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To address any potential endogeneity concern and to rigorously analyze whether
opioid rates have causal effects on future returns, we carry out IV (# of
clandestine drug labs in a county) regressions on our sample. Specifically, we run

Aside from stock returns, we study the causal effect of opioid prescriptions
on real estate prices. The hypothesis is that a decrease In opioid

Overdosing on opioids, a class of substances that acts
upon opioid receptors to produce morphine-like effects,

We construct long-short portfolios that long firms' stocks in
the bottom decile of the opioid prescription level while we

has become a serious social problem in recent years. We
explore the link between county-level opioid prescription
rates and asset prices, specifically, stock returns of firms

short firms in the top decile of opioid prescription level.
Since we focus on subsequent returns, the ranking of opioid
prescription levels should be constructed based on data

the following two-stage least squares (2SLS) regression:

opioidy = 0 + ody + D' Xy + ey

prescription rates can cause an increase In real estate prices since the
houses in low opioid drug infested areas are more attractive to buyers. In
November 2015, the California Health Care Foundation (CHCF) started to
provide technical assistance, aimed at opioid prescription reduction, to the
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monthly return difference between the highest ranked
portfolio and the lowest ranked portfolio is 2.03, which is
statistically significant at 5% level. Figure 1.b depicts the
cumulative returns on the low-rate portfolio (blue) and
high-rate portfolio (red), separately.

Table 1: Instrumental variables regressions. The dependent variable (DV) is the firms' monthly returns
(RET). The endogenous variable is the counties' opioid prescription levels. MA(N) means the opioid
rates are taken to be the N year backward moving average. The instrumental variable is the backward
looking moving average of number of clandestine drug labs for 6 years. Column (1) through (6)
present the results with state fixed effect after removing the observations in which the total number
of drug labs is less than or equal to 4. We add year fixed effect to Column (2) and (5), and add year-
month fixed effect to Column (3) and (6). Both endogenous variable and instrumental variable are
first-differenced in order to avoid the unit root problem.

t statistics in parentheses
“p<0.10, * p < 0.05, *** p < 0.01

prices of existing single-family homes in those counties
by $28,678 on average.

Conclusion
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