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Abstract

I study how financial constraints affect liquidity provision and welfare under differ-

ent structures of the arbitrage industry. In competitive markets, financial constraints

may impair arbitrageurs’ ability to provide liquidity, thereby reducing other investors’

welfare. Instead, in imperfectly competitive markets, I characterize situations in which

imposing constraints on arbitrageurs leads to a Pareto improvement relative to a no-

constraint case. Further, unlike the competitive case, a drop in arbitrage capital does

not always lead to a reduction in market liquidity. A subtle interaction between finan-

cial constraints and arbitrageurs’ market power generates these Pareto improvement

and novel comparative statics.
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1 Introduction

While the LTCM and 2007-2009 crises highlighted the interactions between funding and

market liquidity, our understanding of these interactions remains limited to competitive

settings.1 The reality of financial markets, however, is often closer to imperfect competition.

For instance, LTCM, which initially motivated the literature, was nicknamed the “central

bank of volatility”, due to its dominant position in derivatives markets. LTCM is not an

isolated case: many other hedge funds or banks (e.g. Amaranth, the “London whale”, etc.)

have been under the spotlights for becoming the dominant traders in some markets; more

generally, there has been a noted increase in market power in financial markets.2 Consistent

with this evidence, transaction-level data shows that large intermediaries recognize their

price impact and use optimal execution techniques to rebalance portfolios.3 Further, financial

constraints due to regulations, internal risk management, or margins imposed by financiers

(e.g. brokers, repo market participants, etc.) are likely to limit the funding liquidity of these

large traders, and have probably become tighter after 2007-2009.4

In this paper, I study the effects of imposing financial constraints on imperfectly com-

petitive arbitrageurs. I show that these constraints affect market liquidity and social welfare

in different and sometimes opposite ways when arbitrageurs have market power. In com-

petitive markets, binding financial constraints (i.e. a decrease in funding liquidity) impair

arbitrageurs’ ability to exploit profitable trading opportunities, thereby reducing market

liquidity and hurting the investors who are on the other side of their trades. Instead, impos-

ing financial constraints on imperfectly competitive arbitrageurs may in some cases improve

both market liquidity and social welfare.

Arbitrageurs with market power may benefit from the constraints because they face a

1For models of financially constrained arbitrage in competitive markets, see, among others, Shleifer and
Vishny (1997), Gromb and Vayanos (2002, 2010, 2018), Kondor (2008), Brunnermeier and Pedersen (2009).
Attari and Mello (2006) study numerically how a monopolistic arbitrageur subject to financial constraints
trades, but their setting does not lend itself to welfare analysis.

2See for instance, De Loecker, Eeckhout, and Unger (2019), for general evidence about market power.
Many financial markets are dominated by a few large players. For instance, five banks represent 90% of the
notional amount of derivative contracts (OCC, 2018). Wallen (2020b) finds evidence of dealer market power
in the FX market. Wallen (2020a) shows that both shocks to capital and shocks to the concentration of
capital matter for asset prices.

3See, e.g., Gabaix et al., (2006), Ben-David et al. (2015), Chan and Lakonishok (1995), and van Kervel
and Menkveld (2019). Given the mixed evidence about the performance of large traders, a large fraction of
this rebalancing must stem from reasons other than superior information, e.g. risk-sharing (Vayanos, 1999).

4Basel III has tightened capital requirements for banks, and introduced a leverage ratio and several
liquidity ratios, depleting some of the capital devoted to chasing arbitrage opportunities. Further, these new
or tighter constraints on banks have been passed through to hedge funds and other market players through
a reduction in funding (Boyarchenko et al, 2018).
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commitment problem, as durable good producers: once they have provided some liquidity,

they cannot refrain from providing more, and reduce the arbitrage opportunity further.

However, a binding constraint in the future limits their ability to provide further liquidity,

mitigating their commitment problem. Surprisingly, the investors on the other side of their

trades may also benefit, for two reasons. First, the only way for the arbitrageur to make the

constraint binding in the future is to pledge more capital to the arbitrage early on, which

speeds up risk-sharing. Second, the constraint is an imperfect commitment device: it does

not prevent the arbitrageur entirely from retrading, as early capital gains generate additional

collateral for later trading rounds.

Model. I introduce imperfect (Cournot) competition among arbitrageurs in an otherwise

standard model of financially constrained arbitrage. The model has two types of investors:

hedgers and arbitrageurs, which trade for two rounds and then consume. There is a risky

asset traded in two segmented markets (A and B) and a risk-free asset. In each segmented

market, the risk-averse, competitive hedgers receive endowment shocks correlated with the

asset payoff. For simplicity, these shocks are symmetric: hedgers in market A are overexposed

to the risky asset and would like to hedge by selling, and vice versa in market B. Market

segmentation prevents welfare-improving trades between the two groups. As a result, the

risky asset trades at a discount in A and at a premium in B.

While hedgers are restricted to trade in their respective market, arbitrageurs can trade

across markets. As the risky asset gives claims to the same cash-flows in both markets, prices

converge in the final period. Thus, the spread between prices in markets A and B creates

a textbook arbitrage opportunity for arbitrageurs, who face a relative value trade with a

fixed convergence date. Arbitrageurs, however, must separately collateralize each leg of the

arbitrage. Arbitrageurs’ wealth serves as collateral, for both long and short positions, and

must remain sufficiently large over time to absorb adverse price movements.5 This funding

constraint is akin to real VaR constraints imposed by regulators or used by risk managers

or financiers (e.g. prime brokers) to set margins. The stressed VaR for capital requirements

in Basel 2.5 and the margin requirements for non-centrally cleared derivatives are some

examples of newly-imposed constraints based on VaR.6

5I use wealth and capital as synonyms. To avoid dealing with default in equilibrium, I assume that the
worst change in fundamental is bounded above and below, and that arbitrageurs must fully collateralize all
potential losses. This is akin to a 100% VaR constraint. Gromb and Vayanos (2002) follow a similar strategy,
while Brunnermeier and Pedersen consider an α% VaR, but do not study welfare.

6For the former, see https://www.bis.org/publ/bcbs148.pdf, section 4, p. 11. For the latter, see
https://www.bis.org/bcbs/publ/d475.pdf, paragraph 3.1, p. 12. The exercise of this paper thus has a
positive flavour: given realistic imperfection in competition, I determine the welfare and price effects of
widely-used financial constraints. Note that Expected Shortfall generates exactly the same type of con-
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Results. Suppose first that arbitrageurs face financial constraints but are competitive.

In equilibrium, arbitrageurs eliminate the arbitrage opportunity when capital is abundant.

When capital is scarce, arbitrageurs hit their funding constraint, which prevents them from

building large enough positions to eliminate the spread. As time passes, arbitrageurs earn

capital gains, which increase their wealth and relax the financial constraint, so that the

spread decreases. In this competitive setting, imposing financial constraints has either no

effect on the equilibrium (when arbitrageurs’ capital is large), or prevents arbitrageurs from

intermediating trades between markets, which reduces hedgers’ welfare.

Imposing financial constraints on arbitrageurs with market power can have sharply dif-

ferent effects. I show that when capital is intermediate and the risk to benefit ratio of the

trade is sufficiently high, imposing constraints on arbitrageurs leads to a Pareto improve-

ment. In all other situations, imposing constraints has either no effect, because they never

bind, or limits the liquidity provision by arbitrageurs, which reduces the welfare of at least

one type of investors.7

The Pareto improvement follows from a subtle interaction between market power and

financial constraints. Consider first a monopoly without constraints. The arbitrageur is

akin to a durable good producer; he faces a commitment problem: having provided some

market liquidity, the arbitrageur faces a residual demand for liquidity and cannot refrain

from providing further liquidity, thereby reducing the spread further. Hedgers anticipate

this behaviour, which erodes the arbitrageur’s market power ex-ante.8

Because of these Coasian dynamics, the arbitrageur would be better off if he could

commit to a trading strategy, i.e. decide ex-ante how much liquidity to provide over time

and stick to it. In this case, he would trade only once at the beginning. Doing so, he

would earn static monopoly profits, as is well-known in IO; this hurts hedgers relative to the

no-commitment case.

With a financial constraint, the arbitrageur chooses trades sequentially. However, in

states or at dates where the constraint binds, the choice is purely mechanical: max out the

straint. Brunnermeier and Pedersen, 2009, Appendix A, describe in further detail the mapping of this kind
of constraint to various institutional settings.

7In the model, the numerator of the risk benefit ratio is the worst case scenario for the fundamental. In
practice, it would correspond to a quantile of the return distribution, e.g. the 99% quantile.

8As hedgers have reduced their positions at time 0, they are less exposed to the endowment shock at
time 1. To this extent, receiving liquidity / sharing risk/ buying insurance (all synonyms in this model) by
trading the risky, imperfectly liquid asset against cash (the liquid asset) is akin to buying a durable good.
However, in contrast to the literature on the Coase conjecture, the horizon is finite. In IO, it is typically
assumed that the good is infinitely durable. Classic papers on the Coase conjecture include Stockey (1981),
Bulow, (1982), Gul, Sonnenschein, and Wilson (1986).
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constraint. To this extent, a binding constraint in the future works as a commitment device.

Yet, this commitment is imperfect. Financial constraints may limit retrading, but do not

eliminate it: they merely prevent the arbitrageur from reaching his preferred position. The

reason is simple: when providing liquidity, a monopoly always earns capital gains, which

generate additional collateral and allows the arbitrageur to retrade next period.9 Besides,

since the arbitrageur internalizes his price impact, he has more leeway than price-takers in

choosing strategically ex-ante whether or at least when to make constraints bind. For this

reason, financial constraints may bind at some date and not at other.

The welfare and liquidity improvement occur only in cases where the constraint is slack

at time 0 and binding at time 1. The binding constraint at time 1 mitigates the arbitrageur’s

problem ex-ante; the slack constraint at time 0 allows the arbitrageur to reap the benefit

of it. Indeed, the prospect of a binding constraint induces hedgers to shift some of their

liquidity demand earlier. The slack constraint allows the arbitrageur to exploit this extra

demand. The arbitrageur’s welfare increases relative to the no commitment, no constraint

case, but does not reach the perfect commitment level, because the retrading maintains some

Coasian dynamics. Thus, the arbitrageur is not able to charge static monopoly prices.

Hedgers are also better off when the constraint binds at time 1 but not at time 0 than

without constraint. In this case, the constraint induces faster risk-sharing but does not

eliminate retrading. Instead, perfect commitment speeds up risk-sharing but eliminates

retrading.10 Receiving liquidity early matters to hedgers: the asset is conditionally riskier

at time 0, because dividends news accrue every trading round.11

Risk-sharing speeds up endogenously: to make the financial constraint binding next

round, the arbitrageur must trade more aggressively early on than without constraints. By

taking larger positions, the arbitrageur pledges more capital to the trade now and makes

it more likely to have a binding constraint next period. But doing so, he provides more

9By contrast, competitive arbitrageurs earn capital gains only when their constraints bind. With finan-
cial constraints, it is essential to generate more collateral for later rounds that the rents the monopolistic
arbitrageur extracts in the first round cannot be diverted or repledged elsewhere. Without such ability, it is
ex-post optimal for the arbitrageur to keep pledging capital to the arbitrage, for lack of a better investment
opportunity. Indeed, the only alternative investment is the risk-free asset, which offers lower returns than the
arbitrage. Note that in Dow, Han, and Sangiorgi (2019), a financially constrained arbitrageur also prefers
to stick to his existing position, not for a lack of better opportunities, but because it is costly to exit.

10Under perfect commitment, hedgers anticipate that the arbitrageur will not retrade and shift their
demand to the initial trading round. The arbitrageur provides more liquidity initially to exploit this extra
demand.

11Uncertainty about prices at time 0 gives hedgers a preference to trade early and plays the same role as
a discount factor. It also creates a role for arbitrageurs in both periods. Without it, hedgers’ demand would
not remain downward-sloping at time 0, so that there would be no demand for liquidity. Hedgers would face
a temporary risk-free asset and would flatten out demand, becoming arbitrageurs themselves.
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liquidity and reduces the spread. The financial constraint does not eliminate retrading: in

fact, the larger gains earned ex-ante increase the maximum position the arbitrageur can

afford given the constraint.12 As a result, the arbitrageur accumulates larger positions than

in the no commitment, no constraint case. The combination of faster risk-sharing (more

liquidity early) and higher total amount of liquidity is necessary for an improvement in

hedgers’ welfare with a monopoly, but not with an oligopoly. In the latter, more early

liquidity and enough retrading suffice.13

The conditions for the Pareto improvement are that capital is intermediate and the risk to

benefit ratio of the trade is sufficiently high. Intuitively, if capital is very low, the arbitrageur

cannot take larger positions early on without violating the constraint. But if capital is very

large, he will never be financially constrained ex-post. A high risk to benefit ratio implies that

positions are sufficiently capital-intensive relative to potential profits. Hence, even taking

into account the capital gains from providing early liquidity, the arbitrageur’s constraint

does bind next period.

The risk benefit ratio also determines the comparative statics of spreads with respect to

initial capital. In markets with a low risk benefit ratio, comparative statics are qualitatively

similar to the competitive case: less capital may lead to higher spreads. In markets with a

high risk to benefit ratio, however, a drop in capital first reduces the spread and then increases

it. As capital drops, hedgers anticipate that the arbitrageur will trade more aggressively early

on and face a binding constraint later, and eventually provide more liquidity, which reduces

spreads. As capital drops further, however, the arbitrageur will no longer be able to trade

aggressively early on, and spreads will increase, as in the competitive case. To the best of

my knowledge, the empirical literature has not used the risk benefit ratio as a conditioning

variable, and has not tested this unique prediction of the model.1415 Note that positions

and VaR feature similar comparative statics: when the risk benefit ratio is low, a drop in

capital leads to smaller positions and VaR, as in the competitive case. When it is high, the

arbitrageur’s positions and VaR first increase and then decrease.

My results should be of interest to policy-makers regulating markets with large traders.

12Without constraint, this position would be even larger.
13Competition among arbitrageurs erodes capital gains, so arbitrageurs’ financial constraints relax less,

and arbitrageurs may not provide more liquidity in total. Still, hedgers may be better off. Hence, what is
essential is that the arbitrageur provides more liquidity early on and retrades, not that he provides more
liquidity in total.

14The welfare result also holds in the oligopolistic case, but spreads may not be lower at all dates.
15Under the US Market Risk Capital Rule, large banks must report daily VaR and P&L (see, e.g. Falato

et al. (2019). This newly available regulatory data could be used to test the empirical predictions of the
paper and for policy analysis.
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The debate around the regulations set in place after the 2007-2009 crisis has focused on

the possibly negative effects on liquidity provision of imposing new capital and margin re-

quirements. I show, however, that in some situations there are welfare gains from imposing

financial constraints on arbitrageurs with market power.16 My analysis shows that this

improvement occurs when margins are price-based and forward-looking. Other types of con-

straints such as fixed margins or mere position limits do not generally have such effects.

Indeed, unlike fixed margins, price-based, forward-looking margins reflect the fact that ar-

bitrageurs make profit, which provides “cushion” from the point of view of financiers. This

allows arbitrageurs to tackle the arbitrage more aggressively early on. As discussed in the

literature review, position limits delay risk-sharing (see Table 1).17

My mechanism provides a rationale for (in specific cases) imposing financial constraints

on imperfectly competitive arbitrageurs, not in favor of market power itself. A standard

argument in favor of market power is that pecuniary externalities arise from the fact that

agents do not internalize their price effects. Thus, given constraints, it may be beneficial

to give traders market power to curb externalities.18 Here the competitive equilibrium is

constrained efficient, so this mechanism does not arise. The mechanism of this paper is

different, and to the best of my knowledge novel: given market power, which is a feature of

many financial markets, imposing financial constraints may improve liquidity and welfare,

because of the way constraints interact with arbitrageurs’ market power.

Two additional policy implications arise: first, the model may explain why large financial

institutions fund themselves more cheaply. It is often argued that this funding cost advantage

results from an implicit government put.19 In my model, large arbitrageurs are always less

severely constrained than competitive arbitrageurs, because their profits lead to a larger

16One aspect that I abstract from in this paper is that binding constraints may lead to firesales and
even default in equilibrium. Thus, the benefits of being constrained should be weighted against the costs
generated by firesales and default. However, to the best of my knowledge, such benefits have not been
highlighted before.

17The model with fixed margins can only be analysed numerically, so this claim is based on numerical anal-
ysis. The model with position limits (capacity constraints) is analytically tractable. Fixed margins and po-
sition limits are imposed by CCPs or exchanges in some derivatives markets. Interestingly, for non-centrally
cleared derivatives, regulators expect sophisticated investors to use VaR models, but allow unsophisticated
ones to use a schedule of fixed margins, see https://www.bis.org/bcbs/publ/d475.pdf, Appendix A.

18Eisenbach and Whelan (2019) show that this argument may not always go through when imperfectly
competitive traders differ in their trading needs. On a different note, Glosten (1989) shows that arbitrageur’s
market power can have benefits in a model of asymmetric information. When arbitrageurs (in Glosten’s
context, market-makers) are competitive, the market may break down when the adverse selection problem
becomes extreme. A monopolistic market-maker (e.g. a specialist) can average profits over time, which
reduces the likelihood of a market break-down.

