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Abstract

During the 2007-2008 financial crisis, countries that were relatively more exposed to the crisis

epicenter, the United States, were among the least affected. This counters the intuition that the

impact of a shock increases with exposure to it, and raises the question of the mechanism through

which the impact of a shock can decrease with exposure. I develop a model in which decision-

makers learn about the risk factors they are exposed to, but have limited capacity to process

information. I find that decision-makers optimally choose to learn more about the risk factors

they are more exposed to, and this informational advantage mitigates the impact of shocks by

improving the optimality of their decisions. Relative to an exogenous information benchmark,

the impact of shocks to risk factors that decision-makers are relatively more exposed to is

attenuated, while shocks to risk factors that are relatively less important in terms of exposure

are amplified through decision-markers’ poorly informed actions.
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1 Introduction

During the 2007-2008 financial crisis, countries that were relatively more exposed to the crisis

epicenter, the United States, were among the least affected in real terms (Rose and Spiegel, 2010,

2011). In financial markets, equity portfolios that were relatively more exposed to a United States-

specific factor experienced relatively lower declines in returns (Bekaert, Ehrmann, Fratzscher, and

Mehl, 2014).1 This evidence points to the existence of a negative relation between the degree of

exposure to a risk factors and the impact of a shock to that risk factor, which cannot be rationalised

using existing theories of shock transmission. The evidence counters the intuition that the impact

of a shock increases with exposure to it, and raises the question of the mechanism through which

the impact of a shock can decrease with exposure.

I develop an information-based theory of shock transmission and characterize the conditions

under which the impact of a shock can decrease with exposure to it. The theory builds on the

intuition that the consequences of events depend not only on decision-makers’ direct exposure to

events, but also on their reactions to these events. Reactions can thus represent an indirect shock

transmission mechanism, which can serve to amplify or mitigate the direct impact of shocks. Risk

perception research suggests that an important factor shaping reactions to events is the degree of

understanding of these events, which depends in turn on the information set of decision-makers.2

Hence, understanding how decision-makers learn is central to understanding how their conditional

actions contribute to the transmission of shocks. This paper studies the role that endogenous

information choice plays in the transmission of shocks, through the actions of decision-makers.

I propose a framework in which decision-makers learn about the risk factors that they are

exogenously exposed to, but have limited capacity to process information. I focus on studying

the real consequences of shocks to these risk factors by embedding my framework in a simple

model of corporate investment. The baseline model features a representative firm which undertakes

investment to maximize profits. The return on investment depends on the fundamentals of the

1During the 1998 Russian financial crisis, Peruvian subsidiaries of international banks that had been directly
exposed to the Russian government default shock were less affected relative to domestic Peruvian banks that had no
such direct exposure (Schnabl, 2012). Evidence from the literature on natural disasters indicates that more hurricane
casualties occur inland relative to the coast, despite the higher direct exposure of coastal areas (Moser, Davidson,
Kirshen, Mulvaney, Murley, Neumann, Petes, and Reed, 2014). Evidence from sociology indicates that relatively
minor risks that people have little exposure to are amplified and produce massive public reactions accompanied by
substantial social and economic impacts, while ubiquitous and well-documented hazards that people are significantly
exposed to are attenuated and elicit little public concern and responses (Kasperson, Renn, Slovic, Brown, Emel,
Goble, Kasperson, and Ratick, 1988).

2See Slovic (1987); Kasperson et al. (1988); Renn, Burns, Kasperson, Kasperson, and Slovic (1992).
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economy in which the firm operates. Economic fundamentals, in turn, are modelled as a sum

of exogenous exposures to risk factors. Before investing, the firm chooses how much information

to observe about the risk factors that fundamentals are exposed to, but has limited resources to

acquire and process information.

This simple framework is intended to serve as a paradigm of a more general phenomenon,

namely that of decision-makers which are exogenously exposed to a number of risk factors, and

which dispose of limited resources to hedge against shocks to these risk factors. I study learning

as a form of hedging, insofar as acquiring information about a risk factor represents an action

that reduces the future uncertainty surrounding that risk factor and so it is conceptually similar

to hedging. The assumption of exogenous exposures to risk factors is particularly suited to the

corporate investment setup that I study, since corporate decision-makers are often exposed to risk

factors that are beyond their immediate control. Firms operating in certain industries or countries

cannot readily disentangle themselves from their respective industry or country specific risks, and

are thus faced with relatively fixed or sticky risk exposures. The framework I propose is less

suitable for studying financial investment setups, such as portfolio allocation, since in that case the

fundamental problem faced by decision-makers is that of choosing their exposure to risk factors.

I find that learning about a risk factor optimally increases with exposure to it, such that the firm

chooses to learn more about the risk factors that it is relatively more exposed to. The reduction in

uncertainty achieved through learning mitigates the impact of shocks to risk factors that the firm

is relatively more exposed to, by enabling it to take a better informed investment decision. On

the other hand, the impact of shocks to risk factors that the firm is relatively less exposed to is

amplified through the poorly informed investment decision of the firm. The interpretation of these

predictions in terms of the motivating evidence is that countries which were relatively less exposed

to the United States shock were more affected because decision-makers operating in these countries

had a poorer understanding of the shock and, as a consequence, took actions that aggravated their

circumstances.3

My model highlights a trade-off between the cost of being highly exposed to a risk factor and

the benefit of having a better understanding of it. This trade-off would not obtain in a standard,

fully rational Bayesian learning model in which information is abundant and decision-makers are

not limited in their ability to process information. In this setup, learning would not be guided

3Ongena, Tümer-Alkan, and Von Westernhagen (2018) provide micro evidence from banking consistent with this
interpretation, by documenting that in the lead-up to the crisis, German banks which had a higher exposure to United
States exhibited stronger flight to quality responses to potential losses.
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by aspects such as the degree of exposure, so there would be no relation between exposure to

risk factors and conditional actions. On the other hand, in the boundedly rational setup I study,

decision-makers devote their limited information processing resources to learning more about the

risk factors that are more important in terms of exposure, and as a consequence the deviation of

conditional actions from optimality decreases with exposure.

The information-based shock transmission mechanism I propose in this paper operates through

decision-makers’ uncertainty. Learning reduces the uncertainty that the firm faces when deciding

on the optimal level of investment. Relative to a benchmark model in which the firm is endowed

with an exogenous and equal amount of information about all its risk factor exposures, overall

uncertainty is lower when the firm optimally chooses how much information to observe about its

risk factor exposures. Furthermore, uncertainty is convex in exposure to a risk factor when the

firm is exogenously endowed with information about its risk factor exposures, but it is concave

in exposure when the firm endogenously chooses its information. Uncertainty dynamics in the

benchmark model illustrate a classic diversification effect whereby high exposure to a risk factor

implies high overall uncertainty, and the lowest level of uncertainty is achieved when exposure to

the risk factors is equal. As exposure to a risk factor become relatively higher, uncertainty increases

with exposure and results in a convex relationship that operates though a so-called exposure channel.

However, in the endogenous learning model I propose, a change in exposure has two competing

effects. On the one hand, higher exposure to a risk factor increases uncertainty mechanically,

through the exposure channel. On the other hand, higher exposure to a risk factor entails a

reduction in uncertainty via learning, which operates through a so-called information channel. As

exposure increases, the exposure channel which is operative in the benchmark model is overturned

by the information channel, and as a consequence uncertainty decreases with exposure, resulting

in a concave relationship between uncertainty and exposure.

The reduction in uncertainty that is achieved through learning enables the firm to accurately

incorporate the shocks affecting fundamentals into investment decisions. To the extent that the

firm’s investment deviates from the first-best optimum obtained under perfect information, such

deviation is suboptimal. In the case of positive shocks the deviation from optimality manifests

as under-investment, while in the case of negative shocks it manifests as over-investment.4 It is

thus convenient to define the loss due to suboptimal investment as the squared deviation from

the perfect information optimum. The loss due to suboptimal investment essentially measures

4The deviation from optimality can be more generally conceptualized as a decision error.
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the contribution of actions to the transmission of shocks. I find that the loss due to suboptimal

investment decreases with exposure when information is endogenously chosen, and it increases with

exposure when information is exogenously given. Consequently, the endogenous information model

I propose predicts that the transmission of shocks is intensified as exposure to shocks decreases.

Relative to the exogenous information benchmark, the impact of shocks to risk factors that are

relatively less important in terms of exposure is amplified, while the impact of shocks to risk

factors that are relatively more important in terms of exposure is attenuated.

I consider a number of extensions to the baseline model. First, I extend the baseline model

to account for the degree of anticipation of shocks, and find that it is optimal to learn less about

shocks that are expected to occur with low probability. The model thus predicts that the impact

of unanticipated shocks is amplified, in line with the empirical evidence on the transmission of

unanticipated crises (Kaminsky, Reinhart, and Vegh, 2003; Rigobon and Wei, 2003; Mondria and

Quintana-Domeque, 2013). Second, I allow for strategic interactions and find that the amplification

of shocks increases with the degree of strategic complementary in investment. Third, I relax

the assumption that the risk factors affecting fundamentals are independent, and find that the

amplification of shocks increases with the degree of correlation between the risk factors. Finally, I

relax the assumption that exposures to the risk factors are exogenous, and find that it is optimal

to specialize in learning about one risk factor and to be relatively more exposed to that factor.

The paper proceeds as follows. The rest of this introduction considers related literature and

clarifies the contribution of my model. Section 2 formally introduces the mechanism through which

the impact of shocks can decrease with exposure. Section 3 discusses the baseline results, Section 4

considers a number of extensions to the baseline model, and Section 5 concludes. All proofs and

derivations can be found in the Appendix.

1.1 Related Literature

The model proposed in this paper incorporates endogenous learning and rational inattention

(Sims, 2003) in a classic model of contagion that takes a risk factor view of the world (Forbes and

Rigobon, 2002; Kodres and Pritsker, 2002; Pericoli and Sbracia, 2003). Thus, my paper mainly

contributes to the literature on rational inattention, and the literature on financial contagion.

The rational inattention literature popularized by Sims (2003) builds on the idea that attention,

rather than information is a scarce resource. A large number of rational inattention applications
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focus on attention allocation across multiple risk factors.5 The paper most related to mine is Mon-

dria and Quintana-Domeque (2013), who use fluctuations in attention allocation to explain financial

contagion. They study the implications of endogenous information choices for the transmission of

idiosyncratic shocks via a portfolio rebalancing channel by analyzing how a shock to one risk factor

affects the attention allocated to other risk factors, and what this implies for subsequent portfolio

allocation decisions. On the other hand, I study how attention allocation is affected by exposure

to risk factors, rather than the occurrence of shocks to risk factors, and what this implies for the

optimality of real investment decisions. Worth noting is that my baseline model differs markedly

from a portfolio allocation problem in which decision-makers choose both their information about

and exposure to risk factors, because in my framework decision-makers only choose how much

information to acquire about the risks they are exogenously exposed to.

Another, comparatively smaller but growing, strand of the rational inattention literature focuses

on attention allocation across a number of possible states of the world.6 The paper most related to

mine in this literature strand is Maćkowiak and Wiederholt (2018), who study how the degree to

which decision-makers are prepared for events can exacerbate their consequences. While their model

focuses on degree of anticipation of shocks to study how decision-makers make state-contingent

plans, my baseline model focuses on the degree of exposure to shocks to study how the transmission

of a systemic shock varies in the cross-section of decision-makers exposed to it. My baseline model

is extended to account for the degree of anticipation of shocks as well, so my work complements

theirs in that I study attention allocation across risk factors with vary in terms of their degree of

exposure and which are also subject to shocks that vary in terms of their degree of anticipation.

