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Abstract

This paper provides evidence on the responses of producers to mandatory disclosure of discrete quality
ratings, a type of policy sometimes referred to as “naming and shaming”. The context is a series of four
regulatory changes undertaken by the U.S. Department of Agriculture (USDA) over 2006–2015, regard-
ing disclosure of information about the results of tests for Salmonella in chicken carcasses at slaughter
establishments. If establishments exceed certain rates of positive samples, they are designated “Cate-
gory 2” or “Category 3”. Under some policy regimes, Category 2 and 3 establishments have been listed
on a public USDA website. I employ carcass-level data on Salmonella test results over 1999–2018 for all
federally inspected establishments to explore the effects of public disclosure and other policy changes on
Salmonella test outcomes. First, using a regression discontinuity approach, I demonstrate that: (1) When
establishments fail to meet categorization thresholds but these failures do not subject them to public dis-
closure, Salmonella test performance worsens. (2) When establishments fail to meet thresholds and are
therefore subjected to public disclosure, there is no statistically significant change in Salmonella test
performance. (3) Under one policy regime, establishment operators relaxed efforts after sustained good
Salmonella test performance ensured they would avoid public disclosure. Second, I document that when
establishments have more leeway with respect to the thresholds, their performance on Salmonella tests
worsens. Third, I use a regression discontinuity in time approach to demonstrate the effects of the series
of policy changes on average Salmonella test results. I show that the introduction of public disclosure in
2008 reduced the average rate of positive Salmonella samples by about 55 percent. On the other hand,
a tightening of standards in 2011 had a bifurcating effect wherein establishments that performed poorly
(prior to the policy change) tended to perform even worse and middling establishments tended to improve.
There was no statistically significant effect on the best-performing establishments. The net effect of the
tightening of standards in 2011 was to more than double average Salmonella rates. My results provide
evidence that the public disclosure of discrete information about Salmonella in chicken carcasses results in
producers exerting extra effort to avoid disclosure, and less effort when disclosure status is already certain.
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Moral hazard under discrete information disclosure: Evidence from food-safety inspections

In various contexts, governments have regulated product quality to alleviate problems of moral hazard

caused by information asymmetry. In some cases, policymakers and regulators have required reporting

or labeling of information about product quality. Discrete information disclosure (as opposed to disclo-

sure of information about quality expressed on some continuous scale) can be advantageous in that the

information might be more easily understood by buyers. However, discrete reporting or labeling also may

limit provision of quality by discouraging producers from attaining quality scores that greatly surpass the

thresholds associated with each labeled category (Shewmake and Viscusi, 2015; Ito and Sallee, 2018). In

other words, discrete information disclosure perhaps limits the incentives for moral hazard but does not

eliminate the problem.

In this paper, I provide evidence on the responses of producers to mandatory disclosure of discrete

quality ratings, a type of policy sometimes referred to as “naming and shaming”. The context is a series

of four regulatory changes undertaken by the U.S. Department of Agriculture (USDA) over 2006–2015,1

regarding disclosure of information about Salmonella in chicken carcasses at slaughter establishments.2

Salmonella in poultry is a major cause of food-borne illness in the United States, with an economic cost of

up to $3.1 billion per year.3 This paper documents the effects of categorization, publication of information

about categories, and subsequent modifications to the policy on outcomes of tests for Salmonella.

My results provide evidence that the public disclosure of discrete information about Salmonella in

chicken carcasses resulted in producers exerting extra effort to avoid disclosure, and less effort when

disclosure status was already certain. Overall, the share of carcasses sampling positive for Salmonella

decreased by about half when mandatory disclosure was implemented but then more than doubled after

1As shorthand, most references to dates refer to the policy periods beginning and ending in the referenced
years, although the policy periods never coincided with calendar years. The dates that various policy changes were
implemented are outlined in section 1 and in table 1.

2Salmonella is a genus of bacteria typically present in the intestines of birds and other animals. Meat and
poultry can become contaminated with Salmonella if they come into contact with feces or the digestive tract.

3Hoffmann et al. (2015) report that Salmonella is the pathogen with the greatest economic cost of associated
food-borne illnesses, $3.67 billion per year (in 2013 dollars), based on estimates of the incidence of illnesses, hos-
pitalizations, and deaths from Scallan et al. (2011). However, there is tremendous uncertainty embedded in these
estimates; Hoffmann et al. (2015) report that the 90% credible interval of the cost of illness from Salmonella is $193
million to $9.49 billion, in 2013 dollars. Furthermore, Painter et al. (2013) estimate that 10.1 to 29.2% of the cases
of illness caused by Salmonella enterica are attributed to poultry. $3.1 billion = .292 × $9.49 billion, adjusted for
inflation.
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a subsequent tightening of standards. The details of the program—especially the discrete categorization

system and the discrete sampling windows used throughout all regulatory periods—led to some shirking

or moral hazard.

By testing hypotheses about the connections between public disclosure of discrete quality levels and

quality outcomes, this paper contributes to a rich empirical literature. My analysis expands upon Ollinger

and Bovay (2020), who study changes in annual average Salmonella test results at chicken-slaughter

establishments, in the context of the introduction of public disclosure in 2008. By using carcass-level test

result data and a longer time series, the analysis in this paper is richer and more robust. This paper

also demonstrates that chicken processors responded to the incentives created by the inspection program

by reducing effort related to food safety when the stakes were low. The results bear resemblance to

studies reviewed by Dranove and Jin (2010), which found that hospitals and schools responded to the

introduction of quality ratings by focusing on healthier patients and ignoring the sickest; with gaming

behavior such as finding ways to avoid reporting scores of poorly performing students; and by teachers

cheating on standardized tests (see also Dee et al., 2019). Similarly, Houde (2018) finds evidence that

the energy efficiency of refrigerators is bunched just below the threshold necessary to obtain Energy Star

certification, and Shewmake and Viscusi (2015) find that home builders strategically incorporate “green”

features to achieve green certifications. Other related papers have studied the effects of disclosure on

outcomes in the context of restaurant health-inspection scores (Jin and Leslie, 2003; Dai and Luca, 2020),

drinking water (Bennear and Olmstead, 2008), and workplace safety violations (Johnson, 2020).

Under the Salmonella Verification Testing Program, in effect since 1999, USDA inspectors at chicken-

slaughter establishments have randomly sampled chicken carcasses for Salmonella. No more than one

carcass per establishment per day is sampled under the program. If establishments exceed certain num-

bers of positive samples within a “sample set” or “window” (i.e., a pre-designated number of sampled

carcasses), they are designated “Category 2” or “Category 3”. Under some policy regimes, Category 2

and 3 establishments have been listed on a public USDA website. This creates clear incentives for moral

hazard, specifically a reduction in effort around controlling Salmonella. We would expect to see establish-

ment operators reduce effort around Salmonella control in at least three cases. The first case is when the

establishment exceeds the public-disclosure threshold before the end of a sample set. The second case is

when the establishment has had very few positive samples, and it would therefore be impossible to exceed
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the threshold no matter how many positive samples there were among the remaining samples. Third,

when categorization is not yet determined, we would also expect to see a correlation between leeway with

respect to the thresholds and Salmonella test performance (i.e., more leeway, worse test performance).

In this paper, I employ carcass-level data on Salmonella test results over 1999–2018 for all federally

inspected chicken-slaughter establishments. First, using a regression discontinuity (RD) approach, I

demonstrate that: (1) When establishments fail to meet categorization thresholds but these failures do

not subject them to public disclosure, Salmonella test performance worsens. (2) When establishments

fail to meet thresholds and are therefore subjected to public disclosure, there is no statistically significant

change in Salmonella test performance. (3) Under one policy regime, establishment operators relaxed

efforts after sustained good Salmonella test performance ensured they would avoid public disclosure.

Second, I document that when establishments have more leeway with respect to the thresholds,

their performance on Salmonella tests worsens, as expected. The relationship between proximity to the

thresholds and test outcomes is strong whether or not there is a threat of public disclosure, but tends to

be stronger when the thresholds are associated with disclosure.

Third, I use a regression discontinuity in time approach to demonstrate the effects of the series of

policy changes on overall Salmonella test results. I show that the introduction of public disclosure in

2008 reduced the overall rate of positive Salmonella samples by about 55 percent. On the other hand,

a tightening of standards in 2011 had a bifurcating effect wherein establishments that performed poorly

(prior to the policy change) tended to perform even worse and middling establishments tended to improve.

Evidently, establishments were highly responsive to the incentives created by the thresholds. The effect of

the 2011 tightening of standards on establishments with the lowest Salmonella rates was not statistically

significant. The net effect of the tightening of standards in 2011 was to increase overall Salmonella rates

by about 140 percent.

The safety of poultry processing continues to be relevant in legislation and policymaking today. This

is partly because outbreaks of COVID-19 at meat and poultry processing plants made numerous headlines

in the early stages of the pandemic, and were highlighted particularly for their impact on immigrants and

ethnic minorities. In July 2020, bills were introduced into both chambers of the U.S. Congress to limit

line speeds in chicken-slaughter establishments. According to a press release on Senator Cory Booker’s
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website, increased line speeds have negative implications for both worker health and food safety.4 If

increased line speeds are indeed associated with worse Salmonella outcomes, perhaps improved monitoring

and disclosure of Salmonella test results could offset those welfare losses.

Section 1 provides additional background information on the chicken-slaughter industry and federal

food-safety inspections. Section 2 describes the data and provides descriptive statistics. Section 3 demon-

strates the effects of known categorization on Salmonella test outcomes using an RD design. Section 4

explores the effects of proximity to thresholds when categorization is unknown. Section 5 uses an RD in

time approach to evaluate the effects of each policy change on average Salmonella test outcomes. Section 6

concludes. Appendices provide a description of the data-cleaning procedure and additional validation and

robustness tests.

