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Abstract

I study a dynamic model of consumer privacy and platform data collection. In each period,

consumers choose their level of platform activity. Greater activity generates more informa-

tion about the consumer, thereby increasing platform profits. Although consumers value their

privacy, the platform can collect information by gradually lowering the level of privacy pro-

tection. In the long run, consumers become “addicted” to the platform: They lose privacy and

receive low payoffs, but choose high activity levels. I study the implications of these dynamics

on the platform’s business model, its commitment power regarding the future privacy policy,

and competition between platforms.
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1 Introduction

Online platforms, such as Amazon, Facebook, Google, and Uber, analyze user activities and collect

a large amount of data. This data collection may improve their services and benefit consumers, but

it also raises concerns for consumers and policymakers (Crémer et al., 2019; Furman et al., 2019;

Morton et al., 2019).

As an example, consider a consumer (she) and a social media platform (it). The consumer

writes posts and reads news on the platform. The platform analyzes her activity and collects data

such as her race, location, and political preferences. The platform can then generate revenue—e.g.,

via improved targeted advertising. The consumer faces a trade-off: On the one hand, she enjoys the

services provided by the platform. On the other hand, she may value her privacy, or be concerned

about the risk of data leakage, identity theft, and price or non-price discrimination.1 Such risks are

the “privacy costs” of using the platform. If the consumer anticipates a high privacy cost, she may

use the platform less actively, or may not join it. The platform can influence her decision through

its privacy policy. For example, Facebook committed to not use cookies to track users.2

I model such a situation as a dynamic game between a consumer and a platform. In each period,

the consumer chooses her level of platform activity. Based on the level of activity, the platform

observes a signal about the consumer’s time-invariant type. The informativeness of the signal is

increasing in the activity level, but decreasing in the platform’s privacy level, which specifies the

amount of noise added to the signal. The platform’s profit is increasing, but the consumer’s payoff

is decreasing in the amount of information the platform has collected. As a result, the consumer

chooses activity levels that balance the benefits of the service and the privacy costs. Anticipating

the consumer’s behavior, the platform chooses privacy levels.

The main idea is that the consumer has a decreasing marginal privacy cost—i.e., when the

consumer has less privacy, she faces a lower marginal privacy cost of using the same platform.

For example, if Google already knows a lot about a consumer, she might not care about letting

Google Maps track her location today. In an extreme case, if the platform knows everything, the

consumer faces a marginal privacy cost of zero, because her activity no longer affects what the

1Such concerns are highlighted by, for example, the Cambridge Analytica scandal.
2In 2004, Facebook’s privacy policy stated that “we do not and will not use cookies to collect private information

from any user.” https://web.archive.org/web/20050107221705/http://www.thefacebook.
com/policy.php (accessed on July 31, 2020)
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platform knows about her type.

The main finding is that because of the decreasing marginal cost of losing privacy, a farsighted

consumer eventually gives up all of her privacy, even when she anticipates future privacy choices

made by the platform. To induce such an outcome, the platform commits to a high level of privacy

protection in early periods: By doing so, the platform can encourage the consumer to use the

service and generate information, when she has not yet lost her privacy. However, as the platform

collects more data, the consumer faces lower marginal privacy costs. As a result, in later periods,

the platform can decrease a privacy level to speed up data collection. In the long run, the consumer

loses privacy and incurs a high privacy cost, but chooses a high activity level. This result does

not depend on discount factors: For example, even if the platform is myopic and faces a patient

consumer, it adopts a privacy policy that causes the long-run privacy loss.

I first show the above result in the baseline model in which the platform’s revenue depends only

on information it collects. However, the main insight holds even if the platform’s revenue depends

on the consumer’s activity. Indeed, even if the platform earns revenue mainly from consumer

activity, it may eventually collect as much information as a data-driven platform, because the

consumer chooses the highest activity level when she has no privacy on the platform.

I then explore the implication and robustness of the main finding. First, I study the role of the

platform’s commitment power regarding its future privacy choices. If the platform can commit to

future privacy levels, it can collect information by committing to offer high but finite privacy levels

in early periods. Under a certain condition, the platform can implement the same policy as long as

it has one-period commitment power. However, if the platform faces a high prior uncertainty about

the consumer’s type and cannot commit to a future privacy policy, there is also an equilibrium

in which it fails to collect any information: The consumer refuses to provide data, because the

platform, which fails to collect data today, will offer high privacy protection in the future. This

equilibrium captures the platform’s Coasian commitment problem.

Second, I examine the implication of the aforementioned decreasing marginal privacy cost on

competition and regulations. The decreasing marginal cost implies that the consumer is more will-

ing to use a platform on which she has less privacy. This consumer’s tendency renders competition

less effective. Also, ex ante and ex post privacy regulations have different impacts: Mandating that

the platform pre-commit to a strict privacy policy may, perversely, lower the privacy and welfare
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of consumers in the long run. In contrast, enabling the consumer to delete information collected in

the past may enhance welfare.

The paper has implications for consumer privacy. First, the consumer’s long-run behavior (in

the equilibrium with data collection) is consistent with the so-called privacy paradox: Consumers

express concern about their privacy, but actively share data with third parties (Acquisti et al., 2016).

The platform’s equilibrium strategy rationalizes how online platforms, such as Facebook, seem to

have expanded the scope of data collection. Second, my results clarify the role of commitment and

expectation in data collection: Depending on consumers’ expectation about their future privacy,

the platform may collect data when consumers highly value their privacy, or it may fail to collect

data when consumers do not much value their privacy.

The rest of the paper is as follows. Section 2 discusses related literature, and Section 3 presents

the model. Section 4 considers the platform with long-run commitment power and presents the

equilibrium. Section 5 assumes the platform has one-period commitment. In particular, assuming

that the consumer has binary activity level, I characterize an equilibrium that is best or worst for

the consumer. Section 6 studies competition between platforms. Section 7 considers extensions,

including the impact of erasing past information.

2 Related Literature

This paper contributes to the literature on the economics of privacy and markets for data. This lit-

erature has studied several important questions, such as how to use consumer data to create market

segmentation (Ali et al., 2020; Bonatti and Cisternas, 2020; Elliott and Galeotti, 2019; Haghpanah

and Siegel, 2019; Loertscher and Marx, 2020; Yang, 2019; Ichihashi, 2020b); how to choose the

optimal level of privacy protection and information security (Dwork et al., 2014; Fainmesser et al.,

2019; Jullien et al., 2018); how information externalities create inefficiency or influence agents’

behavior (Acemoglu et al., 2019; Bergemann et al., 2019; Choi et al., 2019; Easley et al., 2018;

Liang and Madsen, 2020; Ichihashi, 2020a); how agents strategically manipulate data (Frankel

and Kartik, 2019b,a; Argenziano and Bonatti, 2020; Ball, 2020); how consumer data and pri-

vacy interact with mechanism design (Brunnermeier et al., 2020; Calzolari and Pavan, 2006; Eilat

et al., 2019; Ghosh and Roth, 2011); how to price and sell information (Agarwal et al., 2019;
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Hörner and Skrzypacz, 2016; Bergemann et al., 2018); and how privacy and data affect competi-

tion (Casadesus-Masanell and Hervas-Drane, 2015; De Corniere and Taylor, 2020). I contribute to

this literature by studying a firm’s dynamic policy to acquire consumer data, and how the policy

depends on the firm’s commitment power and consumer expectation.

The paper is especially related to Acemoglu et al. (2019); Bergemann et al. (2019); and Choi

et al. (2019). They consider static models in which a platform collects data in exchange for money.

In their models, the data on some consumers reveal information about others. Under a certain

information structure, this “data externality” lowers consumers’ private costs of providing data

relative to social costs. In this case, the equilibrium involves an inefficiently high level of data

sharing.3 In my paper, the consumer’s cost of generating information is decreasing in the stock of

data she provided in the past and the amount of data the platform will collect in the future. In this

case, depending on the consumer’s expectation, the equilibrium may involve an inefficiently high

or low level of data collection. The dynamic model also enables me to study new issues, such as a

platform’s commitment and the impact of erasing past data.

This paper also relates to recent work on dynamic competition in digital markets. Hagiu and

Wright (2020) study “data-enabled learning,” whereby firms can improve their products and ser-

vices through learning from the data they obtain from their customers. Prufer and Schottmüller

(2017) assume that the cost of investing in quality is decreasing in the firm’s past sales, and greater

investment in quality leads to higher demand in the current period. In contrast to this literature,

I assume data collection lowers consumer welfare. Such an assumption enables us to study is-

sues related to consumer privacy. Hagiu and Wright (2020) allow price competition and study rich

learning dynamics that incorporate “within-user” and “across-user” learning. In contrast, I abstract

away from pricing, and focus on within-user learning and the design of a privacy policy.

How the consumer’s incentive changes over time in my model is similar to that of career con-

cern models, which originated with Holmström (1999). In career concern models, a young worker,

whose ability has not yet been revealed to the market, works hard to influence the market’s belief.

In my model, a consumer who has not yet lost privacy uses the platform less actively to generate

less information. Over time, the information about the consumer and the worker are revealed, and

3Bergemann et al. (2019) also consider an information structure under which the data externality renders the
private cost greater than the social cost, which may lead to an inefficiently low level of data sharing.
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they have lower incentives to engage in signal jamming. Despite this connection, the two signal

jamming activities are different. In career concern models, the market wants the worker to engage

in signal jamming, which corresponds to higher effort. Thus, there is a trade-off between learning

the worker’s ability and motivating high effort (e.g., Hörner and Lambert 2018). In my model, the

platform wants the consumer to engage less in signal jamming. Thus, the platform prefers to col-

lect information not only to increase profit today, but also to motivate the consumer to raise activity

levels in the future. Many of my results stem from this complementarity between data collection

and consumer activity, which is absent in career concern models.

3 Model

I study a dynamic game between a consumer (she) and a platform (it). The consumer uses the

platform’s service to receive benefits, but her use of the service generates information about her

time-invariant (Gaussian) type. The platform chooses a privacy level, which is the amount of noise

added to the information generated. The platform provides its service for free and monetizes the

information. I model payoffs in a reduced-form way, so that, in the baseline model, the platform

prefers more information and the consumer prefers less information to be collected. Appendix A

microfounds such preferences, assuming that the platform sells data to third-party sellers that price

discriminate the consumer.

The formal description is as follows. Time is discrete and infinite, indexed by t ∈ N. The

consumer’s type X is drawn from a normal distribution N (0, σ2
0). The type is realized before

t = 1 and fixed over time. The consumer does not observe X .4 The platform does not observe X

either, but receives signals about it.

In each period t ∈ N, the consumer chooses an activity level at from a finite set A ⊂ R+ such

that minA = 0 and amax := maxA > 0. The platform then observes at and a signal st = X + εt,

where εt ∼ N
(

0, 1
at

+ γt

)
. The consumer does not observe the signal.5 A higher at reduces the

4Even if the consumer privately observes X , all results hold with respect to a pooling equilibrium in which
consumers of all types choose the same activity level after any history. Such an equilibrium exists because the payoff
of each player does not depend on a realization of X . Unobservable X simplifies exposition without changing the
results.

5All the results continue to hold even if signals are public, because the payoff of each player does not depend on
the realization of a signal.
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variance of εt and makes st more informative about X . For a fixed at, the informativeness of the

signal decreases in γt ∈ R+ := R+ ∪ {∞}, which is the privacy level of the platform in period t.

A higher γt implies the platform offers higher privacy protection. If at = 0 or γt =∞, signal st is

totally uninformative. Random variables X and (εt)t∈N are mutually independent.

The payoffs are as follows. Suppose that the consumer has chosen activity levelsat = (a1, . . . , at) ∈

At and the platform has chosen privacy levels γt = (γ1, . . . , γt) ∈ Rt

+ up to period t. At the end

of period t, the platform receives a payoff of σ2
0 − σ2

t (at,γt) ≥ 0, where σ2
t (at,γt) is the posterior

variance of X given (at,γt) and Bayes’ rule.6 A small σ2
t (at,γt) means the platform has an accu-

rate estimate of X , or equivalently, the consumer has low privacy. For any t and τ ≤ t, σ2
t (at,γt)

is decreasing in aτ , increasing in γτ , and independent of sτ .7 Where it does not cause confusion, I

write σ2
t (at,γt) as σ2

t . The platform discounts future payoffs with discount factor δP ∈ (0, 1).

The consumer’s flow payoff in period t is U(at,γt) := u(at)− v · [σ2
0 − σ2

t (at,γt)]. The first

term u(at) is her gross benefit of using the platform, where u(a) is strictly increasing in a ∈ A

and u(0) = 0. The second term v · [σ2
0 − σ2

t (at,γt)] is a privacy cost, which captures the negative

impact of data collection on the consumer. The parameter v ∈ R++ captures her value of privacy;

it is exogenous and commonly known to the consumer and the platform. The consumer discounts

future payoffs with discount factor δC ∈ [0, 1). A special case is a myopic consumer (i.e., δC = 0),

who chooses at ∈ A to maximize U(at,γt) in each period t. I normalize the payoffs so that if

at = 0 for all t, the platform and the consumer obtain zero payoffs in all periods.

The informational assumptions are summarized as follows. The primitives, σ2
0 , A, u(·), and

v, are commonly known. The past activity levels and privacy levels are publicly observable. The

consumer’s type is unobservable, and the signals are observable only to the platform.

I study two games that differ in the timing of moves. One is the game of long-run commitment.

In this game, before t = 1, the platform commits to a privacy policy γ = (γ1, γ2, . . . ) ∈ R∞+ ,

which is publicly observable. Then, in each period t ∈ N the consumer chooses at, and the

platform learns about her type based on a signal st. In this game, the platform moves only before

t = 1.

6The equivalent formulation is that the platform observes (at, st), chooses bt ∈ R, and obtains an ex post payoff
of −(X − bt)2, which the platform does not observe. Writing the payoffs in terms of σ2

t simplifies exposition. See
Acemoglu et al. (2019) for further discussion.

7Throughout the paper, “increasing” means “non-decreasing.” Similar conventions apply to “decreasing,”
“higher,” “lower,” and so on.
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The other is the game of one-period (or short-run) commitment, in which the platform and the

consumer move sequentially in every period: At the beginning of each period t, the platform sets

γt. After observing γt, the consumer chooses at. Then, the platform observes the signal, and the

game proceeds to period t + 1. In this case, the platform can commit to a privacy level only for

one period. In either game, the solution concept is subgame perfect equilibrium (SPE).8

Two remarks are in order. First, under the long-run commitment, the platform can commit

to only a history-independent sequence of privacy levels. As a result, we cannot immediately

conclude that the platform is better off under the long-run than short-run commitment.9 Second,

I do not model the consumer’s participation, but we may interpret that the consumer joins the

platform in period t∗ := min {t ∈ N : at > 0}. The results continue to hold even if the consumer

incurs a small one-time cost to join the platform.

3.1 Discussion of Assumptions

Data generation. In practice, consumer data are generated by their activity on a platform, such as

browsing content and responding to posts. The model captures such activity by assuming that the

precision of a signal is increasing in the activity level. To focus on the consumer’s incentives to

protect their privacy, I abstract away from belief manipulation, such as a consumer strategically

browsing websites to influence a platform’s inference.

Privacy cost function. The privacy cost v(σ2
0 − σ2

t ) captures the monetary or nonmonetary reasons

why a consumer wants a platform to have less information—e.g., consumers may intrinsically

value their privacy, or consider the risk of data breach and discrimination by third parties (Kummer

and Schulte, 2019; Lin, 2019; Tang, 2019). Although I do not focus on a particular reason why

the loss of privacy harms the consumer, Appendix A microfounds this privacy cost function in the

context of third-degree price discrimination with linear demand. In practice, the consumer may

8The payoffs u(at)− v ·
[
σ2
0 − σ2

t (at,γt)
]

and σ2
0 − σ2

t (at,γt) incorporate the belief updating of the consumer
and the platform. For a myopic consumer, an equilibrium refers to a strategy profile such that (i) the consumer chooses
at to maximize U(at,γt) following every history, breaking ties in favor of higher activity levels, and (ii) the platform,
anticipating (i), optimally chooses a privacy policy γ before t = 1 (under long-run commitment), or chooses γt at the
beginning of each period t (under one-period commitment).

