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Abstract

We show that the large elasticity of substitution between capital and labor estimated

in the literature on average, 0.9, can be explained by three issues: publication bias, use

of cross-country variation, and omission of the first-order condition for capital. The mean

elasticity conditional on the absence of these issues is 0.3. To obtain this result, we collect

3,186 estimates of the elasticity reported in 121 studies, codify 71 variables that reflect the

context in which researchers produce their estimates, and address model uncertainty by

Bayesian and frequentist model averaging. We employ nonlinear techniques to correct for

publication bias, which is responsible for at least half of the overall reduction in the mean

elasticity from 0.9 to 0.3. Our findings also suggest that a failure to normalize the production

function leads to a substantial upward bias in the estimated elasticity. The weight of evidence

accumulated in the empirical literature emphatically rejects the Cobb-Douglas specification.

Keywords: Elasticity of substitution, capital, labor, publication bias,

model uncertainty
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1 Introduction

A key parameter in economics is the elasticity of substitution between capital and labor. Among

other things, the size of the elasticity has practical consequences for monetary policy, as Figure 1

illustrates. In the SIGMA model used by the Federal Reserve Board, the effectiveness of interest

rate changes in steering inflation doubles when one assumes the elasticity to equal 0.9 instead of

0.5, yielding very different policy implications. We choose the SIGMA model for the illustration

*An online appendix with data and code is available at meta-analysis.cz/sigma. Corresponding author:

Tomas Havranek, tomas.havranek@ies-prague.org. Kolcunova acknowledges support from the Czech Science
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Figure 1: The elasticity of substitution matters for monetary policy
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Notes: The figure shows simulated impulse responses of inflation to a monetary policy shock.
We use a calibrated version of the SIGMA model of Erceg et al. (2008) developed for the
Federal Reserve Board and vary the value of the capital-labor substitution elasticity while
leaving other parameters at their original values. The model does not have a stable solution
for σ larger than one.

because, as one of very few models employed by central banks, it actually allows for different

values of the elasticity of substitution. Almost all models use the convenient simplification of the

Cobb-Douglas production function, which implicitly assumes that the elasticity equals one. If

the true elasticity is smaller, these models overstate the strength of monetary policy and should

imply a more aggressive campaign of interest rate cuts in response to a recession (Chirinko

& Mallick, 2017, make a related argument).1 In this paper we show that the Cobb-Douglas

specification is at odds with the empirical evidence on the elasticity.

Aside from convenience, the other reason for the widespread use of the Cobb-Douglas pro-

duction function is that, at first sight, empirical investigations into the value of the elasticity

have produced many central estimates close to 1. When each study gets the same weight, the

mean elasticity reported in the literature reaches 0.9—at least based on our attempt to collect

all published estimates, in total 3,186 coefficients from 121 studies. But we show that the pic-

ture is seriously distorted by publication bias. After correcting for the bias, the mean reported

elasticity shrinks to 0.5. This correction alone can imply halving the effectiveness of monetary

policy in a structural model, as shown by Figure 1.

1The SIGMA model calibrates the elasticity at 0.5, which is consistent with our estimate of the mean elasticity
reported in the entire literature and corrected for publication bias. While our preferred estimate (based on
preferred methodology) is even lower at 0.3, such a decrease would make little difference for the SIGMA model,
as illustrated in Figure 1. Further decreases below 0.5 have negligible impact on the modeled transmission of
monetary policy. Note also that we use a calibrated version of the SIGMA model from the Macroeconomic Model
Data Base. If some parameters of the model were estimated, the effect of changes in the elasticity would likely
be attenuated. In general the modeled effect of an interest rate hike on inflation is small when the elasticity
of substitution is 0.5 (a decrease of about 0.12 in the inflation rate after an increase in the policy rate of 100
basis points), but the relatively small effect of interest rate changes on prices is consistent with recent surveys of
empirical evidence from VARs by Rusnak et al. (2013), Ramey (2016), and Cochrane (2018).
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The finding of strong publication bias predominates in our results. The bias arises when

different estimates have a different probability of being reported depending on sign and statis-

tical significance. The identification builds on the fact that almost all econometric techniques

used to estimate the elasticity assume that the ratio of the estimate to its standard error has a

symmetrical distribution, typically a t-distribution. So the estimates and standard errors should

represent independent quantities. But if statistically significant positive estimates are prefer-

entially selected for publication, large standard errors (given by noise in data or imprecision in

estimation) will become associated with large estimates. Because researchers command plenty

of degrees of freedom in estimation design, a large estimate of the elasticity always emerges if

the researcher looks for it long enough, and an upward bias in the literature arises. A useful

analogy appears in McCloskey & Ziliak (2019), who liken publication bias to the Lombard effect

in biology: speakers increase their effort in the presence of noise. Apart from linear techniques

based on the Lombard effect, we employ recently developed methods by Ioannidis et al. (2017),

Andrews & Kasy (2019), Bom & Rachinger (2019), and Furukawa (2019), which account for the

potential nonlinearity between the standard error and selection effort. We also use methods by

Gerber & Malhotra (2008) and van Aert & van Assen (2020) that address potential endogeneity

of the standard error.2

The studies in our dataset do not estimate a single population parameter; rather, the pre-

cise interpretation of the elasticity differs depending on the context in which authors derive

their results. We collect 71 variables that reflect the different contexts and find that our con-

clusions regarding publication bias hold when we control for context. Because of the richness

of the literature on the elasticity of substitution, we face substantial model uncertainty with

many controls and address it by using Bayesian (Eicher et al., 2011; Steel, 2020) and frequentist

(Hansen, 2007; Amini & Parmeter, 2012) model averaging. We investigate how the estimated

elasticities depend on publication bias and the data and methods used in the analysis. Our

results suggest that three factors drive the heterogeneity in the literature: publication bias (the

size of the standard error), source of variation in input data (cross-country vs. industry-level

variation), and identification approach (whether or not information from the first-order condi-

tion for capital is accounted for). Estimations using systems of equations tend to deliver results

similar to those of single-equation approaches focused on the first-order condition for capital.

In addition, the normalization of the production function used in recent studies typically brings

much smaller reported elasticities, by 0.3 on average. We also find that different assumptions

regarding technical change have little systematic effect on the reported elasticity.

As the bottom line of our analysis, we construct a synthetic study that uses all the estimates

reported in the literature but assigns more weight to those that are arguably better specified.

The result represents a mean estimate implied by the literature but conditional on the absence

of publication bias, use of best-practice methodology, and other aspects related to quality (such

2Publication bias in economics has also been recently discussed, among others, by Havranek (2015), Brodeur
et al. (2016), Bruns & Ioannidis (2016), Havranek & Irsova (2017), Havranek et al. (2017), Christensen & Miguel
(2018), Astakhov et al. (2019), Bajzik et al. (2020), Blanco-Perez & Brodeur (2020), Brodeur et al. (2020),
Cazachevici et al. (2020), Matousek et al. (2021), and Imai et al. (2021).
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as publication in a leading journal or a large number of citations). In this way we obtain an

elasticity of 0.3 with an upper bound of the 95% confidence interval at 0.6. Though certainly

not the definitive point estimate for the elasticity, it is the best guess we can make when looking

at half a century of accumulated empirical evidence.

Defining best-practice methodology is subjective, and different authors will have different

preferences on study design. But to arrive at 0.3, it is enough to hold two preferences: i) using

variation across industries is superior to using variation across countries (which is substanti-

ated, e.g., by Nerlove, 1967; Chirinko, 2008) and ii) including information from the first-order

condition for capital is superior to ignoring it (and, for example, focusing exclusively on the

first-order condition for labor). To put these numbers into perspective, we once again turn to

the Fed’s SIGMA model, which employs a value of 0.5 for the elasticity of substitution (Erceg

et al., 2008). This calibration corresponds to the mean estimate in the literature corrected for

publication bias, without discounting any estimates based on data and methodology. The model

employed by the Bank of Finland (Kilponen et al., 2016), on the other hand, uses the elasticity

of 0.85, which is close to the mean estimate in the literature without correction for publication

bias. The calibration closest to our final result is that of Cantore et al. (2015), who use a prior

of 0.4. Their posterior estimate is even lower, though, at below 0.2.

The elasticity of substitution between capital and labor is central to a host of problems

aside from monetary policy. Our understanding of long-run growth depends on the value of the

elasticity (Solow, 1956). The sustainability of growth in the absence of technological change is

contingent on whether or not the elasticity of substitution exceeds one (Antras, 2004). Klump &

de La Grandville (2000) suggest that a larger elasticity in a country results in higher per capita

income. Turnovsky (2002) argues that a smaller elasticity leads to faster convergence. Nekarda

& Ramey (2013) argue that the countercyclicality of the price markup over marginal cost also

depends on the elasticity of substitution. The elasticity represents an important parameter

in analyzing the effects of fiscal policies, including the effect of corporate taxation on capital

formation, and in determining optimal taxation of capital (Chirinko, 2002).

But perhaps most prominently, the elasticity of substitution is a key parameter in the

literature on the labor share. The evidence of a declining labor share has in fact revived

general interest in estimating the elasticity because some of the explanations depend critically

on the value of the elasticity (σ). Oberfield & Raval (2014) categorize these explanations

into two groups: (1) mechanisms decreasing the labor share via changing factor prices and

(2) mechanisms decreasing the labor share via changing technology. Regarding group (1), the

explanations put forward by Piketty (2014) and Karabarbounis & Neiman (2014) hold only

when the elasticity surpasses one. Then the global decline in the labor share can be attributed

to an increasing capital-labor ratio, either via capital deepening (Piketty, 2014) or as a response

to falling investment prices (Karabarbounis & Neiman, 2014). With σ < 1, however, declining

prices of capital and increased capital accumulation raise the labor share. Yet, as we show in

this paper, σ < 1 is consistent with the bulk of the empirical estimates of the elasticity. In

this context, Glover & Short (2020a) assert that capital deepening cannot explain the observed

4



Figure 2: The elasticity of substitution matters for the labor share
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Notes: The figure shows simulated impulse responses of the labor share to a labor-
augmenting technology shock. We use the model developed by Cantore et al. (2014) and
Cantore et al. (2015).

decline; they point to biases that led to the high elasticity estimates of Karabarbounis & Neiman

(2014). Regarding group (2), alternative explanations stress changes in automation, offshoring,

directed technological change (as in Oberfield & Raval, 2014; Eden & Gaggl, 2015; Koh et al.,

2016), a slowdown in labor productivity (as in Grossman et al., 2017), a rise in concentration

(Autor et al., 2017), and demographic changes (Glover & Short, 2020b); explanations that do

not hinge on high values of σ.

The elasticity also has important effects on the short-run dynamics of the labor share. This

channel can be illustrated by computing the response of the labor share to a labor-augmenting

technology shock, as we do in Figure 2 based on the model developed by Cantore et al. (2014)

and Cantore et al. (2015). In the case of the Cobb-Douglas production function the labor share

remains constant, while with σ < 1 the share decreases after a labor-augmenting shock. As

the figure illustrates, the response is highly sensitive to changes in σ. A model with a lower

elasticity, consistent with our results, is able to match the actual dynamics of the data on the

labor share better than the Cobb-Douglas case (Cantore et al., 2015).

The remainder of the paper is structured as follows: Section 2 briefly discusses how the elas-

ticity of substitution is estimated; Section 3 describes how we collect estimates of the elasticity

from primary studies and provides a bird’s-eye view of the data; Section 4 examines publication

bias; Section 5 investigates the drivers of heterogeneity in the reported elasticities and calculates

the mean elasticity implied by best practice in the literature; Section 6 concludes the paper.

Appendix A illustrates the working of publication bias and basic meta-analysis tools via a Monte

Carlo simulation. Appendix B and Appendix C describe the bias-correction techniques designed

by Furukawa (2019) and Andrews & Kasy (2019). Appendix D shows summary statistics of the

variables that reflect study context, Appendix E presents robustness checks, and Appendix F

includes the list of studies from which we extract estimates. The data and code are available in

an online appendix at meta-analysis.cz/sigma.
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2 Estimating the Elasticity

To set the stage for data collection and identification of factors driving heterogeneity in results,

we provide a short description of the most common approaches to estimating the elasticity

of substitution between capital and labor. The concept was introduced by Hicks (1932) and

almost simultaneously and independently by Robinson (1933), whose more popular definition

treats the elasticity as a percentage change of the ratio of two production factors divided by

the percentage change of the ratio of their marginal products. Under perfect competition, both

inputs are paid their marginal products, so the elasticity of substitution can be written as

σ =
d(K/L)/(K/L)

d(w/r)/(w/r)
= −d log(K/L)

d log(r/w)
, (1)

where K and L denote capital and labor, r is the rental price of capital, and w is the wage

rate. Under a quasiconcave production function the elasticity attains any number in the interval

(0,∞). If σ = 0, capital and labor are perfect complements, always used in a fixed proportion

in the Leontief production function. If the elasticity lies in the interval (0, 1), capital and labor

form gross complements. If σ = 1, the production function becomes Cobb-Douglas, and the

relative change in quantity becomes exactly proportional to the relative change in prices. If the

elasticity lies in the interval (1,∞), capital and labor form gross substitutes.

Although the concept of the elasticity of substitution was introduced in the 1930s, empirical

estimates were only enabled by an innovation that came more than 20 years later: the intro-

duction of the constant elasticity of substitution (CES) production function by Solow (1956),

later popularized by Arrow et al. (1961). The CES production function can be written as

Yt = C[π(AKt Kt)
σ−1
σ + (1− π)(ALt Lt)

σ−1
σ ]

σ
σ−1 , (2)

where σ denotes the elasticity of substitution, K and L are capital and labor, C is an efficiency

parameter, and π is a distributional parameter. The fraction σ−1
σ is often labeled as ρ, a

transformation of the elasticity called the substitution parameter. AKt and ALt denote the level

of efficiency of the respective inputs, and variations in AKt and ALt over time reflect capital- and

labor-augmenting technological change. When AKt = ALt = At, technological change becomes

Hicks-neutral, which means that the marginal rate of substitution does not change when an

innovation occurs.