1. Background on the chicken-slaughter industry and food-safety inspections

Approximately nine billion meat chickens (“broilers”) are produced each year in the United States, typi-

cally grown on farms under contract with slaughter and processing companies (MacDonald, 2015; USDA,

2019). In 2017, there were more than 32,000 farms growing meat chickens in the United States (USDA,

2019), and fewer than 300 federally inspected slaughter facilities. Under the Poultry Products Inspection

Act, the USDA’s Food Safety and Inspection Service (FSIS) is responsible for inspecting poultry and

poultry products that enter interstate commerce. To facilitate traceability, poultry packages must in-

clude a USDA Mark of Inspection with the USDA-assigned establishment number.5 In some states, state

agencies also inspect poultry and poultry products for sale within the state, but the state standards must

be at least as stringent as the federal inspection standards. Small processors (with fewer than 20,000

poultry processed annually) and processors with a retail business may qualify for exemption from inspec-

tion, if their products do not enter interstate commerce. During the period covered in this paper (1999 to

2018), there were up to 302 federally inspected chicken-slaughter establishments, but 75 of these exited

the industry or opted for state inspection during the period. About 60% of establishments are located

in the South, and 20% in the Midwest. Two large companies own about a quarter of all establishments;

4See https://www.booker.senate.gov/news/press/booker-introduces-bill-to-boost-safety-and-protect-
meatpacking-workers-from-covid-19.

5See https://www.fsis.usda.gov/wps/portal/fsis/topics/food-safety-education/get-answers/food-safety-fact-
sheets/food-labeling/how-to-find-the-usda-establishment-number/how-to-find-the-usda-establishment-number.

4

https://www.booker.senate.gov/news/press/booker-introduces-bill-to-boost-safety-and-protect-meatpacking-workers-from-covid-19
https://www.booker.senate.gov/news/press/booker-introduces-bill-to-boost-safety-and-protect-meatpacking-workers-from-covid-19


about half of all establishments are owned by 11 companies with four or more establishments.6 Over the

past two decades, establishments have closed at approximately the same rates in all regions; the rate of

establishment closure by the largest companies mirrors the overall rate of closure in the industry.7

FSIS and its antecedent USDA agencies have regulated the safety of meat since 1890, when fed-

eral legislation enabled inspection of salted pork and bacon for export to certify that the products were

trichinella-free (Olmstead and Rhode, 2015). Federal regulations on meat and poultry inspection have

evolved over time, as have technologies to improve food safety. In recent decades, state public-health au-

thorities adopted several technologies to facilitate tracing outbreaks of food-borne illness to their source,

and have shared data as part of a nationwide network since 2001.8 Around the same time, producers

began to take advantage of new technologies to rapidly detect Salmonella and other pathogens in food,

and gained greater ability to take action to prevent or limit the shipment of food products likely to be

contaminated (Park et al., 2014; Page, 2018). Substantial evidence (e.g., Ollinger et al., 2004; Fulponi,

2006) suggests that private food-safety standards imposed by both buyers and producers have long sur-

passed government food-safety regulations; changes in private standards may have driven improvements

in Salmonella test results just as much as changes in government standards and technology have.

As part of its regulatory activities, FSIS randomly samples chicken carcasses for pathogens including

Salmonella and Campylobacter. Under the Salmonella Verification Testing Program, from 1999 to 2015,

FSIS inspectors assigned ratings or categories to chicken-slaughter establishments based on the number

of positive samples during recent “sample sets” (in FSIS terminology) of 51 carcasses sampled on 51

consecutive operating days. At first, this rating was essentially binary (establishments with 12 or fewer

positive samples out of 51 met the standard) and ratings were not published. Minor sanctions were

imposed in the event of three consecutive sample sets with more than 12 positive samples. Between 2006

and 2015, FSIS undertook several policy changes related to testing of chicken carcasses for Salmonella

and public disclosure of results. The series of policy changes is summarized below and in table 1.

Starting on May 30, 2006, establishments that failed to meet the regulatory standard of 12 or fewer

positive samples in a 51-sample set were designated Category 3. Establishments with 7 to 12 positive

samples were designated Category 2; and establishments with 6 or fewer positive samples were designated

6Based on establishment names; the true concentration may be higher.
7Technically, what I observe regarding closure is that establishments are no longer federally inspected.
8See https://www.cdc.gov/pulsenet/anniversary/timeline.html.
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Category 1. The new category designations were conveyed to firms privately until March 28, 2008, when

the names and locations of Category 2 and 3 establishments were posted publicly on the FSIS website.9

An establishment’s information remained on the website until the establishment attained Category 1

status.

On July 1, 2011, the standard was tightened so that establishments with 6 or more positive samples

out of 51 were designated Category 3 and establishments with 3 to 5 positive samples were designated

Category 2. Starting on the same date, only the names and locations of Category 3 establishments were

published. Put differently, the threshold for disclosure was reduced from 7 positive samples to 6, out

of 51. Establishments would remain on the public list until they attained Category 1 or 2 status.

Effective May 6, 2015, the 51-sample-set framework was replaced with a system of categorization

based on aggregated results over rolling 52-week windows. Public disclosure was temporarily suspended

until categories could be assigned according to the new system. Under the new system, categories were

defined using the same shares: an establishment with more than 9.8% of samples positive (i.e., 5/51)

during any window of the windows ending the previous month would be placed on the Category 3 list

and would remain on that list for a three-month period. This system remained in effect until November

23, 2018.

2. Data and descriptive statistics

Through a Freedom of Information Act (FOIA) request, I obtained data from FSIS on all test results

from the Salmonella Verification Testing Program for broilers from January 4, 1999 to January 25, 2018.

The data set also includes the address and name of establishments and snapshot information on the

FSIS district and circuit to which establishments belonged, FSIS size classifications (very small, small,

and large), and indicators for whether they processed other types of meat and active operation. All

of the data on establishment characteristics reflects characteristics at the time of the data pull. The

data set I obtained from FSIS does not include any indication of the groups of 51 samples (“sample

9The names of Category 2T establishments were also posted publicly starting March 28, 2008. Category 2T
establishments were those that had been designated Category 2 or 3 based on the second-most-recent sample set
but had improved to Category 1 performance in the most recent sample set. Effectively, the introduction of the
Category 2T designation meant that a Category 2 or 3 establishment’s name would be listed until it had completed
two consecutive sample sets with 6 or fewer positive samples. The introduction of the Category 2T designation
would not have changed the nature of incentives related to thresholds, but would have raised the stakes associated
with a single “Category 2” outcome.
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sets”) used to determine regulatory compliance and category designations over 1999–2015. I am able to

assign observations into sample sets by identifying lengthy temporal gaps between observations. I drop

observations that are not likely to have been assigned correctly into sample sets based on this procedure,

as including these observations would generate noise.10

I now provide some evidence that establishment operators were attentive to the thresholds and may

have adjusted their operations to avoid exceeding the thresholds. In figure 1, I plot histograms of the

number of positive samples per sample set for each of the four policy periods over 1999–2015.11 Establish-

ment operators were unable to precisely manipulate the number of positive samples per set because the

presence of Salmonella bacteria in chicken carcasses cannot be precisely controlled and because carcasses

were pulled out of processing lines at random to be sampled. Nevertheless, these histograms provide some

evidence that establishment operators adjusted their operations in response to the thresholds and their

positions relative to the thresholds. In particular, for most thresholds, there are many more sample sets

one or two positive samples below the threshold than one or two positive samples above the threshold.

Indeed, the thresholds tend to be associated with discontinuous drops in the number of sample sets at

each level, when binning observations this way. For example, during the 2006–08 period, about 24.0%

of sample sets had 3 or 4 positive samples, and 21.0% had 5 or 6, while only 8.4% had 7 or 8 and 7.0%

had 9 or 10. The sharp drop in number of sample sets at the 6-positive-sample threshold, and relatively

flat distribution further from the threshold, suggests that establishment operators exerted effort to stay

at or below the threshold but relaxed efforts once above the threshold. Similar results are evident at

the 12-positive-sample regulatory threshold in the 1999–2006 period and the Category 3 threshold in

the 2006–08, 2008–11, and 2011–15 periods. Note, however, that during the periods in which disclosure

of Salmonella categorization was in effect, there is no evidence of bunching at the maximum number

of positive samples allowed for non-disclosure (i.e., 6 positive samples in 2008–11; 5 positive samples in

2011–15); establishment operators could not control Salmonella precisely enough to yield such results.

To provide further evidence that establishment operators were attentive to the regulatory thresholds,

figure 2 plots the share of samples testing positive for Salmonella by test number within each sample

set. For each policy period, I provide a pair or a quartet of graphs that break down observations by

10In essence, if the assignment into sample sets generates sets of many fewer or many more than 51 observations,
I drop the sets. Details on the sample-set assignment procedure are given in Appendix A.

11Because sample sets were not used after May 2015, an equivalent histogram cannot be generated for the last
policy period.
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establishments’ current status relative to the relevant thresholds. That is, the lefthand graph in each pair

shows test observations from establishments with a share of positive tests at or below the threshold, in the

current sample set at the time of the test; each dot represents the average share of samples positive for a

given test number within sample sets. The righthand graph shows observations from establishments that

had a higher percentage of tests positive than the threshold at the time of the test. The quadratic-fitted

curves show clear patterns. When an establishment’s rate of positive samples is at or below (above) the

threshold(s), the likelihood of a positive sample falls (rises) from the beginning to the middle of a sample

set and then rises (falls) again. These patterns imply that when an establishment’s test performance is

good (poor), operators exert less (more) effort when approaching the end of a sample set. In sections 3

and 4, I provide more careful analysis of the effects of an establishment’s status relative to thresholds on

test performance.

In addition to examining Salmonella test performance in the context of incentives related to the

categorization and public disclosure thresholds, I examine the effects of policy changes on overall industry

performance on Salmonella tests, in section 5. As seen in figure 3, the aggregate share of samples positive

declined sharply over the period during which policy changes were being implemented, from 16.2% of

samples positive in 2005 to 2.4% of samples positive in 2015, or a decline of nearly 1.4 percentage points

per year. Since so many changes in technology and buyer requirements for food safety were taking place

concurrently with FSIS policy changes, a careful empirical approach is needed to identify the effects of

disclosure policies on producer behavior with respect to Salmonella control.

3. Effects of known categorization on Salmonella test outcomes

Under each policy regime, establishment operators faced somewhat different incentives related to control-

ling Salmonella. In particular, the penalties associated with exceeding the 5-, 6-, and 12-positive-sample

thresholds were different under the various policy regimes. In this section, I use a regression discontinuity

(RD) model to demonstrate how Salmonella test results changed when establishments crossed thresh-

olds within a sample set, thus ensuring a particular categorization. My hypothesis is that to the extent

that categorization and public disclosure matter, establishment operators relax efforts around Salmonella

control when either (1) additional positive samples result in crossing a threshold into a worse category

(Category 2 or 3) and (2) additional negative samples ensure a better categorization outcome (Category 1
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or 2).