9If the platform had “full commitment power” and could commit to any history-contingent rule to set privacy
levels, then it would weakly prefer such a regime to any other commitment regimes. However, Section 5 shows that if
|A| = 2, the platform is indifferent between the full, one-period, and long-run commitment regimes.
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prefer a certain level of data collection, which Section 4.1 takes into account. Section 7 studies the

consumer who is privately informed of her value v of privacy.

The privacy cost is sunk. The consumer cannot delete past data. Thus she perceives the privacy

cost from past data collection as sunk: Even if at = 0 for all t ≥ T , the consumer incurs a privacy

cost of−v(σ2
0−σ2

T ) in any t ≥ T . This assumption reflects the difficulty of deleting data, which is

referred to as “data persistence” (Tucker, 2018). For instance, suppose a platform collects personal

information and shares it with third parties. Then the consumer may face a risk of discrimination or

malicious targeting even outside of the platform. In another example, if a consumer inadvertently

discloses information to other users, she may incur a psychological cost because other users know

the information. Such a cost may persist even when the consumer is not active on the platform.

Because the consumer regards the privacy cost as sunk, she chooses activity levels based on the

marginal privacy cost rather than the total privacy cost. Appendix L relaxes this assumption and

studies extensions in which the consumer regards a part of or all of the privacy cost as non-sunk.

Single consumer. I consider a single consumer to emphasize that the results do not rely on inter-

actions between multiple consumers. However, since the consumer’s type is Gaussian, one could

incorporate multiple consumers with “data externalities,” by assuming that consumers’ types are

correlated (Acemoglu et al., 2019; Bergemann et al., 2019).

4 Equilibrium Under Long-Run Commitment

To examine how the platform designs its privacy policy, I begin by studying the game of long-run

commitment. I first present a result under a stationary privacy policy, then study the equilibrium of

the entire game. Given the platform’s information in the previous period and (at, γt), the posterior

variance evolves as follows.10

σ2
t (at,γt) =

1
1

σ2
t−1(at−1,γt−1)

+ 1
1
at

+γt

. (1)

10If x|µ ∼ N(µ, σ2) and µ ∼ N(µ0, σ
2
0), then µ|x ∼ N

(
σ2
0

σ2+σ2
0
x+ σ2

σ2+σ2
0
µ0,
(

1
σ2
0

+ 1
σ2

)−1)
.
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Thus, the consumer’s privacy cost in period t is

v
[
σ2

0 − σ2
t (at,γt)

]
= v

σ2
0 −

1
1

σ2
t−1(at−1,γt−1)

+ 1
1
at

+γt

 .
Define the privacy cost function as

C(a, γ, σ2) := v

(
σ2

0 −
1

1
σ2 + 1

1
a

+γ

)
.

The following lemma shows properties of privacy cost C and marginal privacy cost ∂C
∂a

.

Lemma 1 (Privacy Cost and Marginal Privacy Cost).

1. C(a, γ, σ2) is decreasing in γ and σ2, and increasing in a.

2.
∂C

∂a
(a, γ, σ2) is decreasing in γ and increasing in σ2.

Proof. Point 1 follows from equation (1). Point 2 follows from

∂C

∂a
= v ·

1
a2

( 1
a

+γ)
2(

1
σ2 + 1

1
a

+γ

)2 =
v(

1
σ2 (1 + γa) + a

)2 .

Lemma 1 implies that if the consumer has less privacy (i.e., σ2
t is small), she faces a high

privacy costC but a low marginal privacy cost ∂C
∂a

. Intuitively, once a platform has collected a lot of

information, the marginal privacy cost is low, because the consumer’s activity today does not much

affect the platform’s learning. As a result, data collection harms the consumer, but incentivizes her

to increase an activity level in the future. Also, the marginal privacy cost is decreasing in the level

of privacy protection, γ. Thus, the platform can encourage the consumer’s activity by committing

to add a noise to the signal.

We now derive the consumer’s problem. We can rewrite the evolution of posterior variances
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(1) as that of posterior precisions:

1

σ2
t (at,γt)

=
1

σ2
t−1(at−1,γt−1)

+
1

1
at

+ γt
= · · · = 1

σ2
0

+
t∑

s=1

1
1
as

+ γs
. (2)

As a result, if the platform commits to a privacy policy (γt)t∈N, the consumer solves the following

maximization problem:

max
(at)t∈N∈A∞

∞∑
t=1

δt−1
C

u(at)− v ·

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
as

+γs

 . (3)

The next result presents the consumer’s response to a stationary privacy policy. Although the

platform’s equilibrium policy may not be stationary, this non-equilibrium analysis clarifies the

intuition behind the consumer’s dynamic incentive (see Appendix C for the proof).

Proposition 1. Suppose the platform commits to a stationary privacy policy, i.e., γt = γ for all

t ∈ N. Let (a∗t )t∈N denote the equilibrium activity levels of this subgame. There is a cutoff value

v∗(γ) ∈ R+ with the following properties.

1. If v < v∗(γ), then a∗t increases in t, lim
t→∞

a∗t = amax, and lim
t→∞

σ2
t = 0. The consumer’s

continuation value decreases over time.

2. If v > v∗(γ), then a∗t = 0 and σ2
t = σ2

0 for all t ∈ N.

3. The cutoff v∗(γ) is increasing in γ, and limγ→∞ v
∗(γ) =∞.

The intuition is as follows. If the value of privacy is low, the consumer prefers a positive activity

level a∗1 > 0 in t = 1. The consumer activity generates information, which reduces her payoff and

marginal cost of using the platform. As a result, she chooses a∗2 ≥ a∗1 in t = 2. Repeating this

argument, we can conclude that a∗t increases over time. The platform can then observe the signals

to perfectly learn the consumer’s type as t → ∞. Perfect learning in t → ∞ implies that the

marginal privacy cost goes to zero, and thus a∗t → amax. To sum up, if v is below the cutoff, the

consumer eventually loses her privacy, but acts as if there is no privacy cost (Point 1). In contrast,

the consumer with a high v does not use the platform (Point 2). Finally, v∗(γ) is increasing in γ

because a higher privacy level reduces the cost of using the platform (Point 3).
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Proposition 1 implies a perverse effect of privacy regulation: Suppose that a regulator, who

cares about consumer privacy, mandates a stricter privacy policy—i.e., γt = γ becomes γt =

γ′ > γ for all t ∈ N. The result implies that this regulation increases the cutoff from v∗(γ) to

v∗(γ′), and expands the range of v’s under which the consumer loses privacy (Point 1). To see the

welfare implication, suppose v > u(amax)

σ2
0

holds. For a small γ, the consumer may choose a∗t = 0

and obtain a payoff of zero in all periods. If the regulator enforces a large γ′, then the consumer

chooses a∗1 > 0. However, a∗1 > 0 implies (a∗t , σ
2
t ) → (amax, 0), and thus the consumer’s per-

period payoff converges to u(amax)− vσ2
0 < 0. Thus, the regulation may increase the consumer’s

payoffs in the short run but decrease them in the long run. If the regulator cares about long-run

consumer welfare, it may consider a higher γ to be detrimental.11

The next result shows the equilibrium dynamics of the entire game, in which the platform can

commit to any (potentially nonstationary) privacy policy. In equilibrium, the platform anticipates

that the consumer solves (3) given any privacy policy (see Appendix D for the proof; Appendix B

proves the existence of an equilibrium).

Theorem 1. In any equilibrium under the long-run commitment, the following holds.

1. The consumer eventually loses her privacy and chooses the highest activity level: lim
t→∞

σ2
t =

0 and lim
t→∞

a∗t = amax.

2. For any T ∈ N, there is a v ∈ R such that for any v ≥ v, we have γ∗t > 0 for all t ≤ T .

3. If the consumer is myopic, there is a T ′ ∈ N such that for all t ≥ T ′, γ∗t = 0.

Because of the decreasing marginal cost of losing privacy, a farsighted consumer eventually

gives up all of her privacy, even when she anticipates future choices made by the platform. The

privacy loss occurs even if δC is close to 1 and the service utility u(·) is small relative to the privacy

cost. Point 2 implies that if the consumer highly values her privacy, the platform commits to high

privacy protection in early periods to induce the long-run privacy loss.

The intuition is as follows. In early periods, the platform knows little about the consumer, so

the consumer’s activity has a large impact on what the platform can learn about her type. Thus the

11The caveat “if the regulator cares about the long-run consumer welfare” is important, because a higher γ increases
the consumer’s ex ante sum of discounted payoffs calculated based on δC . A higher privacy level is undesirable for
the regulator only if the regulator’s discount factor is different from the consumer’s.
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consumer faces a high marginal privacy cost, which discourages her from raising the activity level.

The platform then commits to a high level of privacy protection to encourage consumer activity.

As a result, in early periods the platform slowly learns her type.

The above argument does not exclude the possibility that data collection stops in the middle—

e.g., the platform might need to provide a growingly high privacy protection over time, so that the

precision of the signal eventually goes to zero. However, the result implies that data collection

never stops because of the decreasing marginal cost of privacy loss: As time goes by, the platform

accurately knows the consumer’s type, which renders it cheaper for the consumer to generate

additional information. Therefore, the platform is able to collect full information over time.

The consumer can be forward-looking. Thus, we may think that the platform could benefit

from pre-committing to high privacy levels for future periods, if it encourages the consumer to

generate more information in early periods. This intuition is inaccurate: The consumer’s objective

in (3) is supermodular in today’s activity at and the precision of future signals ( 1
(at+s)−1+γt+s

)s∈N,

so the consumer chooses a higher activity level when she anticipates to lose her privacy in the

future. The result also implies that the platform collects full information for any discount factors:

For example, even a myopic platform that faces a patient consumer adopts a privacy policy that

causes the long-run privacy loss.

Figure 1 depicts the equilibrium dynamics for a myopic consumer in a numerical example.12

Figure 1(a) shows the platform offers a decreasing privacy level, hitting zero in t = 5. Figure 1(b)

shows that the equilibrium activity level first decreases but eventually approaches amax = 2. The

non-monotonicity of a∗t contrasts with the case of a stationary privacy policy.13

A natural question is to what extent Theorem 1 depends on assumptions on preferences. In

particular, the consumer and the platform hold the opposite preferences over data collection, and

the platform earns revenue only from data. I now relax these assumptions and extend the main

result.

12I assume A = {0, 0.01, 0.02, . . . , 2} and use Claim 1 to compute an equilibrium.
13I have not managed to prove the non-monotonicity of (a∗t )t∈N. A numerical exercise suggests that the non-

monotonicity occurs for a wide range of parameters (v, σ2
0) with a myopic consumer, when the equilibrium privacy

level is strictly decreasing in early periods.
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Figure 1: Equilibrium under u(a) = 2a− 1
2
a2, v = 10, and σ2

0 = 1.

4.1 The Implication on Business Models

So far, I have assumed that the consumer dislikes data collection, and the platform’s revenue de-

pends only on information. While these assumptions help us highlight the intuition, the main

insight holds in a more general setting. To see this, suppose now that the platform’s per-period

payoff is Π(at, σ
2
t ), which is strictly increasing in at and decreasing in σ2

t . For example, an adver-

tising platform benefits from a high activity at and more data (i.e., low σ2
t ) because the consumer

will then see many highly targeted ads. We impose no restrictions on the relative importance of

activity and data for Π(·, ·). Also, the consumer’s per-period payoff is now u(at) − C(σ2
t ). The

original setting is C(σ2
t ) = v(σ2

0 − σ2
t ), but C(·) is now any differentiable function such that

supx∈[0,σ2
0 ] |C ′(x)| < ∞ and C(σ2

0) = 0. The cost function can be non-monotone. For example,

C(·) is first decreasing and then increasing, i.e., the consumer prefers some level of data collection.

The following result extends Theorem 1: The platform can always induce the consumer to

give up her privacy and choose the highest activity level in the long run, and a sufficiently patient

platform chooses to do so (see Appendix E for the proof).

Proposition 2. In the above setting, the following holds:

1. There is a privacy policy under which the consumer loses her privacy and chooses the highest

13



activity level in the long run: lim
t→∞

σ2
t = 0 and lim

t→∞
a∗t = amax.

2. Given the platform’s discount factor δP , let σ2
∞(δP ) := lim

t→∞
σ2
t (δP ) denote the long-run

posterior variance in an arbitrarily chosen equilibrium. Then, lim
δP→1

σ2
∞(δP ) = 0. Similarly,

the long-run activity level converges to amax as δP → 1, provided the limits exist—i.e.,

lim
δP→1

lim
t→∞

at = amax for arbitrarily chosen equilibria.

Even if a platform’s profit places a small weight on information, it may collect as much infor-

mation as exclusively data-driven firms, because high user activity is consistent with no privacy.

Intuitively, so long as C(σ2
t ) has a bounded derivative, the marginal cost of using the platform ap-

proaches zero when the consumer loses all of her privacy.14 As a result, the platform can induce the

highest activity and the lowest privacy at the same time, which is the best outcome in the long-run

regardless of the relative importance of data and activity for the firm’s revenue.

4.2 Implications of Theorem 1 and Proposition 2

First, Theorem 1 potentially explains the privacy paradox: Consumers seem to casually share their

data with online platforms, despite their concerns about data collection.15 We may view this puzzle

as the long-run equilibrium outcome of this model, in which the consumer faces a high privacy cost

and negligible marginal cost. Such an outcome can arise even if firms adopt business models that

do not much rely on data (Proposition 2). The result also points to the difficulty of applying

the revealed preference argument to static privacy choices, because the consumer’s decision may

depend on the stock of information they have already revealed.

Second, the result connects consumer privacy problem with rational addiction (Becker and

Murphy, 1988). The connection stems from that a high activity level today decreases the con-

sumer’s future utility, but increases her future marginal utility of using the platform. In contrast to

models of rational addiction, the current model has a platform that can choose its privacy policy to

influence the degree of addiction. As a result, even if consumers are patient and highly value their

privacy, they become “addicted” to the platform.
14While in a different context, the intuition is similar to the idea that if a firm uses data for forecasts and the gain

to a perfect forecast is finite, the returns to data must diminish at some point (Farboodi and Veldkamp, 2020).
15Acquisti et al. (2016) conduct an insightful review of research on the economics of privacy, including the privacy

paradox. Recent empirical work includes, for example, Athey et al. (2017).
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Finally, at an anecdotal level, the equilibrium strategy of the platform, which offers high privacy

levels for early periods but not necessarily for later periods, seems consistent with how the data

collection strategies of online platforms have evolved. In 2004, Facebook’s privacy policy stated

that it would not use (first-party) cookies to collect consumer information. In 2020, the privacy

policy states that it uses cookies to track consumers on and possibly off the website.16 Srinivasan

(2019) describes how Facebook’s policy has changed from the one that preserves consumer privacy

to “broad-scale commercial surveillance.” Also, Fainmesser et al. (2019) describe how online

platforms’ business models have changed from the initial phase, in which they expand a user base,

to the mature phase, in which they monetize the information collected. The equilibrium dynamics

in Theorem 1 rationalize the pattern described, and Proposition 2 implies that such dynamics could

occur even if a platform earns revenue mainly from user activity.

4.3 Myopic Consumer

If the consumer is myopic, we can characterize the equilibrium. Let a∗(γ, σ2) ∈ A denote the

best response of a myopic consumer, given a privacy level γ in the current period and the posterior

variance σ2 from the previous period:

a∗(γ, σ2) := max

arg max
a∈A

u(a)− v

σ2
0 −

1
1

σ2
+

1
1
a

+ γ


 . (4)

The following result characterizes the equilibrium (see Appendix F for the proof; it also provides

the recursive characterization of the equilibrium privacy policy).

Claim 1. Suppose the consumer is myopic. Consider the greedy policy of the platform—i.e., given

the consumer’s best response (4), it chooses privacy level γt to myopically maximize the preci-

sion of the signal in each period t. The sequence (γ∗t )t∈N obtained in this way is the platform’s

equilibrium strategy. Also, the same outcome arises under one-period commitment.