My paper can be framed in the context of the contagion literature that studies the transmission

of shocks in the presence of linkages between the crisis epicenter and the entities subsequently

affected, but which cannot be unexplained by or is disproportionate to the observable size of these

linkages.7 The basic idea underlying this literature is that decision-makers transmit shocks by

5Rational inattention applications to setups in which decision-makers learn about many risks include asset pricing
and portfolio choice (Mondria, 2010; Van Nieuwerburgh and Veldkamp, 2010; Kacperczyk, Van Nieuwerburgh, and
Veldkamp, 2016), monetary policy (Woodford, 2001, 2009; Paciello and Wiederholt, 2013; Alvarez, Lippi, and Paciello,
2015), consumption dynamics (Luo, 2008; Tutino, 2013), price setting (Mackowiak and Wiederholt, 2009; Matějka
and McKay, 2012; Matějka, 2015; Stevens, 2020).

6Rational inattention applications to setups in which decision-makers learn about future states of the world has
been explored in a static setting by Maćkowiak and Wiederholt (2018) and in a dynamic setting by Ilut and Valchev
(2017), Sundaresan (2018), and Nimark and Sundaresan (2019).

7This literature strand is to be contrasted with the theories of ”pure contagion” which study the transmission of
shocks in the absence of direct linkages between the crisis epicentre and the entities subsequently affected (Forbes,
2012). The types of linkages that have been studied in the literature have been both real linkages such as trade
exposures (Eichengreen, Rose, and Wyplosz, 1996; Glick and Rose, 1999; Forbes, 2004), as well as financial linkages
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directly altering the linkages or, alternatively stated, by changing their exposure to risks. My

paper offers an alternative explanation by showing that information choices and decisions about

learning can effectively alter risk exposures, and hence the transmission of shocks, even when

decision-makers do not directly change their exposures. The shock transmission channel I propose

is distinct from and complementary to the direct channel of changing exposures to shocks, and can

be best understood by conceptualizing learning as a form of hedging which reduces the magnitude

of, rather than the exposure to shocks.8

In my model, the transmission of shocks is disproportionate to the observable measure of ex-

posure to these shocks. Thus, my paper contributes to the financial contagion literature which

defines contagion as a change in shock transmission mechanism that cannot be explained by ”fun-

damentals”.9 Specifically, my model explains contagion manifested as shock amplification, or how

small shocks can have disproportionately large effects (Allen and Gale, 2004; Krishnamurthy, 2010;

Benoit, Colliard, Hurlin, and Pérignon, 2017). Importantly, it sheds light on two important di-

mensions of shock amplification: (i) which of the shocks that an entity is exposed to are likely to

amplify, and (ii) which of the entities exposed to a shock are likely to be more affected.10 The

model predicts that the transmission of shocks is intensified as exposure to shocks decreases. This

prediction implies that: (i) the shocks that an entity is less exposed to are amplified, and (ii) the

entities that are less exposed to a shock are relatively more affected.

Within the contagion literature, my paper also contributes to the literature strand on information-

based models of contagion.11 Most of these models take information as exogenous and focus on

studying how idiosyncratic shocks, which should not be transmitted across entities if observable,

are in fact transmitted because of imperfect information. In contrast, I focus on studying how

endogenous information choices results in the differential transmission of a common shock in the

cross-section of entities that are exposed to it.

such as interbank exposures (Allen and Gale, 2000; Dasgupta, 2004; Freixas, Parigi, and Rochet, 2000; Iyer and Peydro,
2011) and portfolio exposures (Yuan, 2005; Pavlova and Rigobon, 2008; Jotikasthira, Lundblad, and Ramadorai, 2012;
Manconi, Massa, and Yasuda, 2012).

8To the extent that we can conceptualize the total size of a shock as being given by the magnitude of the shock
and the exposure to it, learning essentially reduces its magnitude. In other words, the exposure to risk factors is fixed
and only the magnitude of these risks is reduced through learning.

9 This notion of contagion is used in King and Wadhwani (1990); Forbes and Rigobon (2002); Karolyi (2003);
Pericoli and Sbracia (2003); Jotikasthira et al. (2012); Bekaert et al. (2014).

10Although my baseline model is a representative agent model, comparative statics with respect to exposure are
informative about a cross-section of entities which are exposed to the same set of risk factors, but which vary in their
degree of exposure to these factors. Note that the terms entities is used generically to encompass firms, countries,
financial markets or financial institutions.

11Such as King and Wadhwani (1990); Calvo and Mendoza (2000); Kodres and Pritsker (2002); Calvo (2004);
Acharya and Yorulmazer (2008); Allen, Babus, and Carletti (2012).
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2 Model

This section formally introduces the mechanism through which the impact of a shock can

decrease with exposure to it. It outlines a baseline model of learning about exogenous risk factor

exposures when the capacity to process information is limited. The basic result is that it is optimal

to learn more about higher risk factor exposures, and this information advantage can mitigate the

consequences of shocks.

2.1 Structure of the Economy

I illustrate the mechanism in the context of a simple canonical model of investment. There is

a risk-neutral, representative firm in the economy. The firm undertakes investment with an aim to

maximize expected profits. Realized profits are given by

π = λθ − C(λ), (1)

where λ is the chosen level of investment, C(λ) is the cost of investment and θ is the exogenous gross

return on investment. The random variable θ parametrizes some unknown exogenous state variable

that affects the return on investment. Following Angeletos and Pavan (2004) and in line with

the motivation, I interpret the random variable θ as the underlying fundamentals in the economy,

but it can also be thought of as exogenous productivity or production technology. My preferred

interpretation captures the intuition that real investment returns are affected by the state of the

economy in which firms operate. The cost function C(λ) is increasing and convex in investment,

and assumed to take the quadratic form λ2

2 .

Economic fundamentals θ are a function of exogenous exposures to independent risk factors.

More specifically, economic fundamentals are modelled as a sum of independent risks

θ = αf1 + (1− α)f2, (2)

where f1 and f2 are exogenous risk factors which affect fundamentals in proportion to exogenous

exposures or factor loadings, α and 1− α, respectively.12 The risk factors, fi, are given by

fi = µi + εi, i = 1, 2,

12The model can be extended without loss of generality to include more than two factors.
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where µi are constants and εi are independently distributed normal random variables, εi ∼ N (0, σ2
i ),

which will be further referred to as shocks.

This simple factor structure accommodates a number of interpretations. The interpretation

preferred here is that they are country-specific risks. This captures the intuition that aggregate

economic outcomes in a country are affected both by events occurring within the country, and to

the extent that it engages in economic relations with other countries, by events occurring within

those other countries. Alternatively stated, fundamentals in a country are determined by risks

that are specific to that country, i.e. domestic risks, and risks that are specific to other countries

that the country has links with, i.e. foreign risks. The extent to which these risks affect economic

fundamentals is captured by the exposure parameters α and 1−α. For instance, the first factor f1

can be thought of as capturing domestic risks and the second factor f2 can be thought of as capturing

foreign risks; a relatively high exposure parameter α > 0.5 would thus describe a relatively closed

economy for which domestic risks are more important, while a relatively low parameter α < 0.5

would describe a relatively open economy that is more exposed to foreign risks.

Fundamentals are realized but unknown when the firm chooses its investment and this introduces

uncertainty about the optimal level of investment. To reduce this uncertainty, the firm chooses

how much information to observe about the risk factors affecting fundamentals, before investing.

Reducing the uncertainty about the unobserved fundamentals will enable the firm to reduce the

loss due to suboptimal investment and thus achieve a higher payoff and utility. The sequence of

events is illustrated below.

information chosen information observed | investment payoff realized

t = 1 t = 2 t = 3

The model can thus be broken down into three periods 1, 2 and 3. In the first period the

representative firm chooses its information. In the second period, the firm observes the chosen

information and optimally decides on a level of investment. In the third period the payoff of the

investment is realized and utility is consumed. The firm’s objective function is to maximize date-1

utility given by

U1 ≡ E1[E2[π]], (3)

where Ut[·] and Et[·] denote the expected utility and expected value, respectively, conditional on

the information available at time t.
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2.2 Information Structure

The firm takes the structure of risk factor exposures as given and decides how much to reduce

uncertainty about each risk factor through learning. However, the firm has limited capacity to

process information, meaning that its choice of how much information to observe about each risk

factor is subject to a constraint on the total amount of information that it can observe.

The firm devotes limited information processing resources to learn about the factor-specific

shocks affecting fundamentals. It is endowed with the prior beliefs that the shocks follow a normal

distribution, εi ∼ N (0, σ2
i ), and acquires noisy signals about each shock

si = εi + εsi , i = 1, 2 (4)

where the signal noise is normally distributed, εsi ∼ N (0, σ2
si), and uncorrelated with the other

random variables. The firm combines the prior beliefs with the acquired signals and forms pos-

terior beliefs according to Bayes’ law. Let θ̂ and σ̂2 denote the posterior mean and variance of

fundamentals, respectively, conditional on the information available at time 2

θ̂ ≡ E[θ|s1, s2] = α

(
µ1 +

σ̂2
1

σ2
s1

s1

)
+ (1− α)

(
µ2 +

σ̂2
2

σ2
s2

s2

)
, (5)

σ̂2 ≡ V [θ|s1, s2] = α2σ̂2
1 + (1− α)2σ̂2

2, (6)

where σ̂2
i ≡

(
σ−2
i + σ−2

si

)−1
, i = 1, 2 denotes the factor-specific posterior variance.

The firm has limited resources or capacity to process information about the risk factors that

fundamentals are exposed to. Let K denote the total capacity to process information and let ki

denote the amount of capacity devoted to learning about risk factor i = 1, 2. The information

processing constraint can be generically formulated as

k1 + k2 ≤ K. (7)

Essentially, this condition tells us that the firm’s choice of how much information to observe

about each risk factor is subject to a constraint on the total amount of information it can observe.

It also implies that for a given total capacity, learning more about one risk factor reduces the

resources that can be devoted to learning about the other risk factor.

The capacity devoted to learning about a risk factor, ki, henceforth referred to as the factor-
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specific information processing capacity, is essentially a measure of the reduction in uncertainty that

can be achieved through learning. I employ the rational inattention framework proposed by Sims

(2003), and model this reduction in uncertainty using tools from information theory, namely entropy

and mutual information. Entropy is the standard measure of information in information theory,

and it measures the amount of uncertainty in a distribution. Mutual information is the difference

between the entropy of an unconditional and a conditional distribution, and it measures the amount

of uncertainty resolved by conditioning on information. The factor-specific information processing

capacity, ki, is a mutual information measure defined as the difference between the entropy of prior

and posterior beliefs. The higher the factor-specific information processing capacity, ki, the higher

the uncertainty resolved by an information signal and the more informative or precise the signal

is said to be. Given the assumption of normally distributed priors and signals, the factor-specific

information processing capacity is given by

ki ≡
1

2
ln
σ2
i

σ̂2
i

, i = 1, 2, (8)

where σ̂2
i is the factor-specific posterior variance, and σ̂−2

i ≡
(
σ−2
i + σ−2

si

)
is the factor-specific

posterior precision.

The entropy-based learning technology essentially imposes a bound on the product of factor-

specific posterior precisions.13 This has two implications that make this information processing

technology suitable for the setup considered here. First, it has a form of increasing returns to

learning built into it, which means that it is less costly to learn about risks that are already

well understood.14 This captures the intuition that learning about risk factor exposures that are

fixed or sticky, and which take a long time to build or terminate, such as the cross-country real

or financial links considered in the motivating example, is a process of refined learning whereby

the interpretation of new information builds on existing information. Second, the entropy-based

learning technology implies that the marginal cost of increasing precision about one risk factor is

proportional to the precision of information about the other risk factors, which means that it is

more costly to learn about all risk factor exposures rather than specialize in learning about one.