3.1. Empirical approach

A natural and intuitive approach to studying the effects of crossing the discrete 5-, 6-, and 12-positive-

sample thresholds on Salmonella test performance would be to use the number of positive samples within

the sample set as a running variable in an RD design. However, such an approach only works when the

cutoffs are crossed from below (i.e., when an establishment has an additional positive sample). Consider

the following example. If 5 positive samples is the relevant threshold (as it was in 2011–15), and an

establishment has had zero positive samples through 45 tests within a sample set, another negative sample

would guarantee that the establishment will have no more than 5 positive samples out of the 51 samples

in the set. In this case, the incentives for good Salmonella control as they relate to categorization and

public disclosure could not be captured by using the number of positive samples as the running variable.

In addition, an RD design with the number of positive samples as the running variable would not reflect

the differential effects on effort of positive samples near the beginning of a sample set relative to positive

samples near the end. For example, incentives differ when an establishment has 5 positive samples among

the first 10, and when it has 5 positive samples among the first 50.

Given these considerations, the running variable used in the RD approach described in this section is

the share of the remaining samples (within the sample set) that may be positive if the establishment is

to achieve a given categorization (either Category 1 or 2). I term this variable leewayC, or leeway with

respect to category threshold C, and formally define it as

(1) leewayCijk =
C −

∑i−1
l=1 Yljk

52− i
,

where C ∈ {2, 5, 6, 12} is the maximum number of samples permitted to be positive within a sample set,

to achieve the given category; i is the test number within sample set j at establishment k; and
∑i−1

l=1 Yljk is

a count of the number of positive observations within sample set j at establishment k, within the interval

[1, i− 1].12 The denominator 52 − i is a count of the total number of observations that still need to be

collected to complete the sample set, including i. I exclude any observations with i > 51, as these extra

12Figure 4 helps provide some intuition for the empirical approaches in this section and section 4.

9



samples would not have affected categorization.13

Thus, I use the following regression equation for the RD model to investigate the effects of crossing

category thresholds on Salmonella test results:

(2) Yijk = α+ β0D0ijk + β1D1ijk + f (leewayCijk) + γ1tijk + γ2i+ γ3sj−1,k + εijk,

where Yijk is a binary variable representing the results of test i for Salmonella within sample set j

at establishment k (positive = 1), D0ijk = 1 {leewayCijk ≥ 0}, D1ijk = 1 {leewayCijk ≥ 1}, f (·) is a

polynomial function that can take on different values on either side of each cutoff (c ∈ {0, 1}); tijk is the

sample collection date; sj−1,k is establishment k’s share of samples positive in sample set j − 1, and εijk

is the residual.

Following Calonico et al. (2014), Cattaneo et al. (2020b), and Cattaneo et al. (2020c), I use sharp

RD analysis with local linear regressions, triangular kernel weighting, bandwidths chosen to minimize

mean squared errors on either side of both cutoffs, and robust nonparametric confidence intervals. In

appendix tables, I also provide results using quadratic polynomials for the running variable and linear

polynomials with Epanechnikov kernels to demonstrate the robustness of significant results from the

main specifications. However, it should be noted that Cattaneo et al. (2020b) recommend using linear

polynomials with triangular kernels.

3.2. Validity of the RD design

In most contemporary studies that use RD approaches (see Lee and Lemieux, 2010; Calonico et al., 2014;

Cattaneo et al., 2020b), two empirical tests are used to allay concerns that the running variable may be

manipulated by agents (in this case, establishment managers or FSIS inspectors). One test shows that

the running variable is smooth around the cutoff(s), that is, as-good-as-randomly distributed on either

side of the cutoff(s) within a narrow band. This is typically tested using a density test as described by

McCrary (2008); a recent update is proposed by Cattaneo et al. (2018). The second test shows that

baseline covariates are also randomly distributed around the cutoff value(s) of the running variable by

running an RD model on the baseline covariates.

13As discussed in Appendix A, FSIS inspectors sometimes collected more than 51 samples but the extra samples
were not used for categorization.
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Given that the running variable used in the regressions in this section is a ratio with some values

(especially 0 and 1) much more common than others, density tests may yield spurious rejections of the

null hypothesis (smoothness). To demonstrate this, I simulate 10,000 values of the leewayC variables for

each test i ∈ {1, . . . , 51} according to a Bernoulli distribution with the probability of a positive sample

equal to the mean share of positives in each of the four policy periods when sample sets were used. The

rddensity test proposed by Cattaneo et al. (2018) suggests that the running variable has discontinuous

density at the cutoffs (p < 0.001) in nearly all cases using both the simulated and real data.14 For another

comparison of smoothness in the running variable, I use t-tests to compare the ratios of the number of

observations with leewayC = 0 and leewayC = 1, over the number of observations with leewayC < 0

and leewayC ∈ [0, 1], across my real and simulated data. I find that the real data are somewhat smoother

than the simulated data at leewayC = 0 (p = 0.097) and almost exactly as smooth at leewayC = 1.

Given that the running variable is inherently lumpy even in the simulated data, I conclude that the

distribution of the running variable is as good as random around the cutoffs.

The second common way to test for manipulation of the running variable is to run an RD model on

baseline covariates. A finding that the baseline covariates are discontinuous at the cutoffs may imply

that agents are able to manipulate their status with respect to the cutoffs and that manipulation ability

is somehow correlated with baseline characteristics of establishments. Because the running variable used

in the regressions in this section is a ratio that takes on certain values much more frequently than

other values, RD estimates of the effects of the actual cutoffs and many placebo cutoffs on the baseline

covariates are statistically significant across many policy periods. I suggest that the unusual nature of

the running variable makes a manipulation test based on baseline covariates inappropriate. Instead, I

rely on a practical approach suggested by Eggers et al. (2015) and de la Cuesta and Imai (2016) to argue

that manipulation is unlikely. Since agents cannot determine the values of their running variables with

“extreme precision” (de la Cuesta and Imai, 2016),15 it is unlikely that manipulation is done on the

basis of predetermined covariates. Furthermore, visual examination of the histograms of the number of

positive samples per completed sample set in figure 1 suggests that manipulation through post-test fraud

14For some of the cutoff and policy-period combinations, the rddensity test does not produce estimates using
the simulated data because there are not enough observations on one side of one threshold.

15Recall that the denominator of the running variable is test number within the sample set, which cannot be
controlled by the establishment managers. Furthermore, establishments had relatively poor ability to precisely
control their share of positive tests and stay below the disclosure thresholds.
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is also unlikely. When disclosure was in place (starting in 2008), the density of cumulative positive tests

per sample set was clustered well below the disclosure thresholds, with no discontinuity just below the

thresholds. The increased density of cumulative positive tests further below the thresholds suggest that

establishment managers exerted (legitimate) effort to stay below the thresholds, and not that fraudulent

behavior helped them stay below the thresholds.

3.3. Results: Effects of known categorization on Salmonella test outcomes

The results of the RD models, shown in table 2, strongly suggest that establishment operators relaxed

efforts around Salmonella control when categorization outcomes were known, especially when disclosure

was not possible. Panel A of table 2 shows estimates of the RD coefficients at the leewayC = 0 and

leewayC = 1 cutoffs for the thresholds C associated with regulation or categorization but not with

disclosure, and panel B shows estimates of the same RD coefficients for the thresholds C associated with

disclosure. The RD coefficients reflect the discontinuous effect of the running variable as it increases

in value and passes each of the cutoffs. So, the interpretation of the coefficients is as follows: negative

coefficients on the leewayC = 0 cutoffs imply that positive test results were less likely when leewayC ∈

[0, 1) than when leewayC < 0; positive coefficients on the leewayC = 1 cutoffs imply that positive test

results were more likely when leewayC ≥ 1 than when leewayC ∈ [0, 1). Interpretations of specific results

in table 2 follow.

During the initial 1999–2006 period, when the category system had not yet been introduced and FSIS

did not impose sanctions until establishments failed to meet the 12/51 threshold on three consecutive sam-

ple sets, crossing the leeway12 = 0 and leeway12 = 1 thresholds had no effect on subsequent Salmonella

test performance.

During the 2006–08 period, when categorization was known only to the establishment (no disclosure),

establishments had worse results after crossing the thresholds that ensured Category 2 and 3 outcomes.

In particular, establishments were 6.1 percentage points more likely to have positive Salmonella test

outcomes after failing to meet the 6/51 threshold necessary to be denoted Category 1, and 7.9 percentage

points more likely to have positive samples after failing to meet the Category 2 standard (see table 2,

panel A, columns 3 and 5).

During the 2008–11 policy period, the names of both Category 2 and 3 establishments were posted
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on the FSIS website. My results, in table 2, panel B, columns 1–4, show that the cutoff values of leeway6

and leeway12 had statistically insignificant effects on subsequent Salmonella test performance.16 This

result is surprising, given that test results worsened after establishments failed to meet the Category 1

and 2 thresholds in the previous period, when establishment names were not disclosed. One possible

explanation is that operators may have been especially diligent about Salmonella control during this

period, for fear of increasingly stringent regulations down the line.

During the 2011–15 policy period, the thresholds associated with Category 2 and 3 were tightened so

that Category 1 consisted of establishments with two or fewer positive samples out of 51 and Category 3

consisted of establishments with 6 or more. Under these new, more stringent thresholds, only the names

of Category 3 establishments were publicly disclosed. During 2011–15, establishments were 8.9 percentage

points more likely to have positive samples after failing to attain Category 1 status (table 2, panel A,

column 7). As in the 2008–11 period, the cutoff values associated with the Category 3 threshold did not

have statistically significant effects on Salmonella test performance.

During the 2015–18 period, sample sets were no longer used and establishments with more than 9.8

percent of samples positive during any 52-week window ending within the last three months were listed

as Category 3 on the FSIS website. Table 2, panel A, column 9 shows that establishments were 3.3

percentage points more likely to have positive samples after failing to meet the Category 1 standard for

the soonest-ending window.

Table 2, Panel B, column 8 shows that during the 2015–18 period, establishments were 2.2 percentage

points more likely to have positive samples after being assured of meeting the Category 2 standard for the

soonest-ending window. Since the rolling-window system to determine disclosure status ensured that a

failed test result would affect categorization for the next 15 months, the soonest-ending window should not

have been the only goalpost. Yet the results suggest that the continuous-sampling regime that replaced

sample sets did not fully eliminate moral hazard as it was designed to do.

I now summarize the results in table 2. First, when establishments fail to meet thresholds but are

not subject to public disclosure, Salmonella test performance worsens (panel A, columns 3, 5, 7, and 9).