The CES production function is nonlinear in parameters, and in contrast to the Cobb-

Douglas case, a simple analytical linearization does not emerge. Thus the CES production

function can be estimated (i) in its nonlinear form, (ii) in a linearized form as suggested by

Kmenta (1967), or (iii) by using first-order conditions (FOCs). Kmenta (1967) introduced a

logarithmized version of Equation 2 with Hicks-neutral technological change:

log Yt = logC +
σ

σ − 1
log

[
πK

σ−1
σ

t + (1− π)L
σ−1
σ

t

]
(3)
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and then applied a second-order Taylor series expansion to the term log[·] around the point

σ = 1 to arrive at a function linear in σ:

log Yt = logC + π logKt + (1− π) logLt −
(σ − 1)π(1− π)

2σ
(logKt − logLt)

2. (4)

Estimation of σ via first-order conditions was first suggested by Arrow et al. (1961). The un-

derlying assumptions involve constant returns to scale and fully competitive factor and product

markets. The FOC with respect to capital can be written as follows:

log

(
Yt
Kt

)
= σ log

(
1

π

)
+ (1− σ) log(AKt C) + σ log

(
rt
pt

)
. (5)

Consequently, the FOC with respect to labor implies

log

(
Yt
Lt

)
= σ log

(
1

1− π

)
+ (1− σ) log(ALt C) + σ log

(
wt
pt

)
, (6)

where p is the price of the output. Both conditions can be combined to yield

log

(
Kt

Lt

)
= σ log

(
π

1− π

)
+ (σ − 1) log

(
AKt
ALt

)
+ σ log

(
wt
rt

)
. (7)

In a similar way, one can derive FOCs with respect to the labor share (wL)/Y , capital share

(rK)/Y , or their reversed counterparts. The FOCs can be estimated separately as single equa-

tions, within a system of two or three FOCs, and as a system of FOCs coupled with a nonlinear

or linearized CES production function. The latter approach (also called a supply-side sys-

tem approach) has become especially popular in recent studies. León-Ledesma et al. (2010)

assert that using the supply-side system approach dominates one-equation estimation, espe-

cially when coupled with cross-equation restrictions and normalization, which was suggested

by de La Grandville (1989) and Klump & de La Grandville (2000). After scaling technological

progress so that AK0 = AL0 = 1, the normalized production function can be written as

Yt = Y0

[
π0

(
AKt Kt

K0

)σ−1
σ

+ (1− π0)

(
ALt Lt
L0

)σ−1
σ

] σ
σ−1

, (8)

where π0 = r0K0/(r0K0 + w0L0) denotes the capital income share evaluated at the point of

normalization. The point of normalization can be defined, for instance, in terms of sample

means. In other words, normalization means rewriting the production function in an indexed

number form (Klump et al., 2012).

Though the aforementioned approaches to estimating the elasticity dominate the literature,

we also consider other approaches, in particular the translog production function. The translog

function is quadratic in the logarithms of inputs and outputs and provides the second-order
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approximation to any production frontier (omitting now subscript t for ease of exposition):

log Y = logα0 +
∑
i

αi logXi +
1

2

∑
i

∑
j

αij logXi logXj , (9)

where α0 denotes the state of technological knowledge, and Xi and Xj are inputs, in our

case capital and labor. The translog production frontier provides a wider set of options for

substitution and transformation patterns than a frontier based on the CES production function.

Due to the duality principle, researchers often employ the translog cost function instead:

logC = α0+θ1 log Y+
1

2
θ2(log Y )2+

∑
i

βi logPi+
1

2

∑
i

∑
j

εij logPi logPj+
∑
i

δi logPi log Y,

(10)

where C denotes total costs, i = K,L, and Pi is input factor price (that is, w and r). Using

Sheppard’s lemma, the following cost share functions can be derived:

Si = βi +
∑
i

εij logPj + δi log Y, (11)

where Si denotes the share of the i -th factor in total costs. In this case, Allen partial elasticities

of substitution are most often estimated and are defined as

σij =
γij + SiSj
SiSj

. (12)

We include estimates from all of the aforementioned specifications, as each of them provides

a measure of the elasticity of substitution between capital and labor, broadly defined. Then

we control for the various aspects of the context in which researchers obtain their estimates.

These aspects are presented and discussed in detail later in Section 5, while the following section

describes the dataset of the estimated elasticities.

3 Data

We use Google Scholar to search for studies estimating the elasticity. Google’s algorithm goes

through the full text of studies, thus increasing the coverage of suitable published estimates,

irrespective of the precise formulation of the study’s title, abstract, and keywords. Our search

query, available in the online appendix, is calibrated so that it yields the best-known relevant

studies among the first hits. We examine the first 500 papers returned by the search. In

addition, we inspect the lists of references in these studies and their Google Scholar citations to

check whether we can find usable studies not captured by our baseline search—a method called

“snowballing” in the literature on research synthesis. We terminate the search on August 1,

2018, and do not add any new studies beyond that date.

To be included in our dataset, a study must satisfy three criteria. First, at least one
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estimate in the study must be directly comparable with the estimates described in Section 2.

Second, the study must be published. This criterion is mostly due to feasibility since even

after restricting our attention to published studies the dataset involves a manual collection of

hundreds of thousands of data points. Moreover, we expect published studies to exhibit higher

quality on average and to contain fewer typos and mistakes in reporting their results. Note

that the inclusion of unpublished papers is unlikely to alleviate publication bias (Rusnak et al.,

2013): researchers write their papers with the intention to publish.3 Third, the study must

report standard errors or other statistics from which the standard error can be computed. If

the elasticity is not reported directly, but can be derived from the presented results, we use the

delta method to approximate the standard error. Omitting the estimates with approximated

standard errors does not change our results up to a second decimal place.

Figure 3: Distribution of the estimated elasticities
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Notes: Estimates smaller than −1 and larger than 3 are excluded from the
figure for ease of exposition but included in all statistical tests.

Using the search algorithm and inclusion criteria described above, we collect 3,186 estimates

of the elasticity of substitution from 121 studies. To our knowledge, this makes our paper

the largest meta-analysis conducted in economics so far: Doucouliagos & Stanley (2013), for

example, survey dozens of meta-analyses and find that the largest one uses 1,460 estimates.

Ioannidis et al. (2017) report that the mean number of estimates used in economics meta-

analyses is 400. The literature on the elasticity of substitution is vast, with a long tradition

spanning six decades and more than 100 countries. The list of the studies we include in the

dataset (we call them “primary studies”) is available in Appendix F. Out of the 121 studies,

19 are published in the five leading journals in economics. Altogether, they have received more

than 20,000 citations in Google Scholar, highlighting the importance of the topic.

3A more precise label for publication bias is therefore “selective reporting,” but we use the former, more
common one to maintain consistency with previous studies on the topic, such as DeLong & Lang (1992), Card
& Krueger (1995), and Ashenfelter & Greenstone (2004).
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Figure 4: Estimates vary both across and within studies
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Notes: The figure shows a box plot of the estimates of the elasticity of substitution reported in individual studies. The
box shows interquartile range (P25–P75) and the median highlighted. Whiskers cover (P25 − 1.5*interquartile range) to
(P75 + 1.5*interquartile range). The dots are remaining (outlying) estimates. Estimates smaller than −1 and larger than
3 are excluded from the figure for ease of exposition but included in all statistical tests.
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The mean reported estimate of the elasticity of substitution is 0.9 when we give the same

weight to each study; that is, when we weight the estimates by the inverse of the number of

observations reported per study. A simple mean of all estimates is 0.8. We consider the weighted

mean to be more informative, because the simple mean is driven by studies that report many

estimates, typically the results of robustness checks, and we see little reason to place more weight

on such studies. For both such constructed means, in any case, the deviation from the Cobb-

Douglas specification is not dramatic, and one could use the mean estimate from the literature

as a justification of why the Cobb-Douglas production function presents a solid approximation

of the data. We will argue that such an interpretation of the data misleads the reader because

of publication bias and misspecifications in the literature.

Figure 3 shows the distribution of the estimates. Curiously, the distribution is bimodal,

with peaks near 0 and slightly under 1, pointing to strong and systematic heterogeneity among

the estimates. Three-quarters of the estimates lie between 0 and 1, 21% are greater than one,

and only 4% attain a theoretically implausible negative value. At first sight it is apparent that

Figure 5: Prima facie patterns in the data
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Notes: FOC = first-order condition. Estimates smaller than −1 and larger than 3 are excluded from the figure for ease
of exposition but included in all statistical tests.
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a researcher wishing to calibrate her structural model can find some empirical justification for

any value of the elasticity between 0 and 1.5. There are a few extreme outliers in the data, thus

we winsorize the estimates at the 5% level (our main results hold with different winsorization

levels). In Figure 4 we show the box plot of the estimates. Not only do elasticities vary across

studies, but also within studies. Most studies report at least some estimates close to 1, giving

further (but superficial, as we will show later) credence to the Cobb-Douglas specification.

Apart from the estimates of σ and their standard errors, we collect 71 variables that capture

the context in which different estimates are obtained. In consequence, we had to collect more

than 220,000 data points from primary studies—a laborious but complex exercise. The data

were collected by two of the coauthors of this paper, each of whom then double-checked random

portions of the data collected by the other coauthor in order to minimize potential mistakes

arising from manually coding so many entries. The entire process took seven months, and the

final dataset is available in the online appendix. Out of the 71 variables that we collect, 50 are

included in the baseline model, while the rest only appear in the subsamples of the data for

which they apply.

A casual look at the estimates reveals systematic differences among the reported elasticities

derived from different data and identified using different methodologies. The most striking

patterns are shown in Figure 5. For instance, while the mean of the estimates coming from the

first-order condition for capital is 0.4, for the first-order condition for labor the mean is twice

as much. The mean of the elasticities based on time series data is 0.5, while for cross-sectional

data it reaches 0.8. Estimates based on industry-level data appear to be systematically smaller

than those based on country-level data, and elasticities presented for individual industries are

on average larger than aggregated estimates. These patterns may explain the bimodality of

the overall histogram presented in Figure 3. Nevertheless, at this point we cannot be sure

whether the differences are fundamental or whether they reflect correlations with other factors.

A detailed analysis of heterogeneity is available in Section 5. Some of the differences among the

estimates can also be attributable to publication bias, an issue to which we turn next.

4 Publication Bias

Theory and intuition provides little backing for a zero or negative elasticity of substitution

between capital and labor, so it seems natural to discard such estimates. Previous researchers

(most prominently, Ioannidis et al., 2017) have shown that such a censoring distorts inference

drawn from the literature, and here we document that publication bias is strong in the case of

the elasticity of substitution. Even when the true elasticity is positive in every single estima-

tion context, given sufficient noise in data and methods both negative and zero (statistically

insignificant) estimates will appear. For each individual author who obtains such estimates, it

makes little sense to focus on them; it will bring their study closer to the truth if they find and

highlight a specification that yields a clearly positive elasticity. The problem is that noise in

data and methods will also produce estimates that are much larger than the true effect, and such

estimates are hard to identify: no upper threshold symmetrical to zero exists that would tell
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the researcher the estimates are implausible. If many small imprecise estimates are discarded

but many large imprecise estimates are reported, an upward bias arises on average. Thus a

paradox arises: publication bias can be beneficial at the micro level of individual studies, but

is detrimental at the macro level of the entire literature. Ioannidis et al. (2017) document that

the typical exaggeration due to publication bias in economics is twofold. We find it remarkable

that no study has addressed potential publication bias in the literature on the elasticity of

substitution between capital and labor, one of the most important parameters in economics.

Figure 6: Negative estimates of the elasticity are underreported
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Notes: In the absence of publication bias the scatter plot should resemble an inverted funnel symmetrical around the
most precise estimates. The left panel shows all estimates, the right panel shows median estimates from each study.
Estimates smaller than −2 and larger than 4 (together with precision values above 100 in the left panel) are excluded
from the figure for ease of exposition but included in all statistical tests.

Figure 6 provides a graphical illustration of the mechanism outlined in the previous para-

graph. In the scatter plot the horizontal axis measures the magnitude of the estimated elas-

ticities, and the vertical axis measures their precision. In the absence of publication bias, the

scatter plot will form an inverted funnel: the most precise estimates will lie close to the true

mean elasticity, imprecise estimates will be more dispersed, and both small and large imprecise

estimates will appear with the same frequency. (The scatter plot is thus typically called a funnel

plot, Stanley & Doucouliagos 2010.) The figure shows the predicted funnel shape, still with

plenty of heterogeneity at the top—but also shows asymmetry. For the funnel to be symmet-

rical, and hence consistent with the absence of publication bias, we should observe many more

reported negative and zero estimates. In Appendix A we use a simple Monte Carlo simulation

to further explain the mechanism of publication bias and the baseline meta-analysis estimators

we use.

4.1 Baseline Methods

To identify publication bias numerically, we refer to the analogy with the Lombard effect men-

tioned in the Introduction: other things being equal, under publication bias authors will in-

crease their effort (specification search) in response to noise (imprecision resulting from data or

methodology). Thus publication bias is consistent with finding a correlation between estimates
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of the elasticity and their standard errors. In contrast, if there is no bias, there should be no

correlation, because the properties of the techniques used to obtain the elasticity ensure that

the ratio of the estimate to its standard error has a t-distribution. It follows that estimates

and standard errors should be statistically independent quantities. In any case, the intercept

in the regression of the estimated elasticities on their standard errors can be interpreted as the

mean elasticity corrected for potential publication bias (Stanley, 2005). It represents the mean

elasticity conditional on the standard error approaching zero, and because in this specification

publication bias forms a linearly increasing function of the standard error, the intercept mea-

sures the corrected estimate. The coefficient on the standard error measures publication bias

and can be thought of as a test of the asymmetry of the funnel plot. So we have

σ̂ij = σ0 + γSE(σ̂ij) + uij , (13)

where σ̂ is the i-th estimated elasticity in study j, γ denotes the intensity of publication bias,

and σ0 represents the mean elasticity corrected for the bias.

In Table 1 we report the results of several specifications based on Equation 13. We cluster

standard errors at both the study and the country level, as estimates are unlikely to be indepen-

dent within these two dimensions; our implementation of two-way clustering follows Cameron

et al. (2011). We also report wild bootstrap confidence intervals (Cameron et al., 2008). In

all specifications we find a statistically significant and positive coefficient on the standard error

(publication bias) and a significant and positive intercept (the mean elasticity corrected for the

bias). After correcting for publication bias, the mean elasticity drops from 0.9 to 0.5.