19See e.g. Acharya, Cooley, Richardson and Walter (2010).
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“pledgeable income”.20 Second, the model highlights an unintended consequence of capital

requirements regulation. They may increase traders’ market power by limiting their ability

to trade in some states.21

Related literature. To the best of my knowledge, this paper is the first to solve

the dynamic problem of imperfectly competitive traders under realistic financial constraints

when all investors are rational. As a result, the paper contributes to three strands of the

literature. My first contribution is to extend the literature on the limits of arbitrage, which

is cast into the competitive framework, to imperfect competition. I build on Gromb and

Vayanos (2002, 2010) and Brunnermeier and Pedersen (2009). Like the former, I carry out

a welfare analysis.22

Second, I contribute to the literature on imperfect competition in financial markets by

analyzing the interaction between market power and financial constraints. Several papers

in this active literature model all investors as rational and emphasize the parallel with the

durable goods problem studied by Coase (1972), but not study the effects of financial con-

straints.23 Instead, Attari and Mello (2006) do study the effects of financial constraints on

a monopolistic arbitrageur, but do not model all agents as rational, assuming that the arbi-

trageur faces exogenous demand curves, i.e. that hedgers do not optimize. This assumption

rules out a welfare analysis and eliminates the Coasian dynamics, which are central to my

results.

Finally, the paper contributes more broadly to the literature on durable goods monopoly.

In IO, commitment devices lead to a reduction in consumer surplus. However, here financial

constraints may lead to a Pareto improvement relative to a no-constraint case, even though

they may provide some form of commitment. In this regard, it is instructive to contrast

my results to McAfee and Wiseman (2008), where the monopolist pays a small cost to set

up ex-ante a maximum capacity per period (in the context of financial markets, capacity

constraints are similar to position limits, which are used in some derivatives markets). With

such capacity constraints, I find that hedgers are worse off than in all other cases. The

20Related ideas have been developed in the banking literature. For instance, Keeley (1990) shows that
banks with market power are more likely to act prudently with regard to risk-taking, because they risk losing
valuable bank charters.

21In the absence of constraints, the mere continuous presence on the market of a trader or his tendency to
break up trades to execute block orders are factors that erode her market power. Indeed, rational investors
can anticipate better prices for liquidity in the future and shift their demand.

22Other recent papers on financially constrained arbitrage include Kondor and Vayanos (2018) and Dávila
and Korinek (2017), among others.

23See, e.g., Basak (1997), Vayanos (1999), Kihlstrom (2000), Pritsker (2009), DeMarzo and Urosevic
(2007), Marinovic and Varas (2019).
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reason is that capacity constraints do not eliminate retrading but delay risk sharing. Indeed,

to avoid unused capacity at time 1, the arbitrageur chooses a “small” capacity and trades

at maximum capacity over time. This decreases liquidity at time 0 relative to the no-

commitment case. Further, if the arbitrageur can set up a time-dependent capacity, he

will simply choose one inducing the perfect commitment outcome. By contrast, VaR-based

constraints induce both faster risk sharing and sufficient retrading. This is possible because

their tighthness depends endogenously on the trading process. It is this endogeneity that

overturns their welfare effects as commitment devices.24

Commitment/Constraint Risk sharing Retrading Hedgers Arbitrageurs

Perfect commitment Earlier No Worse off Better off

Capacity constraints (position limits) Delayed Yes Worse off (Quasi)

MacAfee and Wiseman (2008) Indifferent

(price-based) Earlier Yes Better off Better off

financial constraints (sometimes) (sometimes)

Table 1: Welare effects relative to the no constraint, no commitment equilibrium (u0, u1)

2 Model

I consider a standard model of financially constrained arbitrage, where arbitrageurs exploit

price differences between two identical assets over time, while facing realistic capital con-

straints.

Assets and timeline. The model has three periods, indexed by t = 0, 1, 2. Financial

markets are open at time 0 and time 1, and consumption takes place at time 2. There are

two identical risky assets, A and B, and a risk-free asset with return rf normalized to 0.

The risky assets trade in segmented markets at price pkt , k ∈ {A,B}. They are both in zero

net supply and pay the same dividend D2 at time 2, with D2 = D + ε1 + ε2. The dividend

news εt are iid random variables with a symmetric bounded support [−ē, ē], a mean of 0 and

variance σ2. The news εt is revealed to all investors at time t before trading. There are two

types of investors: hedgers and arbitrageurs.

24Because of this endogeneity, there is also a feedback loop between financial constraints and trading
strategies, which may lead to multiple equilibria. Equilibria may coexist, because arbitrageurs choose quan-
tities, but not hedgers’ expectations. However, hedgers’ expectations about whether constraints bind or not
in the future determine market depth today, and therefore the arbitrageur’s incentives to trade in a way that
makes the constraint binding or not.
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Hedgers. In each market, there is a continuum mass one of risk-averse competitive hedgers

with mean-variance preferences: U
(
wk2
)

= E
(
wk2
)
− a

2
V
(
wk2
)
.25 Every period, hedgers

receive endowment shocks skεt that are correlated with the dividend of the risky asset, and

will therefore affect their demand for the risky asset. At time t, hedgers’ weath at is

wkt = wkt−1 + skεt + Y k
t−1(pkt − pkt−1), (1)

i.e. hedgers’ wealth changes because of capital gains on the risky asset (third term) and

the endowment shocks. For simplicity, the magnitude of the shock, sk, is deterministic,

constant over time, and symmetric across markets.26 That is, at time t = 1, 2, hedgers

in market A receive a shock sAεt = sεt, while hedgers in market B receive opposite shocks,

sBεt = −sεt. As a result, A-investors have a low valuation for the risky asset, and B-investors

a high valuation. Market segmentation prevents hedgers from sharing risk across markets,

although they could perfectly insure each other. Therefore, assets A and B may trade at

different prices in their respective market, even though their cash-flows are identical. Since

the endowment shock will shift hedgers’ demand up or down by |s|, it is convenient to think

of s as the net supply (in absolute value) in each market (see Section 3.2 for additional

details).

Arbitrageur(s). There are n ≥ 1 identical arbitrageurs, who can participate in all markets,

but face financial constraints, described below. Arbitrageurs have no initial holdings of the

risky asset but own initial wealth (capital) W i
0 = W0

n
, where W0 is the total capital in

the arbitrage industry. I focus on the comparison between the monopolistic (n = 1) and

competitive cases in the text and consider the more general oligopolistic case in the Internet

Appendix.

Arbitrageurs also strictly increasing utility over final wealth u (W2). Because they have

access to all markets, arbitrageur’s final wealth is W i
2 =

∑
k∈{A,B}X

i,k
1 D2 +Bi

1, where X i,k
t =

25Mean-variance preferences are also used for tractability reasons in, e.g., Banerjee and Green (2015).
With mean-variance preferences, I consider time-consistent trading strategies.

26The assumption of constant shock magnitude s can be relaxed at the cost of increased complexity but
is not essential for the main results. Similarly, Coasian dynamics would remain in the presence of stochastic
shocks. Relaxing the assumption of deterministic shocks, however, would require a separate analysis, as
additional effects would arise. As shown in Gromb and Vayanos (2002), stochastic shocks lead to pecuniary
externalities, so that the competitive equilibrium is not constrained efficient anymore. Market power would
lead arbitrageurs to internalize some of the pecuniary externalities, opening an interaction that is not present
with deterministic shocks, where the competitive equilibrium is constrained efficient. Eisenbach and Phelan
(2019) start from a constrained inefficient equilibrium and study the effect of giving liquidity suppliers market
power, albeit in a static setting. I discuss the bearing of the assumption of deterministic shocks for the results
further in Section 7.
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X i,k
t−1 + xi,kt denotes the end-of-period position at time t in asset k of arbitrageur i, xi,kt

the corresponding trade, and Bi
t = Bi

t−1 −
∑

k∈{A,B} x
i,k
t p

k
t , the arbitrageur’s risk-free asset

holdings at the end of period t. Wealth consists initially only of cash, W i
0 = Bi

−1.

When n is finite, arbitrageurs internalize their own price impact in both A and B mar-

kets. Hedgers’ inverted demand and market clearing define a price schedule, derived below,

that links the arbitrageur’s trade to the equilibrium price in each market. An arbitrageur

chooses trades xi,kt given these price schedules and other arbitrageurs’ trades x−i,kt (Cournot

competition).

Financial constraints. Arbitrageurs need capital to trade the risky assets. I model the

financial constraint in the same fashion as Gromb and Vayanos (2002, 2010) and Brunnner-

meier and Pedersen (2009). Arbitrageurs must fully collateralize their positions in each mar-

ket. The maximum possible loss on the position over the next period in market k ∈ {A,B}
is maxpkt+1

Xk
t

(
pkt − pkt+1

)
. The arbitrageur’s wealth must cover the total maximum loss on

each account:

Wt ≥
∑
k=A,B

max
pkt+1

Xk
t

(
pkt − pkt+1

)
(2)

The presence of the financial constraint implies that arbitrageurs may not be able to fully

eliminate the price differences between A and B assets. The modeling of the constraint also

implies that asset A cannot be used as collateral for asset B (and vice-versa). In other words,

cross-collateralization is not allowed, which can be viewed as a consequence of the assumption

of market segmentation. In practice, cross-collateralization is often limited by financiers who

are concerned about imperfect correlation between assets (although this would not be an

issue here). Sometimes traders also voluntarily avoid cross-collateralization in order to avoid

revealing their trading strategies.27

Given the symmetry assumptions, and in line with the literature, it is natural to focus

on equilibria in which the arbitrageur holds opposite positions in both assets, i.e. X i,A
t =

−X i,B
t = X i

t . Given that arbitrageurs start with no endowment in the risky assets, this

implies that trades are symmetric xi,At = −xi,Bt = xit, for t = 0, 1. Thus, we can rewrite the

27For instance, Pérold (1999) reports: “LTCM inernalized most of the back-office functions associated
with contractual arrangements, due to the complexity and and advanced nature of many of the firm’s trades.
This also helped maintain the confidentiality of its positions. LTCM chose Bear Stearns as a clearing agent
partly because Bear Stearns was committed to customer business rather than being focused on proprietary
trading, and thus there were fewer conflicts of interest.”
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arbitrageur’s budget constraint as follows:

W i
2 = W i

0 +
∑
t=0,1

xit∆t, with ∆t = pBt − pAt (3)

The equation shows that by setting up opposite position in each leg of the arbitrage, arbi-

trageurs eliminate all fundamental risk and derive all their profits from exploiting the spread

∆ between the prices of the two assets.28 Symmetry assumptions also lead to opposite risk

premia on assets A and B, which simplifies the financial constraint. Let Dt denote the con-

ditional expected value of the asset at time t, i.e. Dt = Et(D2) = Dt−1 + εt. Then the risk

premium in market A is Dt − pAt = ∆t

2
and opposite in B. Thus, we can write (minus) the

price change in each market as pkt − pkt+1 = ∆t+1−∆t

2
− εt+1. Then we can rewrite the financial

constraint (2) as follows:

W i
t ≥

∑
k=A,B

max
pkt+1

X i,k
t

(
pkt − pkt+1

)
≥ max

εt+1

X i
t

(
∆t+1 −∆t

2
− εt+1

)
+ max

εt+1

−X i
t

(
−∆t+1 −∆t

2
− εt+1

)
≥ 2X i

t

(
∆t+1 −∆t

2

)
+ max

εt+1

X i
t (−εt+1) + max

εt+1

−X i
t (−εt+1)

≥ 2|X i
t |ē−X i

t (∆t −∆t+1) (4)

The last step follows from the symmetric support of the distribution. Note that the constraint

may bind upwards or downwards. An upward-binding constraint generates an upper bound

on how much the arbitrageur can hold, e.g. for a long position, X i
t ≤

W i
t

2ē−(∆t−∆t+1)
. Instead,

a downward-binding constraint generates a lower bound on the arbitrageur’s position, e.g.

for short positions, the arbitrageur needs to hold at least X i
t ≥

W i
t

−(2ē+∆t−∆t+1)
.

It is convenient to rewrite constraint (4) as

f+
t (X i

t)1Xi
t≥0 + f−t (X i

t)1Xi
t<0 ≥ 0 (5)

where f+
t (X i

t) = W i
t−2X i

t ē+X
i
t (∆t −∆t+1) and f−t (X i

t) = W i
t +2X i

t ē+X
i
t (∆t −∆t+1). The

spread change ∆t−∆t+1 will itself depend on the arbitrageurs’ positions X i
t , so the constraint

is non-linear in X i
t . I denote X̄ i

t the largest long position satisfying arbitrageur’s i constraint

at time t given other arbitrageurs’ positions, i.e. f+
t (X̄ i

t) = 0. Since arbitrageurs have no

endowments, X̄ i
0 = x̄i0. Because wealth depends on initial positions, and X i

t = X i
t−1 +xit, X̄1

28I assume that B−1 = W0, i.e. the initial wealth is just the endowment in cash.
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is a function of the previous position x0.

VaR / margins. The financial constraint corresponds to a one-period VaR constraint at the

100 percent level (as implied by the assumption of full collateralization). The 100 percent

level is for simplicity only, as it rules out default in equilibrium and thus makes welfare

comparisons simpler29, but the constraint is motivated by real-world regulations and risk

management practices of financiers.30

The VaR constraint can also be written as a margin constraint. Suppose that the ar-

bitrageur holds a long position, X i
t ≥ 0. We can rewrite the right-hand side of inequality

(4) as 2m+
t X

i
t , where m+

t = ē − 1
2

(∆t −∆t+1) denotes the margin required on the posi-

tion. Margins increase with fundamental risk ē and decrease with the expected price change

Et(p
k
t+1)−pkt = ∆t−∆t+1

2
. A riskier asset leads to a larger potential loss on the position, which

induces financiers to ask for more collateral. Instead, a higher expected return increases the

“pledgeable income”, reducing the margin requirement. Financiers reduce margins when

they expect the spread to decrease, i.e. ∆t+1 ≤ ∆t. To this extent, margins play a stabiliz-

ing role for asset prices. 31

Terminology. In the literature, market liquidity refers to the price spread ∆t ≡ pBt − pAt ,

which resembles a bid-ask spread. However, market liquidity is a multifaceted concept. One

measure of liquidity in the model is market depth, given by the slope of hedgers’ inverted

demand. Thus, to avoid ambiguity, I use spread instead of market liquidity for ∆t. Further,

I use the expression “provide liquidity” as synonym to “provide insurance/risk-sharing”.

Funding liquidity relates to the tightness of the arbitrageur’s financial constraint.

In sum, the model is close to Gromb and Vayanos (2002), but imposes three simplifi-

cations: deterministic and constant hedging needs, two trading rounds, and mean-variance

preferences. I discuss further the bearing of these assumptions in Section 7, after presenting

the main result.

29In particular, there is no need to compute the welfare of financiers on the other side of the constraint.
30For instance, Brunnermeier and Pedersen (2009), Appendix A, provide additional institutional details

to motivate the analysis of this type of constraint. Bruche and Kuong (2019) obtain a similar constraint in
a static setting when deriving optimal contract between financiers and arbitrageurs.

31Brunnermeier and Pedersen (2009) obtain a similar constraint in their benchmark case with informed
financiers. They also consider a situation in wihch financiers are assumed to be uninformed. In this case,
uncertainty about whether the mispricing will decrease or not in the future can lead to procyclical, destabi-
lizing margins. Brunnermeier and Pedersen show that a margin spiral, in which low liquidity leads to higher
margins, which further limits the ability of arbitrageurs to provide liquidity, can result from the presence of
uninformed financiers. This margin spiral complements and amplifies the loss spiral created by the financial
constraint (“a decrease in arbitrageurs’ capital impairs their ability to provide liquidity and eliminate the
mispricing, which in turn reduces their capital”). Under the assumptions of this paper, there can be a loss
spiral, but no margin spiral.

13



3 Benchmarks

To highlight the novel interaction betwen market power and financial constraints of the

model, I first review the effect of each ingredient separately.

3.1 Financial constraints without market power

In a competitive economy, arbitrageurs are aggregated into a representative competitive

arbitrageur endowed with aggregate capital W0. A competitive equilibrium is a collection of

prices and trades such that (i) hedgers’ holdings are optimal given prices, (ii) the arbitrageur’s

holdings are optimal given prices and financial constraints, and (iii) markets clear. I denote

Xt the position of the representative arbitrageur; a ∗ denotes the competitive outcome in

the paper.

Proposition 1 (Gromb and Vayanos, 2002) There exists a unique competitive equilib-

rium:

� If W0 ≥ ω∗ ≡ 2sē, the financial constraint never binds, the representative arbitrageur

absorbs the supply s, i.e. X∗t = s at t = 0, 1, and the spread between assets A and B is

always 0: ∆0 = ∆1 = ∆2 = 0

� If 0 ≤ W0 < ω∗, the financial constraint binds at t = 0 and t = 1 and the spread between

assets A and B narrows over time and is closed only at t = 2, i.e. ∆0 > ∆1 > ∆2 = 0.

The representative arbitrageur’ positions in asset A, x̄0 and X̄1, are the largest (long)

positions allowed by the financial constraints, and satisfy f+(X̄t) = 0.

The equilibrium links the spread ∆ to arbitrageurs’ initial capital W0, and takes a simple

form: if arbitrageurs’ capital is large enough, then arbitrageurs eliminate the arbitrage op-

portunity; if instead arbitrageurs start with lower capital, then the financial constraints are

binding, and assets A and B trade at a positive spread, which decreases over time. An

increase in the supply s or in the fundamental risk (increase in ē) tightens proportionately

the financial constraint. This is because the worst possible loss increases, so arbitrageurs

need to post more collateral.

A drop in arbitrage capital has the following consequences:

Corollary 1 (Comparative Statics in the Competitive Benchmark) Suppose that com-

petitive arbitrageurs are constrained, i.e. 0 ≤ W0 < ω∗. A decrease in capital increases the

14



spread, even more so if capital was initially low:

∂∆∗t
∂W0

< 0,
∂2∆∗t
∂W 2

0

< 0

Instead, if the constraint is slack, equilibrium spreads and positions are independent of capital.