Second, when establishments fail to meet thresholds therefore subjecting them to public disclosure, there

is no statistically significant change in Salmonella test performance (panel B, columns 1, 3, 5, and 7).

16The insignificant effects are robust to the polynomial and kernel choices.
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Third, in most cases, establishment operators do not relax efforts after sustained good performance on

Salmonella tests ensured they would avoid public disclosure. The exception was during the 2015–18

period, when the categorization system was revised to reduce the potential for moral hazard (panel B,

column 8).

3.4. Robustness tests

The RD results reported in tables A1 and A2 are for models that use quadratic polynomials and Epanech-

nikov kernels, respectively, but are otherwise identical to table 2. Again, keep in mind that Cattaneo

et al. (2020b) recommend using local linear regressions in the running variable and triangular kernels, so

the emphasis should be on where the various models reach similar conclusions, and not on where they

diverge. I now review the statistically significant results in tables A1 and A2.

Table A1 uses triangular kernels and quadratic polynomials. Three of the 18 RD coefficients in table A1

are statistically significant with p < 0.03. Similar to the result in table 2, failing to meet the Category 1

standard in the 2006–08 period increased the likelihood of a positive test result by 5.1 percentage points

(panel A, column 3); failing to meet the Category 1 standard in 2015–18 increased the likelihood of a

positive test result by 4.5 percentage points (panel A, column 9); and establishments were 3.9 percentage

points more likely to have positive samples in 2015–18 if they were certain to meet the Category 2 standard

and avoid disclosure (panel B, column 8).

Table A2 uses linear polynomials and Epanechnikov kernels; three of the 18 RD coefficients are

statistically significant with p < 0.01 and one is marginally significant. According to these results, failing

to meet the regulatory standard (12 positive samples) in 1999–2006 increased the likelihood of a positive

sample by 2.2 percentage points (panel A, column 1). This result suggests that during this period,

the regulatory standard did not create particular incentives for moral hazard and that establishment

operators exerted effort to improve Salmonella test performance after failures. (Recall that FSIS did

not impose any kind of sanctions during this period until establishments failed to meet the standards on

three consecutive sample sets.) Similar to results in both tables 2 and A1, failing to meet the Category 1

standard in the 2006–08 period increased the likelihood of a positive test result by 5.8 percentage points

(panel A, column 3); and failing to meet the Category 1 standard in 2015–18 increased the likelihood of

a positive sample by 3.3 percentage points (panel A, column 9). Finally, consistent with the other two
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sets of results, establishments were 2.0 percentage points more likely to have positive samples in 2015–18

if they were certain to meet the Category 2 standard and avoid disclosure (panel B, column 8). The last

effect is weaker than in the other two sets of results (p = 0.085).

Two RD coefficients are consistently estimated to be statistically significant with p < 0.05 (and have

the same sign) across all three sets of tables. These results both suggest moral hazard or shirking in

specific policy periods. To recap, establishments’ test results worsened after they failed to meet the

Category 1 standard in 2006–08, before the introduction of public disclosure. They also worsened after

good test performance ensured they would avoid disclosure during the 2015–18 period, even though the

sample-set system had been replaced during that period with categorization based on rolling windows to

encourage establishment operators to maintain good safety regardless of recent test results.

3.5. Results for placebo cutoffs

In table A3, I present results for regressions parallel to those in table 2 using placebo cutoff values for

the running variables (leewayC). The time periods and thresholds shown here represent the statistically

significant estimates from table 2. The placebo cutoff values are three multiples of 0.05 in either direction

from c = 0; and the nearest multiples of 0.05 to c = 1 for which optimal bandwidths (in the sense of

minimizing mean squared errors) could be computed using the rdms command in Stata (Cattaneo et al.,

2020c).

In panels A through D of table A3, five of the 24 RD coefficients are statistically significant with

p < 0.1, but only one of these has the “correct” sign in the sense that it is consistent with the estimate

for c = 0 in table 2 and the expectations about incentives for shirking that motivate the analysis in this

section. While the number of statistically significant placebo coefficients is higher than one would expect,

it is reassuring that all but one have incorrect signs (whereas all five significant coefficients in table 2 have

the correct signs).

One of the placebo cutoffs shown in panel E of appendix table A3 (leeway5 = 1.3) yields an even

larger coefficient estimate (3.9 percentage points) than the result in table 2, column 8. This placebo

result is more precisely estimated than the one in table 2 and is robust to polynomial and kernel choices.

While this placebo result appears to raise doubts about the main result, it is not an actual concern.

Recall that the regressions for 2015–18 in table 2 use the soonest-ending window to calculate the value
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of the leeway variable but that each observation was associated with up to 52 windows. Conditioning

on establishments meeting the Category 1 or 2 standard for the soonest-ending window, crossing the

leeway5 = 1 cutoff for the second-soonest-ending window leads to a 5.1 percentage point rise in the

likelihood of subsequent positive samples (see appendix table A4).17 Therefore, the RD coefficient on

the placebo cutoff leeway5 = 1.3 provides additional support for the finding that establishments relaxed

efforts when they were certain to avoid having their names listed as Category 3 on the FSIS website.

4. Proximity to regulatory thresholds and Salmonella test outcomes

The previous section demonstrates that in some cases, crossing regulatory thresholds with a series of

positive or negative Salmonella test results leads to significantly worse results on subsequent Salmonella

tests. In this section, I use a series of regressions to evaluate the relationship between proximity to

thresholds, when multiple category outcomes are still possible, and Salmonella test performance. As in

the previous section, the dependent variable is the binary Salmonella test result. The key explanatory

variable in these regressions is again leewayC. Larger values of leewayC indicate that a larger share of

remaining samples could test positive for Salmonella. Therefore, if the Salmonella category assignment

matters to producers, then Salmonella control efforts should increase when the value of leewayC is smaller

within the [0, 1) interval. To estimate the relationship between leewayC and test outcomes when multiple

category outcomes are possible, I use only observations with leewayC ∈ [0, 1).

I estimate the relationship between leewayC and Salmonella test outcomes under each policy regime

using a series of linear probability models, according to equation 3:

(3) Yijk = α+ βleewayCijk + γ1i+ γ2sijk + ukm(ijk) + εijk,

where Yijk is a binary variable representing the results of test i for Salmonella within sample set j at

establishment k (positive = 1); sijk is the share of samples positive within the current sample set (over

tests 1, . . . , i − 1); ukm(ijk) represents establishment–month–year fixed effects; and εijk is the residual.

For the 2015–18 period, I cannot use the test number regressor (k) because sample sets were not used

17In my data set, leeway51 = 4/3 corresponds to leeway52 = 1 about two thirds of the time (where the subscripts
indicate the soonest-ending and second-soonest-ending windows). So, if the placebo cutoff leeway51 = 1.3 is
estimated to increase the rate of positive Salmonella tests by 3.9 percentage points, this corresponds roughly with
the estimated effect of crossing the leeway52 cutoff (5.1 percentage points × 2/3 = 3.4 percentage points).
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during this period and windows had varying numbers of observations. Note that in the 2015–18 period,

the analysis uses the leewayC variable that reflects the soonest-ending window.

Admittedly, there are some shortcomings in the identification strategy described here, given that

leewayCijk is (mechanically and empirically) negatively correlated with the share of samples positive sijk

and positively correlated with the test number i. However, it is essential to control for recent test results

at each establishment, given that average test results vary widely across establishments. Establishment

operators cannot (precisely) control any of these three regressors, so leewayC is plausibly exogenous. By

including sijk and i as regressors, I can tease out effects of proximity to the threshold on Salmonella

control efforts. Moreover, my empirical results are generally consistent whether or not I include sijk as a

regressor.

Table 3 presents results from regressions of the form described by equation 3, which demonstrate the

effect of proximity to the thresholds on Salmonella test outcomes, for the policies in place from 1999 to

2015. Table 3 demonstrates that in all periods, when the value of leewayC was larger, carcasses were

more likely to test positive for Salmonella. In other words, establishments controlled Salmonella better

when it was necessary to ensure a better categorization outcome. These results hold regardless of whether

the policy of public disclosure of Category 2 and 3 outcomes was in place. I now review the results in

more detail.

Panels A and B of table 3 report results for the regressions for the policies in place from 1999 to 2015

with respect to the thresholds equivalent to the maximum number of positive samples associated with

Categories 1 and 2, respectively.18 From 1999 to 2006, when categorization had not yet been introduced

but 12 positive samples out of 51 was a regulatory requirement, Salmonella test outcomes were worse

when establishments were closer to both the 6- and 12-positive-sample thresholds. When the leeway12

value was 10 percentage points higher, the probability of a positive test result was 4.88 percentage points

higher (p < 0.001). The elasticity of the share of samples positive with respect to leeway12 was 1.39,

calculated using the mean share of samples positive and the mean value of leeway12.

From 2006 to 2008, when categorization was reported privately, the relationship between proximity

to the 12-positives threshold and Salmonella test outcomes was stronger (columns 3 and 4). When the

leeway6 value was 10 percentage points higher, the probability of a positive test result was 3.39 percentage

18All discussion of results in tables 3 and 4 references the even-numbered columns, as they are the preferred
specifications.

17



points higher (p < 0.001; elasticity = 0.74), and when the leeway12 value by 10 percentage points higher,

the probability of a positive test result was 3.82 percentage points higher (p < 0.001; elasticity = 1.52).

Public disclosure of the names of both Category 2 and 3 establishments from 2008–11 further strength-

ened the relationship between proximity to the thresholds and test results (columns 5 and 6). During

this period, when the leeway6 value was 10 percentage points higher, the probability of a positive test

result was 2.28 percentage points higher (p < 0.001; elasticity = 0.86), and when the leeway12 value was

10 percentage points higher, the probability of a positive test result was 4.11 percentage points higher

(p < 0.001; elasticity = 2.46).

Over 2011–15, the standards were tightened and only the names of Category 3 establishments were

posted. Correspondingly, the relationship between the leeway value associated with the Category 1/2

threshold and test outcomes was weaker over 2011–15 (columns 7 and 8). When the leeway2 value was

10 percentage points higher, the probability of a positive test result was 0.91 percentage points higher

(p < 0.001; elasticity = 0.43). The relationship between the leeway value associated with the Category 2/3

threshold and test outcomes was also highly significant but much weaker than in the 2006–08 and 2008–11

periods: when the leeway5 value was 10 percentage points higher, the probability of a positive test result

was 0.96 percentage points higher (p < 0.001; elasticity = 0.84).

