

elasticity before we go further. Firstly, 0.321 may seem to be on the lower side vis-̈ı¿œ-vis

our regression estimates. This is because unlike in the IV-QR where there might be several

unobserved characteristics that are correlated with lane miles, the simulation presented here

allows for only road capacity to change while keeping all the other environment parameters
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constant. Also, the capacity increase is modeled as a widening of the existing roads, while ruling

out the construction of new roads which would have made previously unreachable locations

accessible to businesses and consumers alike. An important difference between improving

existing roads and building new roads is that in the long run, new infrastructure induces firms

and consumers to relocate to the newly accessible locations, and the associated production and

consumption activities entail yet more driving. In other words, the shock in our simulations

is a narrowly-defined capacity increase. Secondly, as we shall soon explore in more detail, the

capacity increase gives rise to behavior adjustments in three margins that may pull VMT in

different directions. The 0.321 percent increase in aggregate VMT is the net elasticity that

takes into account, for example, the fact that per-trip distance shortened by -0.4 percent after

the capacity shock.

TABLE 14 HERE

As road capacity expands, congestion improves, and travel times shorten. This expected

outcome is also implied by Equation (35). The shortened travel times indicate a faster speed.

The monetary travel costs go down marginally as gasoline consumption is reduced due to

a slightly higher speed.23 In the model, demand for VMT changes due to changes in three

margins. The first is the extensive margin, or total trips by all modes. Other things (mode

choice and route choice) being equal, more total trips would result in more miles traveled. This

is the combined price and income effect caused by less expensive driving. The second is the

intensive margin where the car share of trips changes. Given fixed total demand, consumers

switching to cars would also cause VMT to rise. This is the mode choice effect. The third

margin is embedded in the CES preference structure which results in consumers traveling to and

shopping at different locations (Equation 24). Because the gross price (Equation 27) changes

with the monetary travel costs, consumers adjust the quantity combination of goods sold at

different locations, thereby altering the OD-patterns and VMT. This is the substitution effect.

From Table 14, we can see in detail how VMT changes due to adjustments in those three

margins. A). Total trips by all modes. Because travel costs are lowered by improved infrastruc-

ture, both gross price (inclusive of travel costs) and net income (after commute costs) move in

the direction that induces more consumption, which, in turn, generates more non-work trips.

23Although it is true in our calibrated model that a faster speed reduces gasoline use per mile, this is not
always the case. Because of the U-shaped relationship between the TFI and speed, increased speed could also
lead to more gasoline use per mile under a faster average speed.
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However, since the across-modes average monetary cost changes only slightly (-0.1%), its effects

on gross price and net income are small, and the number of total trips increases by merely 0.02

percent. B). Mode choice. Because the generalized travel cost becomes lower for driving, the

share of car goes up 0.66 percent point at the cost of other modes. C). The substitution effect.

Notice that while congestion is mitigated by increased capacity, both the average speed on local

roads, which are dominantly used for short-distance within-zone trips, and the average per-trip

distance decrease. This is due to consumers adjusting their consumption bundles in favor of

more frequent trips to local merchants. Above, the VMT change described in A) represents the

generative demand response while B) and C) are the distributive demand effect. It is important

to note that even without the substitution effect, the qualitative relation between VMT and

capacity presented in Table 14 would still prevail because both the price and income effects

and the mode choice effect induce more trips and, given fixed per-trip distance, more VMT.

Next we turn to the welfare implications of increased road capacity. As explained before,

the overall welfare change is calculated as the aggregate of three measures: the EV, the time

delay externality, and the gasoline use externality. As it turns out, the magnitude of the

gasoline externality is negligible, but it does not mean this is always the case in other settings.

A different MSA, for instance, may have a lower average speed due to severe congestion,

and the TFI function is more steeply and negatively sloped at a low speed. Alternatively,

technological changes may even make gasoline use more sensitive to speed, which would increase

the magnitude of the gasoline externality. Yet another possibility is that when gasoline price

is high relative to income and VOT, the gain (loss) from reducing (increasing) gasoline use

externality would carry a higher weight against changes in the utility level.