This captures the intuition that learning about one risk factor will affect the ability to learn about

the other risk factors, and it is costly to learn about all relevant risk factor exposures.

13This follows from combining (7) and (8) and re-writing the capacity constraint as
∏2

i=1 σ
2
i σ̂
−2
i ≤ e2K . Thus,

more information capacity allows for a higher product of posterior precisions, σ̂−2
i , weighted by prior variances, σ2

i .
14Given that posterior precision is the sum of prior precision and signal precision, an increase in signal precision when

prior precision is high (prior variance is low) increases the product capacity constraint by less, since
∏2

i=1 σ
2
i σ̂
−2
i ≤ e2K .

10



In addition to the capacity constraint, the agent also faces a no-forgetting constraint which

rules out the possibility of forgetting information about one risk factor in order to obtain more

information about another one, without violating the capacity constraint

ki ≥ 0, i = 1, 2. (9)

This is a condition that posterior variance should not exceed prior variance, which effectively

restricts the precision of each signal from being negative. It captures the intuition that learning

about a risk factor should not increase uncertainty.

2.3 Solving the model

Given a level of information processing capacity K, a solution to the model is: a choice of

factor-specific information processing capacity ki to maximize date-1 utility (3), subject to the

capacity constraint (7), the no-forgetting constraint (9) and rational expectations about the date-2

conditional investment; posterior beliefs which are formed according to Bayes’ law (5) and (6),

given a signal about the risk factors; a choice of investment that maximizes expected utility, given

the signal realization.

The model is solved using backward induction. First, given an arbitrary information choice,

the firm decides the optimal investment. Then, given the optimal investment for each information

choice, the firm decides the optimal information choice.

3 Results

In this section, I derive the equilibrium allocation of information processing capacity across risk

factors. Then I discuss the implications of these information choices in terms of the uncertainty

faced by the firm when investing. Finally, I discuss the implications in terms of the chosen level of

investment and the loss due to suboptimal investment.
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3.1 Optimal Information Choice

The date-2 problem consists of the firm choosing an investment level to maximize expected

profits (1), while taking information choice as given

max
λ

U2 ≡ E2[π] = λE2[θ]− λ2

2
(10)

where E2 denotes the expected value conditional on the information available at date 2.

The first order condition with respect to λ yields best investment response λ = E2[θ] = θ̂. Thus,

for any given information choice, the optimal investment level is the expected level of economic

fundamentals. Substituting this optimal investment choice into the objective (10) delivers the

indirect date-2 utility of having any posterior beliefs and investing optimally

U2 =
(E2[θ])2

2
=
θ̂2

2
. (11)

The date-1 problem consists of the firm choosing the optimal level of information processing

capacity devoted to learning about each risk factor to maximize the expected value of (11), and

subject to the capacity constraint (7) and the no-forgetting constraint (9). The posterior mean, θ̂,

is unknown at date 1 when the investment decision is made. It is a normally distributed random

variable, θ̂ ∼ N (θ, σ2 − σ̂2), so date-1 utility is given by

U1 = E1[U2] =
E1[θ̂2]

2
=
E1[θ̂]2 + V1[θ̂]

2
=
θ2 + σ2 − σ̂2

2
. (12)

Since date-1 utility is decreasing in posterior uncertainty, σ̂2, and all other terms are exogenous

variables, maximizing equation (12) subject to (7) and (9), is equivalent to

max
k1,k2

− σ̂2 = −α2σ̂2
1 − (1− α)2σ̂2

2

s.t. σ̂2
i = σ2

i e
−2ki and

2∑
i=1

ki ≤ K and 0 ≤ ki, i = 1, 2.

The unique solution to this problem delivers the following optimal factor-specific capacity allo-

cation
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k1 =


0 if ασ1

(1−α)σ2
< e−K

1
2

(
K + ln ασ1

(1−α)σ2

)
if e−K ≤ ασ1

(1−α)σ2
≤ eK

K if ασ1
(1−α)σ2

> eK

(13)

and k2 = K − k1.

At the interior optimum, the optimal level of capacity devoted to learning about a risk factor

increases with factor-specific exposure, factor-specific prior uncertainty and total information pro-

cessing capacity. For a given level of information processing capacity, K, the firm will optimally

choose to learn more about the risk factors that are relatively more important in terms of exposure

and which are ex-ante more uncertain. If exposure to and prior uncertainty regarding a risk factor

are sufficiently low (high) relative to the other factor, the firm will optimally choose to allocate no

(all) capacity to learning about it. The higher the capacity to process information, K, the smaller

the range of parameter values for which corner solutions are obtained, but corner solutions will be

obtained for any limited information processing capacity. Alternatively stated, for any finite level

of capacity, K < ∞, there exists a level of exposure, 0 < α < 1, for which corner solutions are

obtained, and the firm will stop learning about one of the risk factors.

Figure 1. The parameter values are σ1 = σ2 = 1 and K = 1.

Figure 1 plots the optimal level of information processing capacity allocated to factor 1, k1, and

factor 2, k2, against exposure to factor 1, α. If exposure to factor 1 is sufficiently low, then the firm

optimally chooses not to learn about it and instead devotes all information processing resources
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to learning about factor 2. The economic intuition is that when exposure to factor 1 is very low,

the marginal benefit of learning about factor 1 is lower than the benefit of learning about factor

2, whose exposure is relatively higher. Consequently, the firm would like to forget information

about factor 1 in order to obtain more information about factor 2 but the no-forgetting constraint

prevents it from doing so and the zero capacity corner solution is obtained. A similar reasoning

is applied when exposure to factor 1 is very high, leading to the full capacity corner solution for

factor 1. At the interior optimum, factor-specific capacity increases with factor-specific exposure

and the firm optimally learns more about the risk factor fundamentals are relatively more exposed

to.

3.2 Implications for Uncertainty

Information choice is a tool to reduce the uncertainty that the firm faces when deciding on the

level of investment. Relative to an equal capacity, exogenous information benchmark, uncertainty is

lower when the firm can optimally choose what risk factors to learn about. Importantly, uncertainty

is convex in exposure when the firm is exogenously endowed with information, but it is concave in

exposure when the firm optimally learns about risk factor exposures.

Given the optimal information processing capacity allocated to each factor in (13), uncertainty

can be backed out using results (8) and (6), and it is given by

σ̂2 =


α2σ2

1 + (1− α)2σ2
2e
−2K if ασ1

(1−α)σ2
< e−K

2α(1− α)σ1σ2e
−K if e−K ≤ ασ1

(1−α)σ2
≤ eK

α2σ2
1e
−2K + (1− α)2σ2

2 if ασ1
(1−α)σ2

> eK

. (14)

At the interior optimum, uncertainty increases with exposure to and prior uncertainty regarding

the risk factors, and decreases with the total capacity to process information. The uncertainty

expressions for the corner solutions reflect the intuition that when there is no learning about a risk

factor its factor-specific posterior uncertainty is equal to its prior uncertainty, while the posterior

uncertainty surrounding the other factor is reduced in proportion to the total capacity i.e. if k1 = 0

then σ̂2
1 = σ2

1 and σ̂2
2 = σ2

2e
−2K .

In order to assess the implications of learning for uncertainty, and thus conditional investment,

a suitable benchmark is needed for comparison. I consider as benchmark a model in which the

firm is exogenously endowed with an equal amount of information about each risk factor. This
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model will be further referred to as the exogenous information benchmark, while my model in

which the firm can optimally choose its information about risk factor exposures will be referred

to as the endogenous information model. The representative firms in the two models share the

same prior beliefs regarding the distribution of shocks affecting fundamentals, εi ∼ N (0, σ2
i ), but

the firm in the exogenous information benchmark is endowed with signals with exogenous noise,

ε̃si ∼ N (0, σ̃2
si), i = 1, 2. Posterior beliefs are formed according to Bayes’ rule, such that benchmark

posterior uncertainty is

σ̃2
B = α2σ̃2

1 + (1− α)2σ̃2
2, (15)

where σ̃2
i ≡

(
σ−2
i + σ̃−2

si

)−1
, i = 1, 2 denotes the factor-specific posterior variance when information

is exogenous.

Figure 2 depicts the relationship between the degree of exposure to a risk factor and the uncer-

tainty implied by the endogenous information model σ̂2 (blue line) and the exogenous information

benchmark model σ̃2 (red line). This exercise is informative about the uncertainty faced by firms

operating in economies whose fundamentals share the same factor structure but vary in the degree

of exposure to a risk factor, which in this case is the exposure to factor 1, measured by α. To

enable meaningful comparisons, the total capacity in the endogeous learning model is set equal to

the capacity implied by exogenous signal precisions in the benchmark model when the capacity

constraint is binding i.e. 1
2 ln

σ2
1

σ̃2
1

+ 1
2 ln

σ2
2

σ̃2
2

= K. This ensures that the two models are otherwise

identical except for the ability to optimally reallocate information processing resources. Note that

Figure 2 illustrates a symmetric equilibrium whereby the factors are ex-ante equally risky and the

exogenous signals are equally informative, hence the symmetry around and intersection of the two

lines at the exposure midpoint, α = 0.5.

In terms of levels, note that relative to the equal capacity, exogenous information benchmark,

uncertainty is lower when the firm can optimally allocate information processing resources across

risk factors. This is because learning effectively reduces the uncertainty about individual risk fac-

tors. The reduction in uncertainty achieved through learning operates through what will be further

referred to as the information channel. Given that learning optimally increases with exposure, the

regions at the left and right of the exposure midpoint, α = 0.5, depict situations of relatively higher

exposure to a risk factor whose uncertainty is reduced more through learning, and as a consequence

overall uncertainty will be lower under the endogenous information model than under the exogenous

information benchmark. Appendix A.1 provides an analytical treatment of this intuition.
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Figure 2. The parameter values are σ1 = σ2 = 1, σ̃s1 = σ̃s2 = 0.75 and the total capacity
implied by these parameters is K = 1

2
lnσ2

1

(
σ−2
1 + σ̃−2

s1

)
+ 1

2
lnσ2

1

(
σ−2
2 + σ̃−2

s2

)
= 1.

In terms of dynamics, note that both models predict a non-monotonic relationship between

overall uncertainty and the degree of exposure to a risk factor. While the benchmark model

predicts a convex relationship between uncertainty and exposure, in the endogenous learning model

uncertainty is concave in exposure at the interior optimum, and it is convex in exposure when

corner solutions are obtained. The exogenous information benchmark model illustrates a classic

diversification effect whereby high exposure to a risk factor implies high overall uncertainty, and

the lowest level of uncertainty is achieved when exposure to the two factors is equal. Consequently,

uncertainty initially decreases with exposure, but once the factor becomes important in terms of

exposure, uncertainty starts to increase. This works through what will be further referred to as

the exposure channel. The endogenous learning model, on the other hand, is convex in exposure

when the firm optimally learns about one risk factor only, and it is concave in exposure when the

firm learns about both risk factors.15 In the corners, when the firm devotes all capacity to learning

about one factor, information is essentially exogenous, so uncertainty dynamics will be the same as

in the benchmark and will operate through the exposure channel. At the interior optimum though,

uncertainty initially increases with exposure, but once the factor becomes important in terms of

exposure, uncertainty starts to decrease. To understand the factors that are at play, start from the

situation in which exposure to the two risk factors is equal i.e. α = 0.5. As exposure to factor 1

15Note that uncertainty in the endogenous information model is convex on the same interval of exposure parameters
over which the factor-specific capacity allocation illustrated in Figure 1 is extreme i.e. either zero or maximum.
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increases beyond this exposure midpoint, uncertainty about factor 1 is effectively reduced through

learning. The reduction in uncertainty achieved through learning is stronger than the increase in

uncertainty due to higher exposure, and as a result overall uncertainty decreases with exposure to

factor 1. In other words, the information channel dominates the exposure channel. However, if

exposure to factor 1 is sufficiently high that the firm optimally devotes all information processing

capacity to learning about factor 1, then the exposure channel will overturn the information channel.