As previously discussed, from 2015–18, categorization and disclosure were based on results over 52-

week rolling windows. In table 4, I present results of regressions that use leeway2 and leeway5 for the

soonest-ending window; and in addition, results of regressions that use the leeway values for all (i.e, up to

52) windows associated with any given test result. In table 4, I do not report coefficient estimates for the

windows after the soonest-ending window because they are mostly insignificant. In the full specifications,

there is no statistically significant relationship between leeway2 and Salmonella test outcomes. However,

when the leeway5 value for the soonest-ending window was 10 percentage points higher, the probability

of a positive Salmonella test result was 2.58 percentage points higher (p=0.013; elasticity = 1.82) holding

the leeway values for all other windows constant.

What should we take away from all of these results? To put it most simply, incentives matter.

Salmonella test results were better when they needed to be. Proximity to thresholds mattered whether

or not there was a threat of public disclosure, but the relationship between proximity and test outcomes

tended to be stronger when the thresholds were associated with disclosure when considering the rela-
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tionships as elasticities. Lastly, in the 2015–18 periods, Salmonella test results were strongly associated

with the Category 2 disclosure threshold for the soonest-ending window, even though each individual test

result would be used to determine categorization for up to 15 months into the future. Most of the results

outlined above are consistent with the findings in the previous section, which suggested that Salmonella

test results generally worsened when Category 1 status was impossible, and that over 2015–18, test results

worsened when attaining Category 2 (rather than Category 3) was guaranteed.

5. Effects of changes in categorization and disclosure policies on average Salmonella

test outcomes

Lastly, I evaluate the effects of the series of policy changes on average Salmonella test results. Here, I use

a regression discontinuity in time (RDiT) approach (Hausman and Rapson, 2018). This section builds

on the results of Ollinger and Bovay (2020), who evaluate the effects of the 2006 and 2008 FSIS policy

changes on Salmonella test performance of chicken-slaughter establishments using annual data on the

establishments’ average share of samples positive. Ollinger and Bovay (2020) find that the introduction

of the categorization system in 2006 led to a 6 to 10 percentage-point reduction in the share of samples

positive and that public disclosure of the names of Category 2 and 3 establishments in 2008 led to a 3 to

5 percentage-point reduction. By using carcass-level test result data and an RDiT approach, the analysis

in this section refines the earlier analysis of Ollinger and Bovay (2020).

As in section 3, I use sharp RD analysis with local linear regressions, triangular kernel weighting,

bandwidths chosen to minimize mean squared errors on either side of each cutoff, and robust nonpara-

metric confidence intervals (Calonico et al., 2014; Cattaneo et al., 2020b,c). The regression equation is as

follows:

(4) Yikt = α+ β1D1t + β2D2t + β3D3t + β4D4t + f(t) + εikt.

The running variable is the sample collection date and the four dates of policy changes are the cutoffs.

The binary dependent variable Yikt is the Salmonella test outcome for sample i at establishment k on

date t (positive = 1), Djt = 1 {t ≥ cj} for each of the four cutoffs cj , f (·) is a polynomial function that

can take on different values on either side of each cutoff, and εikt is the residual. The RD bandwidths are
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selected separately for each date of policy change to minimize mean squared error on each side of each

cutoff date, as recommended by Cattaneo et al. (2020b). As discussed by Hausman and Rapson (2018),

tests for smoothness in density of the running variable are inappropriate to establish the validity of RDiT

designs.

5.1. Results: Effectiveness of policy changes

Panel A of table 5 presents results from the RDiT model described by equation 4 using all observations

from all establishments. The results suggest that the introduction of public disclosure in 2008 led to a 5.1

percentage point reduction in the probability of positive Salmonella samples. Given that 9.2 percent of

samples tested positive for Salmonella during the 177 days before the policy change (i.e., the MSE-optimal

bandwidth), the introduction of public disclosure reduced Salmonella levels by 55 percent. Other policy

changes, in 2006, 2011, and 2015, had statistically insignificant effects on average test outcomes.

Including observations from establishments that were active in earlier periods but not in later periods

may bias the results in panel A if, for example, establishments with worse food safety were more likely

to exit the industry for reasons unrelated to FSIS inspections and disclosure policies. Panel B drops all

establishments that were listed as “inactive” at the time the data set was created. In this way, panel B

achieves better balance of (unobserved) covariates than panel A. The results in panel B suggest again that

the introduction of public disclosure in 2008 led to a large (4.8 percentage point; 55 percent) reduction

in the probability of positive Salmonella samples, but that the subsequent tightening of the thresholds in

2011 led to an even larger (6.8 percentage point; 139 percent) increase.19 There are a couple of different

interpretations of the estimated increase in positive Salmonella samples starting in 2011, when removing

establishments that ever exited. One is that many establishments with worse performance exited around

the time of the 2011 policy change. The other is that many operators of worse-performing establishments

remained active but gave up on trying to meet the now more stringent standard necessary to avoid

disclosure.

To explore the first of these two interpretations, I query the data and find that ten establishments

exited during the 2011–15 policy period. On average, these establishments had 8.8 percent of samples test

19Panel B uses different bandwidths than panel A, again by minimizing mean squared error on each side of each
cutoff date. Percent changes are again calculated using the share of samples positive within the MSE-optimal
bandwidth before the policy changes as the baselines.
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positive for Salmonella during this policy period, as compared with 4.0 percent for all other establishments

(p < 0.0000 for t-test for difference in means). However, only three of the ten ever reached the 6-sample

threshold necessary to be listed as Category 3 during the 2011–15 period. So, while the establishments

that exited during 2011–15 had worse Salmonella test results on average, it is not clear that establishments

exited because of the increased stringency that began in 2011.

The latter interpretation, that operators gave up on trying to meet the now more stringent standard,

appears to be more plausible. Table 6 shows the estimated RDiT effect of the 2008 and 2011 policy

changes, splitting the samples by establishment-level average Salmonella test results over 2006–08 and

2008–11, respectively.20 The 2008 policy change is estimated to have reduced the share of samples positive

for establishments at each performance level, although the effect is only statistically significant for those

with average test results equivalent to Category 1. Establishments with different safety records responded

to the 2011 policy change differently. Establishments that had an average of more than 5 out of 51

(about 9.8 percent) positive samples during the 2008–11 period (corresponding to the 2011–15 Category

3 threshold) had a 17.7 percentage point (111 percent) increase in the likelihood of positive samples at

the time of the 2011 policy change. Meanwhile, establishments with average test results during 2008–11

that would place them in the new Category 2 (more than 2, and no more than 5 positive samples out of

51) had a 3.9 percentage point decrease in positive samples at the time of the policy change. As stated

above, the overall effect was to greatly increase the share of samples positive, by 6.8 percentage points or

about 139 percent, among establishments that remained active through 2018.

How did the complete series of policy changes affect average Salmonella levels in chicken carcasses?

Adding up the RDiT coefficients in panel A or panel B of table 5 (regardless of statistical significance)

suggests that the four policy changes cumulatively increased the share of samples testing positive by be-

tween 0.6 and 2.9 percentage points. If we only consider the statistically significant coefficients in tables 5

and A5, the net effect of the four policy changes is somewhere between a 5.1 percentage-point decrease

and a 12.7 percentage-point increase. Of these, the best estimate is probably that in panel B of table 5:

that the 2008 policy change decreased the likelihood of positive Salmonella samples by 4.8 percentage

points and the 2011 policy change increased the likelihood by 6.8 percentage points, a net increase of

2.0 percentage points (23 percent relative to the 2006–08 baseline).

20All results described in the rest of this section use the same data set as panel B of table 5, dropping all
establishments that ever exited.
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5.2. Effectiveness of policy changes: robustness tests

For RDiT approaches to analysis of policy changes, Hausman and Rapson (2018) recommend a few

additional robustness tests. First, as recommended by Cattaneo et al. (2020a) for RD designs where the

data have many “mass points”, I collapse the data set and use the daily share of samples positive, across

all establishments, as my dependent variable. The results, in panel A of table A5, essentially conform

with the results in panel B of table 5 above: the introduction of public disclosure in 2008 led to a 4.3

percentage point decrease in the share of samples positive, while the tightening of standards in 2011 led to

a 6.4 percentage point increase. The 2015 policy change is also estimated to have led to a 2.4 percentage

point decrease, although this result is marginally significant (p = .096).

Second, I employ a “donut” approach as recommended by Barreca et al. (2011) to ensure that

Salmonella sampling dates were not subject to manipulation around the dates of the policy changes,

which might have occurred if sampling dates were misreported or establishments briefly shut down be-

fore or after policy changes. These results are again similar to the main results in table 5 above. The

donut specifications, removing all observations within 1 to 7 days on both sides of policy changes, yield

somewhat larger estimated effects of the 2008 policy change (a 4.9 to 5.8 percentage point decrease in

the share of samples positive) and somewhat smaller estimated effects of the 2011 policy change (a 6.3

to 6.7 percentage point increase) than the main specification. Panel B of table A5 shows results for the

RDiT regression with all observations within 7 days of the policy changes removed. For the 7-day donut

specification only, the 2015 policy change is estimated to have decreased the share of samples positive by

2.5 percentage points (p = 0.096).21

Third, I drop all observations belonging to sample sets that span two policy periods. Under each policy

regime, category status was assigned on the basis of sample sets as they were completed; incomplete sample

sets were not reset at the time of the policy changes. The exception is the 2015–18 period, under which

the “sample set” concept was not used. When I drop observations from sample sets that span policy

periods, the estimated RDiT effects change somewhat: the introduction of disclosure in 2008 resulted in a

5.4 percentage point decrease in the share of samples positive (though not statistically significant), while

the 2011 tightening of standards led to a 12.7 percentage point increase (p = 0.002).

While the various specifications yield somewhat different point estimates, the sign and magnitude

21For the smaller donuts, the 2015 effect is insignificant with p > 0.13.
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of the estimates are fairly consistent. The introduction of mandatory disclosure in 2008 resulted in a

significant improvement in average Salmonella test results, roughly a 55 percent reduction in the share

of samples positive. Perversely, though, the tightening of standards in 2011 resulted in a significant

worsening of test results, more than doubling the share of samples positive. I documented above that

establishments’ responses to the 2011 policy change are correlated with Salmonella test performance in

the prior period.