Although the platform is patient, the optimal policy is greedy. The result comes from the
16In 2020, Facebook’s privacy policy states that “we use cookies if you have a Facebook account, use the Facebook

Products, including our website and apps, or visit other websites and apps that use the Facebook Products (including
the Like button or other Facebook Technologies).” https://www.facebook.com/policies/cookies
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decreasing marginal privacy cost (and not necessarily from the consumer myopia, as we see in the

next section). To see this, consider the platform’s problem of choosing γt. The platform faces

a trade-off: Higher privacy protection reduces the consumer’s marginal cost and encourages her

activity. However, privacy protection implies that the platform learns less about the consumer’s

type from the signal. Balancing this trade-off, the platform chooses γt to maximize the sum of

period-t profit and its continuation value. However, the platform does not face a dynamic trade-

off: If it collects more information today, the consumer will face lower marginal privacy costs and

choose higher activity levels in the future. As a result, both the platform’s period-t profit and its

continuation value are increasing in the precision of the signal in period t. The platform can then

maximize the sum of discounted profits by myopically maximizing the precision of the signal in

each period t. Since the platform’s optimal policy is greedy, it is time consistent. The next section

shows that the equilibrium privacy policy can be greedy even if the consumer is patient.

5 One-Period Commitment

I now consider one-period commitment to study how the lack of commitment affects the platform’s

ability to collect data. One-period commitment could be realistic in some contexts. For example,

a platform may be sanctioned for the outright violation of its privacy policy, but it may still revise

its policy over time. Below, I first show that the equilibrium is unique if the prior uncertainty of

the consumer’s type (i.e., σ2
0) is small. I then consider a general σ2

0 .

5.1 Unique Equilibrium Under a Small σ2
0

Despite the dynamic nature of the game, the equilibrium is unique if the initial uncertainty about

the consumer’ type is small.

Proposition 3. There is a B > 0 such that if σ2
0 ≤ B, then any equilibrium involves (γt, at) =

(0, amax) for all t ∈ N, and limt→∞ σ
2
t = 0.

Proof. Let a′ denote the second highest activity level in A. Take any B that satisfies u(amax) −

u(a′)− v
1−δB > 0. In any period, if the consumer chooses at = amax instead of at ∈ A \ {amax},

16



her gross payoff increases by at least u(amax)−u(a′) > 0, and her privacy cost increases by at most
v

1−δB. For σ2
0 ≤ B, the consumer chooses amax, and the platform optimally chooses γt = 0.

Intuitively, if σ2
0 is small, the marginal privacy cost is so small that the consumer prefers amax

regardless of the current and future privacy protection. Thus, the long-run privacy could arise in

equilibrium only if the platform has not yet learned much about the consumer.

5.2 Binary Activity Level

I now consider a general σ2
0 . To facilitate the analysis, I impose the following assumption and

definitions.

Assumption 1. The consumer has a binary activity level: A = {0, amax}.

Definition 1. An equilibrium is platform-best if it maximizes the platform’s ex ante sum of dis-

counted payoffs across all subgame perfect equilibria. We analogously define “platform-worst,”

“consumer-best,” and “consumer-worst.”

Definition 2. A Markov perfect equilibrium (MPE) is an equilibrium in which after any history,

the platform’s choice γt depends only on σ2
t−1, and the consumer’s choice at depends only on

(σ2
t−1, γt).

The following result presents a consumer-worst equilibrium, which is also platform-best under

a common discount factor. Recall that δC and δP denote the discount factors of the consumer and

the platform, respectively (see Appendix G for the proof).

Theorem 2. Under Assumption 1, there is a consumer-worst Markov perfect equilibrium. This

equilibrium is independent of δP , and has the following properties:

1. If δC = δP , the equilibrium is platform-best. The privacy levels (γ∗t )t∈N coincide with an

equilibrium policy under long-run commitment.

2. The privacy level γ∗t is decreasing in t and hits zero in a finite time. Also, the consumer loses

her privacy in the long run: limt→∞ σ
2
t → 0.
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3. The platform’s strategy is greedy: Given the consumer’s strategy, after any history, the plat-

form sets a privacy level γt to maximize the informativeness of the signal in period t.

Point 1 implies that one-period commitment power can be enough for the platform to attain

its best outcome. Indeed, we can strengthen Point 1 as follows (see Appendix G for the proof).

Suppose the platform has the strongest commitment power—i.e., it can commit to any rule that

determines privacy levels as a function of past and future outcomes. Even so, the platform’s payoff

cannot exceed the payoff from the equilibrium in Theorem 2. Intuitively, this consumer-worst equi-

librium attains the highest discounted privacy cost across all outcomes such that the consumer’s ex

ante payoff exceeds a certain lower bound. We can show that this lower bound applies even if the

platform has a stronger commitment power. Also, under a common discount factor, the consumer’s

discounted privacy cost is proportional to the platform’s discounted profit. Therefore, the platform

cannot increase its profit even if it has the strongest commitment power.

Points 2 extend the intuition in Theorem 1: The platform initially chooses high privacy levels to

incentivize the consumer to generate information. As the platform collects more information, her

incentive to protect privacy declines; correspondingly, the platform sets a decreasing privacy level,

which hits zero in a finite period. Lemma 1 alone does not imply that the consumer faces a lower

cost of choosing amax when she has less privacy, because her continuation value is endogenous.

However, in this equilibrium, the consumer’s continuation value V (1/σ2
t ), as a function of the

amount of information collected, is decreasing and convex in 1/σ2
t . As a result, the consumer’s

Markov decision problem exhibits a declining marginal loss of generating information.

Point 3 states that the platform adopts a greedy policy, given the consumer equilibrium strategy.

The proof also reveals that any deviation by the platform reduces the precision of the signal in any

future period. Thus we obtain the same consumer-worst equilibrium as long as the platform prefers

to have more information—e.g., the platform’s objective does not need to be additively separable

over time (see Section 7.4).

Theorem 2 indicates that the lack of long-run commitment may not prevent the platform from

collecting consumer data. At the same time, the result does not imply the uniqueness of the equi-

librium when σ2
0 is not small. Indeed, the platform with only one-period commitment power may

fail to collect any information (see Appendix H for the proof).
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Theorem 3. Suppose Assumption 1 and δC ≥ 1
2

hold. There is a (v-dependent) σ2 <∞ such that

if σ2
0 ≥ σ2, there is a consumer-best and platform-worst Markov perfect equilibrium, in which the

platform sets γt =∞ and the consumer chooses at = amax in all periods.

In this equilibrium, the platform offers full privacy, because whenever it attempts to collect

information by setting γt < ∞, the consumer chooses at = 0. The consumer prefers a = 0

following the platform’s deviation, because the initial privacy loss, no matter how small, will

lead to the complete privacy loss and impose her a high cost in the future. Indeed, after any

off-path event in which the platform collects some information (i.e., σ2
t < σ2

0), the consumer-worst

equilibrium in Theorem 2 is played. A grim trigger strategy—i.e., the platform’s deviation induces

at = 0 forever— does not work, because the platform can set a large finite γt to render such a

punishment suboptimal for the consumer (i.e., Lemma 11 in Appendix I). We may view Theorem

3 as the plaform’s Coasian commitment problem: The platform in period t competes with its future

self, which offers the best privacy protection in any period s ≥ t+ 1.

Implication on Introducing New Digital Services. Consider a new smart speaker through which

a firm collects signals about consumer characteristics. Also, consider company A that operates

other digital services and already holds consumer data (i.e., a low σ2
0), and a new company B with

little data (i.e., a high σ2
0). We may think that company B has a stronger incentive to introduce the

smart speaker, because it faces a higher marginal value of information. However, Proposition 3 and

Theorem 3 suggest that only company A may successfully introduce the new product and collect

consumer data. Indeed, under the platform-worst outcome, company B does not value the smart

speaker, because consumers will refuse to use it. Intuitively, consumers will find it less costly to

have their information collected by company A, which already knows a lot about consumers.

Remark 1 (Welfare Implications). Under a common discount factor δ, the total surplus is

∞∑
t=1

δt−1
[
u(at) + (1− v)(σ2

0 − σ2
t )
]
.

If v > 1, the efficient outcome is (γt, at) = (∞, amax) for all t ∈ N. Thus, the consumer-best

equilibrium in Theorem 3 is efficient. If v < 1, the efficient outcome is (γt, at) = (0, amax) for

all t ∈ N. This outcome may not arise in any equilibrium, because it may give the consumer
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a negative payoff. However, the inefficiency will disappear in the platform-best equilibrium, in

that (γt, at) = (0, amax) is played after some finite period. Finally, if the platform has long-run

commitment power, it implements the platform-best outcome in any equilibrium. In this case, if

v > 1, any equilibrium leads to an inefficiently high level of data collection.

5.3 General Set of Activity Levels

In this subsection, the consumer can choose activity levels from any finite set A. The general

characterization of the set of equilibria is beyond the scope of the paper. However, I can construct

an equilibrium that has similar properties to Theorem 2, under the following technical assumption:

Assumption 2. The platform chooses a privacy level from a finite set Γ ⊂ R+ that contains some

finite γ̄ > v(σ2
0)2

(1−δC)u(amax)
− 1

σ2
0
− 1

amax
.

This assumption allows min Γ = 0 and max Γ = ∞. Proposition 3 implies that any subgame that

starts from σ2
t ≤ B has a unique equilibrium, in which (γs, as) = (0, amax) for all s ≥ t + 1. We

can then use the backward induction with respect to σ2
t to construct an MPE, starting from any σ2

0

(see Appendix I for the proof).

Proposition 4. Under Assumption 2, for any σ2
0 , there is a Markov perfect equilibrium in which (i)

there is a T ∈ N such that for all t ≥ T , (γ∗t , a
∗
t ) = (0, amax), and thus (ii) lim

t→∞
σ2
t = 0.

6 Platform Competition with a Myopic Consumer

This section shows that the decreasing marginal privacy cost renders competition ineffective in

increasing consumer privacy. Specifically, I study a model with an incumbent (I), an entrant (E),

and a myopic consumer. Platform I is in the market from the beginning of t = 1. In period t∗ ≥ 2,

E enters the market. The entry period t∗ is exogenous, deterministic, and commonly known.17 Let

γkt denote the privacy level of platform k in period t.

Before the entry (t < t∗), the consumer chooses an activity level aIt ∈ A for I . After the entry

(t ≥ t∗), the consumer chooses (aIt , a
E
t ) ∈ A2, where aEt is the activity level for E. The consumer

17I obtain qualitatively the same result when the entry is endogenous and costly for the entrant.
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can choose (aIt , a
E
t ) ∈ A2 if and only if min(aIt , a

E
t ) = 0. This restriction captures single-homing,

which is natural if platforms offer similar services.

Since the result does not depend on the commitment regime, I examine competition with one-

period commitment (Appendix J considers both commitment regimes). At the beginning of each

period, a platform chooses a privacy level, after which the consumer chooses an activity level. In

particular, I and E simultaneously set privacy levels γIt and γEt in each period t ≥ t∗, without

making any commitment to future privacy levels.

As before, platform k ∈ {I, E} receives a signal skt = X + εkt with εkt ∼ N
(

0, 1
akt

+ γkt

)
in

period t. Each platform k privately observes skt , and all of the noise terms (εkt )k,t are independent

across (k, t) ∈ {I, E} × N. The payoff of platform k ∈ {I, E} in period t is σ2
0 − σ2

t,k, where

σ2
t,k is the posterior variance of the consumer’s type, given activity levels and privacy levels. The

consumer’s payoff in period t is

u(aIt )− v
(
σ2

0 − σ2
t,I

)
+ 1{t≥t∗} ·

[
u(aEt )− v

(
σ2

0 − σ2
t,E

)]
, (5)

where 1{t≥t∗} is the indicator function that equals 1 or 0 if t ≥ t∗ or t < t∗, respectively. Payoff (5)

implies that even if the consumer switches to (say) E and never uses I from some period on, she

continues to incur a privacy cost based on the information collected by I in the past (Appendix L

relaxes this assumption).

To obtain a non-trivial result, I impose an upper bound on the feasible privacy levels. The

bound might capture the minimum amount of data a platform needs to collect in order to maintain

services, or the maximum privacy protection a platform can credibly enforce. Recall that a∗ (γ̄, σ2
0)

is the optimal activity level of a myopic consumer, defined in (4).

Assumption 3. There is a γ̄ ∈ R+ satisfying a∗ (γ̄, σ2
0) > 0 such that platforms I and E can

choose a privacy level of at most γ̄.

I present an equilibrium that involves a monopolistic outcome (see Appendix J for the proof).

Proposition 5. Under Assumption 3, the following holds.

1. There is an equilibrium in which aEt = 0 for all t ∈ N, limt→∞ a
I
t = amax, limt→∞ σ

2
I,t = 0,

and limt→∞ γ
I
t = 0.
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2. There is t ≥ 2 such that if the entry time t∗ is greater than t, any equilibrium outcome for the

consumer and the incumbent, (aIt , γ
I
t )t∈N, coincides with the monopoly outcome in Claim 1.

The intuition is as follows. Suppose that upon entry, the entrant sets the highest privacy level

γ̄. Since the privacy cost from collected data is sunk, the consumer decides which platform to

use based on her marginal (or, more precisely, incremental) costs. Now, the consumer faces a

lower marginal cost of using the incumbent, which has already collected some data. Thus if the

incumbent also chooses γ̄, the consumer prefers to use it. However, the equilibrium choice of the

incumbent may not be γ̄: The incumbent chooses a privacy level that maximizes the precision of

the signal, subject to the constraint that the consumer does not switch to the entrant. As time goes

by, the constraint is relaxed, because the consumer’s marginal cost for the incumbent goes to zero.

As a result, the incumbent offers a vanishing privacy level over time. Finally, the threat of future

entry does not affect the incumbent’s strategy: Before the entry, it chooses the same privacy levels

as a monopoly, because collecting more information renders consumer switching less likely.

Under the decreasing marginal privacy cost, switching could be less likely when consumers

have low privacy and receive low payoffs from the incumbent. This observation may contrast with

the existing idea of “data as an entry barrier,” in which dominant platforms use data to improve

their services and attract users.18

As an example, consider search engines: The incumbent is Google, and the entrant is a privacy-

preserving alternative of Google, such as DuckDuckGo. If consumers have no privacy on Google,

they face negligible marginal privacy costs of using it. Then even if DuckDuckGo is as good a

search engine as Google and offers better privacy protection, it may not be able to poach con-

sumers. The result also implies that the effect of such competition may depend on whether con-

sumers regard data collected by Google as sunk.

7 Extensions

This section examines several extensions. For simplicity, I focus on a monopoly with long-run

commitment and a myopic consumer. Appendix K contains omitted proofs.
18For example, Furman et al. (2019) state that “data can act as a barrier to entry in digital markets. A data-rich

incumbent is able to cement its position by improving its service and making it more targeted for users, as well as
making more money by better targeting its advertising.” (italics added)
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7.1 Erasing Past Information

This extension studies the incentive of the consumer or the platform to erase past information.

7.1.1 The Right to be Forgotten

First, I consider the right to be forgotten, whereby the consumer can request a platform to delete

past information. At the beginning of each period, the consumer chooses whether to erase past

information, then chooses an activity level. If she erases information in period t, the posterior

variance at the beginning of t becomes the prior variance σ2
0 . At the end of the period, the con-

sumer still incurs a privacy cost based on information generated in that period. For example, if the

consumer erases information in period t, her payoff is u(at)− v [σ2
0 − σ2

1(at, γt)], where σ2
1(at, γt)

is the posterior variance given one signal based on (at, γt). Thus, the privacy cost is only based

on the signal of period t. In contrast, if the consumer has never erased information, her payoff in

period t is u(at)− v [σ2
0 − σ2

t (at,γt)].

Claim 2. If the consumer can costlessly erase past information, there is an equilibrium in which

the platform commits to a stationary privacy policy γt ≡ γ∗1 , where γ∗1 is defined in (21). In this

equilibrium, the consumer erases information in every period.

Once the consumer erases information, she incurs a high marginal privacy cost. Then the

platform offers a period-1 privacy level in any period. As a result, the equilibrium involves neither

privacy loss nor vanishing privacy protection.

When there are multiple platforms, erasing past information promotes competition and further

benefits consumers: Once the consumer deletes information, the incumbent and the entrant become

identical in terms of the amounts of data they hold. As a result, they offer the highest privacy

protection to attract consumers.