The result is an eventual increase in uncertainty, as reflected by the turning point in the uncertainty,

which occurs when the learning-adjusted risk exposures of the two factors are equal.16

It is important to note the markedly different predictions of the exogenous information bench-

mark and of the endogenous information model at the interior optimum, where the firm opti-

mally learns about both risk factors rather than specializing in learning about one risk factor, i.e.

k ∈ (0,K). To ease understanding, it is again useful to focus on the right side of Figure 2, where

the exposure parameter α > 0.5 indicates a relatively higher exposure to factor 1. Provided that

risk factor 1 is relatively important in terms of exposure, uncertainty increases with exposure when

information is exogenously given, but it decreases with exposure when information about both

risks is endogenously chosen. Thus, an implication of the endogenous learning model is that in the

cross-section of entities exposed to a relatively important risk factor, an entity that is more exposed

to that risk will face a lower overall uncertainty, due to learning, relative to an entity that is less

exposed to it.

PROPOSITION 1. Provided that a risk is relatively important in terms of exposure, uncertainty

decreases with exposure to it when the firm optimally learns about all risk factors i.e. ∂σ̂2

∂α < 0 if

α > 0.5 and k ∈ (0,K).

Proof. See Appendix A.1

Proposition 1 contains the key result of the paper and explains why the shock transmission

patterns observed during the financial crisis of 2007-2008 were different relative to those observed

during past contagious crises, such as the Mexican crisis of 1994 and the Asian crisis of 1997.17 The

2007-2008 financial crisis was different because the epicentre of the crisis was a country playing a

16At the first corner (when learning about factor 2) uncertainty decreases if ασ2
1 < (1−α)σ2

2e
−2K , which essentially

reads that increasing exposure to a factor whose learning-adjusted risk is relatively lower decreases overall uncertainty.
At the second corner (when learning about factor 1), uncertainty starts to increase when ασ2

1e
−2K > (1 − α)σ2

2 i.e.
when learning-adjusted risk is higher.

17During these past crises, the epicentre country in which the shock originated was more severely affected than
the other countries that were subsequently affected by the shock. In other words, the impact of the original shock
increased with exposure to it during the Mexican and Asian crises, but it decreased with exposure during the last
financial crisis of 2007-2008.
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central role in the global economy: the United States is a country that is that is relatively important

in terms of exposure and one that foreign decision-makers are likely to learn about, i.e. α > 0.5 and

k ∈ (0,K). Thus, variation in the extent to which other countries were exposed to the United States

translates into variation in uncertainty which follows the dynamics illustrated at the right of the

exposure midpoint illustrated in Figure 2. The implication is that countries which were relatively

more exposed to the United States shock faced a relatively lower level of uncertainty regarding

the implications of the shock. Insofar as uncertainty affects the optimality of actions, and thus

contributes to the transmission of shocks, this result can rationalize why during the financial crisis

of 2007-2008, unlike during previous crises, the transmission of the shock decreased with exposure

to the shock.

In sum, the benchmark illustrates a classic diversification effect which operates through the

exposure channel. In the endogenous learning model, learning substitutes for diversification in re-

ducing risk, resulting in a specialization effect. In a portfolio allocation context, Van Nieuwerburgh

and Veldkamp (2010) also make the point that diversification is not optimal if portfolio choice is

preceded by information choice. While they focus on the implications of information choice for port-

folio holdings in a setup in which agents choose both their information about and exposure to risks,

I focus on the role of information for the transmission of shocks to the real economy in a a setup

in which agents choose their information about risks they are exogenously exposed to. Section 4.4

relaxes the assumption of exogenous exposures to risk factors and provides a characterization of

the optimal exposure points.

3.3 Implications for Investment

Reducing uncertainty will enable the firm to take an investment decision that is more aligned

with underlying fundamentals, and thus reduce the loss due to suboptimal investment.18 Insofar

as the firm’ investment deviates from the first-best optimum obtained under perfect information, it

indirectly contributes to the transmission of shocks. Whereas the transmission of shocks increases

with exposure when information is exogenous given, I find that the transmission of shocks decreases

with exposure when information is endogenously chosen. Consequently, relative to the exogenous

information benchmark, the endogenous information model I propose predicts that the impact of

shocks that fundamentals are relatively less exposed to is amplified, while the impact of shocks that

18Mathematically a lower level of uncertainty means higher response to signals that are informative about the
underlying shocks affecting fundamentals.

18



fundamentals are relatively more exposed to is attenuated.

Recall that the firm optimally chooses a level of investment that is given by the expected level of

fundamentals conditional on the information available at the intermediate date 2, i.e. λ = E2[θ] = θ̂.

Thus, the investment decision is essentially a response to information about the realization of shocks

affecting fundamentals. Figure 3 depicts the relationship between the degree of exposure to risk

factor 1 and the response or sensitivity of investment to a shock to factor 1, which is implied by the

exogenous information benchmark (red line), the endogenous information model (blue line) as well

as a full information model (black line). Note that the shock sensitivity increases with exposure

under all the three models considered but the rate of increase is different across models.

Figure 3. The parameter values are σ1 = σ2 = 1, σ̃s1 = σ̃s2 = 0.75 and K = 1.

Under the full information model shocks can be perfectly observed, so there is a one-to-one

mapping between exposure to a shock, and the degree to which the shock is incorporated into

investment decisions. This represents the first-best optimal response. To the extent that investment

responses obtained under the other models deviate from this first-best optimum, they are said to

be suboptimal and to act as a shock transmission mechanism. Under the exogenous information

benchmark, the investment response deviates increasingly more from the optimal one as exposure

increases, because this amounts to increasing exposure to a shock that is observed with a constant

precision. Under the endogenous information model three regimes can be observed. First, when

exposure to factor 1 is sufficiently low that the firm does not acquire any information about it,

shock sensitivity is zero. Investment does not respond to the shock to factor 1 because the firm
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is essentially unaware of the underlying shock realization. Second, as exposure increases and the

firm starts learning about factor 1, its investment response to the shock will become increasingly

more aligned with the optimal one because the precision of information about the underlying shock

optimally increases with exposure. Finally, when exposure is sufficiently high that the firm only

learns about factor 1, the investment response starts to deviate again from the first-best optimum

as exposure increases, because information precision, albeit set at the maximum, is essentially

exogenous.

Thus, information frictions introduce a loss or inefficiency relative to the perfect information

model. When shocks can be perfectly observed, investment decisions are fully responsive to the

shocks affecting economic fundamentals and, as a consequence, investment returns. However, when

shocks cannot be perfectly observed, investment decisions are relatively less responsive to shocks,

and the firm fails to fully incorporate underlying shocks into investment decision-making. In case

of positive shocks, the deviation from the perfect information optimum is negative and the firm in-

creases investment by less than it optimally should. This represents a situation of under-investment

whereby business opportunities are lost. In case of negative shocks the deviation is positive and

the firm reduces investment by less than it optimally should. This is a situation of over-investment,

resulting in excess capacity and wasted resources. In order to ease analysis and abstract from the

nature of shocks, I define the loss due to suboptimal investment as L ≡ (θ̂ − θ)2. This symmetric

loss function captures a more general situation in which shocks are changes in circumstances that

the firm needs to adapt to, such as the introduction of standards, technological disruption or terms

of trade changes, rather than positive or negative events.

Figure 4 plots the loss due to suboptimal investment against exposure to factor 1. The example

considers a one standard deviation shock to factor 1, abstracts from factor 2 shocks as well as from

information shocks. Under the exogenous information benchmark, loss increases monotonically

with exposure to the shock. Given that signal precision is fixed, this result works through the

exposure channel and is due to increasing exposure to a constant amount of uncertainty. Under

the endogenous information model, three regimes can be observed as exposure increases. First,

when exposure is sufficiently low such that the firm does not learn about factor 1, the loss due

to suboptimal investment is increasing in exposure. The rate of increase is higher relative to the

exogenous information benchmark because the firm chooses to observe no information, as opposed

to fixed precision information, about factor 1. Second, as exposure increases and the firm starts

to learn about factor 1, the loss due to suboptimal action decreases with exposure because more
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information enables a more accurate incorporation of shocks into investment decisions. Third, when

the firm learns only about factor 1, the loss due to suboptimal investment starts to increase again

because information precision is essentially exogenous and as a consequence dynamics resemble the

benchmark.

Figure 4. This example considers a one standard deviation shock to factor 1 i.e. ε1 = σ1,
abstracts from factor 2 shocks i.e. ε2 = 0 and information shocks i.e. εs1 = εs2 = 0. The
parameter values are µ1 = µ2 = 1, σ1 = σ2 = 1 and σ̃s1 = σ̃s2 = 0.75 and the total capacity
implied by these parameters is K = 1

2
lnσ2

1

(
σ−2
1 + σ̃−2

s1

)
+ 1

2
lnσ2

1

(
σ−2
2 + σ̃−2

s2

)
= 1.

Worth emphasizing is the fact that the predictions of the two models are starkly different when

an interior solution is obtained under the endogenous information model i.e. when the firm learns

about both risks. Whereas the loss due to suboptimal action is increasing with exposure when the

firm is exogenously endowed with information about the risk factors, it is decreasing with exposure

when the firm optimally chooses what risk factors to learn about. Consequently, relative to the

exogenous learning benchmark, shocks that the firm is relatively more exposed to are attenuated,

while shocks that the firm is relatively less exposed to are amplified.19 If the shock to factor 1

is interpreted as a shock to United States and the representative firm’s investment is interpreted

as an aggregate economy quantity, Figure 4 implies that a country which is less exposed to the

United States (and which is situated towards the left end of the x-axis) will incur a higher loss due

to suboptimal investment compared to a country which is more exposed to the United States (and

which is situated towards the right end of the x-axis). It also implies that a country which is less

exposed to the United States will incur a higher loss due to suboptimal investment compared to

19The magnitude of amplification decreases with the firm’s capacity to learn.
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the United States itself (which is likely to be situated towards the right end of the x-axis). These

predictions are in line with evidence from the financial crisis of 2007-2009 suggesting that countries

other than the epicentre have been more severely affected than United States itself, and, more

generally, countries relatively less exposed to the United States have been relatively more affected.

The results illustrated in Figure 4 can be understood by examining analytically how investment

decisions act as a shock transmission mechanism. To that end, I define the shock transmission

mechanism as the change in the loss due to suboptimal investment that is induced by a shock

i.e. ∂L
∂εi

. The shock transmission mechanism is a measure of the extent to which a shock translates

into losses due to suboptimal investment, which effectively captures the negative consequences

caused by decision-makers’ suboptimal responses. The interaction between the strength of the

shock transmission mechanism and the magnitude of the shock determines the impact of a shock.

Consequently, statement about the shock transmission mechanism are informative about the impact

of a shock. The stronger the shock transmission mechanism, the higher the loss due to suboptimal

investment, and the higher the impact of the shock is said to be.

PROPOSITION 2. The transmission of shocks decreases with exposure when the firm optimally

learns about all risk factors i.e. ∂2L
∂ε1∂α

< 0 if k ∈ (0,K).

Proof. See Appendix A.2.