Proof. The comparative statics follow from Proposition 1 and Corollary 4 (Appendix A.1).

3.2 Market power (monopoly) without financial constraints

Definition 1 The price schedule is a function pkt (Xt) : R → R mapping the arbitrageur’s

position Xt to the equilibrium price in market k. A monopolistic equilibrium consists in ar-

bitrageur’s and hedgers’ trades (xkt , y
k
t )
k∈{A,B}
t=0,1 and spreads ∆t, such that (i) hedgers’ demand

is optimal given the equilibrium price path in each market, and (ii) the arbitrageur’s trades

maximize expected utility given the price schedule.32

In Lemma 2 in the Appendix, I show that at t = 0, 1, hedgers’ demand in market A is

Yt = E(pt+1)−pt
aσ2 − s. Inverting the demand and imposing market-clearing gives the price

schedule faced by the arbitrageur:

Lemma 1 (Price Schedules) Suppose that n = 1. At t = 0, 1, the price schedule faced

the monopolist in market A is

pt(Xt) = E(pt+1)− aσ2(s−Xt) (6)

Proof. See Appendix A.2.

This equation shows that the equilibrium price today is increasing in the anticipated price

next period. A similar dynamic relationship between prices arises in textbook presentations

of Coasian dynamics, see e.g. Tirole (1988), p. 81. To see the intuition, consider hedgers in

market A, who are natural sellers of the asset. When they anticipate a high price tomorrow,

their willingness to accept a low price to trade today is reduced.

Thus, while the arbitrageur does not face competition from other traders, he competes

with himself over time: hedgers understand at time 0 that the arbitrageur will retrade and

provide additional liquidity at time 1.

32Recall that xt = xAt = −xBt . As usual in the IO and finance literature, I assume that deviations by a
zero mass of hedgers do not affect the course of the game.
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The liquidity received at time 0 is durable from hedgers’ point of view, because they

remain exposed to the same source of risk over time. For instance, hedgers in market A

(who have some willingness to sell) will suffer less from the endowment shock at time 1 if

they have already reduced their positions at time 0.33 Risk-sharing is thus akin to a durable

“insurance”, and is subject to Coasian dynamics. As is well-known from IO, a monopoly can

evade Coasian dynamics when he has commitment power. I now compare the equilibrium

under no commitment and perfect commitment.

Proposition 2 (No Commitment Equilibrium) The equilibrium has the following prop-

erties:

1. The arbitrageur buys less than the supply in each market and increases his total position

over time: xu0,u1

0 = 2
5
s, Xu0,u1

1 = 7
10
s.

2. The spread decreases over time: ∆u0,u1

0 = 9
5
aσ2s, ∆u0,u1

1 = 3
5
aσ2s.

3. The arbitrageur earns strictly positive trading profits: Ωu0,u1

0 = W0 + 9
10
aσ2s2.

Proof. This is a special case of Proposition 4.

As the arbitrageur has market power, he does not fully integrate markets, even though

there are no financial constraints. Further, the arbitrageur splits trades to control his price

impact. Because the asset is conditionnally riskier at time 0, the arbitrageur trades more

aggressively in the first trading round. Indeed, hedgers are more desperate to share risk at

time 0 than at time 1.34 This higher willingness to trade implies that price impact is higher

at time 0 than at time 1.35 Since markets are not fully integrated, prices do not converge

and the arbitrageur realizes trading profits by earning the spread.

Proposition 3 (Perfect Commitment Equilibrium) Suppose that the arbitrageur can

commit to a trading strategy. Then:

1. The arbitrageur trades more than in the no-commitment case at time 0 and does not

trade at time 1: xpc0 = Xpc
1 = s

2
.

33Note that this effect is maximal under our assumptions, because the exposure does not change sign.
34The uncertainty about the fundamental between 0 and 1 makes the capital gain uncertain, which ensures

that hedgers’ demand is downward-sloping at time 0. Hedgers have no discount factor in the model, but
since hedgers are risk averse the higher risk at time 0 plays a similar role as a discount factor.

35This feature of the model is broadly consistent with the empirical evidence. See for instance Zarinelli
et al. (2015): “for a given execution size, earlier transactions of the metaorder change the price more than
later transactions”, p.5. Hence, although stylized, the model captures salient features of real markets.
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2. Equilibrium spreads are larger at time 0 and time 1: ∆pc
0 = 2aσ2s and ∆pc

1 = aσ2s.

3. The arbitrageur is better off, and hedgers are worse off: Ωpc
0 = W0 + aσ2s2 > Ωu0,u1

0 =

W0 + 9
10
aσ2s2 and Upc

0 = −3
4
aσ2s2 < Uu0,u1

0 = −27
40
aσ2s2.

Proof. See Internet Appendix.

If the arbitrageur can commit to a trading strategy, he will trade only at time 0, elimi-

nating competition with himself over time. Note that if the arbitrageur were to trade only

at time 1, he would forego the benefit of the extra demand for risk-sharing at time 0. With

perfect commitment ability, not surprisingly the arbitrageur limits further the amount of

risk-sharing, hurting hedgers’ welfare, increasing the spreads and his own trading profits

relative to the no-commitment case.

4 Financially constrained monopoly

The definition of equilibrium remains the same as in Section 3.2, with the extra requirement

that in each period the monopoly’s positions must satisfy the financial constraints.

Equilibrium drivers. Inspecting the arbitrageur’s financial constraints (4) and the price

schedule (6) shows that the equilibrium will be determined by two key variables: the arbi-

trageur’s capital W0 and the risk benefit ratio ρ, defined as follows.

Notation 1 (Risk Benefit Ratio) Let ρ ≡ ē
aσ2s

denote the risk benefit ratio.

The risk benefit ratio is a cost benefit ratio of the trade from the arbitrageur’s point of

view. Note that risk appears both in the nominator and the denominator, in different forms.

In the numerator, ē measures by how much the fundamental can go up or down relative

to the conditional mean, thus it measures the largest potential gain or loss due to the

fundamental. In the denominator, the product aσ2s measures the (maximum) profitability

of the arbitrageur’s trade in a given market. It is determined by the amount of hedging

needs from hedgers. Hedgers are more desperate to share risk if the asset is riskier (larger

σ2), if their endowment shock is larger (larger s), or if they are more risk averse (larger a).36

Because ē represents the “tail” risk of the fundamental and σ2 is its variance, ρ is larger

when the distribution of the fundamental has less mass in the tails.

36Alternatively, one can think of the inverse of the risk benefit ratio as the maximum profit per unit of
maximum risk, for each leg of the arbitrage.
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Equilibrium multiplicity. Lemma 1 shows that the price schedule at time 0 depends on

the expected price at time 1, which itself depends on whether the arbitrageur’s constraint is

binding at time 1. But the tightness of the constraint itself depends on prices. Therefore, in

the presence of financial constraints, equilibria can be self-fulfilling and multiple equilibria

coexist. Indeed, the arbitrageur chooses a position, but does not control hedgers’ expecta-

tions. The anticipation of a binding constraint next period affects hedgers’ demand today,

and the price at which they are ready to trade.37 But this price matters for the tightness of

the financial constraints.

4.1 Equilibria with a slack constraint at time 1

Suppose that at time 0 hedgers anticipate that the arbitrageur is unconstrained at time 1.

I conjecture that the arbitrageur chooses a position x0 such that his time-1 constraint is

slack, and verify under which conditions this holds. That is, given hedgers’ anticipations u1

(for unconstrained at time 1), I determine under which conditions the arbitrageur chooses a

position x0 leading to state l = {u1, c̄1, c1} at time 1, where c̄1 denotes an upward-binding

constraint and c1 a downward-binding constraint. Denoting Ωu1,l
0 the value function associ-

ated with hedgers’ expectations u1 and state l, the arbitrageur chooses x0 such that his time

0 expected utility Ωu
0 is Ωu

0 = max (Ωu1,u1

0 ,Ωu1,c̄1
0 ,Ω

u1,c1
0 ). There exists an equilibrium with a

slack constraint at time 1 iff Ωu
0 = Ωu1,u1

0 .

Given that the arbitrageur takes offsetting positions across markets, his wealth is risk-

free, and only the trading profits in each period enter his value functions. Each value function

Ωu1,l
0 is thus defined as follows:

Ωu1,l
0 = max

x0∈F0
0

W0 + x0∆u1
0 (x0) + Ωl

1(x0)

s.t. ∆u1
0 (x0) = 2aσ2(s− x0) + ∆u1

1 (x0)

+ additional consistency conditions

where F0
0 is the set of time-0 positions satisfying the financial constraint (4) at time 0,

∆u1
0 (·) ≡ pBt (·) − pAt (·) is the time-0 spread schedule, i.e. the difference between the price

schedule in each market when hedgers assume that the arbitrageur’s constraint is slack at

time 1, and Ωl
1 is the continuation value at time 1, given state l = {u1, c̄1, c1}. The spread

37Hegders anticipate prices, but since the model is of complete information and given the price schedule
(6), there is an equivalence between the price next period and the arbitrageur’s position. Thus, when I use
the expressions “hedgers anticipate binding constraints”, I mean the price induced by binding constraints.
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schedule is fixed, in the sense that I keep hedgers’ anticipation u1 fixed. However, given this

schedule, the arbitrageur internalizes that his trade leads to a binding or slack constraint and

the associated continuation value at time 1 (i.e. Ωl
1 depends on l, not u1). The associated

consistency conditions, provided in the Appendix, ensure that the arbitrageur’s actions are

time-consistent, e.g. on the equilibrium path, he has indeed sufficient wealth at time 1 to

hold his preferred position.

Proposition 4 (Equilibria with slack time-1 constraint) There exist thresholds ωu0 ,

ωu1 , and ωf , that define four regions in terms of initial arbitrage capital:

1. In the first region, W0 ≥ max(ωu0 , ω
u
1 ), arbitrage capital is abundant, both constraints

are slack in equilibrium, and the arbitrageur holds his preferred positions xu0,u1

0 and

Xu0,u1

1 given in Proposition 2 (u0,u1 equilibrium).

2. In second region (max(ωf ,min(ωu0 , ω
u
1 )) ≤ W0 < max(ωu0 , ω

u
1 )) and third regions (max(0, ωf ) ≤

W0 < min(ωu0 , ω
u
1 )), either there is no equilibrium with a slack constraint at time 1 (no

u1), or there exists an equilibrium in which the constraint binds at time 0 but not at

time 1 (c0,u1 equilibrium).

In the latter, the arbitrageur holds a smaller position at time 0, allowing him to hold

his preferred position Xu
1 (x0) at time 1 without violating the constraint: xc0,u1

0 < xu0,u1

0 ,

Xc0,u1

1 = Xu
1 (xc0,u1

0 ) =
s+x

c0,u1
0

2
. This equilibrium arises in particular in the second

region when the risk benefit ratio is sufficiently low (ρ < 7
10

).

3. In the fourth region, 0 ≤ W0 < max(0, ωf ), there is little arbitrage capital, and thus

there is no equilibrium with a slack constraint at time 1 (no u1).

Proof. See Appendix C.

The equilibrium takes a simple, intuitive form. When arbitrage capital is sufficiently

abundant, constraints never bind, and the arbitrageur holds his preferred positions. In the

opposite case, where capital is particularly scarce, the arbitrageur cannot trade in such a

way that the constraint remains slack at time 1. In between these two regions, either we are

in the former case, or in an intermediate case, where the arbitrageur reduces positions at

time 0 to ensure that he can hold his preferred position at time 1. In other words, in such

equilibria, the arbitrageur decides to save capital at time 0 to ensure that, given the time 0

position, he can trade his preferred quantity at time 1. The different cases are represented

in Figure 1. To vary the risk benefit ratio, I hold hedgers’ risk aversion a, the fundamental

ē and the variance σ2 fixed, and vary the supply s.
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In the second and third regions, the equilibrium can be determined analytically, but is not

very tractable.38 Thus, in Figure 2, I solve numerically for the equilibrium. The parameters

chosen here show a typical case. Panel a shows in red the equilibrium that prevails in the

regions where two cases may arise. Panel b eliminates the redundant information of the

picture. The resulting equilibrium representation is strikingly simple. For ρ ≥ 7
10

(left-hand

side of the picture), either capital is large enough such that no constraint binds and the

arbitrageur holds his preferred positions, or the arbitrageur has not enough capital to keep

the constraint slack at time 1. When the risk benefit ratio is lower, an intermediate case

arises, where the arbitrageur’s capital is relatively low, but sufficient to allow him to keep his

constraint slack at time 1. Doing so, however, requires to trade less at time 0. Intuitively,

the arbitrage is profitable enough relative to the risk of the position to relax the constraint

at time 1. This is because wealth at time 1 increases sufficiently thanks to the capital gains

made by the arbitrageur at time 0.

There may be no equilibrium with a slack constraint at time 1 for two reasons. Either

there is not enough capital, so that it is impossible for the arbitrageur to keep the constraint

slack and hold his preferred position at time 1 (this is so if W0 < ωf , where the superscript f

stands for floor). Or it is possible but not optimal for the arbitrageur to do so. When capital

is not very abundant, and the risk benefit ratio is high enough, keeping enough dry powder

at time 0 to trade his preferred position at time 1 is costly for the arbitrageur. It requires

to reduce the time 0 trade away from his preferred level. In that case, the arbitrageur may

thus deviate from the conjectured strategy and make the constraint binding at time 1. The

loss from being constrained at time 1 may be more than offset by the benefit of trading his

preferred position at time 0 (which is not necessarily the same amount as if the constraint

is slack at time 1). This trade-off yields an endogenous threshold (represented by a dotted

line in panels a and b of Figure 2) under which there is no equilibrium with a slack time 1

constraint.

38The reason is that given hegders’ anticipations, and thus the price schedule, one must check that it is
indeed optimal for the arbitrageur to follow the conjectured strategy. However, deviations involve making
the constraint binding at time 1. Such binding constraint implies that the effect of the position x0 on the
time 1 profit is no longer quadratic, so that first-order conditions become highly non-linear. The solution
can be written in closed-form, but is not very tractable. Proposition 13 in the Appendix provides somewhat
more detailed equilibrium conditions.
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Figure 1: Equilibria with slack time-1 constraint. The parameters are a = σ = 1, ē = 1.5.

4.2 Equilibria with binding time-1 constraint

There exist equilibria, in which the constraint binds upwards at time 1. However, I show

in the Appendix that there is no equilibrium in which the constraint binds downwards. It

is intuitive: since arbitrageurs naturally want to go long the spread, the main issue arising

from limited capital is that they cannot go long as much as they wish, i.e. that the constraint

binds upwards. I proceed as in the previous section: I conjecture an equilibrium strategy

and determine under which conditions it holds in equilibrium.

Proposition 5 (Equilibria with binding time-1 constraint) Let ωp0 and ωp1 denote two

thresholds. There are equilibria in which the arbitrageur’s constraint binds upwards at time

1, as follows.

1. If 0 ≤ ρ < 3
4
, then ωp1 < ωp0, and there are three regions in terms of arbitrage capital:

(a) In the first region, with 0 ≤ W0 < max(0, ωf ), the arbitrageur’s constraint binds

upwards at time 0 and time 1 in equilibrium (c0, c1 equilibrium). This equilibrium

is the same as in the constrained competitive case, for a given level of capital. The

arbitrageur holds the largest (long) positions satisfying the financial constraints at

each date: xc0,c10 = x̄0, and Xc0,c1
1 = X̄1(x̄0).
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Figure 2: Equilibria with slack time-1 constraint. The parameters are a = σ = 1, ē = 1.5.

(b) In the second region, with max(0, ωf ) ≤ W0 < max(0, ωp1), there are two cases:

there is either no equilibrium in which the arbitrageur’s constraint binds upwards

at time 1 (no c1), or an equilibrium where both constraints bind as in (a).

(c) In the third region, with max(0, ωp1) ≤ W0 < ωp0 or ωp0 ≤ W0, there is no equilib-

rium in which the arbitrageur’s constraint binds upwards at time 1 (no c1).

2. If ρ ≥ 3
4
, then ωp1 > ωp0, and there are four regions in terms of arbitrage capital:

(a) In the first region, with 0 ≤ W0 < ωf , the equilibrium is c0, c1, as in case 1a.

(b) In the second region, with ωf ≤ W0 < ωp0, the equilibrium is the same as in 1b.

(c) In the third region, with ωp0 ≤ W0 < ωp1, there may exist an equilibrium in which

the abritrageur’s constraint binds upwards at time 1 and is slack at time 0 (u0, c1

equilibrium). In this equilibrium, the arbitrageur holds the same amount as in the

perfect commitment case at time 0, xu0,c1
0 = xpc0 , and the largest position satisfying

the constraint at time 1: Xu0,c1
1 = X̄1(xu0,c1

0 ).

(d) In the fourth region, with ωp1 ≤ W0, there is no equilibrium in which the arbi-

trageur’s constraint binds upwards at time 1 (no c1), as in 1c.

For the same reason as with the u1 equilibrium, some cases have an analytical albeit

rather intractable solution. So I proceed as before and illustrate Proposition 5 graphically.I

determine the numerical solution in Figure 3. The graph is a typical case, and does not

critically depend on the choice of parameters. Panel b of Figure 3 shows the equilibrium

regions. The intuition for the form of the equilibrium is simple. With abundant capital,
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there is no equilibrium in which the arbitrageur’s constraint binds at time 1 (no c1). With

little capital, constraints are likely to bind not only at time 1, but also at time 0 (c0, c1).

