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Getting at social influence using network data

• In many settings agent behavior is shaped by social influence.

• Often the nature of this influence is not observed by the researcher.

• Instead the researcher observes a network linking pairs of agents.

• Understanding how agents form links in the network reveals
underlying information about the unobserved social influence.
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Three examples from the literature

1. Bramoullé, Djebbari, and Fortin (2009) study classroom peer effects in which a
student’s activities depends on that of his or her peers.

2. Banerjee, Chandrasekhar, Duflo, and Jackson (2013) study program participation in
which information about the program spreads by word-of-mouth.

3. Ductor, Fafchamps, Goyal, and van der Leij (2014) study research productivity in
which research quality depends on a researcher’s professional relationships.

In each example a sample of social connections between agents characterize the
relevant social influence.
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This paper

• Specifies a joint model of agent behavior (regression model) and
network formation.

• Establishes sufficient conditions for the parameters of the
regression model to be identified using network data.

• Proposes a new procedure to estimate the parameters of the
regression model: codegree differencing.
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The regression model

yi = βxi + λ(wi) + εi E [εi |xi ,wi ] = 0

• yi scalar outcome (college quality)
• xi observed explanatory variable (enrolls in college prep course)
• wi latent social factors (ability, ambition)
• λ(wi) social influence (expectations about college attendence)

Examples

• λ(wi) =
∑K

k=1 αk1{wi = k} “group fixed effects”

• λ(wi) = γE [yi |wi ] + δE [xi |wi ] “linear-in-means peer effects” (Manski 1993)
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The social factors are unobserved

• The researcher observes a random sample {yi , xi}n
i=1, but not the

corresponding social factors {wi}n
i=1.

• Instead, the researcher observes a collection of network links
D := {Dij}1≤i 6=j≤n where

Dij = 1{“agents i and j have a social connection”}

• Identification requires a stance as to how the network links D and
the social factors {wi}n

i=1 are related.
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The social factors drive observed linking activity

Dij = 1{ηij ≤ f (wi ,wj)} × 1{i 6= j}

• f (wi ,wj) is the latent intensity of the relationship between i and j .

• ηij is an idiosyncratic shock.

• Dij is a noisy signal of the link intensity f (wi ,wj).

Examples

• f (wi ,wj) = 1− (wi − wj)
2 “homophily model”

• f (wi ,wj) = (wi + wj)/2 “degree heterogeneity model”
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Two interpretations of the network formation model

• As a random utility model of link formation: Hoff, Raftery, and Handcock
(2002); Goldsmith-Pinkham and Imbens (2013); Jackson (2014); Graham (2015);
Dzemski (2016); Candelaria (2017); Toth (2017)

• As a network density function:

• In a network formation game with strategic interaction: Leung
(2015); Sheng and Ridder (2016); Menzel (2016); Mele and Zhu (2017)

• For link prediction: Bickel and Chen (2009); Bickel, Chen and Levina (2011);
Bickel, Choi, Chang, Zhang (2013); Chatterjee (2015); Zhang, Levina, Zhu (2016)
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A review of the model with additional details

yi = βxi + λ(wi) + εi

Dij = 1{ηij ≤ f (wi ,wj)} × 1{i 6= j}

• {xi ,wi , εi}n
i=1 iid with E [εi |xi ,wi ] = 0

• wi and ηij have U [0, 1] marginals. E [Dij |wi ,wj ] = f (wi ,wj )

• {ηij}n
i,j=1 and {xi ,wi , εi}n

i=1 have mutually independent entries.

• Goldsmith-Pinkham and Imbens (2013); Chan (2014); Jackson (2014); Hsieh and
Lee (2014, 2016); Arduini, Patacchini, and Rainone (2016); Johnsson and Moon
(2016); c.f. Badev (2017), Griffith (2017)
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A typical differencing argument when wi is observed

• Focus first on β. Recall yi = βxi + λ(wi) + εi .