Proposition 2 pins down the mechanism through which the impact of a shock can decrease

with exposure to it. When the firm optimally learns about the risk factors affecting fundamentals,

the loss due to suboptimal investment that is induced by a shock to a risk factor decreases with

exposure to it. In other words, the contribution of investment actions to the transmission of shocks

decreases with exposure. This is because the reduction in uncertainty that is achieved through

learning increases with exposure, and as a consequence the deviation of the firm’s investment

from the perfect information optimum decreases with exposure. Thus, the informational benefit

mitigates the direct impact of shocks to risk factors that fundamentals are relatively more exposed

to, as it enables the firm to take better informed decisions and minimize the loss due to suboptimal

investment. By the same token, the impact of shocks to risk factors that fundamentals are relatively

less exposed to is amplified through the firm’s poorly informed investment decision, which induce

a higher loss due to suboptimal investment.
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4 Extensions

In this section, I consider the following extensions to the baseline model studied so far. First,

I account for the degree of anticipation of shocks to risk factors. Second, I extend the model to a

multi-firm setting and allow for strategic interactions between their investment actions. Third, I

relax the assumption that the risk factors affecting fundamentals are independent. Finally, I relax

the assumption that exposures to the risk factors are exogenous.

4.1 Extension: Shock Anticipation

The baseline model considers the case in which the firm allocates an exogenously given infor-

mation processing capacity, K, across risk factor exposures. This section endogenizes the capacity

available to the firm in a certain state of nature, by linking it to the degree of anticipation of that

state. The basic result is that the impact of unanticipated shocks is amplified because the firm

optimally devotes less information processing capacity to learning about states of nature that are

expected to occur with a low probability.

One of the risk factors affecting fundamentals, say factor 1, is assumed to be in one of two

possible states of nature: a low-probability, low-mean state of nature interpreted as rare times,

and a high-probability, high-mean state of nature interpreted as normal times. Let pr > 0 denote

the probability that factor 1 is in the rare state of nature, and let pn = 1 − pr > 0.5 denote the

probability that factor 1 is in the normal state of nature. The notion that it is ex-ante unlikely for

the rare state to occur is captured by the condition pr < pn. A crisis is said to occur if factor 1 is

revealed to be in the rare state of nature. This setup can thus be graphed as

f1

µ1 + ε1, ε1 ∼ N (0, σ2
1)pn = 1− pr

µ1 + ε1, ε1 ∼ N (0, σ2
1)pr

where µ1 and µ1 denote the mean levels of the risk factor in the rare and normal states, respectively,

and where it holds that µ1 < µ1. To isolate the effect of the degree of anticipation alone, I assume

that only the mean level of the risk factor is expected to be different in the two states, while the

priors associated with the shocks affecting the risk factor are the same.20

20In any state of nature, the capacity allocation across risk factors is mean independent but increases with the
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In this setup, there are two dimensions of information choice: how much information processing

capacity to devote to a state of nature, and how to allocate that information across risk factors in

each state of nature.21 Let K denote the total capacity or total amount of information processing

capacity available to the firm, Ks denote the state capacity or amount of information processing

capacity dedicated to state of nature s ∈ {n, r}, and kis denote the amount of information processing

capacity dedicated to factor i in state s ∈ {n, r}. The capacity constraint (7) governing the

allocation of capacity across risks in any state of nature s ∈ {n, r} can now be formulated as

k1s + k2s ≤ Ks,

and the capacity constraint governing the allocation of total capacity across states of nature is

Kn +Kr ≤ K.

The model is solved following the same approach as that used in the baseline model in Section

3, except that now the date-1 problem consists of two steps. As before, the first step is to allocate

capacity across risk factors, given the optimal investment level and an arbitrary state capacity, Ks.

The second step is to allocate total capacity across states of nature, given the optimal investment

and the optimal capacity allocation across risk factors in any state, kis. Let U1(Ks) denote the

date-1 utility of investing optimally at the second date, and optimally allocating the available state

capacity, Ks, across risk factors at the first date

U1(Ks) =


−α2σ2

1 − (1− α)2σ2
2e
−2Ks if k1 = 0

−2α(1− α)σ1σ2e
−Ks if k1 = 1

2

(
Ks + ln ασ1

(1−α)σ2

)
−α2σ2

1e
−2Ks − (1− α)2σ2

2 if k1 = Ks.

(16)

The date-1 problem for the allocation of total capacity, K, across states is

max
Kn,Kr

pnU1(Kn) + prU1(Kr) (17)

s.t. Kn +Kr ≤ K and Ks ≥ 0, s ∈ {n, r} (18)

The basic result is that the optimal level of information processing capacity dedicated to a state

of nature increases with the probability of occurrence of the state. At the interior optimum, when

prior uncertainty surrounding a risk factor i.e. the volatility of the shock affecting the risk factor. Accounting for the
intuition that crises episodes are characterized by high volatility, reduces the magnitude of the effect but leaves the
main result qualitatively unchanged. This case is dealt with in Appendix A.3.

21This can be thought of as capturing situations in which decision-makers prepare for different contingencies.
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the firm learns about both risk factors, the optimal level of capacity dedicated to the rare state is

given by

Kr =

0 if pr
pn
< e−K

1
2

(
K + ln pr

pn

)
if pr

pn
≥ e−K

(19)

Note that a corner solution is possible. More specifically, if the probability of the state of nature

is sufficiently low, no capacity is allocated to the state. Otherwise, the information processing

capacity allocated to a state of nature increases with its degree of anticipation, as well as with the

total capacity, K, available. Appendix A.3 provides a full characterization of the equilibria.

The implication of this capacity allocation in terms of state contingent investment schedules

is that the impact of shocks decreases with their degree of anticipation because the loss due to

suboptimal investment is lower the more anticipated the shock. Given that the firm optimally

acquires less information about low-probability events, the deviation of the firm’s investment from

the perfect information optimum is higher the lower the probability of occurrence of a shock. Thus,

the contribution of investment decisions to the transmission of shocks is higher the lower their

ex-ante probability of occurrence and their transmission is said to be intensified, resulting in the

amplification of unanticipated shocks.

PROPOSITION 3. The transmission of shocks decreases with their degree of anticipation when

the firm optimally learns about all risk factors i.e. ∂2L
∂ε1∂ps

< 0 if k1s ∈ (0,Ks), s ∈ {n, r}.

Proof. See Appendix A.3.

Proposition 3 is in line with empirical evidence suggesting that the degree of anticipation of

shocks plays an important role in generating contagion. The financial contagion literature has

documented a negative relation between the degree of anticipation of crises and the occurrence of

contagion (Kaminsky et al., 2003; Rigobon and Wei, 2003; Didier, Mauro, and Schmukler, 2008;

Mondria and Quintana-Domeque, 2013), and has even argued that a necessary condition for the

contagious transmission of shocks is that they are unexpected. The academic and regulatory

discussions around the 2007-2009 financial crisis have also noted that the highly unexpected nature

of the Lehman shock has likely amplified its transmission and consequences. My model predicts

that contagion is more likely to occur following unexpected crises because decision-makers optimally

prepare less for unexpected events.

Figure 5 plots the loss due to suboptimal investment against exposure to a one standard de-
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viation shock to factor 1, for varying degrees of shock anticipation. The loss due to suboptimal

investment is larger when the shock occurs with a small probability (solid lines), relative to the case

in which the shock occurs with a higher probability (dashed lines). The loss due to suboptimal in-

vestment that is induced by a shock decreases with the degree of anticipation of that shock because

the firm optimally devotes less information processing resources to learning about less anticipated

shocks. Thus, endogenizing the information processing capacity available in a state of nature has

the effect of amplifying the impact of shocks occurring in unexpected states; decision-makers are

unprepared for unexpected shocks and this amplifies their consequences.

Figure 5. This example considers a one standard deviation shock to factor 1 i.e. ε1 = σ1,
abstracts from factor 2 shocks i.e. ε2 = 0 and information shocks i.e. εs1 = εs2 = 0. The
parameter values are σ1 = σ2 = 1; when p = 25% σ̃s1 = σ̃s2 = 0.55 and K = 1.45, and when
p = 5% σ̃s1 = σ̃s2 = 1.20 and K = 0.53.

4.2 Extension: Strategic Interactions

This subsection extends the baseline model to a multi-firm setup and explores the implications

of strategic interactions for the equilibrium allocation of information processing capacity and the

loss due to suboptimal investment. Relative to the baseline model, strategic complementarity in

investment reduces the incentive to learn about the risk factors that fundamentals have relatively

low exposure to, and results in a higher loss due to suboptimal investment. Consequently, when

firms seek to coordinate their investment decisions the impact of shocks that fundamentals are

relatively less exposed to is amplified relative to the baseline.

There is a continuum of firms indexed by j. Each firm chooses its level of investment, λj , to
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maximize expected profits. The profit function for firm j is

πj = Rλj −
1

2
λ2
j . (20)

The return on investment, R, is a function of the unknown fundamentals in the economy, θ,

and the average investment in the population, λ̄ =
∫
j λj , and is given by

R = (1− r)θ + rλ̄, (21)

where r is a constant governing the type of strategic interactions between firms. Real investment

environments have typically been treated as being characterized by strategic complementarity in

actions, and the subsequent analysis will focus on this case but the model results can easily ac-

commodate a strategic substitutability interpretation. In environments characterized by strategic

complementarities agents want to do what others do. This is captured by a positive interactions

coefficient, r > 0, which implies that optimal individual responses, λj , increase in the average pop-

ulation response in the population, λ̄. If r = 0 individual actions are independent of the average

action in the population and the baseline model is obtained.

As in the baseline model, the solution strategy is to work backwards. At date 2, each firm under-

takes a level of investment to maximize the expected profit function (20), while taking information

choice as given. Thus, the firm problem is

max
λj

U2j ≡ E2j [Rλj −
1

2
λ2
j ], (22)

where E2j denotes the expected value conditional of the information available to firm j at date 2.

The first order condition yields optimal investment response

λj = E2j [R] = (1− r)E2j [θ] + rE2j [λ̄]. (23)

I consider equilibria in which the mean investment in the population is a linear function of the

shocks affecting fundamentals

λ̄ = ψ + φ1ε1 + φ2ε2 (24)

where ψ, φ1 and φ2 are constants determined in equilibrium. Using the fact that E2j [θ] = α(µ1 +

E2j [ε1]) + (1−α)(µ2 +E2j [ε2]), and substituting conjecture (24) into the first order condition (23)
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yields the following investment response for firm j

λj = rψ + (1− r)(αµ1 + (1− α)µ2) + [α(1− r) + rφ1]E2j [ε1] + [(1− α)(1− r) + rφ2]E2j [ε2].

Calculating first the conditional expectation of the shocks Eij [εi] = (1− γi)sij , and integrating

over the investment response of all firms j, the average investment in the population is

λ̄ = rψ + (1− r)(αµ1 + (1− α)µ2) + [α(1− r) + rφ1](1− γ1)ε1 + [(1− α)(1− r) + rφ2](1− γ2)ε2.

Matching coefficients verifies the conjecture (24) that the average investment level is linear in the

shocks and that the linear weights are ψ = rψ+(1−r)(αµ1+(1−α)µ2), φ1 = [α(1−r)+rφ1](1−γ1)

and φ2 = [(1− α)(1− r) + rφ2](1− γ2). Collecting the unknown coefficients yields

ψ = αµ1 + (1− α)µ2 (25)

φ1 =
α(1− r)(1− γ1)

1− r(1− γ1)
(26)

φ2 =
(1− α)(1− r)(1− γ2)

1− r(1− γ2)
. (27)

The date-1 problem consists of choosing the optimal level of capacity devoted to learning about

each risk factor to maximize the expected utility implied by the investment response (24) and

the equilibrium coefficients (25)-(27), subject to the capacity constraint (7) and the no-forgetting

constraint (9)

max
k1,k2

U1j = E1j [U2j ] =
1

2

[
ψ2 +

α2(1− r)2σ2
1(1− γ1)

(1− r(1− γ1))2
+

(1− α)2(1− r)2σ2
2(1− γ2)

(1− r(1− γ2))2

]
(28)

s.t. γi = e−2ki ,
∑

ki ≤ K, 0 ≤ ki, i = 1, 2. (29)

Numerical results indicate that relative to the baseline model with no strategic interactions,

i.e. r = 0, the firm is more likely to learn about a single risk factor rather than both risks

when investment actions are strategic complements, i.e. r > 0. Alternatively stated, as the

degree of strategic complementarities increases, corner solutions occur more easily. In fact, if

the degree of strategic complementarity is sufficiently high, the parameter region for which an

interior solution is obtained collapses to a single point.22 The implication is that for high levels of

strategic complementarity, a small change in the exposure parameter can have a large effect on the

22For strategic complementary parameters beyond this point multiple equilibria exist.
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equilibrium allocation of information processing capacity.