7.1.2 Data Retention Policies

Does the platform have an incentive to voluntarily erase past data? This question relates to data

retention policies, which have recently drawn the attention of economists and legal scholars (Chiou

and Tucker, 2017). Here, at the beginning of this game, the platform commits to a privacy policy

(γt)t∈N and the set T ⊂ N of periods to delete information. The platform erases past information
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at the beginning of each period t ∈ T . The platform’s erasing information affects the posterior

variance and payoffs in the same way as the consumer erasing information (see the previous sub-

section). As a result, erasing information increases σ2
t to σ2

0 , and decreases the myopic consumer’s

activity level. Thus we obtain the following result.

Claim 3. In any equilibrium, the platform never erases information: T = ∅.

The result implies that the platform has different incentives to offer ex ante and ex post privacy

protections: It may voluntarily offer high privacy levels in early periods, because committing to

collect less information encourages the consumer’s activity. However, the platform has no incen-

tive to delete past information, because it increases the consumer’s marginal cost and decreases her

activity level.

7.2 Consumers with Heterogeneous Values of Privacy

The main insight does not depend on whether the platform knows v at the outset. To see this, I

extend the model as follows: There is a unit mass of consumers. Each consumer i ∈ [0, 1] has

vi, which is distributed according to a distribution with a finite support V ⊂ R+. Let αv ∈ [0, 1]

denote the mass of consumers with v ∈ V . Each consumer i is privately informed of vi, and the

platform knows V and (αv)v∈V .

The game is a natural extension of the baseline model. Before t = 1, the monopoly platform

chooses a privacy policy (γt)t∈N, which is common across all consumers. Then each consumer i

myopically chooses activity levels (at(i))t∈N. The types and signals are independent across con-

sumers.

For each i ∈ [0, 1], let σ2
t (i) denote the posterior variance for consumer i at the end of period

t. Then i’s payoff is u(at(i)) − vi[σ2
0 − σ2

t (i)], and the platform’s payoff is
∫
i∈[0,1]

σ2
0 − σ2

t (i)di.

In equilibrium, consumers who have the same v choose the same sequence of activity levels. As

a result, we can write the platform’s profit as
∑

v∈V αv [σ2
0 − σ2

t (v)], where σ2
t (v) is the posterior

variance of consumers with v.

The platform faces a new trade-off: A high privacy level encourages consumers with high v

to choose positive activity levels. However, the platform obtains less information from consumers
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with low v, who would choose high activity levels without privacy protection.19 This static trade-

off also creates a dynamic trade-off: For example, a more myopic platform may set a low privacy

level to quickly collect data from consumers with low v, whereas a patient platform may set high

privacy levels to collect information from all consumers over time.

However, there is no trade-off for the platform in the long run—i.e., all consumers eventually

lose privacy and choose the highest activity levels.

Proposition 6. Let (a∗t (v), σ2
t (v), γ∗t )t∈N,v∈V denote the outcome of any equilibrium. Then,

∀v ∈ V, lim
t→∞

(a∗t (v), σ2
t (v)) = (amax, 0) and lim

t→∞
γ∗t = 0. (6)

To see the intuition, suppose that v is either L = 0 or H > 0, and the platform sets γt = 0

in early periods to collect information only from L-consumers. During this period, only σ2
t (L)

decreases over time. However, once σ2
t (L) gets close to zero, the platform finds it more profitable

to increase a privacy level to encourage H-consumers to use the platform. Thus, the platform

eventually obtains information from all consumers.

7.3 Time-Varying Type of the Consumer

The baseline model assumes that the consumer’s type X is constant over time. However, we can

conceptually extend the model so that her type is some stochastic process (Xt)t∈N. One possibility,

which I adopt for a numerical analysis, is as follows: Xt+1 = φXt + ζt with φ ∈ [0, 1], X0 ∼

N (0, σ2
0), and ζt

iid∼ N (0, (1−φ2)σ2
0). The variance of each ζt is normalized so that V ar(Xt) = σ2

0

for all t ∈ N. As in the baseline model, given an activity level at and a privacy level γt in period

t, the platform observes a signal st = Xt + εt with εt ∼ N
(

0, 1
at

+ γt

)
. The posterior variance

evolves according to σ2
t = 1

1

φ2σ2
t−1+(1−φ2)σ2

0
+ 1

1
at

+γt

.

A natural question is how the equilibrium converges to the steady state. However, such an

analysis is difficult, partly because the consumer’s objective is neither concave nor convex in at.

Thus I present a numerical analysis to examine the convergence to the steady state, and how the

equilibrium responds to the persistence of the consumer’s type. Intuitively, if the type is less

persistent (i.e., φ is small), a larger amount of new information arrives in each period. Then, she
19A similar trade-off arises in Lefouili and Toh (2019).
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Figure 2: Activity levels under a stationary policy, given u(a) = 2a − 1
2
a2, v = 10, σ2

0 = 1,
φ ∈ {0.1, 0.5, 0.98}, and γt ≡ 4.

faces a higher marginal cost and chooses a lower activity level. Figure 2 confirms this intuition:

Given a stationary privacy policy, the optimal activity levels converge to the steady states, which

seem to increase in φ.

Figure 3 presents equilibria, taking the platform’s optimization into account. First, the numeri-

cal analysis suggests that the main insight of this paper is not specific to the baseline specification

φ = 1. Namely, the platform offers a relatively high privacy level in early periods, but later reduces

it (Figure 3(a)). While Figure 3 fixes v, a similar numerical exercise shows that the platform is able

to obtain a nontrivial amount of information in the steady state even if v is larger.20 Second, the

platform offers a higher privacy level when the consumer’s type is less persistent. This observation

is consistent with the intuition that the consumer faces a higher privacy cost when her type is less

persistent. Finally, the equilibrium activity level can be non-monotone in φ, when the platform

chooses a privacy policy. Indeed, the steady-state activity level at φ = 0.98 is higher than the one

at φ = 0.5, but lower than the one at φ = 0.1.

20For example, if φ = 0.5 and v = 200, then in the steady state the platform offers γt ≈ 90 and the consumer
chooses amax = 2.
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Figure 3: Equilibrium under u(a) = 2a− 1
2
a2, v = 10, σ2

0 = 1, φ ∈ {0.1, 0.5, 0.98}.

7.4 General Payoffs of the Platform

Most of the results continue to hold if the platform’s final payoff from a sequence of posterior

variances is Π((σ2
t )t∈N), where Π : R∞+ → R is bounded and coordinate-wise strictly decreasing.

This generalization does not change the analysis, because in the equilibrium under monopoly or

competition, a deviation by the platform increases σ2
t for all t ∈ N.21 For example, suppose he

platform sells information to a sequence of short-lived data buyers. Any information sold in period

t is freely replicable later and thus has a price of zero in any period s ≥ t+ 1. Then, the platform’s

payoff in period t equals the value of information generated in period t—i.e., the platform’s ex

ante payoff is
∑∞

t=1 δ
t−1
P (σ2

t−1 − σ2
t ), which is decreasing in each σ2

t .

8 Conclusion

This paper studies a dynamic model of consumer privacy and platform data collection. The fun-

damental feature of the model is that data collection today reduces a consumer’s marginal loss of

21The platform’s deviation may not uniformly increase posterior variances in Theorem 1. However, the proof of
this theorem rests on the argument that if the equilibrium fails to meet certain conditions such as σ2

t → 0, the platform
can deviate and uniformly decrease posterior variances. Thus, Theorem 1 continues to hold with the same proof under
this general Π(·).
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giving up privacy in the future. I examine dynamic implications of this idea. First, a monopoly

platform is able to collect information over time by committing to not collect too much informa-

tion in early periods. In equilibrium, the consumer eventually loses privacy but keeps choosing

a high level of activity. This outcome can arise even if a platform prioritizes user activity over

data collection. Second, if the platform has weaker commitment power and does not initially hold

much consumer information, it may fail to collect information in some equilibrium: The consumer

refuses to provide information, anticipating that small privacy loss will lead to the complete pri-

vacy loss. This result implies that a company that already holds consumer data is more capable

of collecting additional data. Finally, a decreasing marginal privacy cost could render competition

unhelpful, because a consumer is more likely to stick with a platform on which they have less

privacy.
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Appendix

A A Microfoundation of the Privacy Cost and the Platform Revenue

This appendix microfounds the payoff functions. We first describe a static interaction between a

consumer and a “seller” in a product market, without considering the platform. We then embed it

into the original model.

Consider a market that consists of a consumer and a seller. The consumer chooses a quantity

q ∈ R to maximize her utility Xq − 1
2
q2 − pq given a unit price p ∈ R. Her type X ∼ N (µ0, σ

2
0)

is now the willingness to pay for the product. The seller knows the prior distribution (µ0, σ
2
0) and

receives a signal s = X + ε with ε ∼ N (0, σ2
ε). Only the consumer observes the true X . The

seller first sets p to maximize its revenue, then the consumer chooses q to maximize her utility.

Although a more general setup appears in the literature, I provide the analysis for completeness.

Suppose the seller observes a signal and holds a posterior mean µ of X . The consumer’s demand
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is q = X − p, and thus the seller’s expected revenue is p(µ − p), so the optimal price is p∗ = µ
2

with the quantity X − µ
2
. The consumer’s expected payoff is

E
[
(X − p∗)q∗ − 1

2
(q∗)2

]
=

1

2
E

[(
X − 1

2
µ

)2
]

=
1

2
E
[
(X − µ)2]+

1

8
E
[
(µ− µ0)2]+

1

8
µ2

0

=
1

2
E
[
(X − µ0)2]− 3

8
E
[
(µ− µ0)2

]
+

1

8
µ2

0.

The expectation E is with respect to the joint distribution of (X,µ). The first and the last terms

do not depend on the signal structure. As a result, the signal decreases consumer surplus from this

transaction by
3

8
E[(µ− µ0)2] =

3

8
· (σ2

0)2

σ2
0 + σ2

ε

. (7)

The posterior variance σ2
t ofX and the variance σ2

ε of the noise ε satisfy the equation 1
σ2
t

= 1
σ2

0
+ 1

σ2
ε
.

Solving this equation with respect to σ2
ε and plugging it into (7), we obtain

3

8
· (σ2

0)2

σ2
0 + 1

1

σ2
t
− 1

σ2
0

=
3

8
·

(σ2
0)2 ·

(
1
σ2
t
− 1

σ2
0

)
σ2

0 ·
(

1
σ2
t
− 1

σ2
0

)
+ 1

=
3

8
·

(σ2
0)2 ·

(
1
σ2
t
− 1

σ2
0

)
σ2

0

σ2
t

=
3

8

(
σ2

0 − σ2
t

)
,

which is the original privacy cost function v(σ2
0 − σ2

t ) with v = 3
8
. Similarly, the information

increases the seller’s revenue by
1

4

(
σ2

0 − σ2
t

)
, (8)

which is equivalent to the platform’s payoff in the original model.

We obtain the original model by assuming that the platform sells information to sellers who

use it to price discriminate the consumer. The detail is as follows. Outside of the platform, the

consumer interacts with seller t in period t, and her willingness to pay for seller t’s product isXt ∼

N (µ0, σ
2
0), which is now IID across t.22 The consumer’s activity on the platform in each period

yields her utilities and generates signals for future sellers. Specifically, each period t consists of

22I impose the IID assumption so that the prior distribution of the consumer’s willingness to pay in the product
market is the same across t.
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the following events: (i) the consumer chooses at, (ii) the platform collects and sells information

(by posting a price) to seller t, and (iii) the seller sets the price and the consumer chooses quantity.

Precisely, the platform can sell seller t the signal st = Xt + εt with

εt ∼ N

0,
1∑t

s=1
1

1
as

+γs

 .

That is, the platform collects information about the consumer’s willingness to pay for product t

based on her past activities. We now obtain the baseline model: The platform’s per-period payoff,

which is the revenue it can earn by selling the signal to seller t, is 1
4

(σ2
0 − σ2

t ), where σ2
t evolves

according to (1). The consumer’s payoff is u(at)− 3
8

(σ2
0 − σ2

t ).

B Existence of Equilibrium Under Long-Run Commitment

I prove the existence of an equilibrium under long-run commitment with δC > 0 (for a myopic

consumer, Claim 1 constructs an equilibrium). I introduce some notations. Let A := A∞ denote

the set of all sequences of activity levels. Because A ⊂ R+ is finite, it is compact, soA is compact

with respect to product topology. Let a denote a generic element of A, with the t-th coordinate

denoted by at. Let Γ := [0,∞]N denote the set of all privacy policies. Let γ denote a generic

element of Γ, with the t-th coordinate denoted by γt. I consider the ordered topology for R+ and

the product topology for Γ. Finally, let Ut(a,γ) denote the consumer’s flow payoff in period t,

given an outcome (a,γ). Note that Ut(a,γ) depends only on (a1, . . . , at) and (γ1, . . . , γt).

Given any privacy policy γ ∈ Γ, the consumer’s problem is

max
a∈A

∞∑
t=1

δt−1
C

u(at)− v ·

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
as

+γs

 . (9)

For any γ ∈ Γ, let A∗(γ) ⊂ A denote the set of all maximizers of (9).

Lemma 2. The correspondence A∗(γ) is non-empty, compact, and upper hemicontinuous in γ.

Proof. First, A is compact with respect to product topology. Second, the objective function is

continuous: To see this, take any sequence of the consumer’s choices (an)∞n=1 such that an → a∗.
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This implies that for each t ∈ N, limn→∞ a
n
t → a∗t . The consumer’s period-t payoff Ut(a,γ) :=

u(at) − v ·

(
σ2

0 − 1
1

σ2
0

+
∑t
s=1

1
1
as

+γs

)
is bounded from above and below by u(amax) and −vσ2

0 ,

respectively. Define B := max(u(amax), vσ
2
0) > 0. Take any ε > 0, and let T ∗ satisfy δT

∗
C

1−δC
B < ε

4
.

Take a sufficiently large n so that for each t ≤ T ∗, δt−1
C |Ut(an,γ) − Ut(a

∗,γ)| < ε
2T ∗

. These

inequalities imply that ∣∣∣∣∣
∞∑
t=1

δt−1
C Ut(a

n,γ)−
∞∑
t=1

δt−1
C Ut(a

∗,γ)

∣∣∣∣∣ < ε.

Thus the objective function in (9) is continuous in a. Berge maximum theorem implies thatA∗(γ)

is non-empty, compact, and upper hemicontinuous in γ.

Next, I show properties of the consumer’s objective U(a,γ) :=
∑∞

t=1 δ
t−1
C Ut(a,γ). Abusing

notation, for any a,a′ ∈ A, write a ≥ a′ if and only if at ≥ a′t for all t ∈ N. ≥ is a partial order

on A, and (A,≥) is a lattice.

Lemma 3. For any γ, U(a,γ) is supermodular in a.

Proof. Take any γ. Below, I omit γ and write U(·,γ) as U(·). Take any a, b ∈ A. For each

n ∈ N, define (a ∨ b)n as

(a ∨ b)n =

max(at, bt) if t ≤ n,

at if t > n.

(10)

Similarly, define (a ∧ b)n as

(a ∧ b)n =

min(at, bt) if t ≤ n,

at if t > n.

(11)

Also, define bn as

bn =

bt if t ≤ n,

at if t > n.

(12)
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In product topology, (a ∨ b)n → a ∨ b, (a ∧ b)n → a ∧ b, and bn → b as n → ∞. For each

t ∈ N and n ∈ N, Ut(a,γ) is supermodular in (a1, . . . , an), because it has increasing differences

in each pair (at, as). Thus for each n ∈ N, U(a) is supermodular in the first n activity levels,

(a1, . . . , an) ∈ Rn
+. We then have U((a ∨ b)n) + U((a ∧ b)n) ≥ U(a) + U(bn). Because U(·) is

continuous, we can take n→∞ and obtain U(a ∨ b)) + U(a ∧ b) ≥ U(a) + U(b).

The supermodularity implies the consumer has the “greatest” optimal choice.

Lemma 4. For each γ, the setA∗(γ) of optimal choices is a sublattice ofA. There is an ā ∈ A∗(γ)

such that for any a ∈ A∗(γ), ā ≥ a.