With intermediate capital, the most interesting case arises when the risk benefit ratio is

large enough (ρ ≥ 3
4
) and arbitrage capital is intermediate (ωp0 ≤ W0 < ωp1). In this case,

the arbitrageur’s constraint binds at time 1, but not at time 0. The conditions on arbitrage

capital for this equilibrium are intuitive. The tresholds ωpt for this partly constrained equi-

librium are associated with the time t constraints. There must be enough capital for the

arbitrageur to be able to hold xu0,c1
0 at time 0 (W0 ≥ ωp0). However, capital cannot be large

enough (W0 < ωp1), for otherwise, the constraint would not bind at time 1.

Holding a larger position at time 0 is a necessary condition for the constraint to bind at

time 1. Doing so, the arbitrageur pledges more capital at time 0, increasing the chance to

be constrained at time 1 (of course, not only the position but also the depth of the market,

and therefore the arbitrageurs’ trading profits, are different across the two equilibria). This

equilibrium arises only if the risk benefit ratio is large enough. It makes sense: for the

constraint to bind at time 1, it must be that the position is sufficiently risky relative to

profits. Otherwise, trading is not very capital intensive, and the arbitrageur will be free to

re-optimize when time 1 comes.
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Figure 3: Equilibria with binding time-1 constraint. The parameters are a = σ = 1, ē = 1.5.

Having a sufficiently low level of capital does not only ensure time consistency. A low

W0 also ensures that deviating from being constrained at time 1 is not attractive. With

sufficiently low capital, the arbitrageur must take a small position at time 0 to ensure that his

time-1 constraint is slack. This reduces his time-0 profit, and thus prevents the arbitrageur

from fully benefiting from the deviation.
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4.3 Coexistence

Proposition 6 (Equilibria with Slack and Binding Time-1 Constraints May Coexist)

� There is a unique equilibrium when arbitrage capital is either sufficiently low or suffi-

ciently high:

– If 0 ≤ W0 < max(0, ωf ), the unique equilibrium is c0, c1.

– If W0 ≥ max(ωu0 , ω
u
1 , ω

p
1), the unique equilibrium is u0,u1.

� When capital is intermediate, i.e. if max(0, ωf ) ≤ W0 < max(ωu0 , ω
u
1 , ω

p
1), multiple

equilibria may coexist depending on the level of ρ, as detailed in Proposition 18.

Figure 4 superimposes the results of the numerical solutions in panel b of Figures 2 and

3. There are four possible equilibria: u0, u1, c0, u1, u0, c1, and c0, c1. Equilibria coexist

in two regions characterized by intermediate capital and a large enough risk benefit ratio.

In all other regions, the equilibrium is unique. With abundant capital, the unconstrained

equilibrium u0, u1 is unique, while with scarce capital, the fully constrained equilibrium c0, c1

prevails. Further, when the risk benefit ratio and capital are low, the unique prediction of

the model is c0, u1, i.e. the arbitrageur reduces his time-0 position to remain unconstrained.

When the risk benefit ratio is larger, the fully constrained and unconstrained equilibria

overlap. If we increase further the risk benefit ratio, the unconstrained equilibrium coexists

with the u0, c1 equilibrium.

Multiple equilibria arise even though the abitrageur has market power and chooses how

much to trade. Intuitively, the arbitrageur does choose quantities, but cannot pick hedgers’

expectations. Since hedgers’ expectations affect market depth (through the price schedule),

they affect the arbitrageur’s incentives to trade in one way or another, leading to self-fulfilling

equilibria. It is not surprising that equilibria coexist for intermediate amount of capital and

moderately capital intensive positions. In such case, the arbitrageur’s constraint is close to be

binding, and thus hedgers’ anticipations, by affecting market depth, may tip the equilibrium

outcome in one way or another. Market depth is not as determinant when capital is very

scarce or abundant.
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Figure 4: Coexistence. The parameters are a = σ = 1, ē = 1.5.

5 Welfare

In this section, I show that (i) With a monopolistic arbitrageur, the u0, c1 equilibrium Pareto-

dominates the u0, u1 equilibrium. (ii) Imposing constraints on a competitive arbitrageur

reduces welfare. However, imposing the same constraint on a monopoly with the same

amount of initial capital may increase welfare.

Proposition 7 (u0, c1 Pareto-dominates u0, u1) Suppose that a partly constrained equi-

librium (u0, c1) exists and that it coexists with the unconstrained equilibrium (u0, u1). Then

in the partly constrained equilibrium:

1. Spreads are smaller: ∆u0,c1
t < ∆u0,u1

t , t = 0, 1;

2. The arbitrageur holds larger positions: Xu0,c1
t > Xu0,u1

t , t = 0, 1;

3. Hedgers are better off;

4. The arbitrageur is better off if and only if W0 ∈ [max(ωu1 , ω
p
0), ωa), where ωa < ωp1. This

interval is non-empty if ρ ≥ 2
√

5
5
> 3

4
, i.e. there exists a non-empty set of parameters

such that the arbitrageur is better off.

Proof. See Appendix F.

A key consequence of this result is that imposing financial constraints on a monopolistic

arbitrageur improves social welfare in certain markets:
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Corollary 2 (Constraints on a Monopoly may be Welfare-improving)

1. In markets with a large amount of capital, imposing financial constraints on a monop-

olistic arbitrageur has no effect, because the constraint never binds.

2. In markets with intermediate capital (ωp0 ≤ W0 < wa) and sufficiently high risk-benefit

ratios (ρ > 2
√

5
5

), imposing financial constraints on a monopolistic arbitrageur

� improves social welfare if ωp0 ≤ W0 < ωu1 and

� may improve it if ωu1 ≤ W0 < ωa.

If the risk-benefit ratio is lower (3
4
≤ ρ < 2

√
5

5
) and / or capital is larger (ωa < W0 ≤

ωp1), the arbitrageur is worse off.

3. In markets with sufficiently small capital, imposing constraints either has no effect or

leads to a reduction in liquidity in at least one date, with at least one type of investors

being worse off.

Proof. See Appendix F.

This result provides conditions under which imposing financial constraints on a large

arbitrageur may increase or decrease social welfare. Thus, this result may cast light on the

debates about the effects of the tightening of capital requirements that have occurred in

the aftermath of the 2007-2009 crisis. These debates have mostly focused on the negative

implications of the tightening of existing financial constraints or the introduction of new

constraints (see e.g. Boyarchenko et al., 2018). Here instead, I show that there are benefits

to regulating an arbitrageur with market power through price-based financial constraints.

These benefits occur only in markets with high risk benefit ratios and where the arbitrageur

is neither too well nor too poorly capitalized. In other situations, either the constraint has

no effect, or hurts at least one type of market participant. This result is at odds with the

competitive case, where financial constraints are either irrelevant or reduce hedgers’ welfare.

In general, adding a friction on top of another one may bring the economy either closer

or further away from the first-best. Here financial constraints interact with the arbitrageur’s

commitment problem. The arbitrageur faces a Coasian problem of competition with one-self

over time, and benefits from being able to commit to trade only once. Without commitment,

the arbitrageur cannot help retrading. However, the financial constraint does not rule out

retrading. It serves as an endogenous and imperfect commitment device to trade less at time

1. Indeed, we have xu0,u1

0 < xu0,c1
0 , but xu0,u1

1 > xu0,c1
1 (recall that x1 = X1 − x0). However,
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the arbitrageur holds larger positions at all dates in the u0, c1 equilibrium, i.e. xu0,u1

0 > xu0,u1

0

and Xu0,c1
1 = xu0,c1

0 + xu0,c1
1 > xu0,u1

0 + xu0,u1

1 = Xu0,u1

1 .

A larger position at time 0 is inherent to the u0, c1 equilibrium: by pledging more capital

early on, the arbitrageur ensures that the constraint is indeed binding at time 1. However,

doing so, the arbitrageur also makes larger gains, which mechanically increase the position he

can afford at time 1. The larger positions lead to smaller spreads, although the price impact

is different across equilibria: in the u0, c1 equilibrium, hedgers demand more liquidity at time

0 in anticipation of the binding constraint at time 1, potentially increasing the spread.

Both the arbitrageur and hedgers are better off in the u0, c1 equilibrium, but note that the

conditions are stricter for the arbitrageur to be better off, because the retrading maintains

some Coasian dynamics. Arbitrageurs would be better off if they were able to divert capital

gains entirely between 0 and 1 and keep the same level of capital after trading at time 0. This

would allow them to earn full commitment profits. For hedgers, the situation is opposite:

they benefit from the fact that the arbitrageur provides more liquidity at time 0, and that

he evenutally also holds a larger position at time 1, despite the binding constraint at time

1. In fact, both the increase in early liquidity and the increase in the final position are

necessary to obtain hedgers’ welfare gain. To see this, I compute hedgers’ welfare under two

counterfactual allocations.

Proposition 8 (Why hedgers are better off) Suppose the u0, u1 and u0, c1 equilibria

coexist.

� Counterfactual 1: If the time-1 position increases to Xu0,c1
1 without an increase in the

time 0 position (xcf1
0 = xu0,u1

0 ), hedgers are better off in the u0, c1 equilibrium than in

the counterfactual.

� Counterfactual 2: If the time-1 position remains the same Xcf2
1 = Xu0,u1

1 but the time

0 position increases (xcf1
0 = xu0,c1

0 ), hedgers are better off in the u0, u1 equilibrium than

in the counterfactual.

Thus, hedgers are better off because both the time-1 and time-0 positions increase in the u0, c1

equilibrium.

Proof. See Appendix F.

This result shows that varying both the extensive margin (the total position, counter-

factual 1) and the intensive margin (the amount of liquidity at time 0, counterfactual 2) is

necessary to improve hedgers’ welfare. It is intuitive that the increase in the final position

matters: hedgers have shared more risk in the market, getting closer to the first-best.
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The reason why the intensive margin – given a total amount of liquidity, how much

liquidity is provided at time 0 – matters is that the asset is conditionally riskier at time 0

than at time 1, making it valuable for hedgers to share risk early. The binding constraint at

time 1, which is required to reduce the Coasian dynamics, requires the arbitrageur to trade

more aggressively at time 0. This increase in liquidity at time 0 is essential.

Note that the uncertainty about the fundamental between 0 and 1 is a key ingredient of

the model: it implies that hedger’s demand remains downward-sloping at time 0. Without it,

there is no demand for liquidity at time 0. Indeed, the risky asset would be temporarily risk-

free, so that hedgers would flatten out the demand – in other words, hedgers would become

arbitrageurs themselves. The price would simply equal the expected price next period and

arbitrageurs would have no incentive to trade (for any trade would push the price away from

the expected time 1 price, and hedgers would step in to correct this distortion).

6 Empirical implications

The model also delivers new, and to the best of my knowledge, untested empirical predictions:

(i) A drop in arbitrage capital may increase spreads when the risk benefit ratio is low enough,

and first decrease and then increase them otherwise. Similar effects occur for positions,

margins, and VaR. (ii) Merging constrained competitive arbitrageurs into a single arbitrageur

softens the financial constraint and may reduce spreads at time 1.

6.1 Price effects of a drop in capital

Figures 5a to 8b show the competitive and imperfectly competitive spreads as a function of

arbitrage capital at time 0 and 1.39 For ρ ≤ 3
4
, there is no qualitative difference between the

competitive and monopolistic cases: a drop in capital leads to an increase in spread when

the economy enters the region where constraints bind. For ρ > 3
4
, the comparative statics are

qualitatively different: a drop in capital first reduces the spread. A further drop leads to an

increase in spreads. The reduction is due to the fact that as capital drops, hedgers rationally

anticipate that constraints will bind at time 1 (u0, c1 becomes the unique equilibrium as

capital drops), leading to a reduction in spreads relative to the previous situation, in which

u0, u1 is the equilibrium (possibly coexisting with u0, c1).

39For each type of equilibrium, it is possible to write the comparative statics of the spreads with respect
to capital in analytical form (see Corollaries 6 and 8 for the expression of the spreads in the different cases).
However, it is difficult to do so across equilibria, hence the largely numerical approach.
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I am not aware of any other setting delivering such empirical implication, nor of any test

of this implication in the literature. The model emphasizes the role of the risk benefit ratio

as a conditioning variable for empirical tests of the relation between spreads and arbitrage

capital. Markets characterized by a high risk benefit ratio are those in which risk is large

relative to profitability. Empirically, the risk could be proxied by a certain quantile of

the return distribution (e.g. 99% quantile), and profitability by the P&L of trading desks

involved in a given arbitrage.

6.2 Positions, margins and VaR

The non-monotonic effect of a drop in capital on prices carries through to positions, margins,

and VaRs.

Corollary 3 When competitive arbitrageurs hit their funding constraints (e.g. following a

drop in capital), positions, margins and the VaR at t = 0, 1 decrease. With a monopoly, the

same occurs for a sufficiently low risk benefit ratio (ρ < 3
4
). If the ratio is high instead, a

drop in capital first increases and then decreases time-0 positions, margins and the VaR, and

may do so at time 1.

Proof. See Appendix F.

For an outside observer, an increases in positions and VaRs following a drop in arbitrage

capital may look like a gamble for resurrection. Here, however, the effect is solely driven by

the interaction between market power and the financial constraint.

6.3 Liquidity fragility

The multiplicity of equilibria that occurs for intermediate capital and sufficiently high risk

benefit ratio shows that market liquidity may be “fragile”: it may jump following a change in

the market’s (hedgers’) expectations without a large shock, if any, to arbitrage capital. With

competitive arbitrageurs, such fragility occurs only when margins are procyclical (Brunner-

meier and Pedersen, 2009). Instead, when the arbitrageur is monopolistic, fragility occurs

even though margins are countercyclical. Hence, markets with a dominant arbitrageur may

be more prone to sudden jumps in market liquidity.

29



6.4 Effects of a merger

Merging competitive arbitrageurs into a monopoly affects both equilibrium prices, positions,

and capital requirements. Note first that

Proposition 9 The wealth thresholds can be written as the sum of two terms:

ωlt = Λl
t sē︸ ︷︷ ︸

maximum position loss

− Γlt aσ
2s2︸ ︷︷ ︸

profit adjustment

, l ∈ {u, p}

Similary, ω∗ = Λ∗sē − Γ∗aσ2s2, with Λl
0 < Λl

1 < Λ∗ = 2, and Γ∗ = 0 < Γl0 < Γl1 (no profit

adjustment in the competitive case). Thus, the monopoly’s constraint is always slacker than

the competitive arbitrageurs’ constraints: max(ωl0, ω
l
1) < ω∗, l ∈ {u, p}.

Proof. Follows from the definitions of ωut , ωpt and ω∗.

The form of the ωlt thresholds is intuitive. The first term, Λl
tsē, represents the maximum

potential loss caused by fundamentals. It is the product of the worst possible change in

fundamental ē and the arbitrageur’s total exposure at time t, Λl
ts. In a competitive market,

arbitrageurs fully integrate markets A and B, and their total position is s − (−s) = 2s, as

each leg of the arbitrage is of size |s|.40 In a monopolistic market, the arbitrageur acquires

a smaller position than competitive arbitrageurs and split orders to limit his price impact,

so Λl
0 < Λl

1 and Λl
t < 2, for l = u, p. The second term in ωlt, −Γltaσ

2s2, is an adjustment

measuring how much accumulated profits due to market power relax the capital requirement.

This term is zero in a competitive market, since profits are competed away. The monopoly

always earns capital gains in equilibrium, which provides “cushion” from the financiers’ point

of view.41

40E.g. Λu
t s = 2Xt.

41The trade-off between the risk of the position and the profit adjustment also means that i) the wealth
threshold may be negative and thus non-binding as long as the arbitrageur starts with positive wealth (i.e.
ωu
t may be negative); this occurs if ρ is small enough; and ii) that the arbitrageur may be constrained at

time 0, but not at time 1, or vice versa. Intuitively, at time 0, the position is smaller, but so is the profit.
At time 1, both the position and the profit increase (i.e. both Λl

t and Γl
t increase with time). If the profit

increases faster than the position, the arbitrageur’s constraint relaxes at time 1, even if the constraint was
binding at time 0. In a competitive market, being intially unconstrained implies that the price gap between
the two assets is closed. Thus wealth does not increase over time. Further, at time 1, when hedgers receive
a new shock, the previous shock has been fully hedged. This implies that if arbitrageurs had enough wealth
to close the price gap at time 0, they have enough wealth to do so at time 1 as well. Hence the condition
boils down to a single threshold. Conversely, in a competitive market, if the constraint binds at time 0, it
also binds at time 1. It is not necessarily the case, however, when the arbitrageur has market power. The
reason is simply that competitive arbitrageurs do not internalize their price impact, while the monopoly
does. Because he takes into account his price impact, the monopoly takes a smaller position at time 1.
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Merging arbitrageurs thus softens their funding constraint. As a result, when there is lim-

ited arbitrage capital in aggregate, a monopoly may be unconstrained or partly constrained,

while competitive arbitrageurs are constrained. Hence, while competitive arbitrageurs’ con-

straints are slack, the spread is always smaller than with a monopoly, but it is no longer

always the case when their constraints bind.

Proposition 10 (Merging Arbitrageurs May Reduce Time-1 Spreads) Suppose that

competitive arbitrageurs are constrained, i.e. W0 < ω∗. Merging all arbitrageurs into a

monopoly, holding capital constant, leads to a decrease in the time 1 spread (and equiva-

lently, to an increase in time-1 position)

� If W0 ∈ [ωp0, ω
p
1[ when the equilibrium is u0, c1,

� If W0 ∈ [ωu1 , ω
m[ and ρ ≥ 21

10
when the equilibrium is u0, u1 (ωu1 < ωm).