At the interior optimum, when the firm optimally learns about both risk factors, the optimum

level of capacity allocated to factor 1 decreases with the degree of complementarity if exposure to

factor 1 is relatively low, i.e. ∂k1∂r < 0 if α < 0.5, but it increases if exposure to factor 1 is relatively

high, i.e. ∂k1
∂r > 0 if α > 0.5. Relative to the baseline, strategic complementarity in investment

reduces the incentive to learn about risk factors that fundamentals have a relatively low exposure

to, but increases the incentive to learn about risk factors that are relatively important in terms of

exposure. This is because the firm anticipates that learning behaviour in the population is such

that the capacity devoted to learning about a risk factor increases with exposure to it. Given that

the firm wants to do what others do, it will also want to learn what other firms learn, and as

a consequence it will choose to learn less about low-exposure risk factors and more about high-

exposure risk factors. Consequently, the transmission of shocks to risk factors that fundamentals

are relatively less exposed to is amplified as the degree of strategic complementarity increases.

Figure 6. This example considers a one standard deviation shock to factor 1 i.e. ε1 = σ1,
abstracts from factor 2 shocks i.e. ε2 = 0 and information shocks i.e. εs1 = εs2 = 0. The
other parameter values are σ1 = σ2 = 1, K = 1 and σ̃s1 = σ̃s2 = 0.75.

The implications in terms of shock impact are illustrated in Figure 6, which plots the loss due to

suboptimal investment against exposure to a one standard deviation shock to factor 1, for varying

levels of strategic complementarity. The loss due to suboptimal investment is larger in environments

characterized by a higher level of strategic complementarity (dashed lines), relative to the baseline

case in which there are no strategic interactions (solid lines). This is due to the fact that the firm’s
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incentive to hedge against shocks through learning is weakened by the desire to coordinate its

investment decision with the average investment in the population. Since the firm anticipates other

firms will optimally choose to learn less about the risk factors that fundamentals have relatively

little exposure to, its incentive to learn about these low-exposure risk factors decreases as the degree

of strategic complementarity increases. As a consequence, the loss due to suboptimal action that

is induced by a shock is amplified in the presence of strategic complementarities.

4.3 Extension: Correlated Risks

The baseline model considers the case in which the risk factors affecting fundamentals are

independent. In this section, I allow for the risk factors to be correlated, and find that the loss due

to suboptimal investment increases with the degree of correlation between the two risk factors.

To deal with the case of correlated risks it is useful to use matrix notation. As in the baseline

model, economic fundamentals are modelled as a sum of risk factors. Let f be a N × 1 vector of

risk factors and A be a N × 1 vector of exposures to these factors. Fundamentals can be expressed

as

θ = A′f

where the factors are ex-ante known to be correlated i.e. the prior variance-covariance matrix of the

risk factors f is non-diagonal. Assuming that the prior variance-covariance matrix of the factors f

is non-diagonal is equivalent to assuming the following linear structure for the risk factors23

f = µ+ Γε, ε ∼ N (0,Σ) (30)

where µ is a N × 1 vector of constants measuring the mean level of each risk factor, ε is a N × 1

vector of independent random variables or shocks with diagonal variance-covariance matrix Σ, and

Γ is an N × N matrix of loadings which measures the extent to which the independent shocks in

ε affect the risk factors f .24 The ith row of the matrix Γ, denoted Γi, gives the loadings of the ith

risk factor, fi, on the independent shocks in the vector ε. Thus, each risk factor fi is expressed as

23The variance-covariance matrix of the risk factors that is implied by (30) is ΓΣΓ′. Note that an alternative
solution method is to assume that the prior variance-covariance matrix of the shocks is non-diagonal, say Ω, and then
use eigen-decomposition to re-write is as Ω = ΓΣΓ′; learning would then be about the principal components with
diagonal variance-covariance matrix Σ.

24The variance-covariance matrix of the risk factors that is implied by (30) is ΓΣΓ′. An alternative and equivalent
approach is to assume that the prior variance-covariance matrix of the shocks is non-diagonal, say Ω, and then use
eigen-decomposition to re-write it as Ω = ΓΣΓ′.
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the sum of a factor-specific mean, µi, and the independent shocks contained in the vector ε, which

affect it in proportion to the loadings Γi.

This factor structure essentially allows for correlations between the risk factors through shared

exposure to underlying independent shocks. It accounts for the existence of underlying forces

that might be driving more than one of the risk factors affecting fundamentals. I conceptualize

and further refer to these independent shocks as factor-specific shocks. For instance, I interpret

shock 1, ε1, as being specific to factor 1, f1, while the interpretation given to shock 2, ε2, is that

of a shock that is specific to factor 2, f2. Correlation is introduced by allowing factor 1, f1,

to load on the shock specific to factor 2, ε2, and vice versa. Interpreted in the context of the

motivating example, this setup accounts for the reality that domestic and foreign risks are likely

to be correlated. The linear factor modelling approach adopted above is essentially equivalent to

principal component analysis, which provides a way to decompose correlated risks into independent

risks. In the portfolio literature it is common to use principal components analysis to decompose

sets of correlated asset returns into independent underlying risk factors such as business-cycle risk,

industry-specific risk, and firm-specific risk (Ross, 1976). Similarly, correlated domestic and foreign

risks can be decomposed into a set of independent underlying risk factors, which can be interpreted

as pure country-specific risks.

The firm aims to reduce uncertainty about the underlying shocks, εi, through learning. Signals

will thus be about the independent shocks contained in the vector ε. I assume that learning about

independent shocks is done independently. In other words, the firm acquires independent noisy

signals about each of the independent shocks contained in the vector ε, and thus receives a N × 1

vector of independent signals

s = ε+ εs, εs ∼ N (0,Σs)

where the variance-covariance matrix of the N × 1 vector of signal noise Σs is diagonal.25

Applying Bayes’s rule on the transformed variable Γ−1f , and then pre-multiplying this solution

by Γ, I obtain that posterior beliefs about the correlated risk factors have mean E[f |s] = µ+ Γ(I−

Σ̂Σ−1)s and variance V [f |s] = ΓΣ̂Γ′, where Σ̂ ≡ (Σ−1 + Σ−1
s )−1 denotes the posterior variance-

covariance matrix of the independent shocks ε.26 Consequently, the posterior mean and variance

25Note that an alternative to assuming that shocks affecting the risk factors are independent and learning is about
these independent shocks, is to assume that the shocks are correlated, with non-diagonal variance-covariance matrix
Ω. In this case, eigen-decomposition can be used to re-write it as Ω = ΓΣΓ′ and learning would then be about the
principal components with diagonal variance-covariance matrix Σ. These two approaches are equivalent.

26Transforming the variable f∗ = Γ−1f = Γ−1µ+ ε, allows applying standard Bayesian rules for updating normally
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of fundamentals, respectively, conditional on the information available at time 2 are

E[θ|s] = A′E[f |s] = A′(µ+ Γ(I − Σ̂Σ−1)s) (31)

V [θ|s] = A′V [f |s]A = A′ΓΣ̂Γ′A. (32)

The solution strategy follows the same steps as in the baseline model. The date-2 problem is

unchanged and yields solution λ = E[θ|s]. Just as it was the case in the baseline model, date-

1 utility decreases with uncertainty regarding fundamentals, V [θ|s], so the date-1 problem is to

minimize

V [θ|s] = A′ΓΣ̂Γ′A

subject to the information processing constraint

1

2
ln
|Σ|
|Σ̂|
≤ K (33)

and the restriction that the matrix Σs is positive semi-definite i.e. the no-forgetting constraint. Note

that since the variance-covariance matrices that enter the determinants in (33) are diagonal, the

information processing constraint can be re-written as a sum. Furthermore, define the information-

processing capacity devoted to learning about each of the underlying independent shocks as ki ≡
1
2 ln Σii

Σ̂ii
. Thus, the information-processing constraint (33) can be re-written as

∑
i ki ≤ K.

The matrix of loadings Γ is essentially a measure of the correlation structure between the risk

factors. The rows of the matrix contain the loadings of each risk factor on all the shocks and the

columns contain the loadings of all the risk factors on each shock. The degree to which risk factor

i loads on the independent shocks in the vector ε is captured by the ith row of the loadings matrix

Γ, denoted Γi. On the other hand, the jth column of the matrix Γ, denoted Γj , gives the loadings

of all the risk factors on the jth shock. Define exposure to shock j as

Ej ≡ A′Γj =

N∑
i=1

αiΓij .

This measure of exposure captures the intuition that when the risk factors are correlated, the

degree to which an underlying shock, j, affects fundamentals will depend on the interaction between

the observable exposure to the risk factors, captured by A, as well as on the loading of these risk

distributed variables and yields posterior mean E[f∗|s] = Γ−1µ + V [f∗|s]Σ−1
s s and posterior variance V [f∗|s] =

V [ε|s] = (Σ−1 + Σ−1
s )−1 ≡ Σ̂.
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factors on the underlying common shock, captured by Γj . Thus, the effective exposure to a shock

depends on the interaction between the observed exposure and the underlying correlation structure.

In keeping up with the baseline model and to ease exposition, in what follows I consider and

solve for the case in which there are two correlated risk factors, i.e. N = 2. In this case the relevant

effective exposure parameters to the two factor-specific shocks, j = 1, 2, are Ej = α1Γ1j + α2Γ2j .

The date-1 problem can be expressed as

min
k1,k2

V [θ|s] = A′ΓΣ̂Γ′A = Σ̂11E
2
1 + Σ̂22E

2
2

s.t. Σ̂ii = Σiie
−2ki ,

∑
ki ≤ K, 0 ≤ ki, i = 1, 2.

The optimal information processing capacity allocated to the factor-specific shocks is

k1 =



0 if

√
Σ11E2

1

Σ22E2
2
< e−K

1
2

(
K + ln

√
Σ11E2

1

Σ22E2
2

)
if e−K ≤

√
Σ11E2

1

Σ22E2
2
≤ eK

K if

√
Σ11E2

1

Σ22E2
2
> eK

(34)

and k2 = K − k1. Note that the optimal capacity allocation for the case in which the risk factors

are correlated is similar in spirit to that obtained in the baseline model in which the risk factors

are independent, except that now learning is about the underlying independent shocks that affect

simultaneously more than one risk factor. However, the implications in terms of magnitude of losses

are different relative to baseline model.

Figure 7 plots the loss due to suboptimal investment against exposure to factor 1, for varying

degrees of correlation between the two risk factors. The main result on the non-monotonic relation-

ship between exposure and the loss due to suboptimal investment remains unchanged. However,

the figure shows that relative to the zero correlation baseline, the loss due to suboptimal invest-

ment increases with the degree of correlation between the two factors (Appendix A.4 provides an

algebraic derivation). Notably, the effect is stronger for shocks that are specific to risk factors that

fundamentals have a relatively low exposure to.