The EV, as shown in Equation (49), is also determined by three factors. The first two

factors are already explained before, which are the price effect and the income effect. As

transportation costs become lower, gross prices, too, become lower. For the same reason, the

disposable income increases. The third factor affecting the EV is that the across-modes average

travel time enters the utility function directly, therefore a shortened travel time is associated

with a higher utility level. The EV is +$23.16, the time delay externality increases by 29 cents,

and the gasoline externality decreases by less than 1 cent. The overall welfare change, which

is the sum of the three, is +$22.87 per consumer per year. It is not surprising that an increase

in capacity, which aims at mitigating congestion, would cause time delay externality to go
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up, although slightly. The reason is that even though per-trip time shortens, both car trips

and VMT increase, dominating the intensive margin (shorter times) to exacerbate time delay

externality. Lastly, a word of caution is in order. While it is clear how different components of

the welfare calculation affect the net outcome, the magnitude of the benefit depends crucially

on VOT, which we take as a parameter (50% of hourly wage) in the model. If the real VOT

is higher (lower) than 50% of hourly wage rate, the benefit measured in dollar would also be

greater (smaller). An reliable estimation of VOT would make the welfare calculation more

dependable, and it is especially important when the cost of a proposed infrastructure project

is known and a cost-benefit analysis is carried out.

6.2 Simulating VMT demand in MSAs with different initial non-

work trips

So far in this section we explored the effect of capacity increase in a single MSA benchmark

case. We described how and why VMT changes the way it does following a capacity shock.

In the rest of the section we show how the adjustment in VMT caused by a capacity increase

differs if initial VMT were to differ from the benchmark. We find that, all else being equal, the

elasticity of VMT with respect to capacity decreases with initial VMT.

In calibrating the model, one of the conditions is that parameters are set so that the model-

generated number of commute trips and non-work trips match the observed (from SCAG)

values. To create different scenarios with different initial VMTs, we perturb the initial non-

work trips up and down while keeping everything else unchanged in the calibration. By keeping

the number and pattern of commute trips unchanged, we assume that the spatial pattern of

residences and jobs remain unchanged. Essentially, we create different fixed points to serve as

starting points with different levels of traffic due only to non-work trips.

TABLE 15 HERE

Table 15 shows key travel-related variables under initial equilibrium points with different

levels of non-work trips, hence different initial VMTs. The initial number of non-work trips

are perturbed by 20 percent increment (except that instead of reducing non-work trips to 0,

we set it to 10% of benchmark to represent the minimum level). As the target non-work trips

increase from the minimum level — 10 percent of benchmark — to 200 percent of benchmark,
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VMT expectedly increases. Because location patterns, incomes, VOT, gasoline price, and road

characteristics are all kept unchanged in these scenarios, increasing VMT means heavier traffic

load, and initial equilibrium travel times increase with initial VMTs. Time delay external-

ity also increases considerably with congestion. Prolonged travel times then indicate a lower

average speed, which causes fuel economy to drop and gasoline use to rise.

TABLE 16 HERE

Table 16 shows the effect of a one-percent capacity increase under different initial VMTs.

The second column shows that the elasticity of VMT with respect capacity steadily decreases

from 0.356 to 0.291 as initial VMT increases. That is, when we are keeping income, population,

and location patterns constant, VMT becomes less sensitive to added roads as the urban area

becomes more congested. Why is this the case?

Recall from the benchmark simulation that equilibrium VMT changes due to three reasons:

changes in the total number of trips by all modes (generative), changes in mode choice prob-

abilities, and changes due to shopping location substitutions (distributive).24 In the columns

labeled“trips”we can see that the elasticity of trips by all modes increases (from 0.004 to 0.019)

with initial VMT. Because the share of car among all modes also goes up as a result of the

newly added capacity, the number of car trips increase both because of the intensive margin

(mode share) and the extensive margin (trips by all modes).

