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Abstract

Large and thus statistically powerful A /B tests are increasingly popular in business
and policy to evaluate potential innovations. We study how to use scarce experimen-
tal resources to screen such innovations by proposing a new framework for optimal
experimentation that we call the A/B testing problem. The key insight of the model is
that the optimal experimentation strategy depends on whether most gains accrue from
typical innovations or from rare and unpredictable large successes that can be detected
using tests with small samples. We show that if the tails of the (prior) distribution of
true effect sizes is not too fat, the standard approach of using a few high-powered
“big” experiments is optimal. However, when this distribution is very fat tailed, a
“lean” experimentation strategy consisting of trying more but smaller interventions is
preferred. We measure the relevant tail parameter using experiments from Microsoft
Bing’s EXP platform and find extremely fat tails. Our theoretical results and empiri-
cal analysis suggest that even simple changes to business practices within Bing could
dramatically increase innovation productivity.
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1 Introduction

Randomized experiments are increasingly central to innovation in many fields. In the high
tech sector, major platforms run thousands of experiments (called A /B tests) each year on
tens of millions of users at any given time, and use the results to screen most product
innovations.! In the policy and academic circles, governments, nonprofit organizations,
and academics use randomized control trials to evaluate social programs and shape public
policy.”

Experiments are not only prevalent, but also highly heterogeneous in design. Policy mak-
ers and tech giants typically focus on a “go big” approach, obtaining large sample sizes for
a small number of experiments to ensure they that can detect even small benefits of a pol-
icy intervention. In contrast, many start-ups and entrepreneurs take a different “go lean”
approach, running many small tests and discarding any innovation without outstanding
success.” In this paper, we study when each of these approaches is appropriate. To do so,
we propose a new framework for optimal experimentation that we call the A/B testing
problem. Our framework also sheds light on the marginal value of data and experimen-
tation.

In many ways, our framework is simpler than standard models of optimal learning, as
in the literature on bandit problems and sequential decision problems. Our framework
has no exploration-exploitation trade-off, and is purely static. However, it includes one
feature that has been almost entirely neglected in work on optimal learning: fat tails in the
distribution of gains from innovations. We show that this feature is critical to the optimal
innovation strategy. If the tails are sufficiently thin, as has been assumed by nearly all pre-
vious literature, the go big approach is optimal. Intuitively, and as formalized by Radner

IExperimentation is prevalent in cloud-based products, such as search engines and social networks, be-
cause it is easy to experiment by steering users to different versions of the product. See Kohavi et al. (2009b)
for an overview of experimentation at Microsoft, Tang et al. (2010) on Google, Peysakhovich and Eckles
(2017) on Facebook, and Kohavi et al. (2013) for a general overview of online controlled experiments at
large scale. These papers document the sharp rise in the use of experiments in these companies as a tool to
screen most innovations (from user interface improvements to product recommendation algorithms).

ZDuflo et al. (2007), Imbens (2010), Athey and Imbens (2017), and Deaton (2010) describe the rise of
experiments as a dominant research design in development economics. Duflo et al. (2007) and Imbens (2010)
argue that experiments provide more credible evidence than observational and quasi-experimental studies,
while Deaton (2010) argues that experiments have important limitations. Nudges use choice architecture to
improve decisions, such as using defaults to increase rates of organ donation (Johnson and Goldstein, 2003).
Allcott and Kessler (2015) discuss the widespread use of experiments to evaluate nudge interventions, both
by governments and researchers. Examples of psychological interventions include increasing vaccination
rates by asking individuals when they intend to take a vaccine (Milkman et al., 2011) and improving student
performance by instilling a sense that certain skills are malleable (Yeager et al., 2016). Yeager et al. (2016)
report A/B tests that they used in pilot studies to optimize their intervention. Experimenters often use such
pilots and informal A /B tests, although this is usually not formally reported.

3This is referred to as the lean startup methodology, and closely related to agile software development
frameworks (Ries, 2011; Blank, 2013; Kohavi et al., 2013). The idea is to quickly and cheaply experiment
with many ideas, abandon or pivot from ideas that do not work, and scale up ideas that do work.



and Stiglitz (1984), a small test has little value as it is unlikely to move the experimenter
away from her prior beliefs. The value of information is thus convex and experiments
have a minimum efficient scale. This is roughly the intuition behind the usual practice of
performing power calculations.

In contrast, however, with sufficiently fat tails, this conventional wisdom reverses and the
go lean approach of trying many small experiments is preferred. Intuitively, with suffi-
ciently fat tails, even small experiments are sufficient to detect the largest effects; which
in this case account for most total value. Larger experiments detect subtler effects, but
these constitute less of the total value; making the value of information concave. This
case also has different implications for the marginal value of information. The dividing
line between these cases turns out to be, under our main assumptions, whether the third
moment of the innovation value distribution exists.