As another robustness test, I use several sets of placebo dates of policy changes. Each policy change

was preceded by an announcement in the Federal Register about the scheduled policy change. In Panel A

of table A6, I use the dates of each Federal Register announcement as the cutoffs. I find that Salmonella

test results did not change discontinuously at the dates of the announcements. In Panels B through E

of table A6, I use placebo dates 120, 240, 360, and 480 days before the actual policy changes. Under

the null hypothesis, with 20 placebo cutoff values, one placebo would be expected to have p < 0.05 and

two would be expected to have p < 0.10. In table A6, the lowest p-value is 0.094. We can therefore be

confident in the estimated effects of the policy changes presented above.

To recap, the introduction of public disclosure in 2008 decreased the rate of positives by about 55 percent.

When only considering establishments that remained active until 2018, the tightening of standards in

2011 more than doubled the rate of positives, a result driven by the worst-performing establishments.

It is clear that while the initial public disclosure policy was successful in improving the average rate of

positive Salmonella samples, the next policy change worsened test outcomes and more than offset this

improvement. The RDiT approach using carcass-level data provides convincing evidence that the series

of policy changes over 2006–15 had little effect on average Salmonella test results.

6. Summary and conclusion

Using carcass-level data on USDA inspections for Salmonella in chicken carcasses from 1999 to 2018, I

demonstrate several ways in which chicken-slaughter establishments responded to incentives created by

the inspection, categorization, and disclosure policies. First, using a regression discontinuity approach,

I demonstrate that when establishments fail to meet categorization thresholds, Salmonella test perfor-

mance worsens only if the failures do not subject them to public disclosure. Under the more stringent
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disclosure policy in place from 2015 to 2018, establishment operators relaxed efforts after sustained good

test performance ensured they would avoid public disclosure. Second, I document that when two or more

categorization outcomes are possible and establishments have more leeway with respect to the thresholds,

their performance on Salmonella tests worsens. Third, while the initial public disclosure policy in 2008

reduced the average rate of positive Salmonella samples by about 55 percent, the net effect of the series

of policy changes was to increase the average rate of positive samples by about 23 percent. I demon-

strate that the worst-performing establishments had much worse performance after the 2011 tightening

of standards.

There are some limitations to this study, naturally. The formal tests for manipulability of the running

variable in the RD models on categorization fail because of the lumpy nature of the running variable.

Also, the RD coefficient estimates in section 3 are not always robust to different specifications, such as

using quadratic polynomials in the running variable or Epanechnikov kernels. The identification strategy

used in section 4 to study the relationship between leeway and test results when two or more categories

were possible may not permit causal claims. There are some drawbacks to the data set I obtained from

FSIS, too. It has very few time-varying covariates that can be used in any of the regressions. Lastly,

there is some uncertainty about the sample sets I reconstructed for this analysis. Nonetheless, the paper

shows convincingly that slaughter establishments responded to the perverse incentives created by the

FSIS testing and disclosure system. Moreover, it shows that the series of policy changes from 2006 to

2015 had little net impact on Salmonella in chicken carcasses, when controlling for exit from the industry.
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Figure 1: Histograms of the number of positive samples per sample set, by policy period
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Notes: Each panel represents the density of the number of positive samples per 51-sample set, for
each policy period. Vertical lines represent the regulatory threshold (until 2006) and the category
thresholds (starting in 2006).
Source: Generated by the author using data from FSIS.
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Figure 2: Mean share of samples positive, by test number within sample sets and by policy period
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Notes: Each pair or quartet of graphs is broken down by establishments’ current status relative
to the relevant thresholds. That is, the lefthand graph in each pair shows test observations from
establishments that had a lower percentage of tests positive than the threshold, in the current
sample set at the time of the test; the righthand graph shows observations from establishments
that had a higher percentage of tests positive than the threshold. Each dot represents the
average share of samples positive for a given test number within sample sets. The solid curves
are fitted quadratics, and the shading represents 95% confidence intervals.
Source: Generated by the author using data from FSIS.
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Figure 3: Monthly average rate of Salmonella samples positive, with fitted OLS regression
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Figure 4: Motivating the analysis of moral hazard
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Notes: This figure is intended to explain the incentives for establishments to control Salmonella
relative to the leeway variables. When leeway ≥ 1, incentives to control Salmonella are weak,
because the establishment may have 100% of remaining samples test positive and still be
categorized the same way. When leeway < 0, incentives are also weak because even if none of the
remaining samples test positive, the establishment will still fail to achieve the threshold
associated with the better categorization. When 0 ≤ leeway < 1, incentives decrease with leeway
because with more leeway, establishments may have a higher share of remaining samples test
positive and still achieve the threshold associated with the better categorization.
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Table 1: Summary statistics: FSIS Salmonella test outcomes by policy period

FSIS policy regime Dates in place Share Observations
positive

Three-strikes system 1/4/1999 to 5/29/2006 0.130 71,449
Categories (privately reported) 5/30/2006 to 3/27/2008 0.100 20,406
Categories 2 and 3 published 3/28/2008 to 6/30/2011 0.068 21,478
Category 3 published, tighter standard 7/1/2011 to 5/5/2015 0.042 35,083
Categories assigned based on continuous sampling 5/6/2015 to 1/25/2018 0.045 24,206

Notes: Average, unweighted, share of samples testing positive for Salmonella during each policy period.
My data set begins on January 4, 1999 and ends on January 25, 2018; FSIS Salmonella testing began
earlier and is still ongoing.
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Table 2: Effects of known categorization on Salmonella outcomes

Panel A: Cutoffs not associated with disclosure
Public disclosure

Policy regime No categorization Categorization (private) w/ tighter standards Rolling windows
Years 1999 to 2006 2006 to 2008 2011 to 2015 2015 to 2018

RD cutoff (c) 0 1 0 1 0 1 0 1 0 1
Max. # pos. samples (C) 12 12 6 6 12 12 2 2 2 2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LeewayC ≥ c 0.043 −0.021 −0.061 0.046 −0.079 0.026 −0.089 0.006 −0.033 0.010
Robust p-value 0.656 0.709 0.000 0.373 0.001 0.412 0.005 0.467 0.002 0.385
95% CI (lower limit) −0.11 −0.24 −0.21 −0.09 −0.54 −0.06 −0.14 −0.01 −0.06 −0.01

(upper limit) 0.07 0.16 −0.06 0.03 −0.14 0.14 −0.03 0.02 −0.01 0.03
Observations 23969 5594 13520 14287 10397 2396 17174 19160 14595 10904
Left bandwidth 0.53 0.13 1.29 0.99 0.75 0.17 0.14 0.95 4.22 0.24
Right bandwidth 0.13 2.33 0.31 2.84 0.47 2.13 0.95 1.05 1.00 1.00

Panel B: Cutoffs associated with disclosure
Public disclosure

Policy regime Public disclosure w/ tighter standards Rolling windows
Years 2008 to 2011 2011 to 2015 2015 to 2018

RD cutoff (c) 0 1 0 1 0 1 0 1
Max. # pos. samples (C) 6 6 12 12 5 5 5 5

(1) (2) (3) (4) (5) (6) (7) (8)

LeewayC ≥ c 0.024 0.015 0.155 −0.024 −0.013 0.001 −0.031 0.022
Robust p-value 0.436 0.200 0.660 0.582 0.672 0.270 0.243 0.019
95% CI (lower limit) −0.13 −0.09 −0.21 −0.10 −0.11 −0.04 −0.07 0.01

(upper limit) 0.06 0.02 0.33 0.05 0.07 0.01 0.02 0.08
Observations 11056 13813 9228 2495 8378 21453 9244 12129
Left bandwidth 0.80 0.29 0.24 0.48 0.66 1.00 3.17 1.00
Right bandwidth 1.00 2.45 0.20 1.90 0.14 2.23 0.39 1.83

Notes: Each pair or quartet of columns represents regressions using observations from the policy regimes beginning and ending in the indicated years. For sample sets that span
the dates of policy change, all observations are included in the later policy period. All regressions are local linear RD regressions with triangular kernels, using leewayC as the
running variable, as described in the text. Bandwidths, robust p-values, and confidence intervals are calculated using the rdms command in Stata (Cattaneo et al., 2020c),
clustering on establishment using nearest-neighbor estimation for the variance-covariance estimator. Bandwidths are chosen to minimize mean squared error on either side of
each cutoff. All regressions control for sample collection date, test number within sample set, and the share of samples positive in the establishment’s prior sample set.
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Table 3: Effects of proximity to category thresholds on Salmonella test outcomes, 1999–2015

Policy regime No categorization Categorization (private) Public disclosure Tightened standards
Years 1999 to 2006 2006 to 2008 2008 to 2011 2011 to 2015

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A
Leeway6 (1999 to 2011) or Leeway2 (2011 to 2015) 0.430*** 0.358*** 0.413*** 0.339*** 0.256*** 0.228*** 0.108*** 0.0915***

(0.027) (0.026) (0.041) (0.042) (0.029) (0.030) (0.018) (0.017)
Test number, current sample set -0.000944** -0.000768* -0.00197*** -0.00155** -0.00226*** -0.00221*** -0.000286 -0.000223

(0.00037) (0.00041) (0.00052) (0.00061) (0.00052) (0.00058) (0.00023) (0.00025)
Share of samples positive, current sample set -0.718*** -0.915*** -0.712*** -0.623***

(0.036) (0.092) (0.097) (0.083)
Observations 49073 47868 15386 15056 15392 15051 23972 23448
Elasticity 0.70 0.59 0.90 0.74 0.97 0.86 0.50 0.43

Panel B
Leeway12 (1999 to 2011) or Leeway5 (2011 to 2015) 0.563*** 0.488*** 0.461*** 0.382*** 0.448*** 0.411*** 0.110*** 0.0965***

(0.029) (0.030) (0.043) (0.048) (0.051) (0.053) (0.016) (0.016)
Test number, current sample set -0.00589*** -0.00553*** -0.00580*** -0.00495*** -0.00647*** -0.00641*** -0.00118*** -0.00113***

(0.00049) (0.00054) (0.00073) (0.00091) (0.00092) (0.0010) (0.00030) (0.00033)
Share of samples positive, current sample set -0.720*** -0.905*** -0.671*** -0.658***

(0.036) (0.087) (0.092) (0.082)
Observations 50796 49591 14652 14322 14381 14040 24086 23562
Elasticity 1.60 1.39 1.84 1.52 2.68 2.46 0.96 0.84