From this result, we see that merging arbitrageurs always reduces the time-1 spread if the

monopoly is partly constrained in equilibrium, and may reduce it if the monopoly is uncon-

strained. Figure 5 illustrates the case with a partly constrained arbitrageur, although the

difference between the competitive and monopolistic spreads is very small. At time 0, it is

possible to write conditions under which there is no such decrease in the spread. It is difficult

to rule out such improvement analytically. However, in all numerical examples I considered,

time-0 spreads were larger under a monopoly than constrained competitive arbitrageurs. In

any event, the reduction in spread at time 1 does not lead to a welfare improvement, as the

competitive equilibrium is constrained efficient (Gromb and Vayanos, 2002). Thus, in this

set up, merging arbitrageurs may lead to smaller spreads, but not to a Pareto improvement.

7 Discussion and extensions

The oligopolistic case. With a monopolistic arbitrageur, imposing VaR-based constraints

may be socially desirable in certain markets. Is it a special case? The short answer is no. In

the Internet Appendix, I derive the analogs of the u0, u1 and u0, c1 equilibria with n equally

capitalized arbitrageurs. These equilibria may coexist, as in the monopolistic case. When

they do coexist, the u0, c1 equilibrium no longer Pareto-dominates. However, if we start

from a no-constraint oligopolistic economy and impose constraints, then we still obtain a

The profits from time 0 may be large enough to finance this smaller position, but are never large enough to
finance a position that eliminates the spread.
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Pareto-improvement under similar conditions as the monopolistic case: intermediate capital

and sufficiently high risk benefit ratio.

The fact that u0, c1 no longer Pareto-dominates relates to the equilibrium tightness of

the constraint: capital must be sufficiently large to ensure that the u0, u1 exists, and as n

increases, this condition first tightens (unless ρ is very large). When we compare the expected

utilities between u0, u1 and u0, c1, instead, we obtain an upper bound on capital. This is

because expected utility is concave in W0 in the u0, c1 equilibrium, while it is linear in the

u0, u1 case. I show that for n > 1, these two conditions cannot be satisfied simultaneously.

However, if we compare a no-constraint case to a case with constraint, there is no need to

take into account the lower bound for the u0, u1 equilibrium: without constraints, it is always

the prevailing equilibrium.

In the oligopolistic case, I provide examples in which hedgers are better off even without

an increase in the time-1 position (relative to the u0, u1 equilibrium). It suffices that the

time-0 position increases. That the final position does not increase is a consequence of

competition: more competition leads to lower capital gains, so that arbitrageurs’ constraint

at time 1 is tighter than under a monopoly. This fact implies that spreads may be reduced

only at time 0 relative to a no-constraint case.

Assumptions. I now discuss the bearing of my assumptions for the results. First, the

fact that there are only two trading rounds is for simplicity only. Given that constraints

may bind only occasionally, adding trading rounds will simply multiply the already large

number of potential cases without affecting the economics at play. Further, the assumption

of two trading rounds entails a loss of generality when the arbitrage is risky (see Gromb and

Vayanos, 2002), but not when the arbitrage is risk-free. Second, the assumption of mean-

variance preferences allows to invert hedgers’ demand and keep it linear. The model with

linear demand is widely used in applications in economic theory and IO. Working with a more

general expected utility would make the model intractable, ruling out a sharp characterisa-

tion of the equilibrium. Note that I solve for time-consistent strategies for hedgers. Given

that arbitrageurs face a riskless arbitrage opportunity, their preferences have no bearing on

the result.

The third simplifying assumption is precisly that hedgers’ hedging needs are constant

and deterministic, implying that the arbitrage is risk-free. The fact that hedging needs are

constant is for simplicity and does not affect primarily the results. For instance, if hedging

needs are known to decrease over time, the demand for liquidity to the arbitrageur would

decrease over time for exogenous reasons, worsening the effects of competition with oneself.
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The fact that hedging needs are deterministic implies that arbitrageurs take the appropriate

level of risk; the equilibrium is constrained-efficient (Gromb and Vayanos, 2002).

With risky arbitrage, Coasian dynamics would remain, but additional effects would arise.

On the one hand, hedgers would be even more eager to share risk early. On the other hand,

arbitrageurs would be less strategic, because they also would also be willing to share risk.

However, they would still compete with themselves over time: when the arbitrage is risky,

it is possible to derive a generalization of the price schedule (6), which is at the heart of the

Coasian dynamics.

There is no reason to believe that the welfare improvement induced by a binding con-

straint at time 1 would not remain in this more general setting. Indeed, the risk-free arbitrage

case is simply the limiting case of the risky arbitrage case when arbitrage risk goes to zero.

In fact, hedgers would benefit even more from more liquidity at time 0, since they would be

more risk averse with risky arbitrage (to the extent that there would be two sources of risk

regarding their endowment shock, both s and ε being random). Thus, the main result of this

paper is likely to remain after introducing some arbitrage risk, in particular if arbitrageurs

are not too risk averse. But as arbitrageurs may fail to take the efficient level of risk, and

in particular fail to internalize their pecuniary externalities, other interesting topics would

arise. Investigating these topics, however, is beyond the scope of this paper.

Form of the financial constraint. In my model, the tightness of the constraint (4) is

endogenous at all dates, to the extent that wealth (on the left-hand side) is endogenous at

time 1, and that margins (on the right-hand side) are endogenous at time 0 and time 1.

Further, the constraint is forward-looking, as margins depend on expected price changes.

I analyse a model with the same constraint but exogenous margins mt in the Internet

Appendix. This case is also relevant in practice, as regulators or exchanges may impose

fixed margins.42 Perhaps surprisingly, this model is less tractable than the model with

endogenous margins, so I used numerical analysis. In this model, I could not find parameter

combinations such that a u0, c1 equilibrium exists when margins are constant over time, i.e.

when m0 = m1 = m. In this case, when the time-1 constraint is sufficiently tight to prevent

deviations, the time-0 constraint is also tight and prevents the arbitrageur from taking his

preferred position at time 0. In other words, the equilibrium is always c0, c1, not u0, c1.

When margins are allowed to vary over time, it is of course possible to pick m0 such that

the constraint is slack at time 0. However, this model is clearly inferior to the one where

42This is the case for instance for VIX futures on CBOE. See also my remarks in footnote 17 in the
introduction.
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margins endogenously change over time, in particular because it allows one extra degree of

freedom.

Note that with fixed margins, the time-1 constraint is endogenous, because wealth at

time 1 is endogenous, but not the time-0 constraint; thus it is the fact that the constraint

with endogenous margins is forward-looking that generates the u0, c1 equilibrium. Margins

are forward-looking, because they are set using VaR.

In the Internet Appendix, I also derived margins in the case where they are set to cover

an Expected Shortfall of level α. Altough parametrically different, margins keep exacly the

same functional form mt = ζα − βα∆t−∆t+1

2
, and thus retain the same properties.

Next, I consider another type of constraint used in the IO literature.

Comparison to IO. The result of this paper may be puzzling from the point of view

of the IO literature, since generally giving arbitrageurs some commitment power reduces

hedgers’ (consumers’) welfare. The key reason for the difference is that the tightness of the

constraint is endogenous, because it depends on equilibrium prices.

The IO literature, instead, has considered the effects of exogenous capacity constraints

(McAfee and Wiseman, 2008). To facilitate comparisons, I now study the effects of such con-

straints. Capacity constraints resemble position limits, which are in use in some derivatives

markets (i.e. a maximum number of contracts in a given derivative).

The arbitrageur trades sequentially; however, at time 0, before the first trading round,

the arbitrageur (or its risk manager) chooses the maximum number of shares k he may trade

per period. A capacity k costs c(k), e.g. c(k) = ck. I look at vanishly small costs, c → 0.

The tightness of the constraint is set ex-ante and is independent of prices, so the equilibrium

remains unique:

Proposition 11 (Capacity Constraints) Suppose that the per unit capacity cost c is small,

but strictly positive. The arbitrageur chooses optimal capacity k = 3
10
s = xu0,u1

1 .

1. The arbitrageur trades less than in the non commitment, no constraint case, and less

than the perfect commtiment: xcc0 < xu0,u1

0 < xpc0 . At time 1, he holds a larger position

than with perfect commitment and a smaller one than without commitment: Xpc
1 <

Xcc
1 < Xu0,u1

1 .

2. Equilibrium spreads at time 0 are larger than in the other cases: ∆u0,u1

0 < ∆pc
0 < ∆cc

0 =
11
5
aσ2s. At time 1, spreads increase relative to the no commitment case and decrease

relative to perfect commitment: and ∆u0,u1

1 < ∆cc
1 = 4

5
aσ2s < ∆pc

1 .
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3. The arbitrageur is worse off than if he could fully commit and almost as well-off as

without commitment: Ωu0,u1

0 ≈ Ωcc
0 < Ωpc

0

4. Hedgers ar worse off than in the other cases: U cc
0 = −31

40
aσ2s2 < Upc

0 < Uu0,u1

0 . Hence,

hedgers are also worse-off than in the u0, c1 equilibrium.

Proof. See Internet Appendix.

The proof shows that the arbitrageur is indifferent between two capacities: k = xu0,u1

1 and

k = xu0,u1

0 . However, with a small but positive cost, the latter is more expensive. Because

of the small capacity, the arbitrageur restricts liquidity at time 0 more than in the other

cases, which explains why the time-0 spread is the largest. The final position, however, is

intermediate, and thus so is the time-1 spread. While the arbitrageur provide less liquidity

in total than in the no commitment case, he benefits from the larger spreads, and so achieves

almost the same welfare (up to the cost). Hedgers, however, suffer from the lack of liquidity

at time 0; they would be better off with higher liquidity at time 0 and a lower final position,

as in the perfect commitment case. In sum, capacity constraints delay risk-sharing, hurting

hedgers.

8 Conclusion

In this paper, I consider the effects of imperfect competition among arbitrageurs subject to

financial constraints. I characterize markets in which imposing these constraints may benefit

both arbitrageurs and their trading counterparties (hedgers) and improve market liquidity.

This analysis reveals novel and subtle mechanisms through which constraints affects both

types of investors in the presence of arbitrageurs’ market power. On the one hand, a binding

constraint can mitigate the commitment problem of an imperfectly competitive arbitrageur.

On the other hand, the constraint is endogenous to the arbitrageur’s trading strategy: to

make a constraint binding in the future, an arbitrageur must trade more aggressively today,

which speeds up the arbitrage and risk-sharing. This strategy yields capital gains, leading to

some amount of retrading. The increase in early liquidity combined with sufficient retrading

makes hedgers better off. These mechanisms are specific to imperfect competition: in a

competitive economy, arbitrageurs take prices as given and do not recognize the commitment

problem.

The analysis also delivers new empirical predictions about spreads, VaR, positions, and

margins as a function of capital and the risk benefit ratio of the arbitrage. Spreads are
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U-shaped and positions, margins, and VaR are hump-shaped in arbitrage capital for a large

enough risk benefit ratio. But they are respectively increasing and decreasing in capital

for low risk benefit ratio, or when arbitrageurs are competitive. Overall, imposing financial

constraints on arbitrageurs may have diametrically different effects for different structures

of the arbitrage industry.

The model may be extended to consider internal allocation of capital across trading

desks or systemic risk. In my framework, an arbitrageur with market power would benefit

from being able to commit to decrease her capital level in the future. This may be achieved

by pledging capital gains to new trades, for instance by reallocating capital across different

trading desks over time. Such effect would not arise with competitive arbitrageurs. Imperfect

competition among arbitrageurs should thus result in different internal capital allocations.

I compare the equilibrium impact of arbitrageurs under two structures of the arbitrage

industry, given a specific financial constraint. This exercise makes sense, given that the

type of constraint I consider is so widely used by practitioners and regulators and has been

microfounded in a static setting (see, e.g., Bruche and Kuong, 2019). However, a related

and important exercise would consist in deriving the optimal constraint from first principles

for each type of structure in a dynamic setting. These extensions are left for future research.
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Figure 5: Spreads as a function of arbitrage capital for ρ > 1. The parameters are a = ē = σ = 1
and s = 1.1.
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Figure 6: Spreads as a function of arbitrage capital for 3
4 ≤ ρ < 1. The parameters are a = ē =

σ = 1 and s = 1.76.
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Figure 7: Spreads as a function of arbitrage capital for 7
10 ≤ ρ < 3

4 . The parameters are a = ē =
σ = 1 and s = 2.1.
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Figure 8: Spreads as a function of arbitrage capital for ρ ≤ 7
10 . The parameters are a = ē = σ = 1

and s = 2.2.

Appendix

This Appendix contains the main proofs. Additional proofs and the oligopoly case are

relegated to the Internet Appendix.

A Benchmarks

A.1 Competitive benchmark

Lemma 2 (Hedgers’ Demand and Certainty Equivalent) At time t = 0, 1, in market

A hedgers’ demand and certainty equivalent are

Yt =
E(pt+1)− pt

aσ2
− s

Ut = wt +

∑T
τ=t (Et(pτ+1)− pτ )2

2aσ2
− s

(
T∑
τ=t

(Et(pτ+1)− pτ )

)
(7)

Proof. See Internet Appendix.

Corollary 4 (Competitive Spreads and Positions in the Constrained Region) Suppose
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that 0 ≤ W0 < ω∗. Then arbitrageurs’ positions in market A and equilibrium spreads are

x̄0 =
aσ2s− ē+

√
d∗0

2aσ2
, X̄1 =

aσ2s− ē+
√
d∗1

2aσ2

∆∗0 = 2
(
aσ2s+ ē

)
−
√
d∗0 −

√
d∗1; ∆∗1 = aσ2s+ ē−

√
d∗1, (8)

with d∗0 = (ē− aσ2s)
2

+ 2aσ2W0 and d∗1 = (ē− aσ2s)
2

+ 4aσ2x0ē.

Proof. The positions x̄0 and X̄1 are solutions to the system of equations (Gromb and

Vayanos, 2002)

x̄0 − x̄0
aσ2 (s− x̄0)

ē
=

W0

2ē
(9)

X̄1 − X̄1
aσ2s− X̄1

ē
= x̄0 (10)

To obtain equilibrium spreads, subtitute for hedgers’ demand Y k
t and plug these quantities

into the market clearing equation

Y k
t +

n∑
i=1

X i,k
t = 0 (11)

A.2 Monopoly without Financial Constraints

Price schedules (Lemma 1)

Proof. The result follows from inverting hedgers’ demand given in Lemma 2 and imposing

market clearing (11).

Lemma 1 implies that the spread schedules ∆t(·) ≡ pBt (·)− pAt (·) are given by

∆1(X1) = 2aσ2(s−X1) = 2aσ2(s− x0 − x1) (12)

∆0(x0, x1) = 2aσ2(s− x0) + ∆1(x0, x1) (13)
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B Static Equilibrium (t = 1)

At time 1, the arbitrageur solves the following problem:

max
x1

B0 + x1∆1(X1) (14)

s.t. f+
1 (X1) 1X1≥0 + f−1 (X1) 1X1<0 ≥ 0

where B0 is the position in the risk-free asset, ∆1(X1) is given by (12), and f+ and f− are

given in the text. The financial constraints define a set F1 = {X1 ≥ 0 | f+
1 (X1) ≥ 0}∪{X1 <

0 | f−1 (X1) ≥ 0}.

Notation 2 (Boundaries of F1)

� Let X+
1 ≡

aσ2s−ē−
√
d+

1

2aσ2 and X̄1 ≡
aσ2s−ē+

√
d+

1

2aσ2 denote the smallest and largest roots, if

they exist, of f+
1 , with d+

1 ≡ 2aσ2W1 + (aσ2s− ē)2.

� Let X1 ≡
aσ2s+ē−

√
d−1

2aσ2 denote the smallest root of f−1 , with d−1 ≡ 2aσ2W1 + (aσ2s+ ē)2.

Notation 3 (Preferred position at t = 1) Let Xu
1 ≡ x0 + xu1 = s+x0

2
denote the arbi-

trageur’s preferred position at time 1, where xu1 ≡ s−x0

2
solves (14) without constraints.

Proposition 12 (Static Equilibrium) Suppose that the arbitargeur starts with wealth W1

and position x0. There exists a wealth threshold W̄+
1 < 0 such that

1. If W1 < W̄+
1 , or if W̄+

1 ≤ W1 < 0 and ρ > 1, the arbitrageur has not enough capital to

hold any position at time 1.

2. If W̄+
1 ≤ W1 < 0 and ρ ≤ 1, the arbitrageur can hold only long positions in F1 =[

X+
1 , X̄1

]
. The optimum depends on the initial wealth and the initial position in the

asset x0:

� If x0 < −s, the arbitrageur’s preferred position is a short one, thus his constraint

binds downwards (Xu
1 < 0 < X+

1 < X̄1). It is optimal to hold X+
1 .

� If −s ≤ x0 < −sρ, the constraint binds downwards (0 < Xu
1 < X+

1 < X̄1) if

W1 <
1
2
aσ2(x2

0 − s2) + ē(x0 + s). In this case, it is optimal for the arbitrageur to

hold X+
1 . Otherwise, the arbitrageur can hold his preferred position Xu

1 .
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� If x0 ≥ −sρ, then the arbitrageur’s constraint binds upwards (0 < X+
1 < X̄1 <

Xu
1 ) if W1 <

1
2
aσ2(x2

0−s2)+ē(x0+s). In this case, it is optimal for the arbitrageur

to hold X̄1. Otherwise, the arbitrageur can hold his preferred position Xu
1 .

