Investigation of Service Distortion in China's New Cooperative Medical Scheme

Department of Agricultural and Applied Economics, Virginia Tech 1/4/2019

Background: Program Infrastructure and Procedure

Motivation: Concerns of NCMS

The central government

•Small budget (Wagstaff et al.,2009; You & Kobayashi, 2009; Meng & Xu, 2014; Li & Zhang, 2013)

County governments

- Adverse selection (You & Kobayashi, 2009
 Wagstaff et al.,2009)
 - Cost control (Yip & Hsiao, 2009)

Complicated claim process

Low reimbursement rates

Service-level distortion

Households

Increasing out-ofpocket health spending (Wagstaff & Lindelow, 2008; Hou et al., 2014)

Objectives

Identify which health services are under- or over-covered due to county governments' cost-control incentives.

Understand the influencing factors of the degree of distortion

Theoretical model—outline

- ❖ We use a principal-agent model (Frank et al., 2000) to characterize interactions between local governments and households.
- * The decision-process timeline:

The governments design the benefit plan

Households decide whether or not to participate

Medical expenditures incur and NCMS benefit is obtained

Principal

Agent

Theoretical model—households

Households are uncertain about their healthcare spending before participating NCMS

Assume there are two types of households:

unhealthy and healthy

• Household i 's **expected NCMS** benefit on health service s is

$$\widehat{m}_{is} = \lambda_i \cdot \overline{m}_{is} + (1 - \lambda_i) \underline{m}_{is}, 0 < \lambda_i < 1$$

For household *i*,

- λ_i is the probability of being unhealthy type in the next year.
- m_{is} is the insurance benefit on service s: \overline{m}_{is} if unhealthy, and \underline{m}_{is} if healthy

Theoretical model—households

The utility of participating NCMS for household i is

$$u_i(\widehat{m}_i)=v_i(\widehat{m}_i)+\mu_i-c_i$$
 Where $v_i(\widehat{m}_i)=\sum_s v_{is}(\widehat{m}_{is})$

- μ_i : utility independent of plan benefits.
- c_i : cost of enrolling and obtaining insurance benefits
- $\nu_{is}(.)$: utility of expected insurance benefit \widehat{m}_{is}

Let u_i^0 be household i's reservation utility if uninsured, its **probability of enrolling the NCMS** is

$$Prob(u_i(\widehat{m}_i) > \widehat{u}_i^0) = Prob(\mu_i > \widehat{u}_i^0 + c_i - v_i(\widehat{m}_i))$$

$$1 - F[\widehat{u}_i^0 + c_i - v_i(\widehat{m}_i)] \equiv n_i(\widehat{m}_i, \widehat{u}_i^0, c_i)$$

• F (.): the cumulated distribution function of μ_i

Theoretical model—service-level coverage

It is measured by shadow price (Keeler et al., 1998): a threshold that a household's marginal valuation has to exceed to qualify for reimbursements.

Inverse demand of NCMS benefits of two households

$$p_{\rm s} = v_{i\rm s}'(\widehat{m}_{i\rm s})$$

The higher p_s , the less coverage on service s provided by the plan

Theoretical model—social optimal shadow prices

Social optimal condition requires

Marginal valuations of different services are equalized

$$v'_{is}(m^*_{is}) = v'_{is'}(m^*_{is'}) \text{ for } s \neq s' \ \forall s = 1, 2, 3, ..., S$$

- Shadow prices of different services are the same: $p_s^*/p_{s'}^*=1$ because $p_s^*=v_s'\;(m_s^*)=v_{s'}'(m_{s'}^*)=p_{s'}^*$
- If $p_s^*/p_{s'}^*>1$, we can say service s is under-covered; If $p_s^*/p_{s'}^*<1$, we can say service s is over-covered

Theoretical model—the local government

We assume the local government determines a vector of shadow prices $p = [p_1, p_2, ..., p_S]$ to maximize expected plan profit:

$$\max_{\boldsymbol{p}} \pi(\boldsymbol{p}) = \underbrace{\sum_{i} \left[n_{i} \left[\widehat{m}_{i}(\boldsymbol{p}), \widehat{u}_{i}^{0}, c_{i} \right] \times \left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right] \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participation} \times \underbrace{\left[r_{i} - \sum_{s} \widehat{m}_{is}(p_{s}) \right]}_{Probability of participa$$

Risk premium paid by household *i*

$$\underbrace{\begin{bmatrix} r_i - \sum_{s} \widehat{m}_{is}(p_s) \end{bmatrix}}_{s}$$

Expected plan profit from household i

F.O.C.

$$p_s^* = \frac{\sum_i n_i \widehat{m}_{is}}{\sum_i F_i' \widehat{m}_{is} \cdot (r_i - \sum_s \widehat{m}_{is})}$$

How population characteristics affect the shadow prices?