What may seem puzzling is that, on the one hand, the number of total trips and car trips

becomes more elastic with respect to capacity as initial VMT goes up while VMT becomes

less elastic on the other. The reason why this happens, as shown in the VMT/trip column in

Table 16, is that as initial VMT increases, so does the initial congestion level. In a congested

MSA, the capacity-induced changes in relative gross price (inclusive of travel costs) between

local and further-away shopping locations is greater than that in a less congested MSA, leading

to a more pronounced substitution of local trips for long-distance trips, shortening the average

per-trip distance. In other words, when capacity is increased, as initial VMT becomes greater,

the effect of consumers taking shorter trips dominates the effect of the fact that there are

more car trips, resulting in the capacity elasticity of VMT decreases with initial VMTs. Put

24In reality, another important factor that determines VMT is the size and the spatial pattern of local labor
markets. However, as we have done in the estimations where we control for population and the size of labor
supply, we are keeping in the simulations here the size and the spatial pattern of the labor market undisturbed to
single out the short run effect of varying initial traffic volume levels, which echos the unobserved heterogeneity
in our regression analysis.
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it differently, compared to locations where consumers initially drive fewer miles, consumers in

more congested MSAs react to new roads by adding fewer extra VMTs than those who live

in less congested MSAs. This is true even when residents in congested MSAs respond to new

roads by making a greater number of trips than those residents in less congested MSAs.

To what extent does the above conclusion depend on the elasticity of substitution among

goods sold at different locations? Indeed, we do not know what is the true value of σf (Equation

24), assuming the CES structure is a good approximation to the consumer’s preference over

goods/locations. We use σ = 0.5 in the simulations, which makes the elasticity of substitution

among locations 2. One might ask that if σ takes a smaller or negative value — suggesting

inelastic substitution among locations, would the VMT elasticity with respect to capacity still

decline with initial VMT?

We did a sensitivity test in which we carried out the same simulations presented in this

section, but under different values of σ. We find that the qualitative conclusion, i.e., capacity

elasticity of VMT decreases with initial VMT, holds under a wide range of σ. As seen in the

baseline simulation, building roads encourages more trips (by all modes) and a higher car share

that has a postive effect on VMT. At the mean time, uniformly increasing road capacity also

prompts substitutions which shortens average per-trip distance that has a negative effect on

VMT. Therefore, whether or not the VMT response grows more elastic with respect to capacity

as initial VMT increases depends on the relative magnitudes of the two opposing forces. When

the elasticity of substitution is small, so is the price elasticity of demand for goods and travel.

Consequently, As σ becomes smaller or more negative, it would simultaneously dampen the

substitution effect that shortens average trip length and weakens the demand effect that induces

more trips. The net effect, as shown by our simulations, is that the substitutions effect always

numerically dominates the demand effect and that capacity elasticity of VMT decreasing with

initial VMT would prevail under both high and low values of σ.

7 Conclusion

We investigate the implications of unobserved MSA heterogeneity on the existence of the fun-

damental law of highway congestion. Using a quantile regression framework, we show that due

to unobserved heterogeneity MSA VMT reacts differently to an increase in highway capacity.

We show that while building highways is unlikely to change the conditional and unconditional
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mean and median congestion levels in the U.S., it can lower the number of MSAs inflicted by

extreme congestion. We propose a simple theory that shows that when facing a capacity shock,

not only does the private average cost of driving falls, but different urban areas tend to have

different demand responses. Such variation in demand responses causes the VMT elasticity

to road capacity to be different across different MSAs. The theory also suggests that under

mild conditions, MSAs with high initial congestion levels will have smaller VMT elasticity to

road capacity than MSAs with low initial congestion. We further illustrate using a spatial gen-

eral equilibrium model how heterogeneity in initial congestion levels drives variation in VMT

elasticity to capacity, consistent with our empirical findings.

8 Appendix

8.1 The derivation of xNk

Cross effect. We derive the comparative statics for xNk = xkN . One way to do it is to

differentiate equation (7) with respect to k.

xNk =
(Cn − Pn) · ∂PAAN

∂k
− PAAk · ∂(Cn−Pn)∂k

(Cn − Pn)2
⇒

xNk =
(Cn − Pn) · [An (PAnxk + PAAAk) + PAAnk]− PAAn [(Cnnxk + Cnk)− (Pnnxk + PnAAk)]

(Cn − Pn)2

(56)

The denominator of equation (56) is always positive in equilibrium. We will examine the terms

in the numerator:

+︷ ︸︸ ︷
(Cn − Pn) ·

 +︷︸︸︷
An

 −︷︸︸︷
PAn

+︷︸︸︷
xk +

−︷︸︸︷
PAA

+︷︸︸︷
Ak

+

+︷︸︸︷
PA

?︷︸︸︷
Ank


−

+︷ ︸︸ ︷
PAAn ·

 +︷ ︸︸ ︷
Cnnxk +

−︷︸︸︷
Cnk

−
 +/0︷︸︸︷
Pnn

+︷︸︸︷
xk +

−︷︸︸︷
PnA

+︷︸︸︷
Ak

 (57)
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First note that the first bracket in (57) captures how the magnitude of the shift of the demand

curve caused by a change in N would respond to a change in k. The second bracket in equation

(57) captures how the gap between the marginal cost (with respect to n) and the marginal

willingness to pay would respond to a change in k.