Table 1: Linear tests of funnel asymmetry suggest publication bias

OLS FE BE Precision Study

SE 0.881
∗∗∗

0.656
∗∗∗

1.111
∗∗∗

0.755
∗∗∗

0.888
∗∗∗

Publication bias (0.086) (0.201) (0.190) (0.190) (0.094)
[0.49; 1.21] − − [0.12; 1.40] [0.62; 1.22]

Constant 0.492
∗∗∗

0.529
∗∗∗

0.499
∗∗∗

0.484
∗∗∗

0.544
∗∗∗

Mean beyond bias (0.028) (0.033) (0.048) (0.028) (0.039)
[0.38; 0.61] − − [0.39; 0.66] [0.44; 0.64]

Studies 121 121 121 121 121
Observations 3,186 3,186 3,186 3,186 3,186

Notes: The table presents the results of regression σ̂ij = σ0 + γSE(σ̂ij) + uij . σ̂ij and SE(σ̂ij) are the i-th estimates
of elasticity of substitution and their standard errors reported in the j-th study. The standard errors of the regression
parameters are clustered at both the study and country level and shown in parentheses (the implementation of two-way
clustering follows Cameron et al., 2011). OLS = ordinary least squares. FE = study-level fixed effects. BE = study-
level between effects. Precision = the inverse of the reported estimate’s standard error is used as the weight. Study
= the inverse of the number of estimates reported per study is used as the weight.

∗∗∗
,

∗∗
, and

∗
denote statistical

significance at the 1%, 5%, and 10% level. Standard errors in parentheses. Whenever possible, in square brackets we
also report 95% confidence intervals from wild bootstrap clustering; implementation follows Roodman (2019), and we
use Rademacher weights with 9999 replications.

The first column of Table 1 reports a simple OLS regression. The second column adds

study-level fixed effects in order to account for unobserved study-specific characteristics, but

little changes. (Adding country dummies would also produce similar results.) The third column
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Table 2: Nonlinear techniques corroborate publication bias

Bom & Rachinger
(2019)

Furukawa
(2019)

Andrews & Kasy
(2019)

Ioaninidis
et al. (2017)

Mean beyond bias 0.52 0.55 0.43 0.50
(0.09) (0.21) (0.02) (0.06)

Notes: Standard errors in parentheses. The method developed by Bom & Rachinger (2019) searches for a precision
threshold above which publication bias is unlikely. Methods developed by Furukawa (2019) and Andrews & Kasy (2019)
are described in detail in Appendix B and Appendix C. The method developed by Ioannidis et al. (2017) focuses on
estimates with adequate power.

uses between-study variance instead of within-study variance, and the estimate of the corrected

mean remains not much affected. Next, we apply two weighting schemes. First, precision

becomes the weight, as suggested by Stanley & Doucouliagos (2017), which adjusts for the

heteroskedasticity in the regression. Similar weights are also used in physics for meta-analyses

of particle mass estimates (Baker & Jackson, 2013). The corrected mean elasticity becomes a

bit smaller, but not far from 0.5. Second, we weight the data by the inverse of the number of

observations reported in a study, so that each study has the same impact on the results. Again,

the difference is small in comparison to other specifications.

The simple tests based on the Lombard effect and presented in Table 1 are intuitive but can

themselves be biased if publication selection does not form a linear function of the standard

error. For example, it might be the case that estimates are automatically reported if they

cross a particular precision threshold. This is the intuition behind the estimator due to Bom

& Rachinger (2019) presented in Table 2. Bom & Rachinger (2019) show how to estimate

this threshold for each literature and introduce an “endogenous kink” technique that extends

the linear test based on the Lombard effect. Next, Furukawa (2019) provides a nonparametric

method that is robust to various assumptions regarding the functional form of publication bias

and the underlying distribution of true effects. Furukawa (2019) suggests using only a portion

of the most precise estimates, the stem of the funnel plot, and determines this portion by

minimizing the trade-off between variance (decreasing in the number of estimates included) and

bias (increasing in the number of imprecise estimates included). The stem-based method is

generally more conservative than those commonly used, producing wide confidence intervals;

the details are available in Appendix B.

Another nonlinear method to correct for publication bias is advocated by Andrews & Kasy

(2019). They show how the conditional publication probability (the probability of publication

as a function of a study’s results) can be nonparametrically identified and then describe how

publication bias can be corrected if the conditional publication probability is known. The under-

lying intuition involves jumps in publication probability at conventional p-value cut-offs. Using

their method, we estimate that positive elasticities are six times more likely to be published

than negative ones. We include more details on the approach and estimation in Appendix C.

Finally, the remaining estimate in Table 2 arises using the approach championed by Ioannidis

et al. (2017), who focus only on estimates with adequate statistical power. We conclude that

both linear and nonlinear techniques agree that 0.5 represents a robust estimate of the mean
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elasticity of substitution after correcting the literature for publication bias. Since the uncor-

rected mean equals 0.9, the exaggeration due to publication bias is almost twofold, consistent

with the rule of thumb suggested by Ioannidis et al. (2017).

4.2 Extensions

Our results presented so far regarding publication bias can be criticized along three main lines.

First, the distribution of elasticity estimates in some studies does not have to be symmetrical if

the elasticity is not estimated directly but as a function of regression parameters from reduced-

form estimations like (4). Such asymmetry in the distribution could give rise to the asymmetry

of the funnel plot even in the absence of publication bias. Second, both the estimate and

standard error of the elasticity can be jointly influenced by characteristics of data and methods,

which would violate the exogeneity assumption and again yield an asymmetrical funnel plot

even when no publication bias is present. Third, our tests of publication bias assume that

researchers compare their estimates with zero. But other publication hurdles can potentially

be more important: departure from the Cobb-Douglas case or other important benchmarks in

the literature, such as the estimate of 1.3 by Karabarbounis & Neiman (2014) in the context of

the labor share. We thank two referees of this Journal for bringing these important problems

to our attention. In the remainder of this section we focus on the linear models of publication

bias because they are simpler and we have shown earlier that they bring results similar to the

more complex non-linear models.

Table 3: Direct estimates of the elasticity

OLS FE BE Precision Study

SE 0.976
∗∗∗

0.868
∗∗∗

1.358
∗∗∗

0.752
∗

1.019
∗∗∗

Publication bias (0.167) (0.317) (0.271) (0.396) (0.132)
[-0.23; 1.46] − − [-0.61; 2.13] [0.59; 1.35]

Constant 0.459
∗∗∗

0.472
∗∗∗

0.429
∗∗∗

0.455
∗∗∗

0.494
∗∗∗

Mean beyond bias (0.0226) (0.0408) (0.0575) (0.0319) (0.0354)
[0.35; 0.57] − − [0.31; 0.74] [0.40; 0.60]

Studies 67 67 67 67 67
Observations 2,316 2,316 2,316 2,316 2,316

Notes: The table presents the results of regression σ̂ij = σ0 +γSE(σ̂ij)+uij . σ̂ij and SE(σ̂ij) are the i-th estimates of
elasticity of substitution and their standard errors reported in the j-th study. In this specification we only include direct
estimates of the elasticity, i.e. the cases in which the regression parameter reported in a paper directly corresponds
to the elasticity and no re-computation is needed. The standard errors of the regression parameters are clustered at
both the study and country level and shown in parentheses (the implementation of two-way clustering follows Cameron
et al., 2011). OLS = ordinary least squares. FE = study-level fixed effects. BE = study-level between effects. Precision
= the inverse of the reported estimate’s standard error is used as the weight. Study = the inverse of the number of
estimates reported per study is used as the weight.

∗∗∗
,
∗∗

, and
∗

denote statistical significance at the 1%, 5%, and 10%
level. Whenever possible, in square brackets we also report 95% confidence intervals from wild bootstrap clustering;
implementation follows Roodman (2019), and we use Rademacher weights with 9999 replications.

First, we address the natural asymmetry in the estimates from some studies. Table 3 shows

the results of publication bias tests when we exclude all estimates that can potentially be

asymmetrically distributed. In other words, we retain only estimates for which the reported
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regression coefficient can be directly interpreted as the elasticity of substitution (so that no

re-computation is needed, neither by us nor by the authors of the primary studies) and at the

same time the coefficient features a symmetrical distribution given by the properties of the

estimation technique. Doing so restricts our sample to 2,316 estimates from 67 studies, but the

results remain remarkably consistent: we find strong upward publication bias and a corrected

mean elasticity of about 0.5 or slightly less. Even the most conservative technique in this case,

precision weighting with wild bootstrap, gives us an upper bound of the 95% confidence interval

at 0.74, safely below the Cobb-Douglas case.

Second, we address the likely endogeneity of the standard error in some studies. Table 4

presents the results of an instrumental variable (IV) regression and a new technique called

p-uniform*. IV presents a crucial robustness check because in primary studies estimates and

standard errors are jointly determined by the estimation technique. If some techniques produce

systematically larger standard errors and point estimates, our finding of publication bias could

be spurious. An intuitive instrument for the standard error is the inverse of the square root of

the number of observations used in the primary study: the root is correlated with the standard

error by definition but is unlikely to be much correlated with the use of a particular estimation

technique. Employing IV in the first column of Table 4 we obtain a larger estimate of publication

bias and a smaller estimate of the mean elasticity corrected for publication bias, 0.3, compared

to our baseline estimation presented earlier.

Table 4: Relaxing the exogeneity assumption

IV p-uniform*

Publication bias 2.186
∗∗∗

YES
∗∗∗

(0.413) (0.005 )
[1.20; 3.68]

Mean beyond bias 0.279
∗∗∗

0.416
∗∗

(0.0702) (0.042 )
[0.04; 0.47] [0.01; 0.74]

Studies 121 121
Observations 3,186 3,186

Notes: IV = the inverse of the square root of the number of observations
employed by researchers is used as an instrument for the standard error.
P-uniform* = a technique developed by van Aert & van Assen (2020) and
based on the distribution of p-values. For IV, standard errors are clustered
at both the study and country level and reported in parentheses. For p-
uniform*, p-values are reported in parentheses. For both techniques, the
corresponding 95% confidence intervals are reported in square brackets.
∗∗∗

,
∗∗

, and
∗

denote statistical significance at the 1%, 5%, and 10% level.

The second column of Table 4 presents the results of p-uniform*. The technique was devel-

oped by van Aert & van Assen (2020) for standardized coefficients used in psychology, but it can

also be applied to regression coefficients. At the heart of p-uniform* lies the statistical principle

that p-values should be uniformly distributed at the mean underlying effect size: when testing

the hypothesis that the estimated coefficient equals the underlying value of the effect. Publi-
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Table 5: Potential sources of endogeneity

Identif. Data aggr. Results aggr. K: perpetual Translog Short run All

SE 0.649
∗∗∗

0.803
∗∗

0.624
∗∗∗

0.754
∗∗∗

0.664
∗∗∗

0.473
∗∗∗

0.647
∗∗

(publication bias) (0.219) (0.318) (0.146) (0.259) (0.212) (0.0903) (0.247)

Constant 0.512
∗∗∗

0.553
∗∗∗

0.569
∗∗∗

0.551
∗∗∗

0.529
∗∗∗

0.587
∗∗∗

0.613
∗∗∗

(mean beyond bias) (0.0357) (0.0420) (0.0449) (0.0337) (0.0321) (0.0155) (0.0421)
SE * Identification -0.0323 0.0874

(0.332) (0.263)
SE * Data aggr. -0.299 -0.00928

(0.334) (0.202)
SE * Results aggr. 0.0616 -0.169

(0.249) (0.237)
SE * K: perpetual -0.334 -0.285

(0.289) (0.285)
SE * Translog -0.127 -0.0127

(0.344) (0.312)

SE * Short run 1.741
∗

1.707
∗∗

(0.885) (0.846)

Studies 121 121 121 121 121 121 121
Observations 3,186 3,186 3,186 3,186 3,186 3,186 3,186

Notes: Study-level fixed effects and non-interacted variables are included but not reported. Standard errors are reported
in parentheses and clustered at the study and country level. Identification = 1 if instrumental variables are used for
identification. Data aggregation = 1 if state or country aggregation is used for input data. Results aggregation = 1 if the
reported elasticity corresponds to an aggregate one (in contrast to elasticities corresponding to industries disaggregated at
least at the 2-digit level). K: perpetual = 1 if input data for capital are measured via the perpetual inventory method.
Translog = 1 if the elasticity is estimated using the translog functional form. Short run = 1 if the coefficient is taken from
an explicitly short-run specification.

∗∗∗
,

∗∗
, and

∗
denote statistical significance at the 1%, 5%, and 10% level.

cation bias affects some segments of the distribution of p-values (under-representation of large

p-values, over-representation of p-values just below 0.05), but not the entire distribution. The

idea of p-uniform* is to find a coefficient at which the distribution of p-values is approximately

uniform; this is achieved by recomputing the reported p-values for various possible values of

the underlying effect and then comparing the resulting distribution to the uniform one. In a

similar vein, the technique’s test for publication bias evaluates whether p-values are uniformly

distributed at the precision-weighted mean reported in the literature. (The technique yields

a binary result for the test of publication bias and a corresponding p-value.) Once again we

obtain evidence for publication bias; the corrected mean elasticity is 0.4.

Another way to approach the endogeneity problem is to explicitly control for the most likely

causes of endogeneity. We do so in Table 5, where we include interactions of the standard error

with dummy variables for six study characteristics along with study fixed effects. We focus on

the following characteristics: the use of IV, data aggregation, results aggregation, the use of

the perpetual inventory method to approximate capital, the use of the translog function, and

short-run estimation. For example, studies using IV techniques can be expected to deliver less

precision, but at the same time systematically different results if endogeneity is an important

issue in the primary literature. If a characteristic is associated with publication bias, or simply

with systematically different standard errors that might give a false impression of publication

bias, the interaction should prove strong. But we see no such pattern. Of the 12 coefficients for

interactions estimated in Table 5, one is significant at the 10% level and one at the 5% level,
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Figure 7: The distribution of t-statistics shows jumps at 0 and 1.96
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tests.

which could easily arise by chance. Moreover, the coefficient on the non-interacted standard

error remains statistically significant in all cases, and the mean beyond bias remains close to

our baseline estimates. We thus fail to model the violations of exogeneity (or, alternatively, the

sources of publication bias) explicitly.