To test this condition, we draw data from one the largest experimentation platforms in the
world: Microsoft’s Bing search engine. We find evidence for very thick tails, and thus that
shifting towards the lean experimentation approach would have a large positive impact
on productivity. Before going into details, we give a brief outline of our findings and the
related literature.

Section 2 states the A/B testing problem. A risk-neutral firm has a series of innovations
and a set of users. The value of each innovation is uncertain and is drawn independently
and identically from a prior distribution. To learn about the value of an innovation, the
firm can run an experiment with a subset of the users. The experiment produces a noisy
signal of the quality of the innovation. The firm’s problem is how to assign its total budget
of available users to the different innovations, and to then select which innovations to
implement.

Our analytical strategy combines a simple Bayesian hierarchical model with neoclassical
producer theory. The expected value gained by testing and the optimal implementation
strategy as a function of the number of users assigned to a given experiment define a
“production function”. In section 3 we characterize the shape of this production function
based on properties of the prior distribution of innovation quality.

In particular, while the production function is always concave for large numbers of as-
signed users, its shape with few users depends critically on the thickness of the tails of
the prior. If the prior is not too fat-tailed (if the third moment of the prior distribution
exists), then the production function is convex. However, we show that if the prior is
very fat-tailed (more, precisely if the third moment is infinite), the the production func-
tion is concave. Thus, to oversimplify slightly, whether the third moment exists or does
not determines whether a big data or lean experimentation strategy is superior.

To test this distinction, we studied Microsoft Bing’s EXP platform, which conducts hun-
dreds of A /B tests of the search engine every year and which we describe in greater detail



in Section 4.

We present evidence—using a sample of approximately 1,505 experiments—suggesting
that innovations at Microsoft Bing have very fat tails. A reduced-form log-log rank plot
suggests that the second moment of the distribution of unobserved idea quality does not
exist. A more structural analysis provides further support for this finding: the Maximum
Likelihood estimation of a two-stage parametric hierarchical model that allows for fat tails
(a Student’s t-distribution), suggests that the underlying distribution of idea quality has
degrees of freedom between 1 and 2, again implying an infinite second moment.

Section 4 also draws out both direct and broader business implications of our findings.
We find that the average trial conducted at EXP is unnecessarily large, and that scaling
down the size of each experiment and scaling up the number of A/B tested ideas in-
creases profits almost one-to-one. Increasing experiments by 20% can be achieved simply
by eliminating existing filtering of experiments based on pre-experimental evaluations.

Beyond these direct consequences, however, our results potentially have broader implica-
tions for business strategy. Our results suggest that estimating the value of marginal users
for experimentation based on the marginal precision they add to existing experiments is
inappropriate, as the value of increasing the volume of experimentation is much greater
and this value would grow further if experimental procedures were optimized. Our re-
sults also suggest that deeper changes to organizational structures, to surface more ideas
and especially those with perhaps lower mean but higher tail variance would increase the
output of the innovation process.

Related literature.

Our research questions are related to recent contributions on the use of A/B tests and
randomized controlled trials. In the theoretical literature, Banerjee et al. (2017) propose
a model where an experimenter tries to convince a skeptical audience. They show that
randomized controlled trials can be an optimal research design, and discuss costs and
benefits of rerandomization. In the econometrics literature, Peysakhovich and Lada (2016)
and Peysakhovich and Eckles (2017) propose methods to be used with data from A/B
tests, to use A/B tests as instruments, and to estimate heterogeneous treatment effects.

More fundamentally, the A /B testing framework is in the tradition of models of optimal
experimentation. The traditional theoretical framework for optimal experimentation is the
multi-armed bandit problem, introduced by Thompson (1933) and Robbins (1985), with
the original inspiration of clinical trials. In a bandit problem, a decision-maker must de-
cide between which of a number of arms to pull in each period. The arms have uncertain
payoffs, and the decision-maker faces a tradeoff between exploiting arms that are likely
to be the best, and exploring to find the best arm. The literature considers this problem
both from Bayesian and adversarial perspectives.* Bandit algorithms are used in several

4The seminal paper on the Bayesian perspective is Gittins (1979), who proposed an index algorithm



internet applications, including to recommendation systems and to optimizing marketing
campaigns (Li et al., 2010; Schwartz et al., 2017). Bandit models have also been widely
applied to economic questions, such as optimal pricing and how to design contracts for
innovation (see Bergemann and Valimaki, 2008 and Manso, 2011).