Notice that if Ank is not very big, which requires that the marginal amenity benefit of

agglomeration is not very sensitive to road capacity changes, then the first bracket in equation

(57) is negative. Moreover, if the marginal cost Cn is not very sensitive to capacity changes —

so that Cnk is not very negative, or that the exponent in the congestion function is relatively

large so that Cnn is large, then the bracket in the second term in (57) is positive and the

numerator of equation (56) will be negative.

For example, one sufficient condition for equation (56) to be negative is that Cnn is suffi-

ciently large, which is to say that congestion exacerbates rapidly as road use increases. Another

sufficient condition is that agglomeration is important to amenities, so that An is sufficiently

large. Alternatively, if road capacity is important to amenities, so that Ak is large. Yet another

example of equation (56) taking on negative values is that the demand is linear (Pnn = 0), and

Ank = 0 = Cnk.

8.2 Instrumental Variable Quantile Regression Estimation

As Chernozhukov and Hansen (2006) mention, the estimation method for the IV-QR model

can be viewed as the quantile regression analog of two stage least squares. The estimation of

the IV-QR model involves solving the following optimization problem

α̂ (τ) = arg inf
αεA
||γ̂ (α, τ) ||A(τ) (58)

where

(
β̂(α, τ), γ̂(α, τ)

)
= arg inf

(β,γ)εB×G

Qn (τ, α, β, γ) (59)

and

Qn (τ, α, β, γ) ≡ 1

n

n∑
i=1

ρτ

(
Yi −D

′

iα−X
′

iβ − Φ̂i (τ)
′
γ
)
· V̂i (τ) (60)

Above, ||x||A =
√
x′Ax, whereA(τ) is any uniformly positive definite matrix, Φ̂i (τ) ≡ Φ̂ (τ,Xi, Zi)
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is a α × 1 vector of instruments, and V̂i (τ) ≡ V̂ (τ,Xi, Zi) is a positive weight function. The

estimation problem is solved in two-steps.

1. For a given value of τ which lies in the interval (0, 1), define a grid of values for α,

say, {αj, j = 1, ......, J}. For every value of α in the grid run the τ -quantile regression of

Yi − D
′
iαj on the controlsXiand the instruments Φ̂i (τ) to get estimates of β̂(αj, τ) and

γ̂(αj, τ).

2. Pick the value of α from the grid, call α̂ (τ), that yields the smallest value of ||γ̂(αj, τ)||.

The value of β̂ (τ) is then obtained from β̂(α̂ (τ) , τ).

8.3 Generalized Quantile Regression Estimation

In this section we describe the steps involved in estimating the GQR model parameters (see

Powell, Forthcoming). As the GQR model nests the IV-QR model, the estimation strategy

in this section also applies for estimating the conditional treatment effect in Equation (15).

The GQR model estimation strategy is to use a GMM approach–the assumptions of the GQR

model imply a set of two moment conditions shown in Equation (16), while the assumptions

of the IV-QR model imply a single moment condition shown in Equation (17). While all the

model parameters in the GQR model can be estimated in a single step, Powell (Forthcoming)

proceeds with a three step approach for computational ease.

E
{
Zi
[
1 (Yi ≤ γ + α (τ)Di)− F

(
X
′
iβ (τ)

)]}
= 0 (GQR) (a)

E [1 (Yi ≤ γ + α (τ)Di)− τ ] = 0 (GQR) (b)
(61)

E
{
Zi
[
1
(
Yi ≤ γ + α (τ)Di +X

′
iβ (τ)

)
− τ
]}

= 0 (IV −QR) (62)

Step I: The set Θ defines the combinations of α and γ such that the second GQR moment

condition holds for given τ. Powell (Forthcoming) notes that for any given values of α and τ

one can find a value γ̂ (α, τ) to satisfy Equation (17).