3. If W1 ≥ 0, then the arbitrageur can choose long and short positions in the segment

F1 =
[
X1, X̄1

]
, with X1 < 0 and X̄1 > 0. The optimum depends on the initial wealth

and the initial position in the asset x0:

� If x0 < −s, then Xu
1 < 0. If W1 ≥ 1

2
aσ2(x2

0 − s2) − ē(x0 + s), the constraint is

slack and the arbitrageur holds Xu
1 . Otherwise, the arbitrageur’s constraint binds

downwards, and the arbitrageur chooses X1.

� If x0 ≥ −s, then

– If ρ ≥ 1, then if W1 ≥ 1
2
aσ2(x2

0 − s2) + ē(x0 + s) > 0, the constraint is slack

and the arbitrageur holds Xu
1 . If 0 ≤ W1 <

1
2
aσ2(x2

0 − s2) + ē(x0 + s), the

constraint binds upwards and the arbitrageur holds X̄1.

– If ρ < 1, then

* if −s ≤ x0 < −sρ, the constraint is slack, the arbitrageur holds Xu
1 .

* if x0 ≥ −sρ, the arbitrageur holds Xu
1 if W1 ≥ 1

2
aσ2(x2

0 − s2) + ē(x0 + s),

and X̄1 otherwise.

Proof. See Internet Appendix.

Corollary 5 (Subgame spreads) Equilibrium spreads in the subgame are ∆u
1 = aσ2(s −

x0), ∆c̄
1 = aσ2s+ ē−

√
d+

1 , and ∆c
1 = aσ2s− ē+

√
d−1 .

C Equilibrium with Slack Constraint at Time 1

In this section, I conjecture that the arbitrageur holds an unconstrained position at time 1

and verify under which conditions it is optimal to do so. Here is the full version of Proposition

4:

Proposition 13 (Equilibria with slack time-1 constraint) There exists three thresh-

olds ωu0 , ωu1 , and ωf , with ωf ≡ ωc 1ρ<7 + ω̂ 1ρ≥7, that define four regions in terms of initial

arbitrage capital:
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1. In the first region, W0 ≥ max(ωu0 , ω
u
1 ), arbitrage capital is abundant, both constraints

are slack in equilibrium, and the arbitrageur holds his desired position at time 0 and

time 1 xu0,u1

0 and Xu0,u1

1 given in Proposition 2 (u0,u1)

2. In second region, where max(ωf ,min(ωu0 , ω
u
1 )) ≤ W0 < max(ωu0 , ω

u
1 ), there are two

cases:

� If ρ ≥ 7
10

, an equilibrium may exist, in which the arbitrageur’s constraint binds at

time 0 and is slack at time 1 (c0,u1).

Namely, if Ω̃u1,u1

0 (xc0,u1

0 ) ≥ Ω̃u1,c̄1
0 (xd∗0 ), where xd∗0 = arg maxx0∈D

c̄1
0

Ω̃u1,c̄1
0 (x0), the

arbitrageur holds less than his desired position xu0,u1

0 at time 0 to keep the con-

straint slack at time 1: xc0,u1

0 = min(x̂0, x̄0) < xu0,u1

0 , and Xc0,u1

1 = Xu
1 (xc0,u1

0 ) =
s+x

c0,u1
0

2
. Otherwise, there is no equilibrium with a slack constraint at time 1.

� If ρ < 7
10

, an equilibrium exists, where the constraint binds at time 0 but not at

time 1 (c0,u1), with xc0,u1

0 = x̄0 < xu0,u1

0 , and Xc0,u1

1 = Xu
1 (xc0,u1

0 ) = s+x̄0

2
.

3. In the third region, where max(0, ωf ) ≤ W0 < min(ωu0 , ω
u
1 ), the situation is the same

as in the second region with ρ ≥ 7
10

. The interval
[
ωf ,min(ωu0 , ω

u
1 )
)

is non-empty iff

ρ ∈
[
0, 3− 2

5

√
30
)
∪
(
3− 2

5

√
30,∞

)
.

4. In the fourth region, 0 ≤ W0 < max(0, ωf ), there is little arbitrage capital, and thus

there is no equilibrium with a slack constraint at time 1 (no u1).

Proof. The proof relies on three main steps: i) I first write the arbitrageur’s objective

function and payoffs from deviating, assuming that hedgers anticipate a slack constraint

at time 1. The arbitrageur’s maximization involves choosing a position satisfying a set

of constraints. ii) I derive the sets of feasible positions and possible deviations. These sets

depend on the initial level of arbitrage capital W0 and the risk benefit ratio ρ. iii) I determine

the candidate equilibrium strategy and verify conditions under which it is possible/ optimal

for the arbitrageur to follow it.

C.1 Step 1: arbitrageur’s problem

Objective functions. Using the notations introduced in the main text, given hedgers’

anticipations, the arbitrageur’s problem is to choose x0 (or equivalently an action leading to

state l = {u1, c̄1, c1} at time 1) to maximize expected utility:

Ωu1
0 = max (Ωu1,u1

0 ,Ωu1,c̄1
0 ,Ω

u1,c1
0 )
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Of course, x0 must also satisfy the financial constraint at t = 0. The value functions Ωu1,l
0

associated to each action are defined as follows:

Ωu1,u1

0 = max
x0

Ω̃u1,u1

0 (x0) = W0 + x0∆u1
0 (x0) + Ωu

1(x0)

s.t. f+
0 (x0) ≥ 0 1x0≥0 + f−0 (x0) 1x0<0 ≥ 0

f+
1

(
s+ x0

2

)
1x0≥−s + f−1

(
s+ x0

2

)
1x0<−s ≥ 0

W1(x0) = W0 + 2aσ2x0(s− x0) ≥ 0

The objective function Ω̃u1,u1

0 relies on two premises: i) the continuation value Ωu
1(x0) ≡

1
2
aσ2(s − x0)2 assumes that the arbitrageur chooses his preferred position at time 1, and

ii) the spread schedule, based on the price schedule in each market, requires that hedgers

correctly anticipate that the arbitrageur’s time 1 constraint is slack in equilibrium. Given

equation 13, the spread schedule is ∆u1
0 (x0) = E0 [∆u

1(x0)] + 2aσ2(s − x0) = 3aσ2(s − x0),

since ∆u
1(x0) = 2aσ2(s−Xu

1 ) = aσ2(s− x0).

The first constraint ensures that the arbitrageur has enough capital to hold a position

x0 at time 0. The next constraint ensures that given the position established at time 0, x0,

the arbitrageur can indeed hold his preferred position Xu
1 (x0) at time 1, be it a long or a

short position. This requirement ensures that the arbitrageur’s strategy is time-consistent.

The arbitrageur’s ability to satisfy the time-1 constraints requires positive wealth at time

1, which yields the last constraint. Otherwise, Proposition 12 shows that the arbitrageur’s

constraint is necessarily binding at time 1. Next, I consider the payoff from deviating towards

an upward-binding constraint at time 1.

Ωu1,c̄1
0 = max

x0

Ω̃u1,c̄1
0 (x0) = W0 + x0∆0(x0)u1 + Ωc̄

1(x0)

s.t. f+
0 (x0) ≥ 0 1x0≥0 + f−0 (x0) 1x0<0 ≥ 0

f+
1

(
s+ x0

2

)
1x0≥−s + f−1

(
s+ x0

2

)
1x0<−s < 0

W1(x0) = W0 + 2aσ2x0(s− x0) ≥ 0

The objective function includes a different continuation value at time 1. The first constraint

ensures that the position is feasible at time 0. The next constraint ensures that, given x0,

the arbitrageur can indeed not choose his preferred position at time 1 (time consistency).

The last constraint requires that wealth be positive at time 1, as Proposition 12 requires.
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Finally, I define the payoff from deviating towards a downward-binding constraint at time 1:

Ω
u1,c1
0 = max

x0∈[−s,−sρ[∪]−∞,−s]
Ω̃
u1,c1
0 (x0) = W0 + x0∆u1

0 (x0) + Ωc
1(x0)

s.t. f+
0 (x0) ≥ 0 1x0≥0 + f−0 (x0) 1x0<0 ≥ 0

f+
1

(
s+ x0

2

)
1x0≥−s + f−1

(
s+ x0

2

)
1x0<−s < 0

W1(x0) < 0 if x0 ∈ [−s,−sρ[, or,

0 ≤ W1(x0) <
1

2
aσ2(x2

0 − s2)− ē(x0 + s) if x0 < −s

The payoff is built as in the previous case. However, the last constraint requires negative

wealth and x0 must be chosen in the interval [−s,−sρ[, as this is necessary for the constraint

to bind downwards at time 1, by Proposition 12.

Feasible positions. Suppose first that the arbitrageur chooses x0 leading u1. This position

must satisfy the following set of constraints. First, the position must satisfy the constraint

at time 0, so x0 ∈ F0
0 , where F0

0 = {x0 < 0 | f−0 (x0) ≥ 0} ∪ {x0 ≥ 0 | f+
0 (x0) ≥ 0}.

Second, it must be such that at time 1, the arbitrageur can hold his preferred position. I

denote F1
0 the interval determined by the constraints at time 1. It is convenient to write

F1
0 as the union of two intervals, one for long and one for short unconstrained positions

at time 1, i.e. F1
0 = F1−

0 ∪ F1+
0 , where F1−

0 = {x0 < −s | f−1
(
s+x0

2

)
≥ 0} and F1+

0 =

{x0 ≥ −s | f+
1

(
s+x0

2

)
≥ 0}. Finally, the positive wealth constraint defines a set Fpw0 =

{x0 | W1(x0) = W0 + 2aσ2x0(s− x0) ≥ 0}. The intersection of these sets thus defines a set

of feasible positions

Fu0 = F0
0 ∩ F

u1
0 ∩ F

pw
0

Therefore we can rewrite Ωu1,u1

0 simply as

Ωu1,u1

0 = max
x0∈Fu

0

W0 + x0∆0(x0) + Ωu1
1 (x0)

Similarly, we can define the sets Dc̄10 and Dc10 of positions leading to upward -or -downward-

binding constraints at time 1. I derive these sets in detail in Section C.2.2 below. Using
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these notations, we can also rewrite Ωu1,c̄1
0 and Ω

u1,c1
0 as follows:

Ωu1,c̄1
0 = max

x0∈D
c̄1
0

Ω̃u1,c̄1
0 (x0) = W0 + x0∆0(x0) + Ωc̄

1(x0)

Ω
u1,c1
0 = max

x0∈D
c1
0

Ω̃
u1,c1
0 (x0) = W0 + x0∆0(x0) + Ωc

1(x0)

C.2 Step 2: Feasible positions and possible deviations at t = 0

Definition 2 (Time-0 Boundary Positions)

� Let x0 denote the smallest root of f−0 (x0) = 0 and x̄0 the largest root of f+
0 (x0) = 0, if

they exist.

� Let x̂0 and x̂−0 denote the largest and smallest roots, if they exist, of f+
1

(
s+x0

2

)
= 0, for

all x0 ≥ −s.

� Let x0 denote the smallest root of f−1
(
s+x0

2

)
= 0, for x0 < −s.

� Let z0 and z̄0 denote the smallest and largest roots of W1 = W0 + 2aσ2x0(s− x0) = 0.

C.2.1 Feasible positions

Note: I use the convention that if a > b, then [a, b] = ∅.

Proposition 14 (Interval Fu0 )

� If 0 ≤ ρ < 1 or if 1 ≤ ρ < 7, then Fu0 =


∅ if W0 < ωc[
max(x̂−0 , x0),min(x̂0, x̄0)

]
if ωc ≤ W0 < ω̂[

x0,min(x̂0, x̄0)
]

if ω̂ ≤ W0 < ω̂ + ω∗[
max(x̂−0 , x0),min(x̂0, x̄0)

]
if W0 ≥ ω̂ + ω∗

� If ρ ≥ 7, then Fu0 =


∅ if W0 < ωc

∅ if ωc ≤ W0 < ω̂[
x0,min(x̂0, x̄0)

]
if ω̂ ≤ W0 < ω̂ + ω∗[

max(x̂−0 , x0),min(x̂0, x̄0)
]

if W0 ≥ ω̂ + ω∗

Proof. See Internet Appendix.
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C.2.2 Possible deviations

Lemma 3 Suppose hedgers anticipate a slack constraint at time 1. Deviations from the

arbitrageur leading to a downward-binding constraint at time 1 are either not feasible or

dominated at time 0.

Lemma 4 Suppose hedgers anticipate a slack constraint at time 1. Deviations from the

arbitrageur leading to an upward-binding constraint at time 1 must belong to the set Dc̄10 ,

given by

� If ρ < 1, Dc̄10 =


[x0, x̄0] if W0 < ωc

[x0,max(x̂0, x̄0)) ∪ (min(x̂0, x̄0), x̄0] if ωc ≤ W0 < ω̂

(min(x̂0, x̄0), x̄0] if ω̂ ≤ W0 < ω̂ + 4ē2

aσ2[
max(x0,−sρ),max(x0,−sρ, x̂−0 )

)
∪ (min(x̂0, x̄0), x̄0] if W0 ≥ ω̂ + 4ē2

aσ2

� If 1 ≤ ρ < 7, Dc̄10 =


[x0, x̄0] if W0 < ωc

[x0,max(x̂0, x̄0)) ∪ (min(x̂0, x̄0), x̄0] if ωc ≤ W0 < ω̂

(min(x̂0, x̄0), x̄0] if ω̂ ≤ W0 < ω̂ + ω∗[
−s,max(−s, x̂−0 )

)
∪ (min(x̂0, x̄0), x̄0] if W0 ≥ ω̂ + ω∗

� If ρ ≥ 7, Dc̄10 =


[x0, x̄0] if W0 < ωc or ωc ≤ W0 < ω̂

(min(x̂0, x̄0), x̄0] if ω̂ ≤ W0 < ω̂ + ω∗[
−s,max(−s, x̂−0 )

)
∪ (min(x̂0, x̄0), x̄0] if W0 ≥ ω̂ + ω∗

The proofs of these Lemmata are in Internet Appendix.

C.3 Step 3: Equilibrium determination

C.3.1 Value functions and candidate equilibrium strategy

Given the results in Proposition 12 and Corollary 5, we can define the objective functions

as follows:

Ω̃u1,u1

0 (x0) =W0 + x0∆u1
0 (x0) + Ωu

1(x0) = W0 + 3aσ2x0(s− x0) +
aσ2

2
(s− x0)2

Ω̃u1,c̄1
0 (x0) =W0 + x0∆u1

0 (x0) + Ωc̄
1(x0) = W0 + x0∆u1

0 (x0) + x̄1(x0)∆c̄
1(x0)

Ω̃
u1,c1
0 (x0) =W0 + x0∆u1

0 (x0) + Ωc
1(x0) = W0 + x0∆u1

0 (x0) + x1(x0)∆c
1(x0)

We can now determine under which conditions the arbirtrageur’s preferred position satisfies

the constraints at time 0 and time 1.
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Proposition 15 (Candidate equilibrium strategy with slack time-0 and -1 constraints (u0,u1))

Let ωu0 and ωu1 denote two wealth thresholds, with ωu0 = 4
5
sē− 12

25
aσ2s2 and ωu1 = 7

5
sē− 9

10
aσ2s2,

and let ωu = max(ωu0 , ω
u
1 ).

1. If W0 ≥ ωu, then the arbitrageur can hold his preferred positions at time 0 and time 1

xu0,u1

0 = 2
5
s and Xu0,u1

1 = 7
10
s

2. The arbitrageur’s expected utility is denoted Ωu0,u1

0 = Ω̃u1,u1

0 (xu0,u1

0 ).

3. For any x0 such that Ω̃c̄
1(x0) exists, Ω̃u1,c̄1

0 (x0) ≤ Ω̃u1,u1

0 (x0).

Proof. The arbitrageur’s objective function Ω̃u1,u1

0 admits a global maximum at xu0,u1

0 given

in the Proposition. Substituting xu0,u1

0 into Xu
1 (Definition 2) gives Xu0,u1

1 . Since xu0,u1

0 > 0,

the relevant constraints are f+
0 and f+

1 . Thus, to determine the thresholds ωu0 , ωu1 , it suffices

to substitute xu0,u1

0 into f+
0 (x0) ≥ 0 and f+

1

(
s+x0

2

)
≥ 0 and rearrange the terms. The last

point follows from the fact that for any x0 such that Ωc̄
1(x0) exists, Ωc̄

1(x0) ≤ Ωu
1(x0), and

from the definition of Ω̃u1,c̄1
0 and Ω̃u1,u1

0 .

C.3.2 Capital and risk benefit thresholds

Wealth thresholds. Given our analysis so far, we must order the following wealth thresh-

olds: ωu0 , ωu1 , ωc, ω̂, ω̂ + ω∗ and ω̂ + 4ē2

aσ2 . It is easy to see that ω̂ + ω∗ is larger than ωu0 , ωu1 ,

ωc, and ω̂. Similarly, when ρ < 1, ω̂ + 4ē2

aσ2 is larger than ωu0 , ωu1 , ωc, and ω̂.

Lemma 5 (Wealth Threshold Ordering in Equilibrium with Slack Time-1 Constraint)

The order of thresholds is given in Table 2.

Proof. By direct calculation using threshold definition.

Releveant ρ thresholds. The relevant thresholds from Table 2 and previous results are 3
5
,

9
14

, 7−2
√

10, 7
10

,3- 2
5

√
30, 1, 7

2
, 3+ 2

5

√
30, 28

5
, 7, 7+2

√
10. If ρ ≥ 7−2

√
10, wealth thresholds

not necessarily positive but are always in the same order. Thus, for simplicity, I treat all

the cases with ρ < 7 − 2
√

10 as one case. Similarly, I ignore the case ρ > 7 + 2
√

10, which

determines the positivity of ωc, but does not affect the order of the thresholds. However, I

add 1 and 7, which do not affect the order of tresholds, but affect the set of feasible positions

or deviations.