- \clubsuit A government has to predict \widehat{m}_{is} based on population health status and household observable characteristics
 - 1. Parameter $\lambda_i \approx \lambda$: portion of the unhealthy population in a county
 - 2. Parameter θ_s : discrepancy in NCMS benefit distribution on service s between two groups
 - 3. m_{is}^B : baseline predicted insurance benefit m_{is}^B based on household i's observable characteristics

$$\widehat{m}_{is}(p_s) = \lambda_i \cdot \overline{m}_{is} + (1 - \lambda_i) \underline{m}_{is}$$

$$\widehat{m}_{is}(\widehat{p}_s) \equiv \lambda \overline{\theta}_s m_{is}^B(p_s) + (1 - \lambda) \underline{\theta}_s m_{is}^B(p_s)$$

How population characteristics affect the shadow prices

First-best: no asymmetric information

Second-best: asymmetric information

$$p_s^* = \frac{\sum_i n_i \widehat{m}_{is}}{\sum_i F_i' \widehat{m}_{is} \cdot (r_i - \sum_s \widehat{m}_{is})} \implies p_s^{second} = \frac{\sum_i n_i m_{is}^B}{\sum_i F_i' m_{is}^B \cdot (r_i - \sum_s \left[\lambda \overline{\theta_s} + (1 - \lambda) \underline{\theta_s}\right] m_{is}^B)}$$

Holding other factors the same, a county government distorts p_s^* upwards (undercover service s) if

- 1. A higher portion of its residents are unhealthy ($\lambda \uparrow$)
- 2. Unhealthy households get higher benefit than healthy households ($[\theta_s \underline{\theta}_s] \uparrow$)

Data Set: China Health and Nutrition Survey data

Carolina Population Center and Chinese
 National Institute for Nutrition and Health

Longitudinal: 1989, 1991, 1993, 1997, 2000, 2004, 2006, 2009, 2011 and 2015

 Based on the level of economic development, CHNS sample can be divided into four major regions:

Source: https://www.cpc.unc.edu/projects/china/about/proj_desc/chinamap

Empirical Methods

$$p_s^{second} = \frac{\sum_i n_i m_{is}^B}{\sum_i F_i' m_{is}^B \cdot (r_i - \sum_s \left[\lambda \overline{\theta_s} + (1 - \lambda) \underline{\theta_s} \right] m_{is}^B)}$$

To calculate p_s^{second} , we need risk premium $\mathbf{r_i}$, m_{is}^B , λ and the parameters θ_s

Predict m_{is}^B and r_i in 2011 based on 2009 information

	Risk Premium r_i	Information Assu	formation Assumption m_{is}^{B}			
		Less information	More information			
Α0	Actual NCMS premium	(r_{A0}, \widehat{m}^L)	(r_{A0}, \widehat{m}^M)			
A1	Average spending covered by NCMS	(r_{A1}, \widehat{m}^L)	(r_{A1}, \widehat{m}^M)			
A2	Semi-ACG risk-adjusted	(r_{A2}, \widehat{m}^L)	(r_{A2}, \widehat{m}^M)			

Note: ACG represents Ambulatory Care Group risk-adjustments algorithm

λ and θ_S

		Less-information set				More-information set		
Type of				East				East
services	Northeast	Central	Western	Coast	Northeast	Central	Western	Coast
Percent of the un	healthy popi	ılation						
λ	0.57	0.35	0.24	0.36				
Discrepancy in	insurance b	benefit (Δ	$\overline{\theta_s = \overline{\theta_s} -}$	θ_s)				
Preventive Services	-0.04	-0.05	-0.04	-0.04	0.08	0.08	0.08	0.09
Inpatient costs	0.44	0.44	0.44	0.45	< 0.51	0.53	0.52	0.52
Outpatient costs	0.21	0.19	0.19	0.20	0.23	0.21	0.25	0.25