The exogeneity assumption can also be relaxed by using the caliper test (Gerber & Malhotra,

2008), which moreover allows us to address the third main issue of our baseline approach, the

focus on the zero threshold. The caliper test uses the simple idea that publication bias is the

best explanation for sudden jumps in the distribution of the t-statistic. In a narrow caliper

around 1.96, for example, the number of t-statistics reported above the threshold should equal

the number of t-statistics below the threshold. If the former significantly outweigh the latter, we

conclude publication bias likely plagues the literature. The distribution of t-statistics (Figure 7)

does indeed show conspicuous jumps: at 0 and 1.96. The jump at 0 is so large that no statistical

tests are necessary to conclude that negative estimates are discriminated against, either due to

bias or a rational tendency not to report nonsensical results. In Table 6 we test the threshold

of 1.96, which is associated with statistical significance at the 5% level. In a narrow caliper

of 0.05 (corresponding to t-statistics between 1.935 and 1.985), estimates above the threshold

outnumber those below the threshold 30 to 9. The difference remains statistically significant

with wider calipers.

In the second and third column of Table 6 we adapt the caliper test to examine publication

hurdles other than zero and 5% statistical significance with respect to zero. We focus on two

values: 1.3, which is an important benchmark result by Karabarbounis & Neiman (2014),

and 1, which corresponds to the Cobb-Douglas case and also the baseline noisy estimate for

many regression equations like (4) or those that test the FOC of labor shares. Some studies do

explicitly compare their estimates to these benchmarks; for the rest we recompute the t-statistics

so that they correspond to this new hypothesis. We ask whether statistical (in)significance of the
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Table 6: Caliper tests for t-statistics corresponding to 5% significance thresholds

Full sample Labor share Base at 1
H0 : σ = 0 H0 : σ = 1.3 H0 : σ = 1

upper threshold lower threshold lower threshold

Caliper width = 0.05 0.277
∗∗∗

(0.067)
N = 39

Caliper width = 0.1 0.165
∗∗∗

-0.248
(0.056) (0.251)
N = 71 N = 4

Caliper width = 0.15 0.139
∗∗∗

-0.236
(0.049) (0.197)
N = 96 N = 6

Caliper width = 0.2 0.098
∗∗∗

-0.236
(0.041) (0.197)

N = 142 N = 6

Caliper width = 0.25 0.071
∗∗

-0.317
∗∗

0.322
∗∗

(0.037) (0.137) (0.156)
N = 177 N = 9 N = 7

Caliper width = 0.3 0.088
∗∗∗

-0.338
∗∗

0.244
∗

(0.033) (0.123) (0.165)
N = 221 N = 10 N = 8

Caliper width = 0.35 0.107
∗∗∗

-0.185 0.266
∗

(0.030) (0.140) (0.150)
N = 258 N = 12 N = 9

Caliper width = 0.4 0.106
∗∗∗

-0.128 0.266
∗

(0.029) (0.140) (0.150)
N = 292 N = 13 N = 9

Caliper width = 0.45 0.071
∗∗∗

-0.080 0.331
∗∗

(0.027) (0.137) (0.125)
N = 326 N = 14 N = 10

Caliper width = 0.5 0.061
∗∗

-0.080 0.315
∗∗

(0.026) (0.137) (0.117)
N = 353 N = 14 N = 12

Notes: The table reports the results of the caliper test by Gerber & Malhotra (2008). The test compares the
relative frequency of estimates above and below an important threshold for the t-statistic; with a sufficiently
narrow caliper, there should be no difference. We use calipers of different sizes depending on the number
of observations available. A test statistic of 0.139, for example, means that 63.9% estimates are above the
threshold and 36.1% estimates are below the threshold. Standard errors are reported in parentheses and
clustered at the study level. In the first column (full sample) the original reported t-statistics are evaluated.
In the second column (labor share) only estimates from papers about the labor share are used, and t-statistics
are recomputed to reflect the hypothesis H0 : σ = 1.3. In the third column (base at 1) we include only
reduced-form estimates for which an estimated regression parameter of zero translates to an elasticity of 1; the
t-statistics of the elasticity are recomputed to reflect the hypothesis H0 : σ = 1. N = number of estimates. The
missing values for some calipers indicate no estimates available for the caliper.

∗∗∗
,
∗∗

, and
∗

denote statistical
significance at the 1%, 5%, and 10% level.
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differences from the benchmarks influences the probability of reporting the estimate. Regarding

the value 1.3, we restrict our attention to estimates derived in papers on the labor share because

the estimate by Karabarbounis & Neiman (2014) is relevant especially in this context (though

the result would hold if all estimates were used). We see little effect of the threshold. Next,

when examining the Cobb-Douglas case we include only reduced-form estimates for which a

zero regression coefficient translates to an elasticity of 1. The fact that a noisy and small

regression coefficient implies a unitary elasticity may affect the mechanism of publication bias,

but the caliper test result would hold if we included all the estimates. Here we obtain significant

results: estimates that are just consistent with the Cobb-Douglas case are reported more often

than those that are significantly smaller than unity at the 5% level. Thus we find evidence of

publication bias against three thresholds: positive sign, statistical significance with respect to

zero at the 5% level, and consistency with the Cobb-Douglas production function.

5 Heterogeneity

In the previous section we have shown that when we give the same weight to all approaches used

in primary studies, the empirical literature as a whole provides no support for the Cobb-Douglas

production function. But perhaps poor data and misspecifications bias the mean estimate

downwards. We investigate this issue here. In Section 2 and Section 3 we discussed several

prominent aspects of study design that might systematically influence the reported estimates

of the elasticity. But many additional study characteristics can certainly play a role, and we

need to control for them. To assign a pattern to the apparent heterogeneity in the literature,

we collect 71 variables that reflect the context in which researchers obtain their estimates. The

variables capture the characteristics of the data, specification choice, econometric approach,

definition of the production function, and publication characteristics. (Moreover, the effects of

different ways of measuring capital and labor are examined in subsamples of the main dataset

and presented in Appendix E.) The variables, grouped in these categories, are discussed below

and listed in Table D1 in Appendix D together with their definitions and summary statistics.

5.1 Variables

Data characteristics A central distinguishing feature of the studies concerns the source of

variation. Almost half (45%) of the studies exploit variation across country or state-level,

which forms our reference category. We include dummy variables equal to one if the study

exploits variation across industries (43% of the estimates) or firms (12% of the estimates).

Nerlove (1967) suggests that exploiting cross-country variation, where there may be systematic

correlation between efficiency levels, product prices and wages, can lead to an upward bias in

the estimated elasticity. Moreover, Chirinko (2008) discusses several drawbacks of cross-country

variation in comparison to firm or industry-level variation, including limited variation available

for identification and unaccounted heterogeneity.

We also include a dummy equal to one when the resulting estimate is reported at a very
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disaggregated level for various industries. Moreover, we add controls for potential cross-country

differences: a dummy for the US, developed European countries, and developing countries, as

the substitutability between capital and labor may differ with the level of economic development

and across institutional settings. For instance, Duffy & Papageorgiou (2000) suggest that capital

and labor become less substitutable in poorer countries.

To account for potential small-sample bias, we control for the number of observations used in

each study. We also include the midpoint of the data period to capture a potential positive trend

in the elasticity over time, which could be due to economic development within a country, a

changing composition of the inputs, or changes in their relative efficiency (Cantore et al., 2017).

Regarding data frequency, 89% of the estimates employ annual data; we thus use annual data as

the baseline category and include a dummy variable for the use of quarterly data. Moreover, we

control for data dimension—whether time series, cross-sectional, or panel data are used. Most

of the studies employ time series data (around 53%), which we take as the reference category.

The final subset of variables covering data characteristics describes the source of data. Many

estimates are based on data from the same databases—the largest number of studies employ

data from the US Annual Survey of Manufactures and Census of Manufacturers. The second

largest group is the KLEM database by Jorgenson (2007), followed by the OECD’s International

Sectoral Database and Structural Analysis Database. We do not have a prior on how data

sources should affect estimates, yet still prefer not to ignore this potential source of differences

in results and include the corresponding dummies as control variables.

Specification Concerning the specification of the various studies described in Section 2, we

distinguish between estimation via single first-order conditions (FOCs); systems of more than

one FOC; systems of the production function plus FOCs; linear approximations of the pro-

duction function; and nonlinear estimation of the production function. We also discriminate

between the FOC for labor based on the wage rate, FOC for capital based on the rental rate of

capital, FOC for the capital-labor ratio based on the ratio between the wage rate and the rental

rate of capital, FOC for capital share, and FOC for labor share in income. In total, this gives us

nine distinct categories for estimation specification. We choose the FOC for capital based on the

rental rate as the reference category because it represents the most frequently used specification

(35%), though closely followed by the FOC for labor based on the wage rate (33% of estimates).

A special case of the FOC for capital is its inverse estimation, in which the resulting estimates

are labeled user-cost elasticities; examples include Smith (2008) and Chirinko et al. (2011).

The differences in estimates derived from the various specifications are clearly visible in the

data (Figure 8). While the mean of the estimates derived from the FOC for labor based on

the wage rate reaches 1.1, estimates derived from the FOC for capital based on the rental rate

of capital are on average only 0.5. Estimates obtained from the linear approximation of the

production function also stand out, reaching a mean value of 1.1. Some of these patterns were

noted early in the history of the estimation of the elasticity, for example, by Berndt (1976), and

later discussed by Antras (2004) and Young (2013). We attempt to quantify the patterns, while

simultaneously controlling for other influences.
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Figure 8: Estimation form matters for the reported elasticities
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Notes: A detailed description of the variables is available in Table D1.

Regarding system estimations, two other important specification aspects can influence the

reported elasticities: normalization and cross-equation restrictions. Normalization, suggested

by de La Grandville (1989), further explored by Klump & de La Grandville (2000), and first

implemented empirically by Klump et al. (2007), has been used by only a small fraction of

the studies in our database. Normalization starts from the observation that a family of CES

functions whose members are distinguished only by different elasticities of substitution needs a

common benchmark point. Since the elasticity of substitution is defined as a point elasticity,

one needs to fix benchmark values for the level of production, factor inputs, and the marginal

rate of substitution, or equivalently for per capita production, capital deepening, and factor

income shares. Normalization essentially implies representing the production function in a

consistent indexed number form. A proper choice of the point of normalization facilitates

the identification of deep technical parameters. According to León-Ledesma et al. (2010), the

superiority of the system estimation compared to the single FOC approach is further enhanced

when complemented with normalization. In their Monte Carlo experiment they show that

without normalization, estimates tend towards one.

Some estimations of systems employ cross-equation restrictions that restrict parameters

across two or more equations to be equal, as in Zarembka (1970), Krusell et al. (2000), and

Klump et al. (2007). To account for possible differences, we additionally include a dummy for

cross-equation restrictions.

While the vast majority of estimates come from single-level production functions, estimates

of the elasticity of substitution between capital and labor can also be found in studies using

two-level production functions, including additional inputs such as energy and material, (e.g.,

Van der Werf, 2008; Dissou et al., 2015). We control for two-level production functions as a

special case. Moreover, when estimates of the elasticity rely on such two-level production func-
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tions, linear approximations of the production function, or a system of a linear approximation in

conjunction with share factors, researchers commonly report partial elasticities of substitution,

for which we control as well. Our results are robust to excluding partial elasticities.

Econometric approach Our reference category for the choice of the econometric technique

is OLS. We include a dummy for the case when the model is dynamic, which holds for approx-

imately one-quarter of all observations. The second dummy we include equals one if seemingly

unrelated regression (SUR) is used—often employed for the estimation of systems of equations

(11% of all estimates). An important aspect of estimating the elasticity, as pointed out by

Chirinko (2008), is whether the estimate refers to a long-run or a short-run elasticity. Our ref-

erence category consists of explicit long-run specifications, that is, models in which coefficients

are meant to be long-run and the specification is adjusted accordingly. We opt for long-run elas-

ticities as a reference point as they are regarded as more informative for economic decisions. Ex-

plicit long-run specifications include estimations of cointegration relations or interval-difference

models, where data are averaged over longer intervals to mimic lower frequencies; distributed

lag models can also give a long-run estimate. Conversely, the short-run approach modifies the

estimating equation to account for temporal dynamics. Examples include estimation of implicit

investment equations, as in Eisner & Nadiri (1968) or Eisner (1969), differenced models, and

estimation of short-run elements from error correction models or distributed lag models. The

vast majority of estimates (70%) are meant to be long-run but the specification is unadjusted.

Production function components The fourth category of control variables comprises the

ingredients of the production function. We include a dummy variable for the case when other

inputs (energy, materials, human capital) are considered as additional factors of production,

for instance by Humphrey & Moroney (1975), Bruno & Sachs (1982), and Chirinko & Mallick

(2017). We include a dummy that equals one when a study differentiates between skilled and

unskilled labor. We also subject the estimates to the following questions. Does the production

function assume Hicks-neutral technological change (our reference category), Harrod-neutral

technological change (i.e. labor-augmenting, LATC), or Solow-neutral technological change (i.e.

capital-augmenting, CATC)? Are the dynamics of technological change important in explaining

the heterogeneity? The growth rate of technological change can be either zero (our refer-

ence), constant or—with flexible Box & Cox (1964) transformation—exponential, hyperbolic,

or logarithmic. According to the impossibility theorem suggested by Diamond et al. (1978),

it is infeasible to identify both the elasticity of substitution and the parameters of technolog-

ical change at the same time, so researchers tend to impose one of the three specific forms of

technological change and implicit or explicit assumptions on its growth rate. We include the

corresponding dummy variables.

We distinguish between estimates of gross and net elasticity, based on whether gross or

net data for output and the capital stock are used. As pointed out in Semieniuk (2017), the

distinction between net and gross elasticity is important with respect to the inequality argument

of Piketty (2014): for his explanation of the decline in the labor share to hold, σ needs to
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exceed one in net terms. Elasticities based on net quantities should naturally yield smaller

results (Rognlie, 2014). Finally, we include two additional dummies—first, for the case when

researchers abandon the assumption of constant returns to scale; second, for the case when

researchers relax the assumption of perfectly competitive markets.