C.3.3 Equilibrium case by case

Equilibrium determination follows from combining the results above. The details are avail-

able in the Internet Appendix.

47



Table 2: Wealth Threshold Order for Equilibrium with Slack Time-1 Constraint

Treshold Greater than Condition Value
ωu0 ≡ 4

5
sē− 12

25
aσ2s2 ωu1 ρ < 7

10

ωc ρ < 3− 2
5

√
30 or ρ > 3 + 2

5

√
30 0.809 — 5.19

0 ρ ≥ 3
5

ω̂ ρ > 28
5

ωu1 ≡ 7
5
sē− 9

10
aσ2s2 ωc for all ρ > 0

0 ρ > 9
14

0.64
ω̂ ρ > 7

2

ωc ≡ ωu1 − ē2

10aσ2 0 7− 2
√

10 ≤ ρ ≤ 7 + 2
√

10 0.675—13.32
ω̂ never, equality for ρ = 7

ω̂ ≡ 4aσ2s2 0 for any ρ > 0

Table 3: ρ and Wealth Intervals for Equilibrium with Slack Time-1 Constraint

Case ρ interval Wealth ordering
1 0 ≤ ρ < 7

10
0 < (ωc, 0)+ < (ωu1 , 0)+ < (ωu0 , 0)+ < ω̂

2 7
10
≤ ρ < 3− 2

5

√
30 0 < ωc < ωu0 < ωu1 < ω̂

3 3− 2
5

√
30 ≤ ρ < 1 0 < ωu0 < ωc < ωu1 < ω̂

4 1 ≤ ρ < 7
2

0 < ωu0 < ωc < ωu1 < ω̂

5 7
2
≤ ρ < 3 + 2

5

√
30 0̄ < ωu0 < ωc < ω̂ < ωu1

6 3 + 2
5

√
30 ≤ ρ < 28

5
0 < ωc < ωu0 < ω̂ < ωu1

7 28
5
≤ ρ < 7 0 < ωc < ω̂ < ωu0 < ωu1

8 7 ≤ ρ 0 < ωc < ω̂ < ωu0 < ωu1

C.4 Equilibrium spreads

Corollary 6 (Equilibrium spreads in the u1 equilibria)

In the u0, u1 and c0, u1 equilibria, spreads are

∆u0,u1

0 =
9

5
aσ2s, and ∆u0,u1

1 =
3

5
aσ2s (15)

∆c0,u1

0 = 3aσ2(s− xc0,u1

0 ), and ∆c0,u1

1 = 2aσ2(s−Xu
1 (xc0,u1

0 )) = aσ2(s− xc0,u1

0 )

(16)

Proof. Equilibrium spreads follow from substituting the equilibrium quantity (either xu0,u1

0

or xc0,u1

0 ) into the spreads schedule (13)-(12).
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D Equilibrium with Binding Time-1 Constraint

Here is the full result:

Proposition 16 (Equilibria with binding time-1 constraint)

� There are no equilibria in which the arbitrageur’s constraint binds downwards at time

1.

� There are equilibria in which the arbitrageur’s constraint binds upwards at time 1, as

follows. Let ωp0 ≡ sē− 1
2
aσ2s2 and ωp1 ≡ 3

2
sē− 7

8
aσ2s2 denote two thresholds.

1. If 0 ≤ ρ < 3
4
, then ωp1 < ωp0, and there are three regions in terms of arbitrage

capital:

(a) In the first region, with 0 ≤ W0 < max(0, ωf ), the arbitrageur’s constraint

binds upwards at time 0 and time 1 in equilibrium (c0, c1 equilibrium). This

equilibrium is the same as in the constrained competitive case, for a given

level of capital. The arbitrageur holds xc0,c10 = x̄0, and Xc0,c1
1 = X̄1(x̄0).

(b) In the second region, with max(0, ωf ) ≤ W0 < max(0, ωp1), there are two cases

i. If max(x̂0, x̄0) = x̂0, there is no equilibrium in which the arbitrageur’s

constraint binds upwards at time 1 (no c1).

ii. Otherwise, both constraints bind in equilibrium as in (a) iff Ωc0,c1
0 ≥

Ωc̄1,u1

0 (xd∗0 ), where xd∗0 = arg maxx0∈Du
0

Ωc̄1,u1

0 (x0).

(c) In the third region, with max(0, ωp1) ≤ W0 < ωp0 or ωp0 ≤ W0, there is no

equilibrium in which the arbitrageur’s constraint binds upwards at time 1 (no

c1).

2. If ρ ≥ 3
4
, then ωp1 > ωp0, and there are four regions in terms of arbitrage capital:

(a) In the first region, with 0 ≤ W0 < ωf , the equilibrium is c0, c1, as in case 1a.

(b) In the second region, with ωf ≤ W0 < ωp0, the equilibrium is the same as in

1b.

(c) In the third region, with ωp0 ≤ W0 < ωp1, there is an equilibrium in which the

abritrageur’s constraint binds upwards at time 1 and is slack at time 0 (u0, c1

equilibrium) iff Ωu0,c1
0 ≥ Ωc̄1,u1

0 (xd∗0 ), where xd∗0 = arg maxx0∈Du
0

Ωc̄1,u1

0 (x0).

(d) In the fourth region, with ωp1 ≤ W0, is no equilibrium in which the arbi-

trageur’s constraint binds upwards at time 1 (no c1), as in 1c.

The proof is based on the same three steps as in the previous case.
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D.1 Arbitrageur’s problem

Suppose hedgers anticipate an upward-binding constraint at time 1. Let Ωc̄1,l
0 denote the

arbitrageur’s expected utility when hedgers anticipate an upward-binding constraint, and the

arbitrageur chooses a trade x0 subject to the t = 0 constraint, leading to state l ∈ {c̄1, u1, c1}
at time 1, i.e. an upward-binding, slack, or downward-binding constraint at time 1. The

maximization problem of the arbitrageur is thus as follows.

Ωc̄1
0 = max (Ωc̄1,c̄1

0 ,Ω
c̄1,c1
0 ,Ωc̄1,ū1

0 ) (17)

The expected utilities associated with state l are defined as follows:

Ωc̄1,c̄1
0 = max

x0

Ω̃c̄1,c̄1
0 = W0 + x0∆c̄1

0 (x0) + Ωc̄
1(x0)

s.t. f+
0 (x0) 1x0≥0 + f−0 (x0) 1x0<0 ≥ 0

f+
1

(
s+ x0

2

)
1x0≥−s + f−1

(
s+ x0

2

)
1x0<−s < 0

W1 = W0 + 2aσ2x0(s− x0) ≥ 0

where Ωc̄
1(x0) = 2aσ2x̄1(x0)(s− X̄1(x0)). The second constraint ensures that in equilibrium,

the arbitrageur cannot hold his preferred position because his constraint binds upwards at

time 1. The last constraint ensures that equilibrium wealth is positive at time 1, which is

required by Proposition 12. Next, I consider the expected utlity from deviations leading to

a slack constraint at time 1.

Ωc̄1,u1

0 = max
x0

Ω̃c̄1,u1

0 = W0 + x0∆c̄1
0 (x0) + Ωu

1(x0)

s.t. f+
0 (x0) 1x0≥0 + f−0 (x0) 1x0<0 ≥ 0

f+
1

(
s+ x0

2

)
1x0≥−s + f−1

(
s+ x0

2

)
1x0<−s ≥ 0

W1 = W0 + 2aσ2x0(s− x0) ≥ 0

The difference with the previous problem is that the constraints at time 1 are slack, leading

to continuation value Ωu
1 at time 1. Finally, here is the expected utlity from deviations
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leading to a downward-binding constraint at time 1.

Ωc̄1,u1

0 = max
x0∈[−s,−sρ[∪]−∞,−s]

Ω̃
c̄1,c1
0 = W0 + x0∆c̄1

0 (x0) + Ωc
1(x0)

s.t. f+
0 (x0) 1x0≥0 + f−0 (x0) 1x0<0 ≥ 0

f+
1

(
s+ x0

2

)
1x0≥−s + f−1

(
s+ x0

2

)
1x0<−s < 0

W1(x0) < 0 if x0 ∈ [−s,−sρ[, or,

0 ≤ W1(x0) <
1

2
aσ2(x2

0 − s2)− ē(x0 + s) if x0 < −s

D.2 Set of feasible positions and possible deviations at t = 0

Lemma 6 There is no equilibrium with a downward-binding constraint at time 1.

Lemma 7 Let F c̄10 denote the set of feasible positions with upward-binding constraint at time

1, and Du1
0 the set of deviations leading to a slack constraint at time 1. We have: F c̄10 = Dc̄10 ,

and Du1
0 = Fu0 .

The proofs of these Lemmata are in Internet Appendix.

D.3 Equilibrium determination

D.3.1 Value functions and candidate equilibrium

Assume that hedgers anticipate an upward-binding constraint at time 1. We have ruled out

equilibria with downward-binding constraints. Using Proposition ?? and Corollary 5, the

value functions in the remaining cases (l = {c̄1, u1, }) are re

Ωc̄1,c̄1
0 (x0) = W0 + x0∆c̄1

0 (x0) + Ωc̄
1(x0) = W0 + x0∆c̄1

0 (x0) + x̄1(x0)∆c̄
1(x0)

Ωc̄1,u1

0 (x0) = W0 + x0∆c̄1
0 (x0) + Ωu

1(x0) = W0 + x0∆c̄1
0 (x0) + xu1(x0)∆u

1(x0)

Proposition 17 (Candidate equilibrium strategy - slack time-0 and binding time-1 constraints)

Let ωp0 ≡ sē− 1
2
aσ2s2 and ωp1 ≡ 3

2
sē− 7

8
aσ2s2 denote two wealth thresholds.

1. The function Ω̃c̄1,c̄1
0 admits a maximum xu0,c1

0 iff W0 ∈ [ωp0, ω
p
1), where xu0,c1

0 = s
2
, and

Xu0,c1
1 = X̄1(xu0,c1

0 ).

2. The interval [ωp0, ω
p
1) is non-empty iff ρ > 3

4
.
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3. At this candidate equilibrium strategy, the arbitrageur’s utility is

Ωu0,c1
0 ≡ Ω̃c̄1,c̄1

0 (xu0,c1
0 ) =

ē

aσ2

[
aσ2s− ē+

√
d+

1 (xu0,c1
0 )

]
,

where d+
1 (xu0,c1

0 ) = 2aσ2W0 + 2a2σ4s2 + ē2 − 2aσ2sē

4. For any x0 such that Ω̃c̄
1(x0) exists, Ω̃c̄1,c̄1

0 (x0) ≤ Ω̃c̄1,u1

0 (x0).

Proof. Let’s first rewrite the objective function Ω̃c̄1,c̄1
0 by substituting for ∆c̄1

0 and Ωc̄
1.

W0 + x0∆c̄1
0 (x0) + Ωc̄

1(x0) = W0 + 2aσ2x0(s− x0) + x0∆c̄
1(x0) + (X̄1(x0)− x0)∆c̄

1(x0)

= W0 + 2aσ2x0(s− x0) + X̄1(x0)∆c̄
1(x0)

= W0 + 2aσ2x0(s− x0)︸ ︷︷ ︸
W1(x0)

+

(
aσ2s+ ē−

√
d+

1 (x0)
)(

aσ2s− ē+
√
d+

1 (x0)
)

2aσ2

The last line follows from substituting for X̄1 and ∆c̄
1. Then developing the numerator in

the last term, substituting for d+
1 and simplifying, we get:

W0 + x0∆c̄1
0 (x0) + Ωc̄

1(x0) =
ē

aσ2

[
aσ2s− ē+

√
d+

1 (x0)

]
Therefore maximizing Ω̃c̄1,c̄1

0 is equivalent to maximizing d+
1 subject to the constraint, which

boils down to maximizing W1(x0) = W0+2aσ2x0(s−x0), subject to constraints. The solution

is xu0,c1
0 = s

2
if f+

0 ( s
2
) ≥ 0 and f+

1 (3s
4

) < 0. The first condition requires W0 ≥ ωp0, and the

second W0 < ωp1.

These conditions define a non-empty interval iff ωp0 < ωp1, which is equivalent to ρ > 3
4
.

Substituting xu0,c1
0 into W1 yields the equilibrium utility Ωu0,c1

0 .

Finally, since for any x0 such that Ωc̄
1(x0) exists, Ω̃c̄

1(x0) ≤ Ω̃u
1(x0), we also have, by definition

of the value functions Ωc̄1,c̄1
0 and Ωc̄1,u1

0 , Ω̃c̄1,c̄1
0 (x0) ≤ Ω̃c̄1,u1

0 (x0).

Corollary 7 If ρ > 3
4

and W0 < ωp0, or if ρ ≤ 3
4

and W0 < min(ωp0, ω
p
1), the candidate

equilibrium strategy is xc0,c10 = x̄0, and Xc0,c1
1 = X̄1(x̄0). At this strategy, the arbitrageur’s

expected utility is Ωc0,c1
0 ≡ Ω̃c̄1,c̄1

0 (x̄0).

Proof. Follows immediately from Proposition 17.
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Note that this strategy is the same as the constrained equilibrium of the competitive case

(for a given W0), but with different wealth thresholds.

D.3.2 Relevant thresholds

Wealth thresholds. Given our analysis of feasible positions and deviations, the relevant

wealth thresholds are ωc, ωp0, ωp1, ω̂, ω̂ + ω∗, and ω̂ + 4ē2

aσ2 .

Lemma 8 (Wealth Tresholds Ordering in Equilibrium with Binding Time-1 Constraint)

The order of the wealth thresholds is given in Table 4.

Table 4: Wealth Threshold Order for Equilibrium with Binding Time-1 Constraint

Treshold Greater than Condition Numerical value
ωp0 ≡ sē− 1

2
aσ2s2 ωp1 ρ < 3

4

ωc for any ρ > 0 (equality if ρ = 2)
0 ρ ≥ 1

2

ω̂ ρ > 9
2

ωp1 ≡ 3
2
sē− 7

8
aσ2s2 ωc for all ρ > 0

0 ρ > 7
12

0.583
ω̂ ρ > 13

4

ωc ≡ ωu1 − ē2

10aσ2 0 7− 2
√

10 ≤ ρ ≤ 7 + 2
√

10 0.675 - 13.32
ω̂ never, equality for ρ = 7

ω̂ ≡ 4aσ2s2 0 for any ρ > 0

Relevant risk benefit ratio thresholds. The relevant thresholds for ρ are thus, in ascend-

ing order, 1
2
, 7

12
, 7−2

√
10, 3

4
, 1, 13

4
, 9

2
, 7 and 7+2

√
10. The thresholds 1 and 7 correspond to

a change in F c̄10 . The ordering of wealth thresholds per ρ-interval is given in Table 5. Since

the positivity of the wealth thresholds does not affect the equilibrium outcome, I group all

the cases where ρ < 3
4

together. Similarly, I do not distinguish the case with ρ ≥ 7 + 2
√

10,

as it does not affect the order.

D.3.3 Equilibrium case by case

Equilibrium determination follows from combining the results above. The details are avail-

able in the Internet Appendix.
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Table 5: ρ and Wealth Intervals for Equilibrium with Binding Time-1 Constraint

Case ρ interval Wealth ordering
1 ρ < 3

4
(ωc, 0)+ < (ωp1, 0)+ < (ωp0, 0)+ < ω̂

2 3
4
≤ ρ < 1 0 < ωc < ωp0 < ωp1 < ω̂

3 1 ≤ ρ < 13
4

0 < ωc < ωp0 < ωp1 < ω̂
4 13

4
≤ ρ < 9

2
0 < ωc < ωp0 < ω̂ < ωp1

5 9
2
≤ ρ < 7 0 < ωc < ωp0 < ω̂ < ωp1

6 7 ≤ ρ (ωc, 0)+ < ω̂ < ωp0 < ωp1

D.4 Equilibrium spreads

Corollary 8 (Equilibrium Spreads in the c̄1 equilibria) In the u0, c1 and c0, c1 equi-

libria, spreads are

∆u0,c1
0 =2aσ2s+ ē−

√
d+

1 (xu0,c1
0 ), ∆u0,c1

1 = aσ2s+ ē−
√
d+

1 (xu0,c1
0 ) (18)

∆c0,c1
0 =2(aσ2s+ ē)−

√
d+

0 (xc0,c10 )−
√
d+

1 (xc0,c10 ), ∆c0,c1
1 = aσ2s+ ē−

√
d+

1 (xc0,c10 )

Proof. Follows from substituting equilibrium positions in the spread schedules (13)-(12).

E Coexistence

Proposition 18 (Equilibria with Slack and Binding Time-1 Constraints May Coexist) �

There is a unique equilibrium when arbitrage capital is either sufficiently low or suffi-

ciently high:

– If 0 ≤ W0 < max(0, ωf ), the unique equilibrium is c0, c1.

– If W0 ≥ max(ωu0 , ω
u
1 , ω

p
1), the unique equilibrium is u0,u1.

� When capital is intermediate, i.e. if max(0, ωf ) ≤ W0 < max(ωu0 , ω
u
1 , ω

p
1), multiple

equilibria may coexist depending on the level of ρ:

– For 0 ≤ ρ < 7
10

, two equilibria may coexist:

* If ωf ≤ W0 < max(ωu0 , ω
u
1 ), c0,u1 may coexist with c0, c1.

* If max(ωu0 , ω
u
1 ) ≤ W0 < ωp1, u0,u1 may coexist with c0, c1.