Proof. First, Corollary 2 of Milgrom et al. (1994) implies that A∗(γ) is a sublattice of A. Let

A∗t (γ) denote the projection of A∗(γ) on the t-th coordinate, i.e.,

A∗t (γ) := {a ∈ A : ∃a∗ ∈ A∗(γ) s.t. a∗t = a} . (13)

For each k ∈ N, let ak denote an optimal policy such that the consumer chooses ak = maxA∗k(γ)

in period k. Define āk := a1∨· · ·∨ak. BecauseA∗(γ) is sublattice, for any k ∈ N, āk maximizes

(9). We also have āk → ā, where āt = maxA∗k(γ) for any k ∈ N. Because A∗(γ) is compact,

ā ∈ A∗(γ). By construction, for any a ∈ A∗(γ), ā ≥ a.

For each γ ∈ Γ, let ā(γ) := (āt(γ))t∈N denote the greatest strategy of the consumer defined

in Lemma 4.

Lemma 5. For each t ∈ N, āt(γ) is upper semicontinuous in γ ∈ Γ.

Proof. By Lemma 2, A∗(γ) is upper hemicontinuous, so the set A∗t (γ) of all activity levels that

can be chosen in period t is upper hemicontinuous in γ. Thus, it is enough to show that for

any upper hemicontinuous and compact-valued correspondence φ : X � R, f(x) := maxφ(x)

is upper semicontinuous. To show this, take any xn → x. For each n, define yn = f(xn).

Because there is a subsequence yn(k) of yn that converges to lim sup yn, it holds that lim sup yn =

lim yn(k) = lim f(xn(k)) ≤ f(limxn(k)) = f(x). The inequality holds because φ has a closed

graph. Connecting the left and right sides, we establish that f(·) is upper semicontinuous.
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Lemma 6. There exists an equilibrium in the game of long-run commitment power.

Proof. The platform’s objective is

∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
ās(γ)

+γs

 . (14)

To show it is upper semicontinuous, take γn → γ. Then,

lim sup
n→∞

∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
ās(γn)

+γns


= lim

k→∞
sup
n≥k

∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
ās(γn)

+γns


≤ lim

k→∞

∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1 supn≥k
1

1
ās(γn)

+γns


=
∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1 limk→∞ supn≥k
1

1
ās(γn)

+γns


=
∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

lim infn→∞
1

ās(γn)
+γns


≤
∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
lim supn→∞ ās(γn)

+limk→∞ infn≥k γns


≤
∞∑
t=1

δt−1
P

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
ās(γ)

+γ

 .

The second equality comes from the dominated convergence theorem, and the last inequality uses

the upper semicontinuity of ās(γ). Thus, given the consumer’s optimal behavior, the platform’s

objective is upper semicontinuous. Since Γ is compact, there is a privacy policy γ∗ that maximizes

the platform’s objective. The strategy profile (γ∗, ā(·)) is an equilibrium.
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C Consumer Behavior Under a Stationary Privacy Policy:

Proof of Proposition 1

This Appendix uses notations introduced at the beginning of Appendix B.

C.1 Properties of Consumer Value Function

First, I prove useful properties of the consumer’s value function that hold for any privacy policy.

Let (āt(γ))t∈N denote the greatest best response of the consumer constructed in Lemma 4. For

each privacy policy γ ∈ Γ, define

Vγ(ρ) :=
∞∑
t=1

δt−1
C

u(āt(γ))− v ·

σ2
0 −

1

ρ+
∑t

s=1
1

1
ās(γ)

+γs

 . (15)

Vγ(ρ) is the consumer’s continuation value, starting from the posterior variance σ2 = 1
ρ
.

Lemma 7. For any γ ∈ Γ, Vγ(·) : R++ → R is decreasing and convex. For any ρ > 0 and ∆ > 0,

limρ→∞ Vγ(ρ)− Vγ(ρ+ ∆) = 0.

Proof. Fix any privacy policy γ. Hereafter, I omit γ from subscripts (thus, the consumer value

function is V (·)). Consider the “T -period problem, ” in which the consumer’s payoff in any period

s ≥ T +1 is exogenously set to zero. For any t ≤ T , let V T
t (ρ) denote the consumer’s continuation

value in the T -period problem starting from period t given 1
σ2
t−1

= ρ:

V T
t (ρ) = max

(at,...,aT )∈AT−t+1

T∑
s=t

δs−tC

u(as)− v

σ2
0 −

1

ρs−1 + 1
1
as

+γs

 .

Here, ρt−1 = ρ, and (ρt, . . . , ρT−1) are recursively defined by Bayes’ rule given (at, . . . , aT−1).

The standard argument of dynamic programming implies that for each t = 1, . . . , T ,

V T
t (ρ) = max

a∈A
u(a)− v ·

(
σ2

0 −
1

ρ+ 1
1
a

+γt

)
+ δCV

T
t+1

(
ρ+

1
1
a

+ γt

)
, (16)

where V T
T+1(·) ≡ 0. I use induction to show that V T

1 (ρ) is decreasing and convex. First, V T
T+1 ≡

0 is trivially decreasing and convex. Suppose V T
t+1 is decreasing and convex. Because −v ·
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(
σ2

0 − 1
ρ+ 1

1
a+γt

)
has the same property and the upper envelope of decreasing convex functions are

decreasing and convex, so does V T
t (·). This induction argument implies that for each T , V T (ρ) =

V T
1 (·) is decreasing and convex. Also, for any ρ and ∆ > 0, limρ→∞ V

T (ρ)− V T (ρ+ ∆)→ 0.

Define V ∞(ρ) := limT→∞ V
T (ρ). V ∞(ρ) is decreasing and convex, because these properties

are preserved under pointwise convergence. I show that V ∞(ρ) is the value function of the original

problem, i.e., V ∞(·) = V (·). Take any ρ, and let (ā1, ā2, . . . ) ∈ A∗(γ) denote the optimal policy.

For any finite T ,

V T (ρ) ≥
T∑
s=1

δs−1
C

u(ās)− v

σ2
0 −

1

ρs−1 + 1
1
ās

+γs

 . (17)

By taking T →∞, we obtain V ∞(ρ) ≥ V (ρ). Suppose to the contrary that V ∞(ρ) > V (ρ). Then,

there is a sufficiently large T ∈ N such that V T (ρ) − δTC
1−δC

vσ2
0 > V (ρ). If the consumer in the

original infinite horizon problem adopts the T -optimal policy that gives V T (ρ) up to period t, then

she can obtain a strictly greater payoff than V (ρ), which is a contradiction. Thus, V ∞(ρ) = V (ρ).

Finally, I show that for any ρ and ∆ > 0, limρ→∞ V (ρ)−V (ρ+∆)→ 0. Suppose the consumer

starting from ρ+ ∆ chooses the policy (āρt )t∈N that is optimal for ρ. Let (ρ̂t)
∞
t=1 denote the induced

sequence of the precisions after ρ + ∆, i.e., ρ̂t = ρ + ∆ +
∑t

s=1
1

1

ā
ρ
s

+γs
. Note that ρ̂t ≥ ρt for all

t ∈ N. Then, it holds that 0 ≤ V (ρ) − V (ρ + ∆) ≤
∑∞

t=1 δ
t−1
C

(
1
ρ
− 1

ρ+∆

)
= 1

1−δC

(
1
ρ
− 1

ρ+∆

)
.

Thus, limρ→∞ V (ρ)− V (ρ+ ∆) = 0.

C.2 Proof of Proposition 1

Proof. If γt is constant across t, the consumer problem is a stationary dynamic programming.

Suppose γt = γ ∈ R+ for all t. The value function V (·) satisfies the Bellman equation

V (ρ) = max
a∈A

u(a)− v

(
σ2

0 −
1

ρ+ 1
1
a

+γ

)
+ δCV

(
ρ+

1
1
a

+ γ

)
. (18)

Again, I suppress the dependence of V (·) on γ. Lemma 7 implies that V (·) is decreasing and

convex. Thus, the maximand in (18) has the increasing differences in (a, ρ). Thus, ā(v, γ, ρ), the

greatest maximizer, is increasing in ρ. Note that ρt ≤ ρt+1, and the inequality is strict if and only
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if at > 0. As a result, the consumer’s optimal behavior is either (i) at = 0 for all t, or (ii) a1 > 0

and at is increasing in t. Now, define

v∗(γ) := sup {v ∈ R : ā (v, γ, ρ0) > 0} , where ρ0 =
1

σ2
0

. (19)

The consumer’s payoff from any strategy with a1 > 0 is strictly decreasing in v and strictly increas-

ing in γ, whereas her payoff from at ≡ 0 is independent of (v, γ). As a result, if ā (v, γ, ρ0) > 0,

then ā (v′, γ′, ρ0) > 0 for any v′ < v and γ′ > γ. Therefore, the consumer’s behavior follows (i)

and (ii) above if v > v∗(γ) and v < v∗(γ), respectively, and v∗(γ) is increasing in γ. For any given

v, as γ →∞, the consumer’s ex ante payoff from (say) at = amax > 0 for all t becomes positive.

Thus, limγ→∞ v
∗(γ) =∞.

If v < v∗(γ), then at ≥ a1 > 0 for all t. Since γ < ∞, we obtain limt→∞ σ
2
t → 0,

or equivalently, limt→∞ ρt = ∞ with ρt := 1
σ2
t
. By Lemma 7, for any ρ > 0 and ∆ > 0,

limρ→∞ V (ρ)−V (ρ+∆) = 0. This, combined with limt→∞ ρt =∞, implies limt→∞ āt(v, γ, ρt) =

amax.

D Equilibrium Under Long-Run Commitment: Proof of Theorem 1

D.1 Lemmas

I begin with two lemmas. First, suppose the platform changes privacy levels in any period t that

belongs to a set T ⊂ N. If the change affects the consumer behavior and increases the precisions

of signals of all periods in T , she chooses higher activity levels in all other periods. Recall that

ā(γ) ∈ A denote the greatest best response of the consumer constructed in Lemma 4.

Lemma 8. Take any γ,γ ′ ∈ Γ. Define T = {t ∈ N : γt 6= γ′t}. Suppose 1
āt(γ)

+ γt ≤ 1
āt(γ′)

+ γ′t

for all t ∈ T . Then, āt(γ) ≥ āt(γ
′) for all t ∈ N \ T .

Proof. Let β be any one of γ and γ ′. I decompose the consumer’s problem (9) into two steps.

First, given any (at)t∈T , the consumer chooses (at)t6∈T to maximize the following hypothetical
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objective function:

∞∑
t=1

δt−1
C

1{t6∈T }u(at)− v ·

σ2
0 −

1
1
σ2

0
+
∑t

s=1
1

1
as

+βs

 . (20)

The consumer receives a benefit of u(at) only in period t 6∈ T . This leads to a mapping that maps

any (at)t∈T to the (greatest) optimal choice of (at)t6∈T . In the second step, the consumer chooses

(at)t∈T to maximize her original objective, taking the mapping (at)t∈T 7→ (at)t6∈T as given.

For any t ∈ T , at affects (20) only through 1
at

+γt, because 1{t6∈T } = 0. Also the same argument

as in the proof of Lemma 3 implies that (20) is supermodular in
(

(at)t6∈T ,

{(
1
as

+ γs

)−1
}
s∈T

)
.

This implies that if 1
āt(γ)

+γt ≤ 1
āt(γ′)

+γ′t for all t ∈ T , then āt(γ) ≥ āt(γ
′) for all t ∈ N\T .

Next, the platform can commit to a high privacy level to induce amax in any period.

Lemma 9. There is a γmax < +∞ such that if the platform commits to γt = γmax, then regardless

of the privacy levels in other periods, the consumer chooses at = amax. Also, there is a σ̄2 such

that if σ2
T−1 ≤ σ̄2, then the consumer chooses at = amax for all t ≥ T for any (γτ )τ≥T .

Proof. Let a′ denote the second highest activity level in A. Take any (at)t∈N ∈ A such that

at < amax. Suppose the consumer changes her action in period t from at to amax. This change

increases her period-t benefit from u(·) by at least u(amax)−u(a′) > 0. The change also increases

the sum of discounted privacy costs (from the perspective of period t) by

∞∑
s=t

δs−t

σ2
0 −

1
1

σ2
t−1

+ 1
1

amax
+γmax

+
∑s

τ=t+1
1

1
aτ

+γτ

− ∞∑
s=t

δs−t

σ2
0 −

1
1

σ2
t−1

+ 1
1
at

+γmax
+
∑s

τ=t+1
1

1
aτ

+γτ


≤
∞∑
s=t

δs−t

σ2
0 −

1
1

σ2
t−1

+ 1
1

amax
+γmax

− ∞∑
s=t

δs−t

σ2
0 −

1
1

σ2
t−1

+ 1
1
at

+γmax


=

1

1− δ

 1
1

σ2
t−1

+ 1
1
at

+γmax

− 1
1

σ2
t−1

+ 1
1

amax
+γmax

 =: D(σ2
t−1, γmax).

First, we have limγmax→∞D(σ2
0, γmax) = 0, and D(σ2

t , γmax) ≤ D(σ2
0, γmax) for any σ2

t ≤ σ2
0 .

Thus, for any γmax such that D(σ2
0, γmax) < u(amax) − u(a′), the consumer’s optimal action is
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amax in period t. Also, even for γmax = 0, limσ2
t−1→0D(σ2

t−1, 0) = 0. Thus for a sufficiently small

σ2
t−1, the consumer chooses aτ = amax for all τ ≥ t under any (continuation) privacy policy.

D.2 Proof of Theorem 1

Proof. First, I show limt→∞ σ
2
t = 0. Let γ∗ denote the equilibrium privacy policy, and let a∗

denote the equilibrium activity levels. Suppose to the contrary that limt→∞ σ
2
t 6= 0. Because σ2

t is

decreasing, limt→∞ σ
2
t > 0 exists. This implies 1

a∗t
+ γ∗t →∞. I derive a contradiction.

Let γmax ∈ [0,+∞) denote the privacy level defined in Lemma 9—i.e., the consumer chooses

at = amax if γt = γmax. If the platform commits to γt = γmax, the variance of the noise of the

signal in period t is B := 1
amax

+ γmax. Take T ∗ such that for all t ≥ T ∗, 1
a∗t

+ γ∗t > B. If the

platform replaces γ∗t with γmax for all t ≥ T ∗ and commits to such a new policy ex ante, then the

precision of the signal increases from 1
1
a∗t

+γ∗t
to B−1 in any period t ≥ T ∗. Lemma 8 implies that

after the policy change, the consumer also chooses a weakly greater at for all t < T ∗. To sum

up, the platform can strictly increase its profit by replacing γ∗t with γmax for all t ≥ T ∗, which is

a contradiction. The second part of Lemma 9 then implies that there is some T such that for all

t ≥ T , a∗t = amax.

Next, I write γ∗t (v) to clarify the dependence of the equilibrium privacy level on v. Suppose

to the contrary that there is a T such that, for any v, there is some v ≥ v such that γ∗t (v) = 0 for

some t ≤ T . Then we can find vn →∞ and t∗ ≤ T such that γ∗t∗(vn) = 0 for all n. However, for a

sufficiently large vn, a∗t∗ = 0 if γ∗t∗(vn) = 0. The reason is as follows. If the consumer changes her

activity level from 0 to some a > 0, her gross payoff from u(·) increases by at at most u(amax). In

contrast, her privacy cost increases by at least

v

(
1

1
σ2

0
+ (t∗ − 1)amax

− 1
1
σ2

0
+ (t∗ − 1)amax + amin

)
> 0,

where amin is the smallest positive activity level in A. This expression is independent of the

history and diverges to∞ as v → ∞. Thus for a large v, the consumer prefers a = 0. However,

the platform can then commit to a high privacy level for period t∗ to induce at∗ > 0. By the same

argument as the previous paragraph, this change also weakly increases the activity levels in all

other periods. This is a contradiction.
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Finally, we show that γ∗t is zero after finite periods for a myopic consumer. If this is not the

case, then there is a sequence of positive numbers (gt)
∞
t=1 such that γ∗t > gt for infinitely many t’s.