33



Figure 7. This example considers a one standard deviation factor 1 specific shock i.e. ε1 =
Σ11, abstracts from factor 2 shocks i.e. ε2 = 0 and information shocks i.e. εs1 = εs2 = 0. The
parameter values are K = 1, σ̃s1 = σ̃s2 = 0.75, Σ11 = Σ22 = 1. Both risk factors are assumed
to load equally on the underlying independent shocks: Γ11 = Γ22 = 1 and Γ12 = Γ21 = 0.15.
The implied correlation between the two risk factors is 0.3.

When the risk factors are positively correlated, shocks to risk factors that fundamentals have

a seemingly low exposure to are further amplified relative to independent risks baseline. This is

because an increasing degree of correlation between the two risk factors has two implications. On the

one hand, correlation introduces learning complementarity benefits, as the firm can use information

about one factor-specific shock to reduce uncertainty about both risk factors. On the other hand

correlation also increases the effective exposure to shocks because now a shock specific to factor 1

will affects fundamentals not only through exposure to factor 1, but also through exposure to factor

2. The effect of complementary in learning is to shift the loss turning points along the x-axis. In

the specific case illustrated in Figure 7, the loss function is shifted to the left relative to the zero-

correlations baseline because the firm starts learning about the shock specific to factor 1 at a lower

level of observable exposure i.e. the effective exposure which drives the learning choices in (34) relies

on a lower level of observable exposure when the risk factors are correlated. The effect of increased

effective exposure to shocks is to shift the loss function upwards along the y-axis. The loss is higher

relative to the zero-correlations baseline because effective exposure is higher than the observable

exposure that is plotted on the x-axis. This result highlights that the apparently unexplained

transmission of shocks, whereby the transmission of shocks is disproportionately high relative to the

observable measure of exposure, is further amplified when the risk factors are positively correlated.
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4.4 Extension: Endogenous Exposure

The baseline model considered the case in which exposures to risk factors are exogenous. In

this section, I allow for exposure to be endogenous quantities determined in equilibrium. The basic

result is that it is optimal for the firm to specialize in learning about one risk factor and to be

relatively more exposed to that factor.

The solution strategy follows the same steps as in the baseline model in Section 3, except that

at the first date, in addition to choosing the amount of information processing resources devoted

to each risk factor, the firm also chooses the exposure to these risk factors. In particular, given the

optimal investment and the optimal factor-specific information processing capacity for any given

exposure, the firm then chooses the optimal level of exposure by solving

max
α

U1 =


−α2σ2

1 − (1− α)2σ2
2e
−2K if k1 = 0

−2α(1− α)σ1σ2e
−K if k1 = 1

2

(
K + ln ασ1

(1−α)σ2

)
−α2σ2

1e
−2K − (1− α)2σ2

2 if k1 = K.

(35)

The solution method and full characterization of the equilibria is detailed in Appendix A.5. The

main result is that it is optimal to be relatively more exposed to and learn about one risk factor. In

the case of symmetric equilibria whereby the two factors are ex-ante equally volatile, the firm can

either learn about factor 1 only, i.e. k1 = K and k2 = 0, and be relatively more exposed to factor

1, or it can learn about factor 2 only, i.e. k1 = 0 and k2 = K, and be relatively more exposed to

factor 2. The optimal level of factor 1 exposure corresponding to these two cases is

α∗ =


σ2
2

σ2
2+σ2

1e
2K if k1 = 0

σ2
2

σ2
2+σ2

1e
−2K if k1 = K.

. (36)

Thus, the firm prefers to be relatively more exposed to one risk factor, the factor that it

learns about. Indifference between exposure allocations arises if the risk factors are ex-ante equally

volatile. Otherwise, it is optimal to learn about and to be relatively more exposed to the risk

factor that is ex-ante less volatile. In other words, it is ex-ante optimal for the firm to specialize

in learning about one risk factor and to be relatively more exposed to it. These ex-ante optimal

exposure allocations will expose the firm to a higher loss due to suboptimal investment in the event
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that the risk factor that it is relatively less exposed to, and about which no information is acquired,

is hit by a shock.

The analytical expression (36) reveals that the optimal level of exposure to factor 1 decreases

with factor 1 uncertainty and increases with factor 2 uncertainty. Furthermore, the optimal factor 1

exposure increases with total capacity K if the firm chooses to learn about factor 1, and it decreases

with capacity K if the firm chooses to learn about factor 2.27 Note that for any limited capacity

and ex-ante uncertain risk factor, full exposure to a risk factor is never optimal and the optimal

exposure is an interior solution i.e. for any K <∞ and σ2
i > 0, i = 1, 2 ⇒ 0 < α∗ < 1.

5 Concluding Remarks

The financial crisis of 2007-2008 highlighted the existence of a remarkable and poorly understood

type of contagion whereby countries that were relatively less exposed to the crisis epicentre, the

United States, were among the most severely affected. In other words, this crisis showed that

the impact of a shock can decrease with exposure to it. In this paper, I study how endogenous

information choices affect decision-makers’ reactions to shocks, and as a consequence the impact

of these shocks. By linking information choices and learning behavior to exposure, the model I

propose explains the puzzling observation that the impact of a shocks can decrease with exposure

to it. The key mechanism in my model is that learning increases with exposure, such that the cost

of being highly exposed to a shock is mitigated by the benefit of having a better understanding

of it. My model contributes to understanding observed cross-sectional and time-series patterns of

contagion by explaining how entities that are more exposed to a crisis can be less affected, and why

contagion is more likely to occur following unexpected crises.

27This is because less capacity constrained agents are able to learn more and the levels of exposure for which
specialized learning occurs are more extreme.
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A Appendix

A.1 Appendix: Uncertainty

This section of the appendix provides an analytical treatment of the factor-specific posterior

uncertainty, or the learning-adjusted risk of a factor, and its contribution to overall uncertainty. To

contrast the predictions of the two models, it is useful to recall that under the exogenous information

benchmark model uncertainty is given by

σ̃2
B = α2σ̃2

1 + (1− α)2σ̃2
2, (37)

while under the endogenous information model uncertainty, σ̂2 = α2σ̂2
1 + (1− α)2σ̂2

2, is given by

σ̂2 =


α2σ2

1 + (1− α)2σ2
2e
−2K if ασ1

(1−α)σ2
< e−K

2α(1− α)σ1σ2e
−K if e−K ≤ ασ1

(1−α)σ2
≤ eK

α2σ2
1e
−2K + (1− α)2σ2

2 if ασ1
(1−α)σ2

> eK

. (38)

Meaningful comparisons require that the total capacity to process information in the endogeous

learning model, K, is set equal to the capacity implied by exogenous signals in the exogenous

learning benchmark model, 1
2 ln

σ2
1

σ̃2
1

+ 1
2 ln

σ2
2

σ̃2
2
. This implies that 1

2 ln
σ2
1σ

2
2

σ̃2
1 σ̃

2
2

= K and so result eK =

σ1σ2
σ̃1σ̃2

can be plugged into expression (38) to obtain

σ̂2 =


α2σ2

1 + (1− α)2σ̃2
2
σ̃2
1

σ2
1

if ασ1
(1−α)σ2

< σ̃1σ̃2
σ1σ2

α2σ̃2
1

1−α
α

σ̃2
σ̃1

+ (1− α)2σ̃2
2

α
1−α

σ̃1
σ̃2

if σ̃1σ̃2
σ1σ2

≤ ασ1
(1−α)σ2

≤ σ1σ2
σ̃1σ̃2

α2σ̃2
1
σ̃2
2

σ2
2

+ (1− α)2σ2
2 if ασ1

(1−α)σ2
> σ1σ2

σ̃1σ̃2

(39)

These analytical expressions confirm the intuition conveyed in Figure 2 that relative to the

equal capacity, exogenous information benchmark, uncertainty is lower when information processing

capacity can be optimally allocated across risk factor exposures. It can be shown that the corner

solutions are always smaller than the benchmark solutions. In case of the first corner solution,

the inequality α2σ2
1 + (1 − α)2σ̃2

2
σ̃2
1

σ2
1
< α2σ̃2

1 + (1 − α)2σ̃2
2 is equivalent to σ̃2

2 > α2

(1−α)2
σ2

1. This

last inequality holds true in light of the condition for obtaining the corner solution, which can

be written as σ̃1
σ1
σ̃2 > α

1−ασ1. Since σ̃2 ≥ σ̃1
σ1
σ̃2, it is verified that σ̃2

2 > α2

(1−α)2
σ2

1 and overall

uncertain is lower under the endogenous information model than under the benchmark. Similarly,

for the second corner solution we have that α2σ̃2
1
σ̃2
2

σ2
2

+ α2
2σ

2
2 < α2

1σ̃
2
1 + α2

2σ̃
2
2, which is equivalent
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to α
1−α

1
σ2
> 1

σ̃1
. Given that the corner solution condition can be re-written as α

1−α
1
σ2
≥ σ2

σ̃1σ̃2
and

1
σ̃1

σ2
σ̃2
≥ 1

σ̃1
, if follows that the inequality α

1−α
1
σ2

> 1
σ̃1

holds and uncertainty is lower under the

endogenous information model than under the benchmark. For the interior solution, the inequality

2α1α2σ̃1σ̃2 ≤ α2σ̃2
1 + (1− α)2σ̃2

2 holds true because (α1σ̃1 − α2σ̃2)2 ≥ 0.

Importantly, these analytical expressions shed further light into the mechanism behind the

observed result. When exposure to factor 1 is sufficiently low such that the first corner solution in

which there is no learning about factor 1 is obtained, the posterior uncertainty or learning-adjusted

risk of factor 1 is higher under the endogenous information model that under the benchmark,

σ2
1 ≥ σ̃2

1, while the factor 2 posterior uncertainty is lower relative to the benchmark, σ̃2
1
σ̃2
1

σ2
1
≤ σ̃2

1.

A similar reasoning applies when exposure to factor 2 is sufficiently low such that the second

corner solution in which there is no learning about factor 2 is obtained: relative to the exogenous

information benchmark, factor 1 posterior uncertainty is lower, σ̃2
1
σ̃2
2

σ2
2
< σ̃2

1, while factor 2 posterior

uncertainty is higher, σ2
2 ≥ σ̃2

2 , when information choice is endogenously chosen. At the interior

optimum, factor 1 posterior uncertainty is higher under the endogenous information model than

under the benchmark if exposure to that factor 1 is relatively low, i.e. all else equal 1−α
α

σ̃2
2

σ̃2
1
> 1 if

α < 1− α, and it is lower if exposure to factor 1 is relatively high, i.e. all else equal 1−α
α

σ̃2
2

σ̃2
1
< 1 if

α > 1− α.

Proof. Proposition (1)

Contrast comparative statics with respect to exposure under the exogenous information model

∂σ̃2
B

∂α
= 2ασ̃2

1 − 2(1− α)σ̃2
2 > 0 if α > 0.5 (40)

and when an interior solution is obtained under the endogenous information model

∂σ̂2

∂α
= 2(1− 2α)σ1σ2e

−K < 0 if α > 0.5 (41)

A.2 Appendix: Shock Transmission Mechanism

Proof. Proposition (2)

Recall that the optimal level of investment is given by the expected level of economic funda-
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mentals. Define γi ≡
σ̂2
i

σ2
i

and re-write the conditional mean value of fundamentals obtained under

the endogenous information model as

θ̂ = E[θ|s1, s2] = α [µ1 + (1− γ1)s1] + (1− α) [µ2 + (1− γ2)s2] , (42)

where si = εi + εsi , i = 1, 2, γ2 = γ−1
1 e−2K and

γ1 =


1 if ασ1

(1−α)σ2
< e−K

1−α
α

σ2
σ1
e−K if e−K ≤ ασ1

(1−α)σ2
≤ eK

e−2K if ασ1
(1−α)σ2

> eK

. (43)

The first-best optimum obtained under the perfect information model is

θ = α(µ1 + ε1) + (1− α)(µ2 + ε2). (44)

Define the loss due to suboptimal investment as

L ≡ (θ̂ − θ)2 =
(
α [(1− γ1)εs1 − γ1ε1] + (1− α) [(1− γ2)εs2 − γ2ε2]

)2
, (45)

such that the interpretation of the parameters γi, i = 1, 2, is that of the weight given to the shocks

affecting fundamentals or, in other words, the extent to which shocks affecting fundamentals are

incorporated into investment decisions. The loss function obtained under the exogenous information

benchmark is defined as

LB ≡ (θ̂B − θ)2 = (α [(1− γ̃1)εs1 − γ̃1ε1] + (1− α) [(1− γ̃2)εs2 − γ̃2ε2])2 , (46)

where the weight coefficients are γ̃i ≡
σ̃2
i

σ2
i
, i = 1, 2.

