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One item, n agents with independent
non-identically distributed private type t.
Allocation x ∈ {0, 1}, payment p ∈ R+. An agent
has the utility function u(t, x, p), i.e., a mapping
from her private type and the outcome to her von
Neumann-Morgenstern utility.

Specific Utility Models
• linear utility: private type t = v, i.e., the value of
the item; utility u(v, x, p) = vx− p.
•public-budget utility: utility u encodes a public
non-identical budget w; private type t = v; utility
uw(v, x, p) = vx− p if p ≤ w and −∞ otherwise.
•private-budget utility: private type t = (v, w);
utility u(v, w, x, p) = vx− p if p ≤ w and −∞
otherwise.
•capacitated utility: private value t = v of the
item; non-identical capacity C encoded in utility
function; utility uC(v, x, p) = min{vx− p, C}.

Payoff Curves
Payoff Curve: a mapping from a constraint q on
the ex ante probability of sale, over randomness in
the agent’s type and the mechanism, to the payoff
(e.g. revenue, welfare) of the optimal mechanism
with the ex ante constraint, within a fixed class of
mechanisms. Specifically,
Definition. The price-posting payoff curve P is
the payoff curve generated by the price-posting
mechanisms. The ironed price-posting payoff
curve P̄ is the concave hull of P .
Definition. The optimal payoff curve R is the
payoff curve generated by all possible mechanisms.

Ex Ante Relaxation
•Optimal Auction: optimal mechanism that maps
types to allocations and payments subject to
feasibility constraint; sophisticated; involves
competition and discrimination;
•Ex Ante Relaxation (EAR): relax feasibility
(selling at most one item) to ex ante feasibility
(selling at most one item ex ante); upper bounds
the payoff of optimal mechanism.
Fact. The optimal payoff curves R = {Ri}ni=1
uniquely determine the payoff of EAR, i.e.,

EAR(R) = max
q:‖q‖1≤1

n∑
i=1

Ri(qi).

Reduction Framework for Pricing-based Mechanisms
Myerson (1981) shows that every mechanism for agents with linear utilities is a
pricing-based mechanism.
Definition. A mechanism is a pricing-based mechanism if its payoff is determined
by the price-posting payoff curves P = {Pi}ni=1 of agents.
For non-linear agents, however, mechanisms (e.g., revenue-optimal mechanism) are
not uniquely pinned down by the pricing-posting payoff curves in general even for a
single-agent setting. The ζ-closeness (defined below) of an agent measures how close
her ironed price-posting payoff curve is to her optimal payoff curve.
Definition. An agent’s ironed price-posting payoff curve P̄ is ζ-close to her optimal
payoff curve R, if for all q ∈ [0, 1], there exists a quantile q† ≤ q such that
ζ · P̄ (q†) ≥ R(q). Such an agent is ζ-close.
Based on the definition of ζ-closeness, we present the main result: a reduction
framework that converts mechanisms for agents with linear utilities to agents with
non-linear utilities, and approximately preserves its payoff approximation guarantee.
Definition. Fix any set A of (non-linear) agents with price-posting payoff curves P.
The linear agents analogy AL is an set of linear agents whose price-posting payoff
curves are also P, and optimal payoff curves are P̄.

Main Theorem. Fix any set A of (non-linear) agents with price-posting payoff
curves P and optimal payoff curves R. For any DSIC, IIR, deterministic mechanism
ML for agents with linear utility, there is a pricing-based mechanismM for
non-linear agents A that is DSIC, IIR, and satisfies
1 Identical payoff: mechanismM for non-linear agents A has the same payoff as
mechanismML for the linear agents analog AL. Denote the payoff of mechanism
ML andM asM(P) andML(P).

2 Identical feasibility: mechanismM for non-linear agents A has the same
distribution over outcomes as mechanismML for the linear agents analog AL.

Denote by γ the approximation of mechanismML for the linear agents analog AL to
the ex ante relaxation of AL, i.e.,ML(P) ≥ 1/ζ · EAR(P̄). If each non-linear agent in
A is ζ-close, then mechanismM for non-linear agents A is γ ζ-approximation to the
ex ante relaxation of A, i.e.,M(P) ≥ 1/γ ζ · EAR(R).

Simple Mechanisms for Agents with Linear Utility
Here we list some simple mechanism for agents with linear utility and their
approximation (w.r.t. ex ante relaxation) guarantee.
•Sequential Posted Pricing: agents in sequence (specified by mechanisms) are offered
take-it-or-leave-it prices. It is a e/(e− 1)-approximation to ex ante relaxation for
linear agents (Chawla et al., 2010).
•Oblivious Posted Pricing: agents in sequence (unknown to mechanisms in advance)
are offered take-it-or-leave-it prices. It is a 2-approximation to ex ante relaxation for
linear agents (Chawla et al., 2010).
•Marginal Payoff Maximization (a.k.a., Myersonian Auction): Marginal revenue
mechanism in Bulow and Roberts (1989) is a e/(e− 1)-approximation to ex ante
relaxation for linear agents (Alaei et al., 2013).

ζ-Closeness for Non-linear Utility

Table: Summary of results for ζ-closeness under various assumptions.

public budget independent private budget capacitated utility
revenue revenue welfare revenue welfare

assumption regular regular† value MHR budget‡ regular, support [0, v̄],
capacity at least v̄/η

ζ-closeness 1∗ 2∗ 3 1 + 3e− 1/e 2 2 + ln η 1∗
∗ indicates tight ratio. † distribution F is regular if v − 1−F (v)

f (v) is non-decreasing in v. ‡ distribution F is MHR if the hazard

rate f (v)
1−F (v) is non-decreasing in v.

Implementation of Main Theorem
For any deterministic DSIC, IIR mechanismML

for linear agents, it can be represented by a
mapping from the quantiles of other agents to a
threshold quantile for each agent. The agent wins
when her quantile is below the threshold and loses
when her quantile is above the threshold. Denote
the function that maps the profile of other agent
quantiles {qj}j∈N\{i} to a quantile threshold for
agent i by q̂ML

i

(
{qj}j∈N\{i}

)
.

For any agent with non-linear utility, the
single-agent pricing problem identifies the per-unit
(market clearing) price pq to offer the agent for any
ex ante allocation constraint q. Denote the
allocation probability selected by an agent with
type t as xq(t) when offered per-unit price pq.
Under mild assumption, xq(t) is non-decreasing in
quantile q for all type t.

Implementation.
• Input: A set A of (non-linear) agents; and
deterministic, DSIC, IIR mechanismML for
linear agents.
•For each agent i with private type ti, map the
type to a random quantile qi according to the
distribution Hi with cdf Hi(q) = xqi (ti).
•For each agent i, calculate quantile threshold as
q̂i = q̂ML

i

(
{qj}j∈N\{i}

)
.

•For each agent i, set payment pi = pq̂i xq̂ii (ti), and
allocation xi = 1 if qi < q̂i and xi = 0 otherwise.

Extension
The reduction framework can be generalized from
single-item environments to any downward-closed
environments, e.g., multi-unit, matroid.
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