Take T such that 1
1

σ2
0

+T−1
B

< σ̄2 and γ∗T > gT . Because the variance of the noise εt is at most B in

each t, σ2
T−1 < σ̄2 in equilibrium. The second part of Lemma 9 implies that if the platform sets

γT = 0, the consumer still chooses amax, which strictly decreases σ2
T . As a result, the change of

γT increases the platform payoff in any period t ≥ T . Also, this change of γT does not affect the

consumer’s choice in t < T because she is myopic. Thus, the platform benefits from changing γT

from γ∗T to 0, which is a contradiction.

E General Payoffs: Proof of Proposition 2

Proof of Proposition 2. First, we show Point 1. Define v := supx∈[0,σ2
0 ] |C ′(x)| and Cv(x) =

v(σ2
0 − x). We have Cv(σ2

0) = C(σ2
0) = 0, C ′v(σ

2) = −v ≤ C ′(σ2), and thus Cv(x) ≥ C(x)

for all x ∈ [0, σ2
0]. As a result, the consumer under Cv(·) incurs greater privacy costs and marginal

privacy costs than under C(·). Because the cost function Cv(·) satisfies the assumption of the origi-

nal model, Proposition 1 implies that there is a γ∗ such that if the platform chooses a privacy policy

with γt = γ∗ for all t ∈ N, the consumer’s optimal behavior induces at → amax and σ2
t → 0. We

show that the same long-run outcome arises when the consumer faces C(·). Suppose to the con-

trary that under γt ≡ γ∗, σ2
t does not converge to 0 when the consumer with C(·) acts optimally.

Then for some T ∈ N, the consumer chooses at = 0 for all t ≥ T . However, in such a period T ,

the consumer facing Cv(·) strictly prefers some at > 0 to at = 0 (i.e., Point 1 of Proposition 1).

As a result, the consumer facing C(·) can mimic this strategy to strictly increase her continuation

value relative to taking zero activity levels forever, because she faces a uniformly lower marginal

privacy cost. This is a contradiction. Finally, σ2
t → 0 implies at → amax by the same argument as

Lemma 9.

Second, we show Point 2. For each δP ∈ [0, 1], let (σ2
t (δP ))t∈N denote the equilibrium sequence

of posterior variances, and define σ2
∞(δP ) = limt→∞ σ

2
t (δP ). Suppose to the contrary that we can

find a sequence δn → 1 and ε > 0 such that σ2
∞(δn) ≥ ε for all n. Then, the platform’s average
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revenue satisfies

(1− δn)
∞∑
t=1

Π(at(δn), σ2
t (δn)) ≤ Π(amax, ε).

Point 1 implies that the platform has a privacy policy γ∗ that induces limt→∞(at, σ
2
t ) = (amax, 0).

As δP → 1, the platform’s average payoff converges to Π(amax, 0). Thus, a sufficiently patient

platform strictly prefers γ∗ to the equilibrium policy, which is a contradiction.

Finally, suppose the long-run equilibrium activity a∞(δP ) := limt→∞ a
∗
t (δP ) has a well-defined

limit limδP→1 a∞(δP ). Then, it must be amax. Otherwise, the same argument as above implies that

a patient platform prefers to deviate to γ∗ that induces limt→∞(at, σ
2
t ) = (amax, 0).

F Myopic Consumer: Proof of Claim 1

I prove two results that lead to Claim 1.

Lemma 10. If the consumer is myopic, the platform adopts a greedy policy that myopically max-

imizes the precision of the signal in each period. Formally, the equilibrium policy (γ∗1 , γ
∗
2 , . . . ) is

recursively defined as follows:

γ∗t ∈ arg min
γ≥0

1

a∗(γ, σ̂2
t−1)

+ γ, ∀t ∈ N, (21)

σ̂2
0 = σ2

0, (22)

σ̂2
t =

1
1

σ̂2
t−1

+ 1
1

a∗(γ∗t ,σ̂
2
t−1)

+γ∗t

,∀t ∈ N. (23)

Also, given any privacy policy γ, let (σ2
t )t∈N denote the posterior variances induced by the con-

sumer’s optimal behavior. Then the optimal policy attains uniformly lower posterior variances:

σ̂2
t ≤ σ2

t for all t ∈ N.

Proof. Lemma 1 implies a∗(γ, σ2) is increasing in γ and decreasing in σ2. Take any privacy policy

(γt)t∈N and let (σ2
t )t∈N denote the sequence of posterior variances induced by a∗(·, ·). I show

σ̂2
t ≤ σ2

t for all t ∈ N. The inequality holds with equality for t = 0. Take any τ ∈ N. Suppose
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σ̂2
t ≤ σ2

t for t = 0, . . . , τ − 1. It holds that

σ2
τ =

1
1

σ2
τ−1

+ 1
1

a∗(γτ ,σ2
τ−1)

+γτ

≥ 1
1

σ̂2
τ−1

+ 1
1

a∗(γτ ,σ̂2
τ−1)

+γτ

≥ 1
1

σ̂2
τ−1

+ 1
1

a∗(γ∗τ ,σ̂2
τ−1)

+γ∗τ

= σ̂2
τ .

The first inequality follows from the inductive hypothesis and decreasing a∗(γ, ·). The second

inequality follows from (21). We now have σ̂2
t ≤ σ2

t for all t, which implies the privacy policy

described by (21), (22), and (23) is optimal.

Corollary 1. Assume the consumer is myopic, and let (a∗,γ∗) denote the equilibrium outcome

under long-run commitment in Lemma 10. The same outcome (a∗,γ∗) arises in an equilibrium

under one-period commitment.

Proof. Suppose the platform has one-period commitment power. Consider the following strategy

profile: At any node with posterior variance σ2, the platform sets γ ∈ arg minγ≥0
1

a∗(γ,σ2)
+ γ, and

the consumer acts according to a∗(·, σ2). Then, (a∗,γ∗) arises on the path of play. The platform’s

deviation increases the posterior variances in all periods, an decreases its profit (Lemma 10).

G Consumer-Worst Equilibrium: Proof of Theorem 2

Proof. Step 1: Construction of MPE. We write the consumer’s discount factor δC as δ, and use a

precision ρt = 1
σ2
t

as a state variable of MPE. Along any path of play, ρt is non-decreasing in t. Let

γ∗(ρ) denote the platform’s choice of γt given ρt−1 = ρ, and let a∗(ρ, γ) denote the consumer’s

choice of at given (ρt−1, γt) = (ρ, γ). Also, let V0(ρ) denote the consumer’s continuation value

when the initial state is ρ and (γt, at) = (0, amax) for all t ∈ N:

V0(ρ) :=
∞∑
t=1

δt−1

[
u(amax)− v ·

(
σ2

0 −
1

ρ+ tamax

)]
. (24)

V0(ρ) is continuous, strictly decreasing, and strictly convex in ρ ≥ 0.

First, we show that there is a ρ(0) ∈ R++ such that any strategy that satisfies γ∗(ρ) = 0 and

a∗(ρ, γ) = amax for any ρ ≥ ρ(0) and any γ is an MPE in the game that starts from any ρ ≥ ρ(0).

Given such a∗(·, ·) and the initial state ρ ≥ ρ(0), the platform prefers γ = 0 after any history,

because the subsequent outcome is (γ, a) = (0, amax) in all future periods, which maximizes the
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platform’s payoff across all outcomes. It suffices to show that the consumer does not strictly benefit

from a one-shot deviation to a = 0. At γ = 0, this condition is written as

u(amax)− v
(
σ2

0 −
1

ρ+ amax

)
+ δV0 (ρ+ amax) ≥ −v

(
σ2

0 −
1

ρ

)
+ δV0(ρ)

⇐⇒ u(amax) +
v

ρ+ amax
− v

ρ
+ δ [V0 (ρ+ amax)− V0(ρ)] ≥ 0.

Both v
ρ+amax

− v
ρ

and V0 (ρ+ amax)−V0(ρ) are continuous and strictly increasing in ρ, and converge

to 0 as ρ → ∞. Since u(amax) > 0, there is a unique ρ(0) < ∞ such that the inequality holds

if and only if ρ ≥ ρ(0). Also, for any ρ ≥ ρ(0), the consumer does not strictly benefit from a

one-shot deviation to a = 0 after the platform’s deviation to γ > 0.

We have constructed an MPE with γ∗t ≡ 0 and a∗t ≡ amax for any initial state ρ ≥ ρ(0). Next,

we construct an MPE for any initial state ρ ∈ [ρ(1), ρ(0)], where ρ(1) < ρ(0). Define

V (ρ, γ) := u(amax)− v

σ2
0 −

1

ρ+ 1
1

amax
+γ

+ δV0

(
ρ+

1
1

amax
+ γ

)
.

V (ρ, γ) is the consumer’s continuation value when (i) the initial state is ρ, (ii) the platform sets γ

and the consumer chooses amax in the first period, and (iii) from the next period on, they always

choose (γt, at) = (0, amax). Consider the inequality

V (ρ, γ) ≥ −v
(
σ2

0 −
1

ρ

)
+ δ · V (ρ, γ),

which is written as

u(amax)− v

σ2
0 −

1

ρ+ 1
1

amax
+γ

+ δV0

(
ρ+

1
1

amax
+ γ

)

≥− v
(
σ2

0 −
1

ρ

)
+ δ ·

u(amax)− v

σ2
0 −

1

ρ+ 1
1

amax
+γ

+ δV0

(
ρ+

1
1

amax
+ γ

) , (25)
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or equivalently,

(1− δ)u(amax) +
v

ρ+ 1
1

amax
+γ

− v

ρ

+δV0

(
ρ+

1
1

amax
+ γ

)
+ δ

v
σ2

0 −
1

ρ+ 1
1

amax
+γ

− δV0

(
ρ+

1
1

amax
+ γ

) ≥ 0. (26)

We show several properties of the left-hand side of (26). First, both sides of (25) are continuous

in γ, and the left-hand side increases more than the right-hand side if γ increases (because of

discounting). Thus, the left-hand side of (26) is continuous and strictly increasing in γ. It is also

continuous and strictly increasing in ρ. In particular,

V0

(
ρ+

1
1

amax
+ γ

)
+

v
σ2

0 −
1

ρ+ 1
1

amax
+γ

− δV0

(
ρ+

1
1

amax
+ γ

)
=K + v

∞∑
t=1

δt−1 1

ρ+ 1
1

amax
+γ

+ tamax
− v

∞∑
t=1

δt−1 1

ρ+ 1
1

amax
+γ

+ (t− 1)amax

=K + v
∞∑
t=1

δt−1

 1

ρ+ 1
1

amax
+γ

+ tamax
− 1

ρ+ 1
1

amax
+γ

+ (t− 1)amax


is strictly increasing in ρ, where K is a term that does not depend on ρ.

Because (25) holds with equality at (ρ, γ) = (ρ(0), 0), it holds with strict inequality at ρ = ρ(0)

for any γ > 0. Then for any ρ that is smaller than but sufficiently close to ρ(0), we can find a unique

γ(ρ) > 0 that satisfies (25) with equality. The left-hand side of (26) is increasing in ρ and γ. Thus,

if γ(ρ) exists for some ρ < ρ(0), γ(ρ′) exists for any ρ′ ∈ [ρ, ρ(0)). If ρ is such that no γ satisfies

(25), then define γ(ρ) =∞.

Because γ(ρ) is decreasing in ρ ≤ ρ(0), for a ρ smaller than but close to ρ(0), we obtain

ρ + 1
1

amax
+γ(ρ)

≥ ρ(0). As a result, ρ(1) = min

{
ρ ∈ [ 1

σ2
0
,∞) : ρ+ 1

1
amax

+γ(ρ)
≥ ρ(0)

}
is well-

defined. If ρ(1) > 1
σ2

0
, we have ρ(1) + 1

1
amax

+γ(ρ(1))
= ρ(0).

We now construct an MPE starting from any ρ ∈ [ρ(1),∞). Consider the following strategy

profile: For any ρ ∈ [ρ(1), ρ(0)], the platform sets γ(ρ) that solves (25) with equality. The con-

sumer chooses amax if γ ≥ γ(ρ) and ρ + 1
1

amax
+γ
≥ ρ(0). If γ < γ(ρ), she chooses a = 0.
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If γ ≥ γ(ρ) but ρ′ = ρ + 1
1

amax
+γ

< ρ(0), she chooses some optimal activity level, taking the

continuation values V (ρ, γ(ρ)) (after a = 0) and V (ρ′, γ(ρ′)) (after a = amax) as given. Once the

state reaches ρ ≥ ρ(0), the MPE for ρ ≥ ρ(0) is played—i.e., the platform sets γ = 0 and the

consumer chooses amax after any history. This strategy profile is an MPE: First, by construction,

the consumer has no profitable one-shot deviation after any history. Second, the platform does

not benefit from any one-shot deviation: If it increases γ, the deviation decreases the precision in

the current and any future periods compared to without deviation. If it decreases γ, the consumer

chooses a = 0 and the deviation decreases the precision in the current and any future periods,

compared to without deviation.

For each ρ ≥ ρ0, define

V (ρ) =

−
v

1−δ

(
σ2

0 − 1
ρ

)
if ρ ≤ ρ(0),∑∞

t=1 δ
t−1
[
u(amax)− v ·

(
σ2

0 − 1
ρ+tamax

)]
if ρ(0) ≤ ρ.

(27)

For ρ ≥ ρ(1), V (ρ) is the consumer’s continuation value in the above MPE. The value function

V (ρ) is decreasing, convex, and continuous (but not differentiable at ρ = ρ(0)). We now construct

an MPE starting from any ρ ∈ [ρ(2),∞), where ρ(2) < ρ(1). For each (ρ, γ) such that ρ ≤ ρ(1),

define

V2(ρ, γ) := u(amax)− v

σ2
0 −

1

ρ+ 1
1

amax
+γ

+ δV

(
ρ+

1
1

amax
+ γ

)
.

Consider the inequality

V2(ρ, γ) ≥ −v
(
σ2

0 −
1

ρ

)
+ δV2(ρ, γ). (28)

For each ρ < ρ(1), we consider the smallest γ that satisfies (28). Note that if we fix ρ and take γ

that satisfies (28), ρ + 1
1

amax
+γ
≤ ρ(0) holds; otherwise, it contradicts the definition of ρ(1). As a
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result, (28) is equivalent to

u(amax)−
v

1− δ

σ2
0 −

1

ρ+ 1
1

amax
+γ

 ≥ −v(σ2
0 −

1

ρ

)
+ δ

u(amax)−
v

1− δ

σ2
0 −

1

ρ+ 1
1

amax
+γ


(29)

⇐⇒ (1− δ)u(amax) +
v

ρ+ 1
1

amax
+γ

− v

ρ
≥ 0.

The left-hand side is continuous and strictly increasing in γ, and it is positive for γ = ∞. It

is also continuous and strictly increasing in ρ. As a result, for each ρ < ρ(1), we can find a

unique γ(ρ) > 0 such that (29) holds with equality. By construction, γ(ρ) is decreasing. Define

ρ(2) = min

{
ρ ∈ [ 1

σ2
0
,∞) : ρ+ 1

1
amax

+γ(ρ)
≥ ρ(1)

}
. If ρ(2) > 1

σ2
0
, then ρ(2)+ 1

1
amax

+γ(ρ(2))
= ρ(1).

We can then construct a Markov perfect equilibrium for any initial state in [ρ(2),∞). For any

ρ ∈ [ρ(2), ρ(1)], the platform sets γ(ρ) that solves (29) with equality. The consumer chooses

amax if γ ≥ γ(ρ) and ρ + 1
1

amax
+γ
≥ ρ(1). If γ < γ(ρ), she chooses a = 0. If γ ≥ γ(ρ)

but ρ + 1
1

amax
+γ

< ρ(1), she chooses some optimal activity level, taking the relevant continuation

values as given. Once the state reaches ρ ≥ ρ(1), the MPE for ρ ≥ ρ(1) is played. We can

show that this is an MPE by the same argument as the case of ρ ∈ [ρ(1), ρ(0)]. In particular, the

platform’s deviation to γ > γ(ρ) will uniformly increase the current and future ρt’s.