Θ ≡

{
(α, γ) |τ − 1

N
<

1

N

N∑
i=1

1 (Yi ≤ γ + αDi) ≤ τ

}
(63)

Set γ̂ (α, τ) such that τ − 1
N
< 1

N

∑N
i=1 1 (Yi − αDi ≤ γ) ≤ τ (64)
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Step II: Given α, γ, τ such that (α, γ) ∈ Θ, the parameter vector β is estimated using maximum

likelihood where the function F is assumed to be either a logit or probit.

β̂ (α, γ, τ) = max
β

∑N
i=1 1 (Yi ≤ γ + αDi) lnF

(
X
′
iβ
)

+ 1 (Yi > γ + αDi) ln
(
1− F

(
X
′
iβ
))
(65)

Step III: In the final step given τ the parameters α and γ are estimated by minimizing the

weighted distance of the vector of moments ĝ so that Equation (16) holds as closely as possible.

gi (α, γ, β (α, γ, τ)) = Zi

[
1 (Yi ≤ γ + αDi)− F

(
X
′

iβ (α, γ, τ)
)]

(66)

ĝ (α, γ, β (α, γ, τ)) =
1

N

N∑
i

gi (α, γ, β (α, γ, τ)) (67)

α̂ (τ) , ˆγ (τ) = min
α,γ

ĝ (α, γ, β (α, γ, τ))
′
Âĝ (α, γ, β (α, γ, τ)) (68)
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Figures and tables

VMT

$

N

inverse demand

private average cost

initial equilibrium

N + x(N, k)

equilibrium after capacity expansion

N + x′(N, k′)

Figure 1: Equilibrium VMT under k and k′

VMT
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inverse demand

private average cost

initial equilibrium
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equilibrium after city size expansion

N ′ + x′′(N ′, k)

Figure 2: Equilibrium VMTs under N and N ′

50
Electronic copy available at: https://ssrn.com/abstract=3674793



VMT
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N s + x′(N s, k)

Figure 3: capacity expansion in a small city
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N l + x(N l, k)
N l + x′(N l, k)

Figure 4: capacity expansion in a large city
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Figure 5: IV-QR estimates of elasticity of VMT to stock of MSA interstate highways stock at
different quantiles

Note: Alpha is the elasticity estimate of VMT to IH lane miles in MSA based on instrumental variables quantile
regression (IV-QR). Tau indexes the quantile. Dependent variable is ln(VMT) for interstate highways, entire
MSAs. Treatment variable is ln(IH lane mile). Controls include ln(population), year dummy, geographical
features, census division dummies. Instruments include ln(1835 exploration routes), ln(1898 railroads), and
ln(1947 planned interstates). Number of observations = 684 covering 1983, 1993, and 2003. The shaded area
indicates the 95% confidence interval. The horizontal dashed line indicates the 2SLS estimate equal to 1.03.
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Figure 6: GQR estimates of elasticity of VMT to stock of MSA interstate highways at different
quantiles

Note: Alpha is the elasticity estimate of VMT to IH lane miles in MSA based on generalized quantile regres-
sion (GQR). Tau indexes the quantile. Dependent variable is ln(VMT) for interstate highways, entire MSAs.
Treatment variable is ln(IH lane mile). Controls include ln(population), year dummy, geographical features,
census division dummies. Instruments include ln 1835 exploration routes, ln 1898 railroads, and ln 1947 planned
interstates. Number of observations = 684 covering 1983, 1993, and 2003. The dashed lines indicate the 95%
confidence interval around the point estimate given by the solid black line. The horizontal dotted line indicates
the 2SLS estimate equal to 1.03.