• Suppose wi is observed with finite support. Then

(yi − yj)1wi=wj = β(xi − xj)1wi=wj + (εi − εj)1wi=wj

• The parameter β is identified if E
[
(xi − xj)

2
1wi=wj

]
> 0 with

β = E
[
(yi − yj)(xi − xj)1wi=wj

]
/E
[
(xi − xj)

2
1wi=wj

]
• When wi has continuous support and λ is continuous can replace
1wi=wj with 1wi≈wj where wi ≈ wj means |wi − wj | is close to 0.
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D cannot determine if wi ≈ wj when f is unrestricted

• The distribution of Dij = 1{ηij ≤ f (wi ,wj)} does not generally
contain information about whether wi ≈ wj .

• The problem is that there always exists f ′ and (w ′i ,w
′
j ) such that

• Dij = 1{ηij ≤ f ′(w ′i ,w
′
j )}

• w ′i 6≈ w ′j and wi ≈ wj

• The implication is that when f is unrestricted D cannot determine
whether |wi − wj | is close to 0.
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When can D determine if λ(wi) ≈ λ(wj)?

• The distribution of D cannot tell us anything about |wi − wj | when f
is unrestricted.

• Suppose λ(wi) has finite support. Then

(yi − yj)1λ(wi )=λ(wj ) = β(xi − xj)1λ(wi )=λ(wj ) + (εi − εj)1λ(wi )=λ(wj )

• Under what assumptions can D tell us something about
|λ(wi)− λ(wj)|?
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The main identification condition

• Agents with different social influences make different linking
decisions.

• That is λ(wi) 6= λ(wj) implies f (wi ,wt) 6= f (wj ,wt) for some agent t .

• Equivalently f (wi ,w) = f (wj ,w) for (almost) every w implies that
λ(wi) = λ(wj).
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The main identification condition using network distance

d(wi ,wj) =

(∫
(f (wi , τ)− f (wj , τ))

2dτ
)1/2

= ‖f (wi , ·)− f (wj , ·)‖2

• f (wi , ·) is agent i ’s linking function.

• d(wi ,wj) compares the linking functions of agents i and j

• The main identification condition is then

d(wi ,wj) = 0 =⇒ |λ(wi)− λ(wj)| = 0
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How to interpret the main identification condition

• The social influence function λ is continuous with respect to the
network distance d .

• This condition is automatically satisfied when

1. The social factors are identified by the agent’s distribution of network links. That is
d(wi ,wj ) = 0 =⇒ wi = wj .

2. Social influence only depends on the social factors through the agent’s distribution
of network links. That is λ(wi ) = φ(f (wi , ·)).
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An additional condition gives the identification of β

• Suppose d(wi ,wj) = 0 =⇒ |λ(wi)− λ(wj)| = 0

• Then

(yi − yj)1d(wi ,wj )=0 = β(xi − xj)1d(wi ,wj )=0 + (εi − εj)1d(wi ,wj )=0

• The parameter β is identified if E
[
(xi − xj)

2
1d(wi ,wj )=0

]
> 0 with

β = E
[
(yi − yj)(xi − xj)1d(wi ,wj )=0

]
/E
[
(xi − xj)

2
1d(wi ,wj )=0

]
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A review of the identification conditions for β

Assumptions (Identification)

1. If d(wi ,wj) = 0 then |λ(wi)− λ(wj)| = 0

2. E
[
(xi − xj)

2
1d(wi ,wj )=0

]
> 0

• The identification conditions imply

β = E
[
(yi − yj)(xi − xj)1d(wi ,wj )=0

]
/E
[
(xi − xj)

2
1d(wi ,wj )=0

]

• Estimate β by regressing (yi − yj)1 ̂d(wi ,wj )≈0
on (xi − xj)1 ̂d(wi ,wj )≈0



Introduction Model Identification Estimation Conclusion

Model

Identification

Estimation

Conclusion



Introduction Model Identification Estimation Conclusion

Direct estimation of the network distance is difficult

• Identification conditions suggest estimating β by regressing
(yi − yj)1 ̂d(wi ,wj )≈0

on (xi − xj)1 ̂d(wi ,wj )≈0
.

• A complication is that d(wi ,wj) is difficult to estimate because it
requires an approximation of the unknown function f .

• The usual trick is to estimate f (wi ,wj) by local averaging. That is,
average Dkl for k , l such that wi ≈ wk and wj ≈ wl .

• But we introduced d(wi ,wj) because |wi − wj | was not identified...
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I propose an alternative based on agent-pair codegrees

• Recall f (wi ,wt) = E [Dit |wi ,wt ] is the (conditional) probability that
agents i and t are linked.