Given the initial state ρ ∈ [ρ(2), ρ(1)], the consumer’s continuation value is V (ρ) = − v
1−δ

(
σ2

0 − 1
ρ

)
,

which is the same as that in the previous step. As a result, we can use the incentive constraint (29)

to recursively construct a sequence ρ(3), ρ(4), . . . and an MPE for any k ∈ N and the initial state

ρ ∈ [ρ(k), ρ(k − 1)]. The smallest ρ we consider is ρ0 = 1
σ2

0
. Thus, 1

1
amax

+γ(ρ)
≥ 1

1
amax

+γ(ρ0)
for

any ρ ≥ ρ0. As a result, ρ(k) − ρ(k + 1) ≥ 1
1

amax
+γ(ρ0)

> 0 for any ρ ≥ ρ0, whenever ρ(k) > ρ0.

Thus there is a smallest finite K∗ ∈ N such that ρ(K∗) < ρ0. Redefine ρ(K∗) as ρ0. We now have

an MPE starting from ρ = ρ0.

Step 2: Consumer-worst and platform-best. Let U0 denote the hypothetical payoff of the con-

sumer, when she acts optimally against the platform that commits to zero privacy levels in all

periods. I show that the consumer’s payoff is U0 in the above MPE. If ρ0 ≥ ρ(0), the platform

sets γt = 0 for all t, and thus the consumer obtains U0. If ρ0 < ρ(0), the consumer is indifferent

between following the equilibrium strategy and choosing at = 0 for all t, because of the bind-
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ing incentive constraint (25) or (29). Now, if the platform committed to zero privacy levels for

ρ < ρ(0), the consumer would choose at = 0 for all t. As a result, the consumer’s ex ante payoff

is U0 = 0. In any equilibrium, the consumer’s payoff cannot be strictly lower than U0. Therefore,

the above equilibrium is consumer-worst.

To show the equilibrium is platform-best under a common discount factor, let Π denote the

platform’s ex ante sum of discounted payoffs. If there is another equilibrium in which the platform

obtains Π′ > Π, the consumer’s payoff is at most u(amax)
1−δ − vΠ′ < u(amax)

1−δ − vΠ = U0. This is a

contradiction. Thus, we have shown the first part of Point 1 (we will show the second part at the

end). Finally, even if the platform can commit to any rule to set privacy levels, the consumer can

secure U0 by acting as if privacy levels are zero. Thus, the platform cannot attain a strictly greater

payoff even if it has a stronger commitment power.

Step 3: Other properties of the equilibrium. We show that γ(ρ) is decreasing in ρ. First, γ(ρ)

is decreasing on ρ ≤ ρ(1), because γ(ρ) is determined by the binding (29). Second, γ(ρ) is

decreasing on [ρ(1), ρ(0)], because it is determined by the binding (25). Third, γ(ρ) = 0 for all

ρ ≥ ρ(0). These observations, combined with the continuity of γ(ρ), imply γ(ρ) is decreasing.

From period t to t + 1, the state increases by ρt+1 − ρt = 1
1

amax
+γ(ρt)

≥ 1
1

amax
+γ(ρ0)

. Thus ρt is

strictly increasing in t and diverges to +∞ (or equivalently, σ2
t → 0 in equilibrium). As a result,

γt is strictly decreasing in equilibrium and hits zero in period T , which is the smallest T with

ρT−1 ≥ ρ(0). We now have Points 2. Also, I constructed the above MPE so that for any σ2
t−1, the

platform chooses the lowest γt that induces amax. Such behavior is equivalent to a greedy policy.

Thus, Point 3 holds.

Finally we prove the second part of Point 1. Let (γ∗t )t∈N denote the (on-path) equilibrium

privacy levels in the above MPE. I show that if the platform commits to (γ∗t )t∈N ex ante, the con-

sumer chooses amax in all periods. To see this, we compare (i) the consumer’s (single-agent) de-

cision problem given (γ∗t )t∈N under long-run commitment to (ii) her problem given the platform’s

Markov strategy under one-period commitment. Take any strategy of the consumer, and consider

the privacy level in period t. In (i), the consumer faces γ∗t . In (ii), the consumer faces γ∗n+1, where

n is how many times the consumer chose a = amax instead of a = 0 before (and including) period

t − 1. We have γ∗n+1 ≥ γ∗t after any history. Thus for any strategy, the consumer faces lower

privacy levels in all periods under long-run commitment than one-period commitment. As a result,
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the consumer’s optimal payoff under the former cannot exceed the one under the latter. Now, the

consumer’s optimal strategy under one-period commitment is at = amax for all t ∈ N. She can

achieve the same outcome under long-run commitment by choosing at = amax for all t ∈ N. As a

result, the consumer prefers at = amax for all t under long-run commitment.

We have shown that if the platform commits to (γ∗t )t∈N under long-run commitment, the con-

sumer chooses amax in all periods and obtains U0 defined in Step 2. The same argument as Step 2

implies that the platform’s optimal policy is (γ∗t )t∈N even under long-run commitment.

H Consumer-Best Equilibrium: Proof of Theorem 3

Proof. We write δC = δ ≥ 1/2. Following the proof of Theorem 2, we write a Markov strategy

of each player as a function of a precision ρt = 1
σ2
t
. Let ρ0 = 1

σ2
0
. Define the strategy profile as

follows: Let γ(ρ0) = ∞. For any ρ > ρ0, let γ(ρ) be the strategy in the consumer-worst MPE in

Theorem 2. Let a(ρ0,∞) = amax, and a(ρ0, γ) = 0 for any γ <∞. For any ρ > ρ0, let a(ρ, γ) be

her strategy in the MPE in Theorem 2. On the path of play, (γt, at) = (∞, amax) is chosen in all

periods. This outcome is best for the consumer and worst for the platform.

Given the above strategy profile, suppose the platform deviates and offers γ < ∞ at ρ = ρ0.

If the consumer chooses a = 0, her future continuation value is 1
1−δu(amax), which is her best

possible outcome. As a result, a necessary condition for the consumer to choose amax following

the platform’s deviation at ρ0 is that she obtains a nonnegative payoff in the current period:

u(amax)− v

 1

ρ0

− 1

ρ0 + 1
1

amax
+γ

 = u(amax)− v
1

1
amax

+γ

ρ0

(
ρ0 + 1

1
amax

+γ

) ≥ 0. (30)

Let γ̂(ρ0) denote the minimum γ that satisfies this constraint. γ̂(ρ0) is decreasing in ρ0, positive

for a small ρ0, and limρ0→0 γ̂(ρ0) =∞.

Take any ρ̄ > 0 such that ρ̄ + 1
1

amax
+γ̂(ρ̄)

≤ ρ(0), where ρ(0) is the cutoff constructed for

Theorem 2, above which (γ, a) = (0, amax) is chosen. For any initial state ρ0 ≤ ρ̄, the above

strategy profile is an equilibrium. First, it is an equilibrium at any (off-path) state ρ > ρ0 by

construction. At ρ = ρ0, the consumer has no profitable deviation when the platform offers γ =∞,

because she can receive the best payoff of u(amax) in the current and any future periods. Suppose
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that the platform deviates and chooses γt <∞. Suppose to the contrary that the consumer strictly

benefits from the one-shot deviation to a = amax. Then, ρ0 + 1
1

amax
+γ
≤ ρ(0) must hold. Thus

her payoff in period t is at most u(amax), whereas her continuation value from period t + 1 is

nonpositive (recall that in the consumer-worst equilibrium, the consumer’s continuation payoff

starting from ρ ≤ ρ(0) is nonpositive). In contrast, if the consumer chooses at = 0 and follows

her strategy thereafter, her payoff is δ
1−δu(amax), because she sets at = 0 in period t and the state

remains ρ0. Thus, the consumer has a profitable deviation only if δ
1−δu(amax) < u(amax), which

contradicts δ ≥ 1/2.

I An MPE for a General A: Proof of Proposition 4

For simplicity we write δC as δ.

Lemma 11. If the platform sets γ̄ in Assumption 2 in period t, the consumer strictly prefers (i)

at = amax and as = 0 for all s ≥ t + 1 to (ii) as = 0 for all s ≥ t, regardless of the platform’s

continuation strategy.

Proof. Define ρt−1 = 1
σ2
t−1

. The consumer prefers (i) to (ii) if and only if

u(amax)−
v

1− δ

σ2
0 −

1

ρt−1 + 1
1

amax
+γ̄

 ≥ − v

1− δ

(
σ2

0 −
1

ρt−1

)

⇐⇒ u(amax)−
v

1− δ

 1

ρt−1

(
ρt−1

(
1

amax
+ γ̄
)

+ 1
)
 ≥ 0. (31)

The left-hand side of the last inequality is at least

H := u(amax)−
v

1− δ

 1

ρ0

(
ρ0

(
1

amax
+ γ̄
)

+ 1
)
 .

The inequality H > 0 is equivalent to the one for γ̄ in Assumption 2.

Proof of Proposition 4. Let a+ denote the smallest positive activity level in A, and let γ+ denote

the highest finite privacy level in Γ. Define ∆∗ := 1
1
a+

+γ+
. Proposition 3 implies that there is ρ(0)
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such that if the initial state is above ρ(0), then (γt, at) = (0, amax) for all t ∈ N is an MPE. Let

V0(·) : [ρ(0),∞) → R and Π0(·) : [ρ(0),∞) → R respectively denote the consumer’s and the

platform’s continuation values in that MPE. We extend these functions so that V0(ρ) = Π0(ρ) =

−∞ for ρ < ρ(0). Note that Π0(·) is increasing. Also, define ρ(1) := ρ(0) − ∆∗. Finally, let

A+ = A \ {0} denote the set of all positive activity levels. For any ρ ∈ [ρ(1), ρ(0)], consider the

optimization problem

Π1(ρ) := max
γ∈Γ,a(ρ,γ)∈A

σ2
0 −

1

ρ+ 1
1

a(ρ,γ)
+γ

+ Π0

(
ρ+

1
1

a(ρ,γ)
+ γ

)
(32)

s.t. a(ρ, γ) ∈ arg max
a∈A+

u(a)− v

(
σ2

0 −
1

ρ+ 1
1
a

+γ

)
+ δV0

(
ρ+

1
1
a

+ γ

)
, and (33)

u(a(ρ, γ))− v

σ2
0 −

1

ρ+ 1
1

a(ρ,γ)
+γ

+ δV0

(
ρ+

1
1

a(ρ,γ)
+ γ

)

≥− v
(
σ2

0 −
1

ρ

)
+ δ ·

u(a(ρ, γ))− v

σ2
0 −

1

ρ+ 1
1

a(ρ,γ)
+γ

+ δV0

(
ρ+

1
1

a(ρ,γ)
+ γ

) .
(34)

Let γ̄ denote the privacy level in Lemma 11. First, we show that there is (γ, a(ρ, γ)) = (γ∗, a∗) that

satisfies the constraints. Take γ∗ = γ̄, and let a(ρ, γ∗) = a∗ denote the solution of (33). Suppose,

to the contrary, that (34) fails, i.e., we obtain

u(a∗)− v

(
σ2

0 −
1

ρ+ 1
1
a∗+γ∗

)
+ δV0

(
ρ+

1
1
a∗

+ γ∗

)

<− v
(
σ2

0 −
1

ρ

)
+ δ

[
u(a∗)− v

(
σ2

0 −
1

ρ+ 1
1
a∗+γ∗

)
+ δV0

(
ρ+

1
1

a(ρ,γ)
+ γ

)]
.
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This inequality implies

− v

1− δ

(
σ2

0 −
1

ρ

)
> u(a∗)− v

(
σ2

0 −
1

ρ+ 1
1
a∗+γ∗

)
+ δV0

(
ρ+

1
1
a∗

+ γ∗

)

≥ u(amax)− v

σ2
0 −

1

ρ+ 1
1

amax
+γ∗

+ δV0

(
ρ+

1
1

amax
+ γ∗

)

≥ u(amax)−
v

1− δ

σ2
0 −

1

ρ+ 1
1

amax
+γ∗

 ,

which contradicts the definition of γ∗ = γ̄ in Lemma 11. Let (γ(ρ), a(ρ, γ(ρ))) denote the solution

of the above problem. Note that γ(ρ) <∞ and a(ρ, γ(ρ)) > 0. Let V1(·) : [ρ(1),∞)→ R denote

the extension of V0(·) such that for all ρ ∈ [ρ(1), ρ(0)],

V1(ρ) = u(a(ρ, γ(ρ)))− v

σ2
0 −

1

ρ+ 1
1

a(ρ,γ(ρ))
+γ(ρ)

+ δV0

(
ρ+

1
1

a(ρ,γ(ρ))
+ γ(ρ)

)
. (35)

Let Π1(·) : [ρ(1),∞)→ R denote the extension of Π0(·) such that for all ρ ∈ [ρ(1), ρ(0)],

Π1(ρ) = σ2
0 −

1

ρ+ 1
1

a(ρ,γ(ρ))
+γ(ρ)

+ δΠ0

(
ρ+

1
1

a(ρ,γ(ρ))
+ γ(ρ)

)
. (36)

Now, suppose that we have constructed (Πn−1(·), Vn−1(·)) defined on [ρ(n − 1),∞). Extend

these functions by setting Πn−1(ρ) = Vn−1(ρ) = −∞ for any ρ < ρ(n − 1), then consider the
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following problem:

Πn(ρ) := max
γ∈Γ,a(ρ,γ)∈A

σ2
0 −

1

ρ+ 1
1

a(ρ,γ)
+γ

+ Πn−1

(
ρ+

1
1

a(ρ,γ)
+ γ

)
(37)

s.t. a(ρ, γ) ∈ arg max
a∈A+

u(a)− v

(
σ2

0 −
1

ρ+ 1
1
a

+γ

)
+ δVn−1

(
ρ+

1
1
a

+ γ

)
, and (38)

u(a(ρ, γ))− v

σ2
0 −

1

ρ+ 1
1

a(ρ,γ)
+γ

+ δVn−1

(
ρ+

1
1

a(ρ,γ)
+ γ

)

≥− v
(
σ2

0 −
1

ρ

)
+ δ ·

u(a(ρ, γ))− v

σ2
0 −

1

ρ+ 1
1

a(ρ,γ)
+γ

+ δVn−1

(
ρ+

1
1

a(ρ,γ)
+ γ

) .
(39)

By the same argument for n = 1, we can find a solution (γ(ρ), a(ρ, γ(ρ))) for each ρ ∈ [ρ(n), ρ(n−

1)], where ρ(n) = ρ(n− 1)−∆∗. We can then construct Vn(·) and Πn(·), which are respectively

the extensions of Vn−1(·) and Πn−1(·) to [ρ(n),∞). Repeating this, we can find a finite n such

that ρ(n) ≤ ρ0 = 1
σ2

0
. We now have a function γ(ρ) defined on [ρ0,∞). Also, for any n ∈ N,

ρ ∈ [ρ(n), ρ(n− 1)], and γ ∈ Γ, let a(ρ, γ) denote the solution of (38).

We use (γ(ρ), a(ρ, γ)) to construct an MPE, (γ∗(ρ), a∗(ρ, γ)). First, set γ∗(·) ≡ γ(·). Second,

we define a∗(ρ, γ). Take any ρ < ρ(0) and γ <∞, and let n ∈ N satisfy ρ ∈ [ρ(n), ρ(n− 1)]. Let

a∗(ρ, γ) = a(ρ, γ) if

u(a(ρ, γ))− v

σ2
0 −

1

ρ+ 1
1

a(ρ,γ)
+γ

+ δVn−1

(
ρ+

1
1

a(ρ,γ)
+ γ

)
≥ −v

(
σ2

0 −
1

ρ

)
+ δVn(ρ).

If this inequality fails, then a∗(ρ, γ) = 0. If γ = ∞, then a∗(ρ, γ) = amax. For ρ ≥ ρ(0), define

(γ∗(ρ), a∗(ρ, ·)) = (0, amax).

We show that (γ∗(ρ), a∗(ρ, γ)) is an MPE by showing that there is no profitable one-shot de-

viation. The optimality of a∗(ρ, γ) holds by construction. The optimality of γ∗(ρ) holds for the

following reason. First, it is not optimal for the platform to set γ such that a(ρ, γ) = 0. Thus, fac-

ing a∗(ρ, γ), any optimal strategy of the platform induces a positive activity level, i.e., it chooses

γ such that a(ρ, γ) ∈ A+. By (38), among such privacy levels, γ(ρ) is optimal by (38). Finally, in
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each period, ρt increases by at least ∆∗ > 0 defined at the beginning. Once ρT−1 exceeds ρ(0), we

have (γ∗t , a
∗
t ) = (0, amax) for all t ≥ T .