Publication characteristics We include four study-level variables: the year of the appear-

ance of the first draft of the paper in Google Scholar, a dummy for the paper being published in

a top five journal, the recursive discounted RePEc impact factor of the outlet, and the number

of citations per year since the first appearance of the paper in Google Scholar. We include these

variables in order to capture aspects of study quality not reflected by observable differences in

data and methods.

Moreover, we include two additional dummies. The first variable measures whether the

study’s central focus is the elasticity of substitution between capital and labor or whether the

estimate is a byproduct of a different exercise, such as in Cummins & Hassett (1992) and Chwelos

et al. (2010). The second variable equals one if the author explicitly prefers the estimate in

question, and equals minus one if the estimate is explicitly discounted. Nevertheless, researchers

typically do not reveal their exact preferences regarding the individual estimates they produce,

so the variable equals zero for most estimates.

5.2 Estimation

An obvious thing to do at this point is to regress the reported elasticities on the variables

reflecting the context in which researchers obtain their estimates:

σ̂ij = α0 +

49∑
l=1

βlXl,ij + γSE(σ̂ij) + µij , (14)

where σ̂ij again denotes estimate i of the elasticity of substitution reported in study j, Xl,ij

represents control variables described in Subsection 5.1, γ again denotes the intensity of publi-

cation bias, and α0 represents the mean elasticity corrected for publication bias but conditional

on the definition of the variables included in X—that is, the intercept means nothing on its

own, and µij stands for the error term.

But using one regression is inadequate because of model uncertainty. With so many variables

reflecting study design, including all of them would substantially attenuate the precision of our

estimation. (We use 50 variables in the baseline estimation; the remaining 21 variables related

to measurement of capital and labor and industry-level characteristics are included in the three

subsamples presented in Appendix E.) One solution is to reduce the number of variables to

about 10, which could allow for simple estimation—but doing so would ignore many aspects in

which estimates and studies differ. Another commonly applied solution to model uncertainty

is stepwise regression, but sequential t-tests are statistically problematic as individual variables

can be excluded by accident. The solution that we choose here is Bayesian model averaging
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(BMA; see, for example, Eicher et al., 2011; Steel, 2020), which arises naturally as a response

to model uncertainty in the Bayesian setting.4

BMA runs many regression models with different subsets of variables; in our case there are

250 possible subsets. Assigned to each model is a posterior model probability (PMP), an analog

to information criteria in frequentist econometrics, measuring how well the model performs

compared to other models. The resulting statistics are based on a weighted average of the

results from all the regressions, the weights being the posterior model probabilities. For each

variable we thus obtain a posterior inclusion probability (PIP), which denotes the sum of the

posterior model probabilities of all the models in which the variable is included. Using the laptop

on which we wrote this paper, it would take us decades to estimate all the possible models. So

we opt for a model composition Markov Chain Monte Carlo algorithm (Madigan & York, 1995)

that walks through the models with the highest posterior model probabilities. In the baseline

specification we use a uniform model prior (each model has the same prior probability) and unit

information g-prior (the prior that all regression coefficients equal zero has the same weight as

one observation in the data), but we also use alternative priors in Appendix E. BMA has been

used in meta-analysis, for example, by Havranek et al. (2015); Zigraiova & Havranek (2016);

Havranek et al. (2018a,b,c).

Second, as a simple robustness check of our baseline BMA specification, we run a hybrid

frequentist-Bayesian model. We employ variable selection based on BMA (specifically, we only

include the variables with PIPs above 80%) and estimate the resulting model using OLS with

clustered standard errors. We label this specification a “frequentist check” of the baseline BMA

exercise. Third, we employ frequentist model averaging (FMA). Our implementation of FMA

uses Mallows’s criteria as weights since they prove asymptotically optimal (Hansen, 2007). The

problem is that, using a frequentist approach, we have no straightforward alternative to the

model composition Markov Chain Monte Carlo algorithm, and it appears infeasible to estimate

all 250 potential models. We therefore follow the approach suggested by Amini & Parmeter

(2012) and resort to orthogonalization of the covariate space.

5.3 Results

Figure 9 illustrates our results. The vertical axis depicts explanatory variables sorted by their

posterior inclusion probabilities; the horizontal axis shows individual regression models sorted

by their posterior model probabilities. The blue color indicates that the corresponding variable

appears in the model and the estimated parameter has a positive sign, while the red color

indicates that the estimated parameter is negative. In total, 21 variables appear to drive

heterogeneity in the estimates, as their posterior inclusion probabilities surpass 80%. Table 7

4If a simple OLS brought results similar to model averaging, we could simplify the analysis and just present
OLS. But in our case a simple OLS regression including all variables would yield results quite different from
Bayesian model averaging: 29% of the variables would lose their statistical significance (or importance in the
Bayesian setting), while 17% of the variables would now be wrongly significant. The median change in the
magnitude of the estimated coefficients for these variables would reach 133% in absolute value. (But note that
our key results concerning publication bias and the best-guess elasticity would continue to hold.) We thus opt
for the more complex but statistically more appropriate approach.
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Figure 9: Model inclusion in Bayesian model averaging
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Table 7: Why do estimates of the elasticity of substitution differ?

Response variable: Bayesian model averaging Frequentist check

Estimate of σ Post. mean Post. SD PIP Coef. Std. er. p-value

SE (publication bias) 0.614 0.038 1.000 0.633 0.042 0.000

Data characteristics
No. of obs. 0.003 0.009 0.107
Midpoint 0.118 0.022 1.000 0.123 0.036 0.001
Cross-sec. 0.009 0.023 0.160
Panel 0.161 0.041 0.985 0.177 0.048 0.000
Quarterly 0.070 0.060 0.642
Firm data -0.033 0.049 0.363
Industry data -0.191 0.026 1.000 -0.191 0.064 0.003
Country: US 0.030 0.036 0.468
Country: Eur 0.119 0.029 1.000 0.103 0.051 0.043
Developing country 0.000 0.003 0.014
Database: ASM/CM 0.004 0.016 0.071
Database: OECD -0.277 0.039 1.000 -0.276 0.099 0.005
Database: KLEM -0.003 0.014 0.042
Disaggregated σ 0.000 0.003 0.012

Specification
System PF+FOC -0.002 0.014 0.039
System FOCs 0.000 0.003 0.008
Nonlinear -0.001 0.011 0.016
Linear approx. 0.235 0.039 1.000 0.227 0.108 0.037
FOC L w 0.278 0.023 1.000 0.261 0.023 0.000
FOC KL rw 0.000 0.005 0.015
FOC K share 0.230 0.064 0.993 0.212 0.253 0.402
FOC L share 0.209 0.038 1.000 0.204 0.064 0.001
Cross-equation restr. 0.000 0.004 0.010
Normalized -0.277 0.038 1.000 -0.289 0.066 0.000
Two-level PF 0.000 0.007 0.011
Partial σ 0.001 0.012 0.017
User cost elast. -0.385 0.044 1.000 -0.368 0.061 0.000

Econometric approach
Dynamic est. 0.000 0.003 0.009
SUR -0.027 0.041 0.348
Identification 0.000 0.005 0.018
Differenced -0.111 0.025 1.000 -0.109 0.025 0.000
Time FE 0.000 0.006 0.013
Unit FE 0.093 0.065 0.735
Short-run σ -0.380 0.034 1.000 -0.381 0.053 0.000
Long-run σ unadj. 0.000 0.002 0.009

Production function components
Other inputs in PF -0.103 0.054 0.852 -0.128 0.070 0.068
CATC -0.001 0.007 0.038
LATC -0.018 0.028 0.327
Skilled L 0.006 0.029 0.061
Constant TC growth -0.078 0.040 0.844 -0.101 0.038 0.009
Other TC growth 0.029 0.045 0.332
No CRS 0.000 0.002 0.008
No full comp. 0.000 0.004 0.008
Net σ -0.376 0.048 1.000 -0.260 0.054 0.000

Publication characteristics
Top journal -0.092 0.023 0.998 -0.074 0.032 0.021
Pub. year 0.000 0.004 0.024
Citations 0.033 0.014 0.916 0.037 0.018 0.040
Preferred est. 0.005 0.014 0.154
Byproduct -0.152 0.028 1.000 -0.143 0.075 0.059

Constant 0.059 1.000 0.071 0.143 0.619

Observations 3,186 3,186

Notes: σ = elasticity of capital-labor substitution, PIP = posterior inclusion probability. SD = standard deviation.
FOC = first-order condition. CATC = capital-augmenting technical change. LATC = labor-augmenting technical
change. CRS = constant returns to scale. The table shows unconditional moments for BMA. In the frequentist check
we include only explanatory variables with PIP > 0.8. The standard errors in the frequentist check are clustered at the
study level. A detailed description of all variables is available in Table D1.
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provides numerical results for BMA and the frequentist check. In the frequentist check we only

include the 21 variables with PIPs above 80%. Choosing a 50% threshold, for example, would

result in including merely two more variables with virtually unchanged results for the remaining

ones. Figure 10 plots posterior coefficient distributions of selected variables. The results of the

FMA exercise are reported in Table E1 in Appendix E.

The first conclusion that we make based on these results is that our findings of publication

bias presented in the previous section remain robust when we control for the context in which

the elasticity is estimated. Indeed, the variable corresponding to publication bias, the standard

error of the estimate, represents the single most effective variable in explaining the heterogeneity

in the reported estimates of the elasticities of substitution (though several other variables also

have posterior inclusion probabilities very close to 100% and are rounded to that number in

Table 7). We observe that the publication bias detected by the correlation between estimates

and standard errors is not driven by aspects of data and methods omitted from the univariate

regression in Equation 13.

Data characteristics Several characteristics related to the data used in primary studies sys-

tematically affect the estimates of the elasticity. Our results suggest a mild upward trend in

the reported elasticities, which increase on average by 0.004 each year. (The yearly change

does not equal the regression coefficient because the variable is in logs; the precise definition is

available in Table D1.) The finding resonates with Cantore et al. (2017), who point to a similar

time trend. But the upward trend constitutes a poor reason to resurrect the Cobb-Douglas

specification, because at this pace the specification will become consistent with the literature

in about 175 years. Next, estimates of the elasticity that exploit variation across industries

tend to be significantly smaller than those using variation across countries and states, a result

corroborating the prima facie pattern in the literature shown in Figure 5(d) in Section 3. This is

consistent with Nerlove (1967) and Chirinko (2008), who argue that exploiting variation across

countries can lead to an upward bias due to disregarded heterogeneity.

Concerning data dimension, our results suggest that panel data tend to yield larger esti-

mates of the elasticity than time series data. The other prima facie pattern in the literature,

the systematic and large difference between the results of time series and cross-section studies

shown in Figure 5(c), breaks apart when controlling for other variables in BMA (the variable

is statistically significant in FMA, but the estimated coefficient is small). Similarly, our results

do not suggest that much of the differences between estimates can be explained by differences

in data frequency. Another prima facie data pattern, the importance of results aggregation

presented in Figure 5(b), disappears in the BMA analysis. Elasticities computed for individual

industries do not differ systematically from elasticities computed for the entire economy. Nev-

ertheless, that is not to say that the elasticity does not vary across industries; we will return

to this issue in Appendix E. Concerning cross-country differences, the reported elasticities tend

to be larger in Europe than in other regions, but only by 0.1. Finally, our results suggest that

datasets coming from the OECD database are associated with substantially smaller elasticities

compared to all other data sources.
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Figure 10: Posterior coefficient distributions for selected variables
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Notes: FOC L w = 1 if the elasticity is estimated within the FOC for labor based on the wage rate. The figure depicts
the densities of the regression parameters encountered in different regressions in which the corresponding variable is
included (that is, the depicted mean and standard deviation are conditional moments, in contrast to those shown in
Table 7). For example, the regression coefficient for Linear approximation is positive in all models, irrespective of
specification. The most common value of the coefficient is 0.23.

Specification A stylized fact in the literature on capital-labor substitution has it that esti-

mations based on the first-order condition for labor deliver larger elasticities than estimations

based on the first-order condition for capital; see Figure 5(a) in Section 3. The BMA analysis

corroborates this stylized fact and elaborates on it: when a system of FOCs is used, the results

tend to be close to those derived from the FOC for capital. Omitting information from the

FOC for capital, in contrast, exaggerates the reported elasticity by 0.2 or more. The FOC

for capital thus seems to be more important for proper identification of the elasticity than the
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FOC for labor. The elasticity also becomes inflated by 0.2 when a linear approximation of the

production function (using either the Kmenta or translog approach) is employed. As pointed

out by Thursby & Lovell (1978) and León-Ledesma et al. (2010), linear approximations of the

production function tend to be biased towards σ̂ = 1, as an elasticity of one usually serves as

the initial point of expansion.

On the other hand, normalization of the production function systematically reduces the es-

timated elasticity by allowing for the identification of technological change parameters. Finally,

if the FOC for capital is estimated in an inverse form (user cost elasticity of capital), the esti-

mates tend to be on average much smaller. These results are robust across all the estimations

we run: BMA, FMA, and the frequentist check. A similarly robust result is that the mean

implied elasticity is 0.3 when made conditional on three aspects: (i) no publication bias, (ii) no

use of cross-country variation in input data, and (iii) not ignoring information from the FOC for

capital. We will expand and provide more details on the computation of the implied elasticity

at the end of this section.

Econometric approach We find little evidence that the econometric approach used in pri-

mary studies is responsible for systematic differences in the reported elasticities. Naturally,

short-run elasticities are smaller than long-run ones: estimations in differences tend to deliver

elasticities that are smaller by 0.1; explicitly short-run estimations tend to deliver elasticities

smaller by 0.4. Adjusted and unadjusted long-run estimates do not differ much from each other.

Figure 11: Posterior inclusion probabilities across different prior settings
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Production function components The results suggest that assumptions regarding technical

change have little systematic effect on the resulting elasticities of substitution. Allowing for

capital- or labor-augmenting technological change brings, on average, elasticities similar to the

case when Hicks-neutral technological change is assumed. Allowing for constant growth in

technological change (in comparison to no growth) decreases the estimate, but only by a small

margin. The apparent irrelevance of assumptions on technological change for the estimation

of the elasticity of substitution contrasts with Antras (2004), who argues that Hicks-neutral

technological change biases the results towards the Cobb-Douglas specification. The irrelevance

finding holds for both BMA and FMA and regardless of whether we include labor- and capital-

augmenting technological change as separate dummies or jointly in one dummy.

