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Abstract

Considering that yield curves usually are serially
dependent, this paper proposes a new method
to estimate and forecast yield curves based on
factors driving serial dependence of yield curves.
Gathering information at different lags of yield
curves, the dimensionality and the lag order of
yield curves are jointly determined. Applying this
method to monthly U.S. government bond yields
from January 1985 through December 2009, I find
that the dynamic structure of yield curves reduces
to a vector process lying in a 3-dimensional space,
with 1-month lag information. Yield curve resid-
uals from this new model over time exhibit zero
mean and less autocorrelation. Moreover, this
new model’s 1-month ahead forecasts outperform
those of all competitors including the dynamic
Nelson–Siegel and random walk forecasts at all
maturities.

Motivation

Yield curves, or the term structure of interest rates,
are usually serially dependent.

Figure 1:Autocorrelated yield curves (monthly unsmoothed
Fama-Bliss zero-coupon yields of U.S. Treasuries) and exam-
ples of two consecutive yield curves, January 1985 to December
2009.

Contributions

1 This is the first work that considers factors
driving serial dependence across yield curves into
the modeling, estimation and forecasting of the
term structure of interest rates.

2 Second, a data-driven method is proposed to
determine the lag order and dimensionality of
yield curves simultaneously.

Figure 2:Three-dimensional surface plots of functional Mean
Squared Prediction Errors (fMSPEs) depending on different
values of dimension and lag order.

3 This new method has favorable in-sample and
out-of-sample properties.

Factor loadings

Figure 3:Nelson-Siegel factor loadings and the empirical func-
tional principal components that account for serial dependence
(lag order p = 1) across yield curves.

Figure 4:Five years rolling RMSEs, (p = 1, d = 3), (p = 1,
d = 4), and (p = 2, d = 3).

Fitting yield curves
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Figure 5:Actual and fitted yield curves.

Forecasting yield curves

Maturity Mean SD RMSPE ρ̂(1) ρ̂(12)

3 -0.052 0.240 0.245 0.202 0.008
6 -0.004 0.217 0.217 0.107 -0.041
9 0.014 0.235 0.235 0.136 -0.016
12 0.016 0.252 0.252 0.079 -0.025
15 0.008 0.263 0.263 0.100 0.009
18 0.009 0.273 0.272 0.081 0.004
21 0.011 0.284 0.283 0.095 -0.002
24 0.013 0.292 0.292 0.101 -0.006
30 0.004 0.295 0.294 0.066 0.007
36 -0.005 0.294 0.294 0.055 0.004
48 -0.007 0.306 0.305 0.066 0.034
60 -0.011 0.295 0.294 0.060 -0.015
72 -0.007 0.295 0.294 0.053 -0.002
84 0.0001 0.281 0.280 0.001 -0.029
96 -0.016 0.281 0.280 -0.006 -0.028
108 -0.006 0.278 0.277 0.015 -0.006
120 -0.001 0.280 0.279 0.023 0.040

Table 1:Out-of-sample 1-month-ahead forecasting results, new
functional factor model (p = 1, d = 3). Bold number indicates
a residual mean significantly different from zero at the 5% level
of significance.

Forecasting performance

Figure 6:Cumulative sum of Squared Prediction Errors (SPE)
of monthly yield data at maturities of 3, 12, 24, 36, 60, 120
months from January 1994 to December 2009.

Conclusions

•This method produces adequate dimension
reduction for the serially dependent yield data. (2
PCs here VS 16 PCs from the traditional FPCA).

•Yield curve residuals from this new model’s fit
exhibit less autocorrelation and have zero mean.

•The forecasts of this new model have superiority:
(i) less non-zero mean in prediction errors,
(ii) less autocorrelated prediction errors at
different maturities,
(iii) smaller root mean squared prediction errors
(RMSPE)
over time and across term structure of interest
rates at the 1-month-ahead horizon.

https://sites.google.com/view/hao-li
mailto:H.Li@uva.nl