Notes: Panel A demonstrates the effects of proximity to the Category 1 thresholds (i.e., leeway) on Salmonella test outcomes; Panel B the effects of proximity to the
Category 2 thresholds. Horizontally, each pair of columns represents regressions using observations from the policy regimes beginning and ending in the indicated years. For
sample sets that span the dates of policy change, observations are included as part of the later policy period. All regressions use establishment–month–year fixed effects.
Standard errors, clustered by establishment, are given in parentheses. Elasticities reported are the elasticities of the share of samples positive with respect to leewayC,
calculated using the mean share of samples positive and the mean value of leewayC. Observations are included only if leewayC ∈ [0, 1).
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Table 4: Effects of proximity to category thresholds on Salmonella test outcomes, 2015–18

(1) (2) (3) (4)
Panel A
Leeway2 (soonest-ending window) 0.262*** -0.0691 0.194*** -0.0903

(0.066) (0.055) (0.065) (0.055)
Share of samples positive, soonest-ending window -3.031*** -2.477***

(1.04) (0.88)
Control for Leeway2 values for all other windows No Yes No Yes
Observations 9877 9877 9694 9694
Elasticity 0.98 -0.26 0.73 -0.34

Panel B
Leeway5 (soonest-ending window) 0.483*** 0.299*** 0.409*** 0.258**

(0.070) (0.10) (0.069) (0.10)
Share of samples positive, soonest-ending window -2.654*** -2.314***

(0.50) (0.45)
Control for Leeway5 values for all other windows No Yes No Yes
Observations 8160 8160 7977 7977
Elasticity 3.42 2.11 2.90 1.82

Notes: This table represents the results of similar regressions to those shown in table 3, for the 2015–18 policy period during
which sample sets were replaced with overlapping sampling windows. Panel A demonstrates the effects of proximity to the
Category 1 threshold (leeway2) on Salmonella test outcomes; Panel B the effects of proximity to the Category 2 threshold
(leeway5). The main variables of interest are leeway2 and leeway5 for the soonest-ending window, but columns (2) and (4)
also control for the leeway values for all other windows to which a given observation belongs. All regressions use
establishment–month–year fixed effects. Standard errors, clustered by establishment, are given in parentheses. Elasticities
reported are the elasticities of the share of samples positive with respect to leewayC, calculated using the mean share of
samples positive and the mean value of leewayC. Observations are included only if leewayC ∈ [0, 1).
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Table 5: Effects of policy changes on average Salmonella test outcomes

Public disclosure
Policy introduced Categorization (private) Public disclosure w/ tighter standards Rolling windows
Date of implementation (c) 5/30/2006 3/28/2008 7/1/2011 5/6/2015

(1) (2) (3) (4)

Panel A: All establishments included
t ≥ c 0.020 −0.051 0.058 −0.021
Robust p-value 0.506 0.008 0.108 0.195
95% CI (lower limit) −0.04 −0.10 −0.02 −0.06

(upper limit) 0.07 −0.02 0.16 0.01
Observations 17230 8537 6271 13328
Left bandwidth 386 177 252 384
Right bandwidth 183 267 202 243

Panel B: Establishments that ever exited excluded
t ≥ c 0.031 −0.048 0.068 −0.022
Robust p-value 0.211 0.018 0.026 0.168
95% CI (lower limit) −0.02 −0.09 0.01 −0.05

(upper limit) 0.10 −0.01 0.15 0.01
Observations 16746 7912 5555 15139
Left bandwidth 371 194 204 492
Right bandwidth 265 271 232 248

Notes: This table reports the results of RD in time regressions that use the dates of policy implementation as the cutoffs (c).
All regressions are local linear RD regressions with triangular kernels, using the sample collection date as the running variable,
as described in the text. Bandwidths, robust p-values, and confidence intervals are calculated using the rdms command in Stata
(Cattaneo et al., 2020c). Bandwidths are chosen to minimize mean squared error on either side of each cutoff.
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Table 6: Heterogeneous effects of policy changes on average Salmonella test outcomes

Average pre-period Salmonella test performance equivalent to Category 1 Category 2 Category 3
(1) (2) (3)

2008 policy change (c = 3/28/2008)
t ≥ c −0.038 −0.057 −0.047
Robust p-value 0.028 0.159 0.737
95% CI (lower limit) −0.08 −0.13 −0.30

(upper limit) −0.00 0.02 0.21
Observations 5222 2592 389
Left bandwidth 207 244 183
Right bandwidth 232 371 259

2011 policy change (c = 7/1/2011)
t ≥ c 0.037 −0.039 0.177
Robust p-value 0.275 0.081 0.030
95% CI (lower limit) −0.04 −0.10 0.02

(upper limit) 0.13 0.01 0.38
Observations 5549 3505 1632
Left bandwidth 266 210 240
Right bandwidth 487 358 222

Notes: This table reports the results of RD in time regressions that use the dates of policy implementation as the cutoffs (c).
All regressions are local linear RD regressions with triangular kernels, using the sample collection date as the running variable,
as described in the text. Bandwidths, robust p-values, and confidence intervals are calculated using the rdms command in Stata
(Cattaneo et al., 2020c). For the 2008 policy change, column (1) uses observations from establishments with an average of no
more than 11.8 percent positive samples (equivalent to ≤ 6/51) during the 2006–08 period; column (2) uses observations from
establishments with more than 11.8 percent but no more than 23.5 percent (equivalent to ≤ 12/51) during 2006–08; column (3)
uses observations from establishments with more than 23.5 percent positive samples. For the 2011 policy change, column (1)
uses observations from establishments with an average of no more than 3.9 percent positive samples (equivalent to ≤ 2/51)
during the 2008–11 period; column (2) uses observations from establishments with more than 3.9 percent but no more than
9.8 percent (equivalent to ≤ 5/51) during 2008–11; column (3) uses observations from establishments with more than
9.8 percent positive samples.
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Appendix A: Details on data-cleaning procedure

The data set I obtained from FSIS does not include any indication of the sample-set groupings that were
used to determine regulatory compliance and category designation over 1999–2015, and FSIS did not
provide further guidance on this issue. Inspection of the data reveals clear patterns of 51 samples being
collected over a short period, followed by a gap (often, approximately one year) before another set of
51 samples. However, it is clear that inspectors often collected slightly more and occasionally slightly
fewer than 51 samples. FSIS personnel confirmed that inspectors were supposed to collect samples until
results from 51 tests were available, which explains the frequent appearance of 52 to 56 samples over a
brief period, followed by a gap. FSIS also sometimes terminated collection before reaching 51 samples,
if a threshold was certain to be exceeded. After some preliminary data cleaning to eliminate duplicate
observations, I assign observations into sample sets by identifying lengthy gaps between observations
while maximizing the number of sample sets with 51 observations. Specifically, I identify the start of
a new sample set as occurring when the gap between observations was at least x times as long as the
average gap over the previous 51 observations, where x is chosen for each policy period as the integer
that maximizes the number of sample sets with 51 observations. This method generates sample sets with
lengths reasonably close to the expected length: at least 80% of all sample sets in each of the regulatory
periods have 50 to 56 observations. To eliminate noise that would be generated through mis-assigning
observations to sample sets, for the main analysis of sections 3 and 4, I only include observations from
sample sets of length [n, ..., N ], where n and N are the minimum and maximum sample-set lengths such
that at least 1% of sample sets have lengths n and N . Note again that the 51-sample sets were eliminated
effective May 6, 2015.

Appendix B: Validation and robustness tests

The following tables provide the results of various validation and robustness tests described in the text.
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Table A1: Effects of known categorization on Salmonella outcomes

Panel A: Cutoffs not associated with disclosure, quadratic polynomials, triangular kernels
Public disclosure

Policy regime No categorization Categorization (private) w/ tighter standards Rolling windows
Years 1999 to 2006 2006 to 2008 2011 to 2015 2015 to 2018

RD cutoff (c) 0 1 0 1 0 1 0 1 0 1
Max. # pos. samples (C) 12 12 6 6 12 12 2 2 2 2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LeewayC ≥ c 0.032 −0.120 −0.051 −0.043 −0.116 0.100 −0.029 −0.012 −0.045 −0.071
Robust p-value 0.547 0.108 0.023 0.383 0.129 0.127 0.279 0.434 0.010 0.298
95% CI (lower limit) −0.18 −0.29 −0.15 −0.07 −0.33 −0.03 −0.07 −0.04 −0.08 −0.21

(upper limit) 0.09 0.03 −0.01 0.17 0.04 0.25 0.02 0.02 −0.01 0.06
Observations 34800 8041 14501 14364 8942 3521 18821 19160 14737 10904
Left bandwidth 1.54 0.51 2.69 1.00 1.72 0.39 0.47 0.95 4.35 1.00
Right bandwidth 0.26 5.17 0.44 4.13 0.31 5.66 0.18 1.05 0.29 1.00

Panel B: Cutoffs associated with disclosure, quadratic polynomials, triangular kernels
Public disclosure

Policy regime Public disclosure w/ tighter standards Rolling windows
Years 2008 to 2011 2011 to 2015 2015 to 2018

RD cutoff (c) 0 1 0 1 0 1 0 1
Max. # pos. samples (C) 6 6 12 12 5 5 5 5

(1) (2) (3) (4) (5) (6) (7) (8)

LeewayC ≥ c 0.040 −0.046 0.206 −0.004 −0.023 −0.027 −0.033 0.039
Robust p-value 0.784 0.175 0.258 0.855 0.254 0.161 0.207 0.000
95% CI (lower limit) −0.09 −0.03 −0.15 −0.09 −0.20 −0.01 −0.08 0.08

(upper limit) 0.12 0.17 0.55 0.10 0.05 0.08 0.02 0.23
Observations 12765 13850 9237 3635 16802 21453 10426 17150
Left bandwidth 1.26 1.00 0.56 0.31 1.14 1.00 6.09 1.00
Right bandwidth 0.49 3.73 0.49 4.83 0.32 2.44 0.66 3.78

Notes: See notes to table 2.
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Table A2: Effects of known categorization on Salmonella outcomes

Panel A: Cutoffs not associated with disclosure, linear polynomials, Epanechnikov kernels
Public disclosure

Policy regime No categorization Categorization (private) w/ tighter standards Rolling windows
Years 1999 to 2006 2006 to 2008 2011 to 2015 2015 to 2018

RD cutoff (c) 0 1 0 1 0 1 0 1 0 1
Max. # pos. samples (C) 12 12 6 6 12 12 2 2 2 2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LeewayC ≥ c 0.022 −0.021 −0.058 0.049 −0.056 0.019 −0.030 0.006 −0.033 0.011
Robust p-value 0.000 0.738 0.000 0.233 0.512 0.489 0.269 0.425 0.002 0.310
95% CI (lower limit) −0.28 −0.28 −0.24 −0.10 −0.23 −0.06 −0.06 −0.01 −0.06 −0.01