Including other inputs in the production function aside from labor and capital has a negative

effect on the resulting size of the elasticity. When the elasticity is estimated in the net form, it

tends to be smaller by 0.4 on average, but very few studies pursue this approach.

Publication characteristics Out of the five variables grouped together as publication charac-

teristics, three are systematically associated with the magnitude of the reported elasticity. First,

compared to other outlets, the top five journals in economics tend to publish slightly smaller

elasticities. Second, studies that provide larger elasticities tend to receive more citations—

potentially, such studies are more useful to researchers trying to justify the use of the Cobb-

Douglas production function in their model, but it could also mean that studies reporting larger

estimates are of higher quality. Third, the reported elasticity tends to be smaller if it does not

represent the central focus of the study but merely a byproduct of a different exercise. One can

interpret the finding as further indirect evidence of publication bias against small estimates, or,

alternatively, as evidence that more thorough examinations yield larger estimates.

Aside from our baseline BMA, FMA, and frequentist check, we run several sensitivity analy-

ses with respect to different subsamples of data, control variables, priors, and weighting schemes.

Regarding priors, Figure 11 shows that the implied relative importance of the variables changes

little when different priors are used for BMA. In Appendix E, we also run BMA on weighted

data: first, data are weighted by the inverse of the number of estimates reported by each study

so that each study has the same weight (Figure E1); second, data are weighted by the inverse

of the standard error (Figure E2). Our key results continue to hold in these specifications.

Economic significance and implied elasticity

We close the analysis with a discussion of (i) the economic significance of the variables identified

as important by BMA and FMA and (ii) the mean elasticity of substitution implied by the

literature after taking into account the pattern that some data and method choices create in

the reported estimates. Economic significance is explored in Table 8, which shows the effect

on the reported elasticity when we increase the value of the corresponding variable by one

standard deviation (the left-hand panel) and from minimum to maximum (the right-hand panel).

Increasing from minimum to maximum perhaps makes more sense for dummy variables, while
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Table 8: Economic significance of key variables

One-std.-dev. change Maximum change
Effect on σ % of best practice Effect on σ % of best practice

Standard error 0.117 39% 0.461 154%
Byproduct -0.047 -16% -0.152 -51%
Midpoint 0.056 19% 0.588 196%
Industry data -0.095 -32% -0.191 -64%
Database: OECD -0.069 -23% -0.277 -92%
Linear approx. 0.062 21% 0.235 78%
FOC L w 0.132 44% 0.278 93%
Normalized -0.061 -20% -0.277 -92%
Short-run σ -0.083 -28% -0.380 -127%
Net σ -0.059 -20% -0.376 -125%

Notes: The table shows ceteris paribus changes in the reported elasticities implied by changes in the variables
that reflect the context in which researchers obtain their estimates. For example, increasing the estimate’s
standard error by one standard deviation is associated with an increase in the estimated elasticity by 0.117,
more than a third of the size of the best practice estimate (one conditional on ideal data, method, and
publication characteristics, as described in Table 9). Increasing the standard error from the sample minimum
to the sample maximum is associated with an increase in the estimated elasticity by 0.461, more than one
and a half of the best practice estimate. A detailed description of the variables is available in Table D1 in
Appendix D.

for continuous variables, such as the midpoint of data, the one-standard-deviation change is

typically more informative. In the second and fourth column, the table also casts the effects as

percentages of the “best-practice” estimate implied by the literature, which we discuss below.

It is apparent from the table that the variables with the largest effect on the elasticity are the

standard error (publication bias), use of variation at the industry level, FOC for labor (ignoring

FOC for capital), normalization of the production function, and the assumption of short-run or

net elasticity. Changes in these variables can alter the resulting elasticity by 50% or more.

The mean implied elasticity is explored in Table 9. In essence, we create a synthetic study

in which we use all the reported estimates but give different weights to certain aspects of data,

methodology, and publication. We have already noted that the implied elasticity is 0.3, when

we hold three preferences: the estimate should be conditional on the absence of publication

bias, use of variation across industries instead of countries, and use of information from the

first-order condition for capital. Next, we augment the list of preferences to construct a best-

practice estimate. For the computation we use the results of FMA because, unlike BMA, it

allows us to construct confidence intervals around the implied elasticities (linear combinations

of FMA coefficients and the chosen values for each variable). We compute fitted values of the

elasticity by plugging in sample maxima for variables reflecting best practice in the literature,

sample minima for variables reflecting departures from best practice, and sample means for

variables where we cannot determine best practice.

We prefer large studies using newer data, so we plug in sample maxima for the number of

observations and midpoint of data. We prefer a system of production function together with

FOCs for both capital and labor, tied with normalization and cross-equation restrictions. We

also prefer the use of factor-augmenting technological change and joint estimation of equations

by Zellner’s method instead of OLS. As for the publication characteristics, we prefer studies
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Table 9: Results from a synthetic study

Implied elasticity 95% confidence interval

Best practice 0.30 (-0.01, 0.60)
Short-run -0.11 (-0.38, 0.15)
Net σ -0.02 (-0.30, 0.25)
Country-level data 0.50 (0.18, 0.81)
Quarterly data 0.42 (0.08, 0.76)
Time series 0.25 (-0.10, 0.60)
Cross-sections 0.32 (0.07, 0.56)
System of FOCs 0.35 (0.07, 0.64)

Notes: The table shows mean estimates of the elasticity of substitution conditional
on data, method, and publication characteristics. The exercise is akin to a synthetic
study that uses all information reported in the literature but puts more weight on
selected aspects of study design. The result in the first column is conditional on our
definition of best practice (see the main text for details). The remaining rows change
one aspect in the definition of best practice: for example the second row shows the
result for short-run instead of long-run estimates.

that are highly cited and published in top journals. In contrast, we do not prefer linear ap-

proximation, byproduct estimates, elasticities that are supposed to be long-run but are not

properly adjusted, and partial elasticities: we plug in zero for these variables. We do not have

any strong opinion on the various sources of data or data dimension (whether time series or

cross-sectional studies should be used, what data frequency should be employed). Thus, next to

the central “best practice” estimate we generate multiple estimates for these data and method

choices. We also show implied elasticities for exploiting variation across countries, often used

in the literature, and for short-run elasticity, net elasticity, and the use of a system of FOCs

without a production function.

The results, shown in Table 9, illustrate the high degree of uncertainty that such an exercise

entails: the 95% confidence intervals for all estimates are approximately 0.6 wide. Our central

estimate is still 0.3, which means that other aspects of best practice (on top of the three pref-

erences made in the beginning) cancel each other out—even though now the estimate becomes

barely statistically significantly different from zero at the 5% level. But even such a conserva-

tive estimation rejects the Cobb-Douglas specification in all cases. The implied short-run and

net elasticities are close to zero. When one prefers quarterly data instead of showing equal

treatment to estimates derived from data of different frequencies, the implied estimate increases

to 0.4. A preference for time series data, cross-sectional data, or a system of FOCs without

a production function would result in a smaller change in the elasticity. Even a preference

for exploiting variation across countries would only take the implied estimate to 0.5, with the

upper bound of the 95% confidence interval at 0.8, making the result safely inconsistent with

the Cobb-Douglas specification.

6 Concluding Remarks

The Cobb-Douglas production function contradicts the data. This is the result we obtain after

analyzing 3,186 estimates of the capital-labor substitution elasticity reported in 121 published
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studies. When we give the same weight to all the different approaches used to identify the elas-

ticity, we find that the value most representative of the literature is 0.5, tightly estimated with

the upper bound of the 95% confidence interval at 0.6. The representative value corresponds

to the mean reported elasticity corrected for publication bias, a phenomenon that has not been

previously addressed in the vast literature on the elasticity of substitution. The representa-

tive estimate further shrinks to 0.3 when one imposes the restrictions that identification must

come from industry-level instead of aggregated, country-level data and that information from

the first-order condition for capital must be considered instead of ignored. The representative

estimate stays at 0.3 when we control for 71 aspects of study design and select a best-practice

value for each aspect (plugging in mean values where no reasonable choice can be made). Such

best-practice elasticity is imprecisely estimated, with the upper bound of the 95% confidence

interval still at 0.6. Other researchers will have different opinions on what constitutes best

practice and might arrive at a point estimate different from 0.3. But no matter the preferences,

after acknowledging publication bias, the Cobb-Douglas production function with the elasticity

at 1 becomes indefensible in the light of empirical evidence.

We are not the first to highlight the disconnect between the Cobb-Douglas specification

commonly used in macroeconomic models and the empirical literature estimating the elasticity

of substitution. Chirinko (2008) and Knoblach et al. (2020) provide useful surveys of portions

of the literature, and both studies suggest that the Cobb-Douglas production function is not

backed by the available evidence. We argue that after controlling for publication bias and model

uncertainty the case against Cobb-Douglas strengthens to the point where one has to warn

against the continued use of this convenient simplification. As we show in the Introduction, a

structural model built to aid monetary policy is biased from the beginning if it uses an elasticity

of one for capital-labor substitution. Computational convenience should yield to the stylized fact

established by half a century of meticulous research: capital and labor are gross complements.

Three caveats to the value of our central estimate, 0.3, are in order. First, the elasticities

that we collect are unlikely to be independent because they are frequently derived from the

same or similar datasets. We partially address this problem by clustering standard errors at

both the study and country level when controlling for publication bias and additionally compute

wild bootstrap confidence intervals. Second, the value of 0.3 is a mean estimate and certainly

does not fit all situations and calibrations. While we are able to address several issues that we

see as problems in the literature, in meta-analysis one can only solve methodological problems

that have already been addressed by at least one previous study. The value of 0.3 is our best

guess conditional on the available literature published prior to 2019, not the definitive point

estimate for the elasticity. Third, we do our best to include all published studies estimating the

elasticity of substitution, but still we might have missed some. Such an omission will not affect

our results much as long as it remains random. We experimented with randomly omitting 50%

of our data set, and the main findings continue to hold in such simulations.

35



References

van Aert, R. C. & M. van Assen (2020): “Correct-
ing for publication bias in a meta-analysis with the
p-uniform* method.” Working paper, Tilburg Uni-
versity.

Amini, S. M. & C. F. Parmeter (2012): “Comparison
of Model Averaging Techniques: Assessing Growth
Determinants.” Journal of Applied Econometrics
27(5): pp. 870–876.

Andrews, I. & M. Kasy (2019): “Identification of and
Correction for Publication Bias.” American Eco-
nomic Review 109(8): pp. 2766–2794.

Antras, P. (2004): “Is the US Aggregate Production
Function Cobb-Douglas? New Estimates of the Elas-
ticity of Substitution.” Contributions in Macroeco-
nomics 4(1): pp. 1–36.

Arrow, K. J., H. B. Chenery, B. S. Minhas, &
R. M. Solow (1961): “Capital-Labor Substitution
and Economic Efficiency.” Review of Economics and
Statistics 43(3): pp. 225–250.

Ashenfelter, O. & M. Greenstone (2004): “Esti-
mating the Value of a Statistical Life: The Impor-
tance of Omitted Variables and Publication Bias.”
American Economic Review 94(2): pp. 454–460.

Astakhov, A., T. Havranek, & J. Novak (2019):
“Firm Size And Stock Returns: A Quantitative Sur-
vey.” Journal of Economic Surveys 33(5): pp. 1463–
1492.

Autor, D., D. Dorn, L. F. Katz, C. Patterson, &
J. Van Reenen (2017): “Concentrating on the Fall
of the Labor Share.” American Economic Review
107(5): pp. 180–85.

Bajzik, J., T. Havranek, Z. Irsova, & J. Schwarz
(2020): “Estimating the Armington elasticity: The
importance of study design and publication bias.”
Journal of International Economics 127(C): p.
103383.

Baker, R. D. & D. Jackson (2013): “Meta-Analysis
Inside and Outside Particle Physics: Two Traditions
that Should Converge?” Research Synthesis Methods
4(2): pp. 109–124.

Behrman, J. R. (1972): “Sectoral Elasticities of Sub-
stitution between Capital and Labor in a Developing
Economy: Times Series Analysis in the Case of Post-
war Chile.” Econometrica 40(2): pp. 311–326.

Berndt, E. R. (1976): “Reconciling Alternative Esti-
mates of the Elasticity of Substitution.” Review of
Economics and Statistics 58(1): pp. 59–68.

Blanco-Perez, C. & A. Brodeur (2020): “Publica-
tion Bias and Editorial Statement on Negative Find-
ings.” Economic Journal 130(629): pp. 1226–1247.

Bom, P. R. D. & H. Rachinger (2019): “A Kinked
Meta-Regression Model for Publication Bias Correc-
tion.” Research Synthesis Methods 10(4): pp. 497–
514.

Box, G. E. & D. R. Cox (1964): “An Analysis of Trans-
formations.” Journal of the Royal Statistical Society:
Series B (Methodological) 26(2): pp. 211–243.

Brodeur, A., N. Cook, & A. Heyes (2020): “Meth-
ods Matter: P-Hacking and Causal Inference in Eco-
nomics.” American Economic Review 110(11): pp.
3634–60.
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Appendix A Illustrating the Effects of Publication Bias in a

Monte Carlo Simulation

The impact of publication bias on a naive literature summary and on the working of benchmark

meta-analysis tools can be shown in a simple Monte Carlo simulation. We illustrate what hap-

pens to the mean of the reported elasticities if some estimates are systematically underreported.

To this end we employ the central estimate of the elasticity from Antras (2004), a representa-

tive and well-cited study with a point estimate of σ̂ = 0.551 stemming from a specification with

FOC on capital, allowing for biased technological change, and relying on US macroeconomic

time series data. The estimation equation reads:

log(Yt/Kt) = α+ σlog(Rt/P
Y
t ) + (1− σ)λK · t+ εt. (15)

For the Monte Carlo simulation we assume this estimate to be close to the unbiased true

underlying value of σ. (Our results would be qualitatively the same if we chose a different

study for the simulation.) We set up our data generating process by re-estimating σ̂ from 500

draws of the Antras (2004) data by adding noise to the dependent variable log(Yt/Kt) (with a

sample mean of 4.16) via a random error from a Gaussian distribution with X ∼ N(0, V ar).