• f (wi ,wt)f (wj ,wt) = E [DitDjt |wi ,wj ,wt ] is the probability that agents i
and j are both linked to agent t .

• p(wi ,wj) = E [DisDjs|wi ,wj ] is the probability that agents i and j are
both linked to a randomly drawn agent.

• Equivalently, p(wi ,wj) is the inner product of agent i and j ’s linking
functions:

∫
f (wi , τ)f (wj , τ)dτ
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Codegree distance as an alternative to network distance

δ(wi ,wj) =

(∫
(p(wi , τ)− p(wj , τ))

2 dτ
)1/2

= ‖p(wi , ·)− p(wj , ·)‖2

• p(wi , ·) is agent i ’s codegree function.

• δ(wi ,wj) compares the codegree functions of agents i and j .
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Two key results about codegree distance

I propose using codegree distance δ as an alternative to network
distance d for two reasons:

• Result 1: δ(wi ,wj) ≈ 0 (almost always) implies d(wi ,wj) ≈ 0.

• Result 2: δ(wi ,wj) is straightforward to estimate using D.

.
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Result 1: Codegree and network distances are related

Lemma (Codegree Identification)

If f is measurable then for any ε > 0 there exists an ε′ > 0 such that

δ(wi ,wj) ≤ ε′ =⇒ d(wi ,wj) < ε

with probability at least 1− ε2/4. If f is Lipschitz continuous then

d(wi ,wj) ≤ C × δ(wi ,wj)
1/3

with probability one.

• β = E
[
(yi − yj)(xi − xj)1δ(wi ,wj )=0

]
/E
[
(xi − xj)

2
1δ(wi ,wj )=0

]
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A sketch of the intuition behind Result 1

δ(wi ,wj)
2 = 0

=⇒
∫
(p(wi , τ)− p(wj , τ))

2 dτ = 0

(∗) =⇒ p(wi , τ) = p(wj , τ) and p(wi , s) = p(wj , s) for any (τ, s)

=⇒ p(wi ,wi) = p(wi ,wj) = p(wj ,wj)

=⇒
∫

f (wi , τ)
2dτ =

∫
f (wi , τ)f (wj , τ)dτ =

∫
f (wj , τ)

2dτ

=⇒
∫
(f (wi , τ)− f (wj , τ))

2 dτ = d(wi ,wj)
2 = 0

∗assuming f (and p) is continuous
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Result 2: Codegree distance straightforward to estimate using D

Lemma (Codegree Estimation)

maxi 6=j |δ̂ij − δ(wi ,wj)| = op
(
log(n)/

√
n
)

• p̂it =
1
n

∑n
s=1 DisDts

• δ̂ij =
(

1
n

∑n
t=1 (p̂it − p̂jt)

2
)1/2

• δ̂ij is the root-average-squared difference in the i th and j th columns
of the squared adjacency matrix (D × D).
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The proposed estimator for β based on codegree distance

• Results 1 and 2 suggest estimating β by regressing (yi − yj)1δ̂ij≈0
on (xi − xj)1δ̂ij≈0.

• This logic is formalized by the pairwise difference estimator

β̂ =

∑n−1
i=1

∑n
j=i+1(yi − yj)(xi − xj)K

(
δ̂ij
hn

)
∑n−1

i=1
∑n

j=i+1(xi − xj)2K
(
δ̂ij
hn

)
where hn is a bandwidth sequence and K is a kernel density function.
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The proposed estimator for λ(wi) based on codegree distance

• Recall λ(wi) = E [(yi − βxi) |wi ]

• Estimate λ(wi) by averaging
(

yj − β̂xj

)
for agents such that δ̂ij ≈ 0.

• This logic is formalized by the nonparametric regression

λ̂(wi) =

∑n
j=1

(
yj − β̂xj

)
K
(
δ̂ij
hn

)
∑n

j=1 K
(
δ̂ij
hn

)
where hn is a bandwidth sequence and K is a kernel density function.
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This paper

• Specifies a joint model of agent behavior and network formation
where determinants of social influence also drive link activity.

• Provides sufficient conditions for the parameters of the model of
agent behavior to be identified using network data.

• Proposes a new procedure for estimating the parameters of the
model of agent behavior: codegree differencing.
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