In the special case where 0 ≤ ρ < 79
140

and ωp1 ≤ W0 < ωu0 , c0,u1 is the unique

equilibrium, with xc0,u1

0 = x̄0.
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– For 7
10
≤ ρ < 3

4
, two equilibria may coexist: u0,u1 with c0, c1, or c0,u1 with

c0, c1.

– For ρ ≥ 3
4
, ωu0 < ωu1 < ωp1, and

* If ωf ≤ W0 < min(ωu1 , ω
p
0), c0,u1 may coexist with c0, c1.

* If ωp0 ≤ W0 < ωu1 , c0,u1 may coexist with u0, c1.

* If ωu1 ≤ W0 < max(ωu1 , ω
p
0), u0,u1 may coexist with c0, c1.

* If max(ωp0, ω
u
1 ) ≤ W0 < ωp1, u0,u1 may coexist with u0, c1.

Proof. See Internet Appendix.

F Welfare

F.1 Proposition 7

Proof. Price effects. Given the definition of d+
1 (x0) and the spread ∆u0,c1

t given in Propo-

sition 17 and Corollary 8, and the definition of ∆u0,u1
t given in Proposition 2 we get:

∆u0,c1
1 < ∆u0,u1

1 ⇔ 2
5
aσ2s + ē <

√
d+

1 (xu0,c1
0 ). Raising both sides to the square and

rearranging terms gives after simplication

∆u0,c1
1 < ∆u0,u1

1 ⇔ W0 > r1 ≡
7

5
sē− 71

50
aσ2s2

Proceeding in the same fashion for time-0 spreads gives:

∆u0,c1
0 < ∆u0,u1

0 ⇔ W0 > r0 ≡
6

5
sē− 37

25
aσ2s2

Clearly, r0 < r1, so ∆u0,c1
1 < ∆u0,u1

1 ⇒ ∆u0,c1
0 < ∆u0,u1

0 . I then determine the position of the

thresholds r0 and r1 relative to 0, ωu0 , ωu1 , ωp0, and ω̄u0 . The results are given in Table 6.

Table 6: Thresholds for price effects in Proposition 7

Threshold Lower than Interval Threshold Lower than Interval
r1 < 0 ρ < 71

70
r0 < 0 ρ < 37

30

< ωu1 always < ωu0 ρ < 5
2

< ωp1 always < ωu1 always
< ωp0 ρ < 23

10
< ωp0 ρ < 49

10

< ωu0 ρ < 47
30

< ωp1 always
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Further, from Proposition 17, ωp0 < ωp1 iff ρ > 3
4
, so we only need to consider this region.

The potential coexistence region is determined by the position of ρ relative to 1 (Proposition

18). Thus, the relevant thresholds for ρ are 3
4
, 1, 47

30
, 23

10
, 5

2
, and 49

10
(ignoring the positivity

constraints for r0 and r1). Therefore, there are six cases:

1. If 3
4
≤ ρ < 1, then r0 < r1 < ωu0 < ωu1 < ωp0 < ωp1. The potential coexistence

region for this interval is [ωp0, ω
p
1[. Thus, if the u0, u1 and u0, c1 equilibria coexist, then

W0 ≥ max(r0, r1), so ∆u0,c1
t < ∆u0,u1

t .

2. If 1 ≤ ρ < 47
30

, then r0 < r1 < ωu0 < ωp0 < ωu1 < ωp1. The potential coexistence region is

now [ωu1 , ω
p
1[. If equilibria coexist, then W0 ≥ max(r0, r1), so ∆u0,c1

t < ∆u0,u1
t . The remaining

cases are the same as case 2:

3. If 47
30
≤ ρ < 23

10
, then r0 < ωu0 < r1 < ωp0 < ωu1 < ωp1. 4. If 23

10
≤ ρ < 5

2
, then

r0 < ωu0 < ωp0 < r1 < ωu1 < ωp1. 5. If 5
2
≤ ρ < 49

10
, then ωu0 < r0 < ωp0 < r1 < ωu1 < ωp1. 6. If

49
10
≤ ρ, then ωu0 < ωp0 < r0 < r1 < ωu1 < ωp1. Thus, if the two equilibria coexist, spreads are

always smaller in the u0, c1 equilibrium.

Hedgers’ welfare. Since E0(p1) − p0 = 1
2
(∆0 −∆1) and E0(p2 − p1) = 1

2
∆1, we can rewrite

equation (7) in Lemma 2 as

U0 =
(∆0 −∆1)2 + ∆2

1

8aσ2
− s

2
∆0 (19)

The first term represents hedgers’ capital gains on their time 0 and time 1 positions. The

second term represents the total cost of sharing risk at a discount relative to the fundamental

value (the expected value). Equation (19) gives hedgers’ welfare in market A. Market B is

symmetric. From (19), we get:

Uu0,c1
0 > Uu0,u1

0 (20)

⇔ (∆u0,c1
0 −∆u0,c1

1 )2 − (∆u0,u1

0 −∆u0,u1

1 )2 + (∆u0,c1
1 )2 − (∆u0,u1

1 )2 > 4aσ2s(∆u0,c1
0 −∆u0,u1

0 )

Using (18) and Proposition 17, we get ∆u0,c1
0 −∆u0,c1

1 = aσ2s, ∆u0,u1

0 −∆u0,u1

1 = 3
5
aσ2s,

thus condition (20) becomes

11

5
a2σ4s2 + 2ē2 + 2aσ2W0− 2(aσ2s+ ē)

√
d+

1 (xu0,c1
0 ) > 4aσ2s

[
1

5
aσ2s+ ē−

√
d+

1 (xu0,c1
0 )

]
Rearranging the terms, we can rewrite condition (20) as

aσ2(W0 − ωh) > (ē− aσ2s)
√
d+

1 (xu0,c1
0 ), with ωh ≡ 2sē− 7

10
aσ2s2 − ē2

aσ2 (21)
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I then place ωh relative to 0, ωu0 , ωu1 , ωp0, and ωp1: see Table 7. Since the interval of interest

Table 7: Thresholds for hedgers’ welfare in Proposition 7

Threshold Greater than Interval

ωh > 0 iff ρ ∈
]
1−

√
1.2
2
, 1 +

√
1.2
2

[
> ωu0 iff ρ ∈

]
3
5
−
√

14
10
, 3

5
+
√

14
10

[
> ωu1 iff ρ ∈

]
0, 3+

√
29

10

[
> ωp0 iff ρ ∈

]
1
2
−
√

5
10
, 1

2
−
√

5
10

[
> ωp1 iff ρ ∈

]
0, 1

4
+
√

95
20

[
is ρ ≥ 3

4
, the only relevant thresholds are 3+

√
29

10
(≈ 0.88), 3

5
+
√

14
10

(≈ 0.97), 1 and 1 +
√

1.2
2

. I

add the threshold 1, as it determines the region of potential coexistence. We have thus five

cases:

1. If 3
4
≤ ρ < 3+

√
29

10
, then 0 < ωu0 < ωu1 < ωh < ωp0 < ωp1

2. If 3+
√

29
10
≤ ρ < 3

5
+
√

14
10

, then 0 < ωu0 < ωh < ωu1 < ωp0 < ωp1

3. If 3
5

+
√

14
10
≤ ρ < 1, then 0 < ωh < ωu0 < ωu1 < ωp0 < ωp1

4. If 1 ≤ ρ < 1 +
√

1.2
2

, then 0 < ωh < ωu0 < ωp0 < ωu1 < ωp1

5. If 1 +
√

1.2
2
≤ ρ, then ωh < 0 < ωu0 < ωp0 < ωu1 < ωp1

It is clear that when equilibria potentially coexist under the conditions of Proposition 18,

then W0 ≥ ωh. Therefore for any ρ ≥ 3
4
, the left-hand side of condition (21) is positive.

Instead, the right-hand side is negative for ρ < 1 and positive otherwise. Thus, if 3
4
≤ ρ < 1,

condition (21) holds and Uu0,c1
0 > Uu0,u1

0 . If ρ ≥ 1, we can raise both sides of (21) to the

square to determine the trade-off. Substituting for d+
1 (xu0,c1

0 ), we can rewrite (21) as:

a2σ4W 2
0−2aσ2

[
aσ2ωh + (ē− aσ2s)2

]
W0+(aσ2ωh)2−(ē−aσ2s)2

[
a2σ4s2 + (aσ2s− ē)2

]
> 0

Viewing the left-hand side as a polynomial in W0, we can calculate its discriminant. After

a few lines of algebra, we obtiain 4a2σ4(ē − aσ2s)2
[
2(ē− aσ2s)2 + 2aσ2ωh + a2σ4s2

]
> 0.
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After calculating the term in parenthesis, we can write the roots as

W(1) =
aσ2ωh + (ē− aσ2s)2 − (ē− aσ2s)

√
8
5
a2σ4s2

aσ2
= −

√
8

5
sē+

(
3

10
+

√
8

5

)
aσ2s2

W(2) =

√
8

5
sē+

(
3

10
−
√

8

5

)
aσ2s2

In the relevant region for coexistence, ρ ≥ 1; this implies that W(1) < W(2). It then remains

to determine the position of these roots relative to ωu1 and ωp1. We have: for any ρ, W(2) < ωp1

and W(2) < ωu1 . Thus W0 ∈ [ωu1 , ω
p
1[ implies W0 > W(2), which implies that Uu0,c1

0 > Uu0,u1

0 .

Arbitrageurs’ welfare. First, I show that Ωu0,c1
0 > Ωu0,u1

0 is equivalent to W0 ∈ [ωa, ωa
′
]. To see

this, note that Ωu0,c1
0 > Ωu0,u1

0 is equivalent to (equilibrium utilities are given in Propositions

2 and 17)

ē
√
d+

1 (xu0,c1
0 ) > aσ2(W0 − ωa), with ωa ≡ sē− 9

10
aσ2s2 − ē2

aσ2

Since W0 ≥ ωp0 > ωa0, the right-hand side is positive. So raising both sides to the square

preserves the order. After some simple algebra, the condition becomes

−a2σ4W 2
0 + 2aσ2(ē2 + aσ2ωa)W0 + ē2

[
a2σ4s2 + (aσ2s− ē)2

]
− (aσ2ωa)2 > 0

Viewing the left-hand side as a polynom in W0, and using the definition of ωa, we compute

the discriminant. After some simplification, we obtain 4
5
a4σ8s2ē2. Thus, we can write the

roots as

ωa =

(
1 +

1√
5

)
sē− 9

10
aσ2s2 > ωa

′
=

(
1− 1√

5

)
sē− 9

10
aσ2s2

This establishes the first point. Second, I compare the roots to the equilibrium thresholds.

Since 1 + 1√
5
< 3

2
, ωp1 > ωa. Since 1 + 1√

5
> 7

5
, ωa > ωu1 . Further, ωa

′
< ωp0 and ωa > ωp0

iff ρ > 2
√

5
5

. Thus, arbitrageurs are better off in the partly constrained equilibrium iff

W0 ∈ [max(ωu1 , ω
p
0), ωa[. Given that ωp0 > ωu1 for ρ < 1, this interval is not empty iff ρ > 2

√
5

5
.
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F.2 Corollary 2

Proof. The first point is obvious. The condition under which the constraint does not bind

is W0 ≥ max(ωu0 , ω
u
1 , ω

p
1)1ρ<0.7∩ρ>0.75 + h10.7≤ρ≤0.75, where h is the threshold represented by

a dotted line on Figure 7.

The second point follows from Proposition 7 and the fact that, in the absence of constraint,

the unique equilibrium is u0, u1. Proposition 7 shows that hedgers are better off in the u0, c1

than in the u0, c1 equilibrium under milder conditions than point 2. Thus, the conditions

for Pareto improvement are those for the improvement in the arbitrageur’s welfare. We have

shown that ωa > ωp0 iff ρ > 2
√

5
5

, so we must restrict our attention to this interval. For

W0 ∈ [ωp0, ω
u
1 ], u0, c1 is the unique equilibrium in the presence of constraints. Given that

ωu1 < ωa, the arbitrageur is better off. For W0 ∈ [ωu1 , ω
a], u0, c1 coexists with u0, u1, thus the

arbitrageur is better off only if u0, c1 is selected.43

The third point follows from comparing hedgers’ welfare in the u0, u1 vs c0, c1 or c0, u1

equilibria. From Proposition 4, recall that xc0,u1

0 = x̄0 < xu0,u1

0 and Xc0,u1

1 = s+x̄0

2
. This

implies that ∆c0,u1

1 = aσ2(s − x̄0) > ∆u0,u1

1 and that ∆c0,u1

0 − ∆c0,u1

1 = 2aσ2(s − x̄0). Then

using (19), U c0,u1

0 < Uu0,u1

0 iff

5

8
aσ2(s− x̄0)2 − 3

2
aσ2(s− x̄0) <

5

8
aσ2(s− xu0,u1

0 )2 − 3

2
aσ2(s− xu0,u1

0 )

After a few lines of simple algebra, this condition boils down to

5

2
(x̄2

0 − (xu0,u1

0 )2) < aσ2s(xu0,u1

0 − x̄0)

Thus, xc0,u1

0 = x̄0 < xu0,u1

0 implies that this condition is satisfied, so hedgers’ welfare decreases

when imposing constraints leads to c0, u1.

Similarly, we get

U c0,c1
0 =

4a2σ2(s− x̄0)2 + 4a2σ2(s− X̄1)2

8aσ2
− s

2

[
2aσ(s− x̄0) + 2aσ2(s− X̄1)

]
Thus the condition U c0,c1

0 < Uu0,u1

0 can be simplified to

1

2
aσ2

[
(s− x̄0)2 − (s− xu0,u1

0 )2 + (s− X̄1)2 − (s−Xu0,u1

1 )2
]
< aσ2s

[
xu0,u1

0 − x̄0 +Xu0,u1

1 − X̄1

]
,

43Given that it Pareto-dominates, one may argue that this is the most likely outcome.
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which can be further reduced to

1

2
aσ2

[
x̄2

0 − (xu0,u1

0 )2 + X̄2
1 − (Xu0,u1

1 )2
]
< 0

This condition holds true since when the constraint binds, x̄0 < xu0,u1

0 and X̄1 < Xu0,u1

1 (the

latter also follows from the analysis in the proof of Proposition 10). Hence hedgers’ welfare

also decreases when imposing constraints leads to c0, c1.

F.3 Proposition 8

Proof. Counterfactual 1. I compute hedgers’ welfare using equation (19), under the as-

sumptions that xcf1
0 = xu0,u1

0 = 2
5
s and Xcf1

1 = Xu0,c1
1 =

aσ2s−ē+
√
d+

1 (x
u0,c1
0 )

2aσ2 . These quantities

imply the following spreads:

∆cf1
1 = ∆u0,c1

1 , ∆cf1
0 = 2aσ2(s− xu0,u1

0 ) + ∆u0,c1
1 =

6

5
s+ ∆u0,c1

1 > ∆u0,c1
0

Substituting into (19), we obtain

U cf1
0 =

(
6
5
s
)2

+ (∆u0,c1
1 )2

8aσ2
− s

2

(
6

5
s+ ∆u0,c1

1

)
Therefore, U cf1

0 < Uu0,c1
0 can be simplified into 27

25
> 3

4
, which holds true.

Counterfactual 2. The quantities are xu0,c1
0 = s

2
and Xcf2

1 = Xu0,u1

1 = 7
10
s, implying that

∆cf2
1 = ∆u0,u1

1 = 3
5
aσ2s, ∆cf2

0 − ∆cf2
1 = aσ2(s − xu0,c1

0 ) = aσ2s, and ∆cf2
0 = aσ2s + ∆cf2

1 =
8
5
aσ2s. Substituting these spreads into equation (19), we get U cf2

0 = − 63
100
aσ2s2. Comparing

this welfare level to Uu0,u1

0 , we get U cf2
0 < Uu0,u1

0 < Uu0,c1
0 .

F.4 Proposition 10

See Internet Appendix.

F.5 Corollary 3

Proof. Recall that margins (on long positions) are given by mt = ē − 1
2
(∆t −∆t+1) = ē −

aσ2(s−Xt). Besides, the VaR at time t is the product of the position and the margin: V aRt =

mtXt. Thus, at time 0, V aRl
0 = ωl0, l ∈ {∗, u, p}. Thus, with competitive arbitrageurs,

when the constraint is slack, X∗t = s, m∗t = ē and V aR∗t = ω∗. When the constraint
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binds, the position is reduced and the margins and thus the VaR increase: X∗t = X̄t < s,

m∗t = ē − aσ2(s − X̄t), and V aR∗t = X̄tē − aσ2(s − X̄t) < ω∗. With market power, if the

risk benefit ratio is low enough (ρ < 7/10), a drop in capital switches the equilibrium from

u0, u1 to c0, u1. Since Xc0,u1
t < Xu0,u1

t , mc0,u1
t < mu0,u1

t , and V aRc0,u1
t < V aRu0,u1

t , so the

comparative statics are the same as with competitive arbitrageurs. When (7/10 ≤ ρ < 3/4),

the equilibrium a drop in capital switches the equilibrium from u0, u1 to c0, c1, and the

analysis is similar. When ρ ≥ 3/4, however, a drop in capital switches the equilibrium from

u0, u1 to u0, c1, and then to c0, c1. Between u0, c1 and c0, c1, positions decrease following a

drop in capital, so margins and VaR also decrease. However, between u0, u1 and u0, c1, the

position always increases at time 0, and so margins and VaR also increase. At time 1, the

position increases as long as ρ < 23/10 . Indeed in the proof of Proposition 7 shows that

r1 < ωp0 on this interval for the time-1 spread to decrease between u0, u1 and u0, c1, and a

decrease in time-1 spread is equivalent to an increase in time-1 position.
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