In order to generate the familiar funnel shape for the scatter plot of estimates and standard

errors, the variance V ar of the noise term X is chosen not to be constant across draws but to

vary from 0.0016 to 0.8. Note that the qualitative results of the simulation are independent of

this specific parametrization. The funnel would still display a range comparable to our actual

dataset shown in Figure 6, though it would look less pretty. The funnel plot from our 500

simulated estimations (noisy versions of Antras’s model) is displayed on the left-hand side of

Figure A1. It has an average σ̂ = 0.534 with a standard deviation equal to 0.685.

Figure A1: Simulated funnel plots without and with publication bias
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Notes: In the absence of publication bias the scatter plot should resemble an inverted funnel symmetrical around the
most precise estimates. The left panel shows estimates from all 500 Monte Carlo draws obtained from the replication
of the estimate in Antras (2004) (Table 5, Column I, Row 1) and by adding random noise to the dependent variable,
thereby producing a symmetric funnel around Antras’s estimate. The right panel shows what happens to the funnel plot
if 80% of estimates that are negative or insignificantly different from zero (at a 5% level) are discarded, which results in
retaining only 227 observations.
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The right-hand panel of Figure A1 shows how the funnel would change if we filtered out

80% of the simulated estimates that are either negative or insignificantly different from zero.

This setup reflects a typical publication bias scenario in which significant and theory-compliant

estimates are more likely to be reported. In this scenario, only 227 observations are left, and the

funnel becomes asymmetric. In fact, however, it is less asymmetric that the actual funnel plot

we observe in the literature (Figure 6), indicating that publication bias may be even more severe

in practice than with the aforementioned filter. The filtered simulated dataset represents what

a reviewer of the literature observes. Publication bias drives the observed average elasticity

upwards from 0.534 to 0.743 and produces a correlation between point estimates and their

standard errors, a correlation that was not present before (column 1 in Table A1).

Table A1 shows a funnel asymmetry test, a regression of estimated elasticities on the corre-

sponding standard errors (as explained in Section 4) for different scenarios of bias. Column 1

refers to the unbiased symmetric funnel in Figure A1. The test indicates no bias, and the esti-

mated mean beyond bias is close to the true mean. If all negative estimates are dropped (column

2), the naive mean increases to 0.726. The test detects publication bias and uncovers a mean of

0.521, close to the true one. Column 3 refers to the asymmetric funnel in the right-hand panel of

Figure A1. Again the test detects publication bias and estimates the true mean fairly precisely.

Columns 4 and 5 show that the working of the test does not hinge on the selection threshold

of zero. If for example the Cobb-Douglas specification with σ = 1 serves as a benchmark for

researchers, in the way that they discard 80% of all estimates that are significantly different

from 1 at a 5% level, the mean of the reported estimates would also be biased upwards and

meta-analysis tests again do a good job in detecting the bias. Even for the extreme example of

column 5, where we drop 80% of estimates with σ < 1.3 and the uncorrected mean increases to

0.913, the funnel asymmetry test estimates the underlying true σ well.

Table A1: Monte Carlo simulation of publication bias

(1) (2) (3) (4) (5)
no filter drop < 0 drop 80% of drop 80% of drop 80% of

< 0 or insignif 6= 0 signif 6= 1 < 1.3

σ̄ (mean) 0.534 0.726 0.743 0.616 0.913

SE (pub- -0.0160 0.313
∗∗∗

0.499
∗∗∗

0.135
∗∗

0.578
∗∗∗

lication bias) (0.0534) (0.0492) (0.0956) (0.0567) (0.102)
Const (mean 0.548

∗∗∗
0.521

∗∗∗
0.515

∗∗∗
0.550

∗∗∗
0.488

∗∗∗

beyond bias) (0.00727) (0.00716) (0.00922) (0.0145) (0.0133)

Observations 500 423 227 391 151

Notes: The table shows detection of and correction for publication bias in five different scenarios. (1) Reporting all
estimates. (2) Dropping all negative estimates of σ. (3) Dropping 80% of negative or insignificant (at the 5% threshold)
estimates. (4) Dropping 80% of estimates that are significantly different from σ = 1 at the 5% level. (5) Dropping
80% of estimates that are smaller than σ = 1.3. The original data were obtained from Antras (2004), the specification
FOC K with trend from Table 5.1, Col I, Row 1. The Monte Carlo simulation adds noise to the dependent variable
and estimates Antras’s model 500 times.

∗∗∗
,

∗∗
, and

∗
denote statistical significance at the 1%, 5%, and 10% level.

Standard errors in parentheses.
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Appendix B Furukawa’s Method for Addressing Selective Re-

porting (for Online Publication)

Appendices B, C, D, E, and F are only presented here for the convenience of reviewers. If the
manuscript is accepted for publication, this material will be relegated to an online appendix.

Furukawa (2019) proposes the so-called stem-based correction method, which relies on the most

precise studies, corresponding to the stem of the funnel plot. The method is nonparametric,

fully data-dependent and requires weaker assumptions for the underlying distribution of true

effects and the publication selection process than other methods. Publication selection can be a

function of the size of the estimates, their significance, or both at the same time, as imprecise null

results are less likely to be published. By focusing on the n most precise estimates, Furukawa

(2019) is able to account for various publication selection processes. The method extends the

approach by Stanley et al. (2010), who suggest using 10% of the most precise estimates. Instead

of selecting an arbitrary number of the most precise estimates, Furukawa (2019) suggests a

formal method to calculate the optimal number n of the most precise studies to include by

minimizing the mean squared error:

min
n
MSE(n) = Bias2(n) + V ar(n). (16)

With more studies used, the squared bias term increases as less precise studies suffer from more

bias, but the variance term decreases as more information increases efficiency. An empirical

analog of the bias term is estimated nonparametrically using two algorithms. The inner al-

gorithm computes the bias-corrected mean given an assumed value of squared precision, and

the outer algorithm computes the implied variance and ensures that it is consistent with its

assumed value. The inner algorithm ranks and indexes studies in an ascending order according

to their standard error, se, and for each n = 2, ..., N calculates the relevant bias squared and

variance, given the assumed value of se0:

˜Bias
2
(n) =

∑n
i=2

∑n
j 6=iwiwjβiβj∑n

i=2

∑n
j 6=iwiwj

− 2β1

∑n
i=2wiβi∑n
i=2wi

, (17)

V ar(n) =

n∑
i=1

wi, (18)

where wi = 1
se2i+se

2
0
. The optimal number of included studies is given by Equation 16. The

stem-based corrected estimate follows:

b̂stem =

∑nstem
i=1 wiβi∑nstem
i=1 wi

. (19)

The outer algorithm then searches over se2
0 so that the implied variance is consistent.

The stem-based method applied to the elasticity of substitution yields the following results:

the mean underlying elasticity corrected for publication bias is 0.57 with a standard error of
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0.05. Overall, 77% of the total information in the data is utilized, and the 83 most precise

studies (out of 121) are included. Because the stem-based method uses study-level estimates

(as preferred by Furukawa), we select median values from each study. Figure B1 visualizes the

stem-based bias correction method. Figure B2 visualizes the bias-variance trade-off in order to

minimize the mean squared error. When all estimates instead of median estimates are used,

the mean corrected elasticity is similar, 0.55, but the standard error increases to 0.21.

Figure B1: A graphical illustration of Furukawa’s technique
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Note: The orange (lighter in grayscale) diamond at the top corresponds to the stem-based estimate of the mean elasticity
corrected for publication bias, with the orange line indicating the corresponding 95% confidence interval. The gray (lighter
in grayscale) line denotes the estimate under various nstem ∈ 1, ..., N . The blue (darker in grayscale) diamond indicates
the minimum precision level that defines the “stem” of the funnel.

Figure B2: The trade-off between bias and variance
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Note: The mean squared error (MSE) is the criterion for choosing the nstem, the optimal number of studies to include in
the stem-based estimator. The relevant components of MSE—bias and variance—are plotted.

43



Appendix C Andrews and Kasy’s Method for Addressing Se-

lective Reporting (for Online Publication)

Andrews & Kasy (2019) introduce two approaches for the identification of publication selection:

the first one based on data from replication studies and the second one tailored for meta-analysis.

They show that the meta-analysis approach delivers results similar to the approach based on

replications. In the absence of publication bias, the distribution of the estimates from imprecise

studies can be written as the distribution for precise studies plus noise; deviations from this

form identify conditional publication probabilities. Andrews & Kasy (2019) identify publica-

tion probability similarly to Hedges (1992) using maximum likelihood: conditional publication

probability, p(·), is a step function with jumps at conventional critical values of the p-value.

When applied to our data, the method by Andrews & Kasy (2019) yields the following

results. The bias-corrected estimate is 0.43 with a standard error of 0.017. We impose a

cutoff at zero, that is, we compare the publication probability of negative vs. positive estimates

regardless of their significance. (Allowing for other jumps in publication probability would yield

even smaller estimates of the mean elasticity corrected for publication bias.) Our results also

suggest that positive estimates are six times more likely to be selected for publication than

negative estimates (Table C1). In the case of the elasticity of substitution, publication selection

based on statistical significance is apparently less pronounced than selection based on the sign

of the estimate, as suggested by the right panel of Figure C1.

Figure C1: A graphical illustration of Andrews and Kasy’s (2019) estimator
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Note: The solid gray lines mark t-statistic equal to 1.96 in absolute value; the dashed gray line marks t-statistics equal
to 2.33 in absolute value. We observe a jump at t-statistic equal to zero and then also jumps at conventional significance
levels. The right-hand figure plots estimates X and their standard errors Σ; the gray line marks 1.96 in absolute value.
Even though we observe discontinuity at the t-statistic corresponding to the 5% significance level, the right panels shows
publication selection based on significance is not absolute, as some insignificant estimates (gray points) are reported.

Table C1: Results of Andrews and Kasy’s (2019) estimator

θ̄ τ̄ DF βp

Estimate 0.430 0.489 12.809 0.158
Standard error 0.017 0.012 0.707 0.019

Notes: θ̄ denotes the bias-corrected mean effect, τ̄ is a scale parameter, DF are degrees of freedom. βp is a publication
probability measured relative to the omitted category, in our case positive estimates. An estimate of 0.158 therefore
implies that negative results are 15.8% as likely to be published as positive ones.
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Appendix D Description of Variables (for Online Publication)

Table D1: Definitions and summary statistics of explanatory variables

Variable Description Mean Std. dev.

Data characteristics
No. of obs. The logarithm of the number of observations used in the re-

gression.
4.28 1.51

Midpoint The logarithm of the mean year of the data used minus the
earliest mean year in our data.

4.71 0.48

Cross-sec. = 1 if cross-sectional data are used (reference category: time
series).

0.33 0.47

Panel = 1 if panel data are used (reference category: time series). 0.14 0.35
Quarterly = 1 if the data frequency is quarterly (reference category: an-

nual).
0.11 0.31

Industry data = 1 if variation at the industry-/sector-level is exploited in in-
put data (reference category: cross-country-/state-level varia-
tion).

0.43 0.50

Firm data = 1 if variation at the firm-level is exploited in input data
(reference category: cross-country-/state-level variation).

0.12 0.32

Country: US = 1 if the estimate is for the US. 0.58 0.49
Country: Eur = 1 if the estimate is for a developed European country. 0.17 0.37
Developing = 2 if the estimate is for a developing country; = 1 if the

estimate is a common estimate for a collection of developed
and developing countries (reference category: developed coun-
tries).

0.22 0.54

Database: OECD = 1 if the data come from the OECD database. 0.07 0.25
Database: KLEM = 1 if the data come from the Jorgenson KLEM dataset. 0.15 0.36
Database: ASMCM = 1 if the data come from the Annual Survey of Manufacturers

and/or Census of Manufacturers.
0.14 0.35

Disaggregated σ = 1 if the elasticity is estimated on a disaggregated level
(industry-specific elasticity).

0.52 0.50

Specification
System PF-FOC = 1 if the elasticity is estimated within a system of CES with

FOC(s) or with cost share functions.
0.06 0.23

System FOCs = 1 if the elasticity is estimated within a system of FOCs. 0.05 0.23
Nonlinear = 1 if the elasticity is estimated within the CES directly via

nonlinear methods.
0.04 0.20

Linear approx. = 1 if the elasticity is estimated via Taylor series expansion
(Kmenta approach or translog approach).

0.07 0.26

FOC L w = 1 if the elasticity is estimated within the FOC for labor
based on the wage rate (reference category: FOC for capital
based on the rental rate of capital).

0.33 0.47

FOC KL rw = 1 if the elasticity is estimated within the FOC of K/L based
on w/r (reference category: FOC for capital based on the
rental rate of capital).

0.18 0.39

FOC K share = 1 if the elasticity is estimated within the FOC for capital
based on the capital share (reference category: FOC for capital
based on the rental rate of capital).

0.03 0.16

FOC L share = 1 if the elasticity is estimated within the FOC for labor
based on the labor share (reference category: FOC for capital
based on the rental rate of capital).

0.04 0.19

User cost elast. = 1 if the user cost of capital elasticity is estimated. 0.17 0.38
Cross-equation rest. = 1 if cross-equation restrictions are employed when using sys-

tem estimation.
0.08 0.28

Normalized = 1 if normalization is applied to the CES. 0.05 0.22

Continued on next page
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Table D1: Definitions and summary statistics of explanatory variables (continued)

Variable Description Mean Std. dev.

Two-level PF = 1 if a two-level CES function is estimated (due to more than
two factors of production).

0.03 0.18

Partial σ = 1 if some form of partial elasticity is used (Allen-Uzawa,
Hicks-Allen, Morishima).

0.06 0.24

Econometric approach
Dynamic est. = 1 if dynamic methods are used for estimation (VAR, a dis-

tributed lag model or error correction model; reference cate-
gory: OLS).

0.24 0.42

SUR = 1 if a system of seemingly unrelated regressions is used (Zell-
ner’s estimation; reference category: OLS).

0.11 0.31

Differenced = 1 if the coefficient is taken from a regression in first differ-
ences or log differences.

0.23 0.42

Time FE = 1 if time-fixed effects are used for estimation. 0.06 0.24
Unit FE = 1 if unit-fixed effects are used for estimation. 0.04 0.20
Identification = 1 if instrumental variables are used for identification. 0.13 0.34
Short-run σ = 1 if the coefficient is taken from an explicit short-run spec-

ification (reference category: explicit long-run specification—
cointegration, low-pass filter, interval-difference model).