Figure 7: Counties and model zones in LA TRAN
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Figure 8: Arcs in the network

Figure 9: Nodes and arcs in the population centers

Network equilibrium

The UMP Nonwork trips

Residential & job locations Work trips

Total trips
mode choice

Car trips
traffic assignment

Network equilibrium

The UMP

Figure 10: LA TRAN algorithm
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Table 1: Effect of lane miles on VMT

Notes: Robust standard errors in parentheses.
*,**,*** Significant at 10% level, 5% level, and 1% level respectively.
Quantile regression results obtained using “qreg” command in Stata 15.
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Table 2: Effect of lane miles on VMT

Notes: Robust standard errors in parentheses.
*,**,*** Significant at 10% level, 5% level, and 1% level respectively.
Quantile regression results obtained using “qreg” command in Stata 15.
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Table 3: Effect of lane miles on VMT

Notes: Heteroskedasticity robust standard errors are given in all the columns. Standard errors have also been
clustered around MSAs in columns 1,2,3, and 4. In columns 8 and 9, sub-samples are taken out of the entire
sample above and below the median population size in 190 respectively.
*,**,*** Significant at 10% level, 5% level, and 1% level respectively.
Quantile regression results in columns 1, 2, 3, and 4 are obtained using “qreg” command in Stata 15.
Quantile regression results in columns 5, 6, 7, 8, and 9 are obtained using “qreg2” command in Stata 15.
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Table 4: Effect of lane miles on VMT

Notes: Robust standard errors in parentheses. ln(IH Lane mile) is the endogenous variable and is being
instrumented.
*,**,*** Significant at 10% level, 5% level, and 1% level respectively.
Quantile regression results are obtained using the R library IV-QR.
a) Kolmogorov-Smirnov statistic > 95% critical value.
b) 90% critical value < Kolmogorov-Smirnov statistic < 95% critical value.
c) Kolmogorov-Smirnov statistic < 90% critical value.
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Table 5: Effect of lane miles on VMT

Notes: Robust standard errors in parentheses. ln(IH Lane mile) is the endogenous variable and is being
instrumented.
*,**,*** Significant at 10% level, 5% level, and 1% level respectively.
Quantile regression results are obtained using the R library IV-QR.
a) Kolmogorov-Smirnov statistic > 95% critical value.
b) 90% critical value < Kolmogorov-Smirnov statistic < 95% critical value.
c) Kolmogorov-Smirnov statistic < 90% critical value.
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Table 6: Effect of lane miles on VMT

Notes: Robust standard errors in parentheses. ln(IH Lane mile) is the endogenous variable and is being
instrumented.
*,**,*** Significant at 10% level, 5% level, and 1% level respectively.
Quantile regression results are obtained using the R library IV-QR.
a) Kolmogorov-Smirnov statistic > 95% critical value.
b) 90% critical value < Kolmogorov-Smirnov statistic < 95% critical value.
c) Kolmogorov-Smirnov statistic < 90% critical value.
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Table 7: Effect of lane miles on VMT

Notes:
Robust standard errors in parentheses. ln(IH Lane mile) is the endogenous variable and is being instrumented.
*,**,*** Significant at 10% level, 5% level, and 1% level respectively.
Quantile regression results are obtained using the R library IV-QR.
a) Kolmogorov-Smirnov statistic > 95% critical value.
b) 90% critical value < Kolmogorov-Smirnov statistic < 95% critical value.
c) Kolmogorov-Smirnov statistic < 90% critical value.
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Table 8: Effect of lane miles on VMT

Notes:
Robust standard errors in parentheses. ln(IH Lane mile) is the endogenous variable and is being instrumented.
*,**,*** Significant at 10% level, 5% level, and 1% level respectively.
Quantile regression results are obtained using the R library IV-QR.
a) Kolmogorov-Smirnov statistic > 95% critical value.
b) 90% critical value < Kolmogorov-Smirnov statistic < 95% critical value.
c) Kolmogorov-Smirnov statistic < 90% critical value.
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Table 9: Effect of lane miles on VMT

Notes:
Robust standard errors in parentheses. ln(IH Lane mile) is the endogenous variable and is being instrumented.
*,**,*** Significant at 10% level, 5% level, and 1% level respectively.
Quantile regression results are obtained using the R library IV-QR.
a) Kolmogorov-Smirnov statistic > 95% critical value.
b) 90% critical value < Kolmogorov-Smirnov statistic < 95% critical value.
c) Kolmogorov-Smirnov statistic < 90% critical value.
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Table 10: Effect of lane miles on VMT