J Equilibrium Under Competition: Proof of Proposition 5

Proof. First, we construct an equilibrium that satisfies Point 1. Suppose that, at the beginning of

period t ≥ t∗, the conditional variance for platform k is σ2
t−1,k. Let γkt denote the privacy level of

platform k in period t. The (myopic) consumer weakly prefers to use platform k (i.e. a−kt = 0

maximizes her period-t payoff) if

arg max
a∈A

u(a)− v[σ2
0 − σ2

t,k(γ
k
t , a|σ2

t−1,k)]− v[σ2
0 − σ2

t−1,−k]

≥ arg max
a∈A

u(a)− v[σ2
0 − σ2

t,−k(γ
−k
t , a|σ2

t−1,−k)]− v[σ2
0 − σ2

t−1,k],

where σ2
t,k(γ, a|σ2

t−1,k) is the posterior variance at the end of period t when platform k chooses γ,

the consumer chooses a, and the posterior variance from the previous period is σ2
t−1,k. Arranging

this inequality, we obtain

arg max
a∈A

u(a)−v[σ2
t−1,k−σ2

t,k(γ
k
t , a|σ2

t−1,k)] ≥ arg max
a∈A

u(a)−v[σ2
t−1,−k−σ2

t,−k(γ
−k
t , a|σ2

t−1,−k)].

This inequality implies that the consumer prefers to use k if and only if the gross benefit from the

service minus the incremental privacy cost is greater for k than −k.

First, I consider competition with one-period commitment. Consider the following strategy

profile. For each period t < t∗, I chooses a monopoly privacy level γ∗t . Take any period t ≥ t∗.

Let k∗ ∈ arg mink=I,E σ
2
t−1,k denote the platform that has the lower posterior variance (if k∗ is

not unique, we set k∗ = I). Then platform −k∗ chooses the highest privacy level γ̄. Platform k∗

chooses a privacy level γk∗t that solves

min
γ∈[0,γ̄]

1

a∗(γ, σ2
t−1,k∗)

+ γ

s.t. arg max
a∈A

u(a)− v[σ2
t−1,k∗ − σ2

t,k∗(γ, a|σ2
t−1,k∗)] (40)

≥ arg max
a∈A

u(a)− v[σ2
t−1,−k∗ − σ2

t,−k∗(γ̄, a|σ2
t−1,−k∗)].
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In each period, the consumer myopically chooses aIt (if t < t∗) or (aIt , a
E
t ) (if t ≥ t∗) to maximize

her per-period payoff. If indifferent, she uses the platform for which she chose a positive activity

level in the most recent period. (If she chose zero activity levels up to period t − 1, then she sets

akt = 0 for one of k ∈ {I, E} with equal probability, and chooses a−kt to maximize her period-t

payoff.)

I show the above strategy profile is an equilibrium. First, the consumer’s behavior is optimal

by construction. Second, I verify that platforms have no profitable deviation. Without loss of

generality, consider a node in period t in which I = k∗ and E = −k∗. The strategy of E is

optimal: Suppose the consumer uses I in period t (i.e. σ2
t−1,I ≤ σ2

t−1,E). By construction, even if

E chooses γ̄ in all periods s ≥ t, the consumer uses I in any future periods as long as I and the

consumer follow the above strategy. Thus, E’s payoff does not change if E lowers privacy levels.

Thus, E has no profitable deviation.

Suppose now that I chooses a privacy level such that the consumer chooses E in period t. If

σ2
t,E ≤ σ2

t,I , then the consumer uses E in any period s ≥ t + 1. In this case, I’s deviation is not

profitable. Otherwise, σ2
t,E > σ2

t,I hold. Note that I obtains a lower payoff in period t, because it

is not maximizing the informativeness of the signal. Moreover, at any future period s, I faces an

optimization problem

min
γ

1

a∗(γ, σ2
s−1,I)

+ γ

s.t. arg max
a∈A

u(a)− v[σ2
s−1,I − σ2

s,I(γ, a|σ2
s−1,I)] (41)

≥ arg max
a∈A

u(a)− v[σ2
s−1,E − σ2

s,E(γ̄, a|σ2
s−1,E)].

After deviation, I faces a strictly lower σ2
s−1,E − σ2

s,E(γ̄, a|σ2
s−1,E) > 0 because the consumer

generated information on E in period t. This means the set of γ satisfying the constraint shrinks.

Thus, the minimized value in (41) becomes greater for any period s ≥ t + 1 after deviation. This

implies that I’s payoff is weakly lower for any period s ≥ t after the deviation. A similar argument

implies that it is not profitable for I to deviate from a monopoly strategy before entry, because the

deviation lowers I’s payoff before and after entry. In particular, the deviation shrinks the set of γ’s

satisfying the constraint in (41) by increasing σ2
s−1,I − σ2

s,I(γ, a|σ2
s−1,I).
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On the equilibrium path, aEt = 0 for all t ∈ N. limt→∞ σ
2
I,t = 0 holds because it holds even if

I adopts γt = γ̄ for all t, and I chooses each γIt to achieve even lower posterior variances. Given

this result, limt→∞ a
I
t = amax follows the same proof as monopoly.

Suppose γIt does not converge to 0. Then, there is a convergent subsequence γIt(n) such that

limn→∞ γ
I
t(n) = γ′ > 0. For a sufficiently large n, both γ = 0 and γ = γIt(n) satisfy the constraint

in (41), because σ2
s−1,E−σ2

s,E(γ̄, a|σ2
s−1,E) = σ2

0−σ2
1,E(γ̄, a∗(γ̄, σ2

0)|σ2
0) > 0, but lims→∞ σ

2
s−1,I−

σ2
s,I(0, a

∗(0, σ2
s−1,I)|σ2

s−1,I) ≤ lims→∞ σ
2
s−1,I = 0. As n→∞, the value of the objective converges

to 1
amax

and 1
amax

+ γ′ for γ = 0 and γ = γ′, respectively. Thus, for a large n, γ = 0 achieves a

strictly lower value in (41) than γ = γ′. This is a contradiction and thus limt→∞ γ
I
t → 0 in the

equilibrium.

Next, we show Point 2. For a sufficiently large t∗, σ2
t∗−1,I ≤ σ2

0 − σ2
t∗,E(γ̄, a∗(σ2

0, γ̄)|σ2
0). Then,

for any period t ≥ t∗, the constraint (41) holds for any γ ≤ γ̄. This implies that in any equilibrium,

I’s problem is equal to the monopolist’s problem, which proves Point 2.

A similar proof applies to competition with long-run commitment. In this game, I commits

to (γI1 , γ
I
2 , . . . ) before t = 1, then the consumer (myopically) chooses aIt for each t < t∗. At the

beginning of t∗, E publicly commits to (γEt∗ , γ
E
t∗+1, . . . ), after which the consumer chooses (aIt , a

E
t )

in each period t ≥ t∗. Here, I consider an equilibrium in which E commits to γEt = γ̄ ∀t ≥ t∗, and

I commits to monopoly privacy levels before t∗ and sets privacy levels by recursively solving (41)

after t∗.

K Omitted Proofs for Section 7

K.1 Erasing Past Information: Proofs for Section 7.1

Proof of Claim 2. Since the consumer’s action does not affect a privacy policy, it is optimal for

the consumer to erase information in all periods. Anticipating this, the platform maximizes the

amount of information generated in each period, by solving the problem (21) with t = 1. Thus the

platform sets γt = γ∗1 for all t.

Proof of Claim 3. The platform’s problem is to solve (21) by choosing a privacy level and whether

to erase information. Whenever σ2
t−1 < σ2

0 , erasing information strictly increases the posterior
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variance, increases the consumer’s marginal cost, and shifts a∗(·, σ2) downward. Because erasing

information strictly lowers the platform’s payoff, it chooses T = ∅ in equilibrium.

K.2 Heterogeneous Consumers: Proof of Proposition 6

Proof. Take any equilibrium (a∗t (v), σ2
t (v), γ∗t )t∈N,v∈V . For each v ∈ V , define σ2

∞(v) := limt→∞ σ
2
t (v).

First, suppose, to the contrary, that there is some v∗ ∈ V such that σ2
∞(v∗) > 0. Define

∆t :=
1

1− δP

∑
v∈V

αv
[
σ2

0 − σ2
∞(v)

]
− 1

1− δP

∑
v∈V

αv
[
σ2

0 − σ2
t−1(v)

]
. (42)

It holds limt→∞∆t = 0. Now, take any γ∗v ∈ arg minγ
1

a∗(v∗,γ,σ2
0)

+ γ. It holds that for any

σ2 ∈ [σ2
∞(v∗), σ2

0],

σ2 − 1
1
σ2 + 1

1
a∗(v∗,γ∗v ,σ2)

+γ∗v

≥ σ2 − 1
1
σ2 + 1

1

a∗(v∗,γ∗v ,σ2
0)

+γ∗v

≥M := min
σ2∈[σ2

∞(v∗),σ2
0 ]
σ2 − 1

1
σ2 + 1

1

a∗(v∗,γ∗v ,σ2
0)

+γ∗v

> 0.

The first inequality follows from a∗(v∗, γ, σ2
0) ≤ a∗(v, γ, σ2) for σ2 ≤ σ2

0 . The last inequality

holds because the minimand is continuous and positive on [σ2
∞(v∗), σ2

0]. For a sufficiently large t,

we obtain αvM
1−δP

> ∆t, or equivalently,

αvM

1− δP
+

1

1− δP

∑
v∈V

αv
[
σ2

0 − σ2
t−1(v)

]
>

1

1− δP

∑
v∈V

αv
[
σ2

0 − σ2
∞(v)

]
.

The left hand side is the lower bound of the time-t continuation value that the platform can get

by deviating to the privacy level γ∗v from time t on. The right hand side is the upper bound of the

time-t continuation value without deviation. Thus, the platform is strictly better off by committing

to a privacy policy that sets γ∗v from time t on. This is a contradiction. limt→∞ a
∗
t (v) = 0 and

lim→∞ γ
∗
t = 0 follow the proof of Theorem 1.

L Relaxing “The Privacy Cost is Sunk”

In the baseline model, the consumer incurs a privacy cost of −v(σ2
0 − σ2

t−1) even if she chooses

at = 0. Suppose now that the consumer incurs a fraction α ∈ [0, 1) of the privacy cost when

at = 0. Namely, if at > 0, her payoff is u(at) − v (σ2
0 − σ2

t ). If at = 0, it is −αv
(
σ2

0 − σ2
t−1

)
.
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The main results under monopoly and competition continue to hold for α close to 1. The following

considers monopoly.

Proposition 7. There is an α∗ < 1 such that for any α ∈ [α∗, 1], any equilibrium outcome

(a∗t , γ
∗
t , σ

2
t )t∈N satisfies lim

t→∞
a∗t = amax, lim

t→∞
γ∗t = 0, and lim

t→∞
σ2
t = 0.

Proof. Consider any equilibrium. In period t, the consumer chooses a positive activity level if

max
a∈A

u(a)− v

(
σ2

0 −
1

1
σ2
t−1

+ 1
1
a

+γ∗t

)
≥ −αv

(
σ2

0 − σ2
t−1

)
⇐⇒ max

a∈A
u(a)− v

(
ασ2

t−1 −
1

1
σ2
t−1

+ 1
1
a

+γ∗t

)
≥ (1− α)vσ2

0.

Let â1 and γ̂1 denote the equilibrium activity level and privacy level, respectively, in t = 1 of the

baseline model (i.e., α = 1). Define y1 := 1
â

+ γ̂ and f(α, x, y) := αx − 1
1
x

+ 1
y

. The function f is

strictly convex in x. Thus, on the interval [0, σ2
0], f(α, ·, y) is maximized at x = σ2

0 if f(α, σ2
0, y) >

f(σ, 0, y), or equivalently, ασ2
0 − 1

1

σ2
0

+ 1
y

> 0. Moreover, the left hand side is decreasing in y.

Thus, this inequality holds for all y ≤ y1 if and only if ασ2
0 − 1

1

σ2
0

+ 1
y1

> 0. Let α∗ < 1 satisfy

α∗σ2
0 − 1

1

σ2
0

+ 1
1
â1

+γ̂1

> 0. For any α ∈ [α∗, 1], we have

u(â1)− v

ασ2
0 −

1
1
σ2

0
+ 1

1
â1

+γ̂1

 ≥ (1− α)vσ2
0

⇒u(â1)− v

ασ2
t−1 −

1
1

σ2
t−1

+ 1
1
â1

+γ̂1

 ≥ (1− α)vσ2
0

⇒ max
a∈A

u(a)− v

(
ασ2

t−1 −
1

1
σ2
t−1

+ 1
1
a

+γ̂1

)
≥ (1− α)vσ2

0.

The first inequality holds because it is independent of α′ and holds for α′ = 1. The last inequality

implies that in any period, if the platform sets γt = γ̂1, then the consumer chooses at > 0. Also

at ≥ â1 holds because γt > γ̂ and σ2
t−1 ≤ σ2

0 . In equilibrium, the platform sets γt to minimize the
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variance of the noise in st subject to the constraint that

max
a∈A

u(a)− v

(
ασ2

t−1 −
1

1
σ2
t−1

+ 1
1
a

+γt

)
≥ (1− α)vσ2

0.

The above argument implies that the variance of the noise in st is at most 1
â1

+ γ̂ + ε, which

implies σ2
t → 0 in equilibrium. By the same proof as Theorem 1, σ2

t → 0 implies a∗t → amax and

γ∗t → 0.

The following considers competition.

Proposition 8. There is an α∗∗ < 1 such that for any α ∈ [α∗∗, 1], the result under competition

(Proposition 5) holds.

Proof. I adopt the notations in the proof of Proposition 5. In any period, the consumer weakly

prefers to use platform k (i.e., akt > 0 and a−kt = 0) if the following two conditions hold:

arg max
a∈A

u(a)− v[σ2
0 − σ2

t,k(γ
k
t , a|σ2

t−1,k)]− αv[σ2
0 − σ2

t−1,−k]

≥ arg max
a∈A

u(a)− v[σ2
0 − σ2

t,−k(γ
−k
t , a|σ2

t−1,−k)]− αv[σ2
0 − σ2

t−1,k],

and

arg max
a∈A

u(a)− v[σ2
0 − σ2

t,k(γ
k
t , a|σ2

t−1,k)]− αv[σ2
0 − σ2

t−1,−k] ≥ −αv[σ2
0 − σ2

t−1,k]− αv[σ2
0 − σ2

t−1,−k].

These inequalities are respectively equivalent to

arg max
a∈A

u(a)− v

[
ασ2

t−1,k −
1

1
σ2
t−1,k

+ 1
1
a

+γkt

]
︸ ︷︷ ︸

(A)

≥ arg max
a∈A

u(a)− v

ασ2
t−1,−k −

1
1

σ2
t−1,−k

+ 1
1
a

+γ−kt


︸ ︷︷ ︸

(B)

(43)
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and

arg max
a∈A

u(a)− v

[
ασ2

t−1,k −
1

1
σ2
t−1,k

+ 1
1
a

+γkt

]
︸ ︷︷ ︸

(A)

≥ (1− α)vσ2
0. (44)

By the same argument as Proposition 7, there is α∗∗ < 1 such that for any α ≥ α∗∗, the following

holds: For any 1
a

+γkt ≤ 1
a(γ̄)

+ γ̄, (A) is maximized at σ2
t−1,k = σ2

0; for any 1
a

+γ−kt ≤ 1
a(γ̄)

+ γ̄, (B)

is maximized at σ2
t−1,−k = σ2

0 . These observations imply the following. First, I can induce aIt > 0

before the entry, by setting γt = γ̄. Second, after I collects some information, if I and E set the

same privacy level γ̄, then the consumer optimally sets aIt > 0 = aEt . We can then apply the proof

of Proposition 5 to construct an equilibrium such that (i) E sets γEt = γ̄ for all t ∈ N, (ii) I sets

γIt to minimize the variance of the noise of st subject to constraints (43) and (44). The rest of the

proof follows the proof of Proposition 5.
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