0.05 0.22

Long-run σ unadj. = 1 if the coefficient is meant to be long-run but the specifica-
tion is not adjusted accordingly (reference category: explicit
long-run specification).

0.68 0.47

Production function components
Other inputs in PF = 1 if the production function includes other inputs such as

energy, materials, and human capital.
0.13 0.34

LATC = 1 if the production function includes labor-augmenting tech-
nological change, i.e. Harrod-neutral technological change
(reference category: Hicks-neutral technological change).

0.29 0.63

CATC = 1 if the production function includes capital-augmenting
technological change, i.e. Solow-neutral technological change
(reference category: Hicks-neutral technological change).

0.26 0.57

Skilled L = 1 if the production function distinguishes between skilled
and unskilled labor.

0.02 0.13

Constant TC
growth

= 1 if the technological change is modeled with constant
growth rates (reference category: no growth of technology).

0.30 0.46

Other TC growth = 1 if the technological change is modeled with nonconstant
growth rates, e.g., logarithmic, linear (reference category: no
growth of technology).

0.10 0.31

No CRS = 1 if the authors assume nonconstant returns to scale. 0.09 0.36
No full comp. = 1 if the authors do not assume factor markets to be perfectly

competitive.
0.04 0.19

Net σ = 1 if net elasticity is estimated (reference category: gross
elasticity).

0.02 0.16

External info
Top journal = 1 if the study is published in a top five journal in economics. 0.31 0.46
Pub. year The logarithm of the year when the first draft of the study

appeared in Google Scholar minus the year when the first study
on elasticity of substitution was written.

3.25 0.88

Impact The recursive discounted RePEc impact factor of the outlet. 0.96 1.07
Citations The logarithm of the number of per-year citations of the study

since its first appearance on Google Scholar.
1.47 0.96

Preferred est. = 1 if the estimate is preferred by authors or is explicitly con-
sidered to be better; -1 if it is considered inferior.

-0.04 0.47

Byproduct = 1 if estimation of the elasticity is not the central focus of
the paper but only a byproduct; = 0 if it is the central focus;
= 0.5 if it is one of multiple main aims.

0.20 0.31

Continued on next page
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Table D1: Definitions and summary statistics of explanatory variables (continued)

Variable Description Mean Std. dev.

Measurement of variables
y: index = 1 if the input data for total output is in an index form. 0.03 0.18
y: other = 1 if the input data for total output is measured differently

than in gross domestic product or total value added (reference
category: GDP, value added).

0.07 0.26

Labor-related
Quality adj. = 1 if the input data for labor incomes data are quality-

adjusted.
0.22 0.41

Self empl. = 1 if the input data for labor incomes data are adjusted for
the income of self-employed people.

0.18 0.39

w: nominal = 1 if the input data for the wage rate are nominal (reference
category: the wage rate is in real terms).

0.09 0.29

w: direct = 1 if the input data for the wage rate are measured directly
(the wage rate calculated as total wages divided by the total
number of employees).

0.14 0.36

L: hours = 1 if the input data for the labor are measured in hours. 0.25 0.44
L: years = 1 if the input data for the labor are measured in years. 0.07 0.25
L: FTE workers = 1 if the input data for labor are measured by the full-time

equivalent number of workers.
0.07 0.25

L: force = 1 if number of workers labor is measured as the total number
of people in the labor force.

0.04 0.20

Capital-related
Capacity adj. = 1 if the authors control for the capacity utilization in the

regression.
0.09 0.28

r: quasi = 1 if the input data for the rental rate of capital are measured
as the quasi-rent, i.e., total output minus total wages divided
by total capital stock (reference category: it is measured as
the user cost of capital, Hall-Jorgenson formula).

0.24 0.43

r: nominal = 1 if the input data for the rental rate of capital are expressed
in nominal terms.

0.01 0.09

K: IT = 1 if IT capital is used only. 0.02 0.13
K: equipment = 1 if the measure of equipment capital is used only. 0.07 0.26
K: structures = 1 if the measure of structures, land or plant is used only. 0.04 0.17
K: residential = 1 if the measure of capital includes residential capital stock. 0.07 0.25
K: services = 1 if capital is measured as service flow. 0.13 0.33
K: perpetual = 1 if the input data for capital is measured via perpetual

inventory method.
0.36 0.48

K: index = 1 if the input data for capital are expressed in an index
form.

0.17 0.37

Industry-related
Primary ind. = 1 if the elasticity is estimated for the primary sector. 0.02 0.14
Secondary ind. = 1 if the elasticity is estimated for the secondary sector. 0.62 0.49
Tertiary ind. = 1 if the elasticity is estimated for the tertiary sector. 0.03 0.18
Materials = 1 if the elasticity is estimated for the 2-digit industry in the

category “Materials” of the GICS industry classification.
0.25 0.43

Industrials = 1 if the elasticity is estimated for the 2-digit industry in the
category “Industrials” of the GICS industry classification.

0.09 0.29

Consumer = 1 if the elasticity is estimated for the 2-digit industry in the
category “Consumer goods” of the GICS industry classifica-
tion.

0.14 0.34

Note: Collected from published studies estimating the elasticity of substitution between capital and labor. When dummy

variables form groups, we mention the reference category.
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Appendix E Robustness Checks (for Online Publication)

Table E1: Results of frequentist model averaging

Coef. Std. er. p-value

Standard error 0.557 0.042 0.000

Data characteristics
No. of obs. 0.011 0.012 0.326
Midpoint 0.103 0.022 0.000
Cross-sec. 0.069 0.029 0.016
Panel 0.193 0.042 0.000
Quarterly 0.135 0.042 0.001
Firm data -0.160 0.040 0.000
Industry data -0.198 0.026 0.000
Country: US 0.121 0.031 0.000
Country: Eur 0.180 0.030 0.000
Developing 0.019 0.019 0.333
Database: ASM,CM -0.031 0.037 0.402
Database: OECD -0.301 0.044 0.000
Database: KLEM -0.092 0.046 0.047
Disaggregated σ 0.043 0.024 0.077

Specification
System PF+FOC -0.111 0.059 0.061
System FOCs -0.057 0.050 0.258
Nonlinear -0.016 0.061 0.796
Linear approx. 0.268 0.050 0.000
FOC L w 0.324 0.032 0.000
FOC KL rw 0.007 0.032 0.832
FOC K share 0.226 0.063 0.000
FOC L share 0.251 0.048 0.000
Cross-eq. restr. 0.071 0.048 0.140
Normalized -0.248 0.051 0.000
Two-level PF -0.023 0.070 0.743
Partial sigma 0.130 0.055 0.018
User cost. elast. -0.373 0.042 0.000

Econometric approach
Dynamic est. -0.005 0.029 0.854
SUR -0.105 0.032 0.001
Identification 0.046 0.026 0.077
Differenced -0.096 0.027 0.000
Time FE -0.009 0.040 0.830
Unit FE 0.067 0.043 0.116
Short-run -0.410 0.040 0.000
Long-run unadj. -0.011 0.026 0.681

Production function components
Other inputs in PF -0.137 0.044 0.002
CATC -0.003 0.026 0.904
LATC -0.041 0.024 0.088
Skilled L 0.076 0.059 0.199
Constant TC growth -0.032 0.025 0.191
Other TC growth 0.108 0.035 0.002
No CRS -0.003 0.022 0.905
No full comp. -0.022 0.042 0.598
Net sigma -0.320 0.056 0.000

Publication characteristics
Top journal -0.085 0.025 0.001
Pub. year 0.032 0.015 0.038
Citations 0.037 0.011 0.001
Preferred 0.027 0.016 0.093
Byproduct -0.130 0.032 0.000
(Intercept) -0.123 0.130 0.342

Observations 3,186

Notes: Our frequentist model averaging (FMA) exercise employs Mallow’s weights (Hansen, 2007) and the orthogonalization
of the covariate space suggested by Amini & Parmeter (2012). Dark gray color denotes variables that are deemed important
also in the BMA exercise. Light gray color denote variables that are deemed important in the FMA but not BMA exercise.
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Figure E1: Model inclusion in Bayesian model averaging, weighted by the inverse of the number
of estimates per study
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Figure E2: Model inclusion in Bayesian model averaging, weighted by the inverse of the standard
error

0 0.05 0.13 0.19 0.25 0.32 0.38 0.45 0.5 0.56 0.62 0.68 0.75 0.8 0.86

Preferred
Midpoint

Firm data
Industry data 
Country: US 
Country: Eur 

Database: OECD 
Nonlinear

Linear approx. 
FOC_L_w

User cost. elast. 
Short−run
Net sigma 

Citations 
Database: KLEM 
Long−run unadj. 

Quarterly 
SUR

Other TC growth 
Unit FE

Two−level PF
No. of obs.

Panel
FOC_L_share 

CATC 
Identification 

Developing
LATC

Byproduct
Other inputs in PF 

Time FE
System PF+FOC 

Top journal 
Dynamic est. 

Constant TC growth 
Normalized 

Cross−eq. restr. 
No CRS

Ind. disaggregated 
Cross−sec. 

System FOCs 
Partial sigma
No full comp.

Pub. year
Skilled L

FOC_KL_rw 
Differenced

FOC_K_share 
Database: ASM,CM

Notes: The response variable is the estimate of the elasticity of substitution. Columns denote individual models;
variables are sorted by posterior inclusion probability in descending order. The horizontal axis denotes cumulative
posterior model probabilities; only the 5,000 best models are shown. Blue color (darker in grayscale) = the variable is
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Subsamples with measurement variables

As a complementary exercise to our baseline specification, we also run BMA analyses for sub-

samples of data in order to control for variables that are relevant only for a given subsample. We

call these variables measurement variables. We need to create subsamples of the main dataset,

because the variables relevant for the FOC for labor are not relevant for the FOC for capital,

and vice versa. Regarding the estimates that utilize the FOC for labor, we include additional

variables on how labor and the wage rate are measured. Regarding the estimates that utilize the

FOC for capital, we include variables on how capital and the rental rate of capital are measured.

Regarding industry-level estimates, we include the sector for which the elasticity was estimated,

that is, primary, secondary and tertiary sectors; and, within the secondary sector, groups for

industrial goods production, material goods production, and consumer goods production.

Concerning the measurement of labor, our reference category is measurement via the number

of workers. We include a dummy equal to one if labor is measured using the number of hours

worked. We also include a dummy variable that equals one if labor income is adjusted for self-

employed labor income. As for the wage rate, we include dummy variables for the case when

the rate is measured directly (in contrast to the situation when the wage rate is measured as

the total amount paid to employees divided by the labor variable) and when the wage rate is

used in nominal terms. In addition, we examine the effect of adjusting for changes in skill over

time, for example, adjusting for the share of white- versus blue-collar workers.

Concerning the measurement of capital, our reference category is unspecified capital. We in-

clude dummies for specific measurements, including measurement as service flow, measurement

via the perpetual inventory method, and capital stock in an index form. We code for special

categories of capital stock: equipment, structures, IT, and residential capital stock. We include

a separate dummy equal to one if the study controls for capacity utilization, either by adjusting

the measurement variables or by adding it as a control. Underutilized capital would bias the

results since it biases the effect of input on output (Brown, 1966); nevertheless, only a small

portion of studies (Brown, 1966; Behrman, 1972; Dissou et al., 2015, among others) explicitly

use this approach, for example by including capacity utilization indices.

Regarding the rental rate of capital, the baseline category comprises the user cost of capital,

or, in other words, the standard Hall-Jorgenson formula (Jorgenson, 1963; Hall & Jorgenson,

1967), which appears in two-thirds of all the estimations. The Hall-Jorgenson formula calcu-

lates the user cost of capital as a function of the relative price of capital, rate of return, and

depreciation. We include a dummy for the case when the tax rate is an additional variable in

the Hall-Jorgenson formula. The second most frequently used measurement is the quasi-rent

approach, which calculates the rental rate of capital as a difference between total value added

and total wages divided by the capital stock; this approach is used in 17% of the cases, for

example in Dhrymes (1965), Ferguson (1965), and Lovell (1973). Further, the rental rate of

capital can be measured either in gross terms or in net terms and in real or nominal terms;

nevertheless, the variability in nominal user cost is almost zero, and thus we do not include the

corresponding variable.
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In all subsamples we control for the measurement of output: first, we include a dummy

variable that equals one if output is not measured as gross product or in value added terms,

but in another way—for example, as the amount of sales. Second, we include a dummy for the

case when output is used in an index form.

How does the addition of these variables affect our results? First, we include labor-specific

variables, which capture how labor and wage rate are measured, and run BMA on the subsample

of data estimating the FOC for labor. The subsample covers less than half of the original

dataset; the results are displayed in Figure E3. Only two of the newly included measurement

variables are important for the explanation of the heterogeneity in the reported elasticities:

direct measurement of the wage rate and measurement of labor as total labor force. The main

drivers of heterogeneity remain the same while the total explanatory power of the analysis

increases only marginally.

Concerning capital-related variables, we find that the type of capital under examination

represents an important driver of the differences in results (Figure E4). IT capital and equipment

capital are more substitutable with labor than other types of capital, such as buildings. When

capital is measured as service flow, the estimates typically yield a larger elasticity of substitution.

It also matters how the rental rate of capital, r, is computed, specifically whether the Hall-

Jorgenson formula is used—we find that it yields smaller elasticities than do other approaches.

The best-practice estimate derived from both subsamples and conditional on plugging in mean

values for measurement variables would again equal 0.3, far from the Cobb-Douglas assumption.

Finally, for the subsample of disaggregated elasticities we run the baseline BMA enriched

with industry-relevant variables in Figure E5. We do not find any significant determinants

that would suggest that the elasticity of capital-labor substitution differs systematically across

sectors or industry groups (production of materials, production of industrial goods, production

of consumer goods, and production of services). Given the number of variables in our analysis,

it is infeasible to add more industry-specific variables since that would create troubles with

collinearity.
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Figure E3: Model inclusion in Bayesian model averaging, labor-specific variables
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Figure E4: Model inclusion in Bayesian model averaging, capital-specific variables
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Figure E5: Model inclusion in Bayesian model averaging, industry-specific variables
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