(upper limit) −0.09 0.20 −0.08 0.02 0.12 0.13 0.02 0.02 −0.01 0.03
Observations 34866 5509 13467 14251 4240 2276 17439 19160 14111 10904
Left bandwidth 0.58 0.12 0.88 0.97 0.78 0.17 0.28 0.95 3.74 1.00
Right bandwidth 0.53 2.21 0.32 2.67 0.27 1.82 0.13 1.05 0.21 1.00

Panel B: Cutoffs associated with disclosure, linear polynomials, Epanechnikov kernels
Public disclosure

Policy regime Public disclosure w/ tighter standards Rolling windows
Years 2008 to 2011 2011 to 2015 2015 to 2018

RD cutoff (c) 0 1 0 1 0 1 0 1
Max. # pos. samples (C) 6 6 12 12 5 5 5 5

(1) (2) (3) (4) (5) (6) (7) (8)

LeewayC ≥ c 0.029 0.019 0.174 −0.023 −0.028 0.002 −0.028 0.020
Robust p-value 0.479 0.108 0.507 0.360 0.393 0.187 0.284 0.085
95% CI (lower limit) −0.12 −0.09 −0.19 −0.09 −0.14 −0.05 −0.07 −0.00

(upper limit) 0.05 0.01 0.38 0.03 0.05 0.01 0.02 0.07
Observations 10639 13813 8236 2589 8817 21453 8995 12129
Left bandwidth 0.80 0.26 0.24 0.22 0.61 1.00 2.76 1.00
Right bandwidth 1.00 2.33 0.22 1.62 0.14 2.07 0.37 1.70

Notes: See notes to table 2.

39



Table A3: Placebo effects of known categorization on Salmonella outcomes

RD cutoff (c) −0.15 −0.1 −0.05 0.05 0.1 0.15
(1) (2) (3) (4) (5) (6)

Panel A: 2006 to 2008, C = 6 positive samples
LeewayC ≥ c 0.017 0.005 −0.165 0.004 0.038 −0.030
Robust p-value 0.629 0.328 0.232 0.903 0.099 0.305

Panel B: 2006 to 2008, C = 12 positive samples
LeewayC ≥ c −0.001 0.088 0.157 0.046 0.177 0.090
Robust p-value 0.811 0.887 0.698 0.436 0.039 0.110

Panel C: 2011 to 2015, C = 2 positive samples
LeewayC ≥ c −0.090 0.024 −0.004 0.001 0.011 0.139
Robust p-value 0.074 0.364 0.711 0.702 0.015 0.035

Panel D: 2015 to 2018, C = 2 positive samples
LeewayC ≥ c 0.019 0.014 −0.119 −0.065 0.016 −0.011
Robust p-value 0.752 0.747 0.515 0.199 0.200 0.312

RD cutoff (c) 0.7 0.75 0.8 1.3 1.35 1.4
(1) (2) (3) (4) (5) (6)

Panel E: 2015 to 2018, C = 5 positive samples
LeewayC ≥ c 0.011 0.008 0.001 0.039 0.022 0.013
Robust p-value 0.938 0.867 0.742 0.001 0.328 0.601

Notes: This table presents results of regressions paralleling those in table 2 with statistically significant results but for placebo cutoffs not associated

with any change in disclosure status. Panels A through D use three cutoffs on either side of the actual significant cutoff (c = 0) according to

c± 0.05n, where n = {1, 2, 3}. Panel E uses the nearest cutoffs to the actual significant cutoff (c = 1) that are multiples of 0.05, for which there are

enough observations on either side of the placebo cutoffs to estimate the optimal bandwidths around c. Each panel represents regressions using

observations from the policy regimes beginning and ending in the indicated years. For sample sets that span the dates of policy change, all

observations are included in the later policy period. All regressions are local linear RD regressions with triangular kernels, using leewayC as the

running variable. Bandwidths, robust p-values, and confidence intervals are calculated using the rdms command in Stata (Cattaneo et al., 2020c),

although bandwidths and confidence intervals are suppressed in this table. Bandwidths are chosen to minimize mean squared error on either side of

each cutoff. All regressions in panels A through D control for sample collection date, test number within sample set, and the share of samples positive

in the establishment’s prior sample set. All regressions in panel E control for sample collection date.
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Table A4: Effects of known categorization on Salmonella outcomes: 2015–18, conditional on Category 1 or 2 status in sooner-
ending windows

Window # (relative to soonest-ending window = 1) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

LeewayC ≥ 1 0.022 0.051 0.008 0.029 0.015 0.017 −0.007 0.003 0.066 −0.170
Robust p-value 0.019 0.000 0.017 0.177 0.518 0.062 0.771 0.400 0.148 0.114
95% CI (lower limit) 0.01 0.07 0.02 −0.02 −0.09 −0.00 −0.08 −0.11 −0.07 −0.95

(upper limit) 0.08 0.23 0.16 0.14 0.05 0.10 0.10 0.29 0.46 0.10
Observations 12129 12193 11663 9949 7281 3379 1117 593 429 466
Left bandwidth 1.00 1.00 0.88 0.94 0.88 1.00 1.00 0.94 0.59 0.49
Right bandwidth 1.83 2.33 2.56 2.18 3.29 3.23 2.84 2.35 1.60 1.47

Notes: This table demonstrates that, conditioning on being certain to avoid public disclosure (i.e., conditioning on being below the Category 3 threshold) based on the
soonest-ending window, avoiding public disclosure based on the second-soonest-ending window increased the likelihood of a positive sample by 5.1 percentage points.
Conditioning on being certain to avoid public disclosure in the second-soonest-ending window, avoiding public disclosure based on the third-soonest-ending window increased
the likelihood of a positive sample by 0.8 percentage points. The RD coefficients in the remaining columns—including all windows for which for which there are enough
observations to perform the rdrobust calculations—have p > 0.06. That is, conditioning on the third-soonest-ending window, fourth-soonest-ending window, and so on,
avoiding public disclosure further in the future did not have a discontinuous effect on the likelihood of additional positive samples. For additional details on the regression
specifications, see notes to table 2.
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Table A5: Effects of policy changes on average Salmonella test outcomes: Robustness tests

Public disclosure
Policy introduced Categorization (private) Public disclosure w/ tighter standards Rolling windows
Date of implementation (c) 5/30/2006 3/28/2008 7/1/2011 5/6/2015

(1) (2) (3) (4)

Panel A: Observations collapsed by sample collection date
t ≥ c 0.021 −0.043 0.064 −0.024
Robust p-value 0.270 0.011 0.003 0.096
95% CI (lower limit) −0.02 −0.08 0.02 −0.05

(upper limit) 0.06 −0.01 0.11 0.00
Observations 359 367 403 477
Left bandwidth 385 273 413 401
Right bandwidth 132 263 167 212

Panel B: “Donut” approach: Drop all observations within 7 days of policy changes
t ≥ c 0.024 −0.057 0.055 −0.025
Robust p-value 0.294 0.039 0.088 0.096
95% CI (lower limit) −0.03 −0.11 −0.01 −0.06

(upper limit) 0.10 −0.00 0.14 0.00
Observations 15236 7183 5414 15539
Left bandwidth 366 204 199 512
Right bandwidth 220 237 234 256

Panel C: Drop all observations belonging to sample sets that span policy periods
t ≥ c 0.023 −0.054 0.127 −0.019
Robust p-value 0.386 0.125 0.003 0.225
95% CI (lower limit) −0.05 −0.13 0.05 −0.05

(upper limit) 0.12 0.02 0.24 0.01
Observations 12453 4244 3073 14312
Left bandwidth 342 184 160 456
Right bandwidth 264 196 248 247

Notes: See notes to table 5.
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Table A6: Effects of policy changes on average Salmonella test outcomes: Placebo cutoff dates

Public disclosure
Policy introduced Categorization (private) Public disclosure w/ tighter standards Rolling windows

(1) (2) (3) (4)

Panel A: Cutoffs c = Federal Register announcement dates
t ≥ c −0.032 −0.029 0.014 −0.014
Robust p-value 0.622 0.859 0.263 0.617
95% CI (lower limit) −0.13 −0.09 −0.01 −0.04

(upper limit) 0.08 0.07 0.05 0.02
Observations 9527 3326 5731 10789
Left bandwidth 354 176 165 440
Right bandwidth 89 60 138 99

Panel B: Cutoffs c = 120 days before policy changes
t ≥ c −0.013 0.022 −0.012 −0.007
Robust p-value 0.891 0.329 0.850 0.929
95% CI (lower limit) −0.06 −0.04 −0.04 −0.03

(upper limit) 0.07 0.11 0.04 0.03
Observations 11503 2663 3006 9747
Left bandwidth 414 145 180 361
Right bandwidth 117 37 120 117

Panel C: Cutoffs c = 240 days before policy changes
t ≥ c −0.018 0.053 0.002 −0.010
Robust p-value 0.187 0.236 0.925 0.595
95% CI (lower limit) −0.07 −0.04 −0.09 −0.06

(upper limit) 0.01 0.16 0.08 0.04
Observations 27891 4213 7277 9093
Left bandwidth 1190 96 294 176
Right bandwidth 237 104 113 216

Panel D: Cutoffs c = 360 days before policy changes
t ≥ c 0.019 0.029 0.030 −0.006
Robust p-value 0.573 0.094 0.111 0.547
95% CI (lower limit) −0.08 −0.01 −0.01 −0.03

(upper limit) 0.15 0.08 0.08 0.02
Observations 15410 4474 6121 8271
Left bandwidth 523 68 235 232
Right bandwidth 146 76 112 115

Panel E: Cutoffs c = 480 days before policy changes
t ≥ c −0.026 0.032 −0.006 −0.008
Robust p-value 0.226 0.204 0.988 0.726
95% CI (lower limit) −0.11 −0.02 −0.06 −0.04

(upper limit) 0.03 0.08 0.06 0.03
Observations 13538 5298 6117 12195
Left bandwidth 545 66 238 316
Right bandwidth 160 130 108 161

Notes: Panels A and B use includes a lagged dependent variable, because a Wooldridge test for autocorrelation in panel data suggests autocorrelation in the left bandwidth of
the third placebo cutoff (see Hausman and Rapson, 2018, for discussion). For additional details on the regression specifications, see notes to table 5.
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