Define the shock transmission mechanism as the loss induced by a shock

∂L

∂ε1
≡ −2αγ1

(
α [(1− γ1)εs1 − γ1ε1] + (1− α) [(1− γ2)εs2 − γ2ε2]

)
(47)

∂LB
∂ε1

≡ −2αγ̃1

(
α [(1− γ̃1)εs1 − γ̃1ε1] + (1− α) [(1− γ̃2)εs2 − γ̃2ε2]

)
. (48)

The interest lies in examining how the transmission mechanism varies with exposure, cap-

tured by the parameter α. Recall that under the benchmark model, the factor-specific posterior

uncertainty parameters, σ̃2
1 and σ̃2

2, that enter the shock weights coefficients γ̃1 and γ̃2 are exoge-
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nous. On the other hand, under the endogenous information model the factor-specific posterior

uncertainty parameters that influence the weight coefficients are endogenous functions of exposure,

σ̂2
1 = 1−α

α σ1σ2e
−K and σ̂2

2 = α
1−ασ1σ2e

−K . Abstracting from factor 2 effects by setting ε2 = εs2 = 0,

and using the result that ∂γ1
∂α = − 1

α(1−α)γ1, we have that

∂2L

∂ε1∂α
= 2αγ1

[(
2α− 1

1− α
− 2α

1− α
γ1

)
εs1 −

2α

1− α
γ1ε1

]
(49)

∂2LB
∂ε1∂α

= −4αγ̃1 [(1− γ̃1)εs1 − γ̃1ε1] . (50)

In the limiting case in which the signal is perfectly informative, i.e. the signal noise is zero

εs1 = 0, it is clear that the shock transmission mechanism decreases with exposure under the

endogenous information model, i.e. ∂2L
∂ε1∂α

< 0, but it increases with exposure under the exogenous

information benchmark, i.e. ∂2LB
∂ε1∂α

> 0. These results hold more generally if the signal is sufficiently

informative i.e. the signal noise is sufficiently small εs1 <
γ1

1−γ1 ε1.

A.3 Appendix: Shock Anticipation

Proof. Proposition (3)

The date-1 utility function (16) is a continuous piecewise function that is increasing in state

capacity. It is useful to distinguish between three types of equilibria: (i) the equilibrium capacity

allocation across factors has the property k1 = 0, (ii) the equilibrium capacity allocation across

factors has the property k1 = K, and (iii) the equilibrium capacity allocation across factors has

the property k1 = 1
2

(
K + ln ασ1

(1−α)σ2

)
. In all three cases, k2 = K − k1. Substituting the constraint

(18) into the objective function (17) and solving for Kr yields

Kr =


1
4

(
2K + ln pr

pn

)
if k1 = 0 or k1 = K

1
2

(
K + ln pr

pn

)
if k1 = 1

2

(
K + ln ασ1

(1−α)σ2

) . (51)

Imposing the no-forgetting constraint 0 ≤ Kr and noting that Kr ≤ K is always satisfied

because ln pr
pn
< 0 when pr < pn, the optimal capacity allocation across states when the firm learns

only about one risk factor (when a corner solution is obtained for capacity allocation across factors)
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is given by

Kr =

0 if pr
pn
< e−2K

1
4

(
2K + ln pr

pn

)
if pr

pn
≥ e−2K

(52)

and Kn = K−Kr. On the other hand, the optimal capacity allocation across states when the firm

learns about both risk factors (when an interior solution is obtained for capacity allocation across

factors) is given by

Kr =

0 if pr
pn
< e−K

1
2

(
K + ln pr

pn

)
if pr

pn
≥ e−K

(53)

and Kn = K−Kr. Thus, if the firm only learns about one as opposed to both risk factors, it is more

likely that it will dedicate information processing resources to the rare state, since e−2K < e−K,

but the overall capacity allocated to the state is smaller, since 1
4

(
2K + ln pr

pn

)
< 1

2

(
K + ln pr

pn

)
.

Proving Proposition 3 follows from noting that the loss induced by a shock under the exogenous

information model in (47) increases with the weight coefficient γis ≡
σ̂2
is

σ2
is
, i = 1, 2, s ∈ {r, n}. Since

the factor-specific uncertainty σ̂2
is in state of nature s decreases with the information processing

capacity available in that state, Ks, which in turn increases with the probability of occurrence of

the state, ps, s ∈ {r, n} it follows that the loss decreases with the degree of anticipation of the

state.

Note that if the volatility of the shock affecting the risk factor is different in the two states,

such that the shock occurring in the rare state has associated prior ε1r ∼ N (0, σ2
1r), while the

prior associated with the shock occurring in the normal state is ε1n ∼ N (0, σ2
1n), then the capacity

allocation across states is

Kr =


0 if prσ1r

pnσ1n
< e−K

1
2

(
K + ln prσ1r

pnσ1n

)
if e−K ≤ prσ1r

pnσ1n
≤ eK

K if prσ1r
pnσ1n

> eK

.

and Kn = K − Kr. Accounting for the intuition that crises episodes are characterized by high

volatility amount to assuming that σ2
1r > σ2

1n. The information processing capacity allocated to

the rare state of nature increases with the ex-ante volatility of the shock associated with the rare

state, thus reducing the loss due to suboptimal action and the impact of the shock. Magnitudes

are reduced relative to the symmetric case but dynamics remain unchanged.
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A.4 Appendix: Correlated Risks

The loss due to suboptimal investment is

L ≡ (E[θ|s]− θ)2 = (A′E[f |s]−A′f)2 = [A′(µ+ Γ(I − Σ̂Σ−1)s−A′(µ+ Γε)]2

= [A′(µ+ Γ(I − Σ̂Σ−1)(ε+ εs)−A′(µ+ Γε)]2

= [A′Γ(I − Σ̂Σ−1)εs +A′Γ(I − Σ̂Σ−1)ε−A′Γε]2

= [A′Γ(I − Σ̂Σ−1)εs −A′ΓΣ̂Σ−1ε]2

where the elements of the posterior variance-covariance matrix Σ̂ are given by the shock-specific

posterior uncertainty implied by the capacity allocation (34)

Σ̂11 =



Σ11 if

√
Σ11E2

1

Σ22E2
2
< e−K√

Σ11Σ22E2
2

E2
1

e−K if e−K ≤
√

Σ11E2
1

Σ22E2
2
≤ eK

Σ11e
−2K if

√
Σ11E2

1

Σ22E2
2
> eK

(54)

and Σ̂22 = Σ11Σ22e
−2KΣ̂−1

11 .

Abstracting from information shocks i.e. εs = 0 we have that

L = (A′ΓΣ̂Σ−1ε)2.

A.5 Appendix: Endogenous Exposure

The objective function (35) is a continuous piecewise function, which is concave in exposure

when corner solutions are obtained for capacity allocation, and convex in exposure when an interior

solution is obtained. Hence, interior solutions is obtained for optimal exposure if corner solutions

are obtained for information choice, and corner solutions are obtained for optimal exposure if an

interior solution is obtained for information choice. The first-order conditions related to the problem

in (35) are

∂U1

∂α
=


−2ασ2

1 + 2(1− α)σ2
2e
−2K if k1 = 0

−2(1− 2α)σ1σ2e
−K if k1 = 1

2

(
K + ln ασ1

(1−α)σ2

)
−2ασ2

1e
−2K + 2(1− α)σ2

2 if k1 = K

(55)
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It is useful to distinguish between three types of equilibria: (i) the equilibrium capacity allo-

cation has the property k1 = 0, (ii) the equilibrium capacity allocation has the property k1 = K,

and (iii) the equilibrium capacity allocation has the property k1 = 1
2

(
K + ln ασ1

(1−α)σ2

)
. In all three

cases, k2 = K − k1.

Equilibria (i) and (ii) represents situations in which the firm is only able to learn about one risk

factor. In these situations, it is optimal to be relatively more exposed to the factor the firm learns

about, and the optimal point of exposure is the one at which the learning-adjusted risk exposures

are equal. More specifically, if k1 = 0 optimal exposure is implied by ασ2
1 = (1 − α)σ2

2e
−2K . If

k1 = K optimal exposure is implied by ασ2
1e
−2K = (1− α)σ2

2.

α∗ =


σ2
2

σ2
2+σ2

1e
2K if k1 = 0

σ2
2

σ2
2+σ2

1e
−2K if k1 = K

(56)

Indifference between the exposure allocations in (56) arises if the risk factors are ex-ante equally

volatile, but it is otherwise optimal to be relatively more exposed to the risk factor that is ex-ante

less volatile.

Equilibrium (iii) represents a situation in which the parameter values are such that the firm can

learn about both risk factors. In this case, it is optimal to be as exposed as possible to one factor,

where the maximum level of exposure to a factor is implied by the condition for learning about

both risks e−K ≤ ασ1
(1−α)σ2

≤ eK . To determine which risk factor it is optimal to relatively more

exposed to, I compare the expected utility of each corner solution for exposure. The maximum

exposure to factor 1 is obtained when ασ1
(1−α)σ2

= eK , which implies α = σ2
σ2+σ1e−K and the utility of

being relatively more exposed to factor 1 is U1(α) = −2
(

σ1σ2
σ1+σ2eK

)2
. The maximum exposure to

factor 2 is obtained when ασ1
(1−α)σ2

= e−K , which implies minimum factor 1 exposure α = σ2
σ2+σ1eK

and the utility of being relatively more exposed to factor 2 is U1(α) = −2
(

σ1σ2
σ1eK+σ2

)2
. In the

case of symmetric equilibria whereby the two factors are ex-ante equally volatile, the firm will be

indifferent between the two exposure allocations i.e. U1(α) = U1(α) if σ1 = σ2. However, in the

case of non-symmetric equilibria, it is optimal to be more exposed to the less volatile risk factor

i.e. U1(α) > U1(α) if σ1 < σ2 hence α∗ = α, and U1(α) < U1(α) if σ1 > σ2 hence α∗ = α.

α∗ =


σ2

σ2+σ1eK
if k1 = 1

2

(
K + ln ασ1

(1−α)σ2

)
and σ1 > σ2

σ2
σ2+σ1e−K if k1 = 1

2

(
K + ln ασ1

(1−α)σ2

)
and σ1 < σ2

σ2
σ2+σ1eK

or σ2
σ2+σ1e−K if k1 = 1

2

(
K + ln ασ1

(1−α)σ2

)
and σ1 = σ2

(57)
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However, since the firm is not constrained to learn about both risk factors, i.e. to be in equilibria

of the type (iii), it will optimally choose to learn about one factor only and to be relatively more

exposed to the factor it learns about. This follows from the fact that the expected utility associated

with the optimal levels of exposure (57) obtained in equilibrium (iii) is lower than the utility

associated with the optimal levels of exposure (56) that are obtained in equilibria (i) and (ii).
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