Notes:
Robust standard errors in parentheses. ln(IH Lane mile) is the endogenous variable and is being instrumented.
*,**,*** Significant at 10% level, 5% level, and 1% level respectively.
Quantile regression results are obtained using the R library IV-QR.
a) Kolmogorov-Smirnov statistic > 95% critical value.
b) 90% critical value < Kolmogorov-Smirnov statistic < 95% critical value.
c) Kolmogorov-Smirnov statistic < 90% critical value.
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Table 11: Effect of lane miles on VMT

Notes:
Robust standard errors in parentheses. ln(IH Lane mile) is the endogenous variable and is being instrumented.
*,**,*** Significant at 10% level, 5% level, and 1% level respectively.
Quantile regression results are obtained using the R library IV-QR.
a) Kolmogorov-Smirnov statistic > 95% critical value.
b) 90% critical value < Kolmogorov-Smirnov statistic < 95% critical value.
c) Kolmogorov-Smirnov statistic < 90% critical value.
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Parameters & variables in the simulation model (Part 1)

Symbol Description
Equation

Value Note
number

i, j, z Zone number Subscript 0-97
f Income group Subscript 1-4
m Mode of travel Subscript 1-4
a Arc number Subscript 1-696
o, d, π Node number Subscript 1-210 Including i, j, z
base Base equilibrium Superscript
policy Policy simulation equilibrium Superscript
α, β Preference parameters 24 Calibrated
ι Preference parameter 24 1 Assumed
1/(1− σ) Elasticity of substitution 24 2 (σ = 0.5) Assumed
1/(σ − 1) Demand elasticity 54 -2 Assumed
γ VOT parameter 24 Calibrated
vot VOT 32 50% wage Small (2012)
Z Non-housing consumption 24 Calibrated
h Housing consumption 24 Calibrated
G Average travel time 24 Calibrated
g Average travel cost 25 Calibrated
∆ Employment status 25 1 or 0
days No. of work days in a year 25 250 Assumed
hours No. of work hours in a day 25 8 Assumed
w Hourly wage rate 25 implan.com

ti Income tax 25 Collected
ts Sale tax 27 Collected
m Non-work income 25 Calibrated
P Price inclusive of travel costs 25 Calibrated
p Mill price 27 1 Normalized
R Rent 25 Observed
s No. of trips per dollar spent 27 Calibrated
N No. of workers between an OD 29 Observed
PROB Mode choice probabilities 31 Observed
Θ, Ω Dispersion parameter 31 1 Assumed
K Disutility constants 31 Calibrated
℘ Expected disutility of driving 31 Calibrated
GC Expected disutility of other modes 31 Calibrated
TIME Non-driving travel time 32 Observed
GCOST Non-driving travel cost 32 Observed
AUTOTRIP Daily car (round) trips 34 Calibrated

Table 12: List of Symbols — part 1/2
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Parameters & variables in the simulation model (Part 2)

Symbol Description
Equation

Value Note
number

time Driving time on arc 35 Calibrated
b BPR parameter 35 0.15 Assumed
c BPR parameter 35 1.2 Calibrated
flow Flow on arc 35 Observed
capacity Capacity of arc 35 Calibrated
pricefuel Gasoline price 36 $1.6 Observed
length Arc length 36 Observed
speed Average arc speed 36 Calibrated
F (speed) Gasoline use per mile 36 Calibrated
mcost Monetary driving cost 38 Calibrated
gcost Generalized driving cost 38 Calibrated
Pr Arc choice probability 39 Calibrated
x Flow between two nodes 41 Calibrated
v Flow on an arc given an end node 42 Calibrated
Zflow Intra-zonal flow 44 Calibrated
ACCESS AUTOTRIP Auto trips leaving a zone 44 Calibrated
EGRESS AUTOTRIP Auto trips arriving in a zone 44 Calibrated
T Time cost of driving between zones 45 Calibrated
M Money cost of driving between zones 46 Calibrated

Ũ Indirect utility 28 Calibrated
EV Equivalent variation 50 Calibrated
∂ ln(PROBm|ijf )/∂ ln(℘ij) Mode choice elasticity 55 0.1 Indra (2014)

Table 13: List of symbols - part 2/2

Table 14: Baseline simulation
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Table 15: Key initial equilibrium variables under different levels of non-work trips

Table 16: The effect of capacity increase under different levels of initial non-work trips
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