Results: Estimated relative shadow prices under actual NCMS risk premium in 2011

		Less information set			More information set		
Type of services	Mini. Adj (RMB)	Preventive services	Inpatient services	Outpatient services	Preventive services	Inpatient services	Outpatient services
Current N	CMS risk p	remium with	adjustment	S			
Northeast	950.00	1.00	197.80	6.45	1.00	1.11	1.14
Central	270.00	1.00	1.65	1.86	1.00	1.63	9.29
Western	420.00	1.00	51.02	5.29	1.00	1.18	1.15
East Coast	30.00	1.00	3.45	6.46	1.00	0.89	1.62

Note: All shadow prices are relative to the category of preventive services, so the shadow prices for this category are normalized to 1.00 in all case.

Results: Estimated relative shadow prices under alternative risk adjustment systems in 2011

		Less-information set			More-information set			
Type of services	Mini. Adj (RMB)	Preventive services	Inpatient services	Outpatient services	Preventive services	Inpatient services	Outpatient services	
Risk premi	um adjuste	ed by the regi	onal mean	benefit in 2009				
Northeast		(-)	(-)	(-)	1.00	2.65	2.22	
Central		1.00	1.09	1.11	1.00	1.00	1.07	
Western		1.00	1.69	1.53	1.00	1.08	1.08	
East Coast		1.00	1.16	1.22	1.00	0.96	1.11	
Risk premi	um adjuste	ed by disease	groups and	disability status				
Northeast		(-)	(-)	(-)	1.00	1.05	1.09	
Central		1.00	0.90	1.05	1.00	0.93	1.07	
Western		1.00	1.06	1.43	1.00	0.94	0.90	
East Coast		1.00	0.91	1.14	1.00	0.97	1.21	

Note: (-) indicates the estimated shadow price is negative. All shadow prices are relative to the category of preventive services

Conclusions

❖NCMS:

- Challenges of financial sustainability
 - ✓ Local residents are relatively unhealthy: <u>Northeast</u>
- The incentives of under-covering a service is high when
 - ✓ Local governments are less informed
 - √ That service is highly demand by unhealthy group: inpatient care

Modified NCMS:

Distortions can be reduced if its risk premium are adjusted

Limitations and ongoing work

Limitation

- Limited health service types
- Short durations of utilization

Ongoing work:

- Modify objectives of local governments
- Uncertainty of estimated shadow prices

For more information, please contact us at

Ruoding Shi (ruoding@vt.edu)

Wen You (wenyou@vt.edu)

Thank you! Questions?

References

Ellis, R.P., McGuire, T.G., 2007. Predictability and predictiveness in health care spending. Journal of health economics 26, 25-48.

Frank, R.G., Glazer, J., & McGuire, T.G. (2000). Measuring adverse selection in managed health care. *Journal of Health Economics*, 19, 829-854.

Hou, Z., Van de Poel, E., Van Doorslaer, E., Yu, B., & Meng, Q. (2014). Effects of NCMS on access to care and financial protection in China. *Health economics*, 23, 917-934.

Keeler, E.B., Carter, G., Newhouse, J.P., 1998. A model of the impact of reimbursement schemes on health plan choice. Journal of health economics 17, 297-320.

Li, X., & Zhang, W. (2013). The impacts of health insurance on health care utilization among the older people in China. *Social science & medicine*, 85, 59-65.

Meng, Q., & Xu, K. (2014). Progress and challenges of the rural cooperative medical scheme in China. *Bulletin of the World Health Organization*, 92, 447-451.

Wagstaff, A., & Lindelow, M. (2008). Can insurance increase financial risk?: The curious case of health insurance in China. *Journal of health economics*, 27(4), 990-1005.

Wagstaff, A., Lindelow, M., Jun, G., Ling, X., & Juncheng, Q. (2009). Extending health insurance to the rural population: an impact evaluation of China's new cooperative medical scheme. *Journal of Health Economics*, 28, 1-19.

Yip, W., & Hsiao, W.C. (2009). Non-evidence-based policy: how effective is China's new cooperative medical scheme in reducing medical impoverishment? *Social Science & Medicine*, 68, 201-209.

You, X., & Kobayashi, Y. (2009). The new cooperative medical scheme in China. *Health policy*, 91, 1-9.