The A/B testing problem is simpler than the bandits literature in three ways. First, there is
no exploration versus exploitation tradeoff, because the firm simply wants to acquire the
best possible information for making a decision.” Thus, the A/B testing problem is rele-
vant in cases where the payoff from an innovation once it is scaled up is much greater than
the payoffs in the relatively short experimentation phase. Second, the innovations are not
rival, because the firm is free to implement all innovations with positive expected value.
This is in contrast to the bandit problem where pulling one arm precludes pulling another.
Third, the dynamics in the A /B testing problem are trivial, because the firm makes its ex-
perimentation decisions simultaneously, and then uses the results of the experiments to
make the implementation decisions. This is relevant when there are restrictions to how
flexible experimentation has to be. This is a reasonable approximation in online A /B test-
ing settings due to practical constraints.® As noted above, the one crucial complication we
allow in our analysis, and which was absent from all previous literature we are aware of,
is fat tails in the distribution of underlying values. This suggests allowing such tails may
change other central conclusions in this literature.

Another related literature is on sequential decision problems (following Wald, 1947 and
Arrow et al.,, 1949). In a sequential decision problem, an agent obtains information over
time, at a cost, and can stop any time and make a decision. Recent contributions include
Fudenberg et al. (2017), Che and Mierendorff (2016), Hébert and Woodford (2017), and
Morris and Strack (2017).” The A/B testing problem departs from sequential decision
problems in two key ways. The first is that the tradeoff in the A /B testing problem is what
kind of information to acquire, whereas this literature considers the decision of how much
information to acquire (with the exception of Che and Mierendorff, 2016). The second is
that we consider a very large set of decisions (whether to implement or not a large set
of ideas), whereas most of the sharp results in this literature are for a small number of
decisions (typically two).

for the optimal strategy. The adversarial perspective includes the stochastic bandits literature (Lai and
Robbins, 1985; Auer et al., 2002a), where rewards distributions are adversarially chosen but fixed, and the
nonstochastic bandits literature, where rewards are chosen adversarially (Auer et al., 2002b).

°In this sense, the A /B testing problem is similar to a thread of the bandits literature known as the best
arm identification problem.

®For example, experiments are often run for multiples of one week, due to concerns of external validity
if treatment effects vary by day of the week (Kohavi et al., 2009b).

“Fudenberg et al. (2017) study the case of two decisions, linear costs, and a Brownian motion for sig-
nals, and use their results to explain the correlation between accuracy and response time in psychological
tasks. Che and Mierendorff (2016) consider the case where the agent can seek different types of informa-
tion. Hébert and Woodford (2017) and Morris and Strack (2017) give results relating sequential information
acquisition to static rational inattention models.



Our paper is also related to the literature on the value of information (Radner and Stiglitz,
1984; Moscarini and Smith, 2002; Chade and Schlee, 2002). In a classic paper, Radner and
Stiglitz (1984) showed that, under certain conditions, the marginal value of information is
zero at the point where one has no information. Their result corresponds to a production
function that has a derivative of 0 at 0 sample size in our model. This is what we find for a
sufficiently thin-tailed distribution of innovations. However, for sufficiently thick tails, we
find an infinite derivative at 0, which is sharply contradicts the Radner and Stiglitz (1984)
result. In fact, the thick tailed case is the empirically relevant case in our application.
The reason for this discrepancy is that the Radner and Stiglitz (1984) result depends on
certain assumptions that are not satisfied in our setting; effectively they assume a bounded
support distribution. Thus, our results echo the point by Chade and Schlee (2002) that
these assumptions can be restrictive.

2 The A/B Testing Problem

2.1 Model

A firm considers implementing potential innovations I = {1,...,1}. The quality of innova-
tion ¢ is unknown and equals a real-valued random variable A;, whose values we denote
by ¢;. The distribution of the quality of innovation ¢ is GG;. Quality is independently dis-
tributed across innovations.®

The firm selects the number of users allocated to innovation i, n; in R, for an experiment
(or A/B test) to evaluate it. If n; > 0, the experiment yields an estimator or signal equal to a
real-valued random variable Ai, whose value we denote by &-. Conditional on the quality
d; of the innovation, the signal has a normal distribution with mean ¢; and variance o7 /n;.
The signals are assumed to be independently distributed across innovations. The firm
faces the constraint that the total amount of allocated users Y7 | n; is at most equal to the
number of users N available for experimentation. The firm’s experimentation strategy is
defined as the vector n = (n4,...,ny).

After seeing the results of the experiments, the firm selects a subset S of innovations to imple-
ment conditional on the signal realizations of the innovations that were tested. Formally,
the subset S of innovations that are implemented is a random variable whose value is a
subset of /, and is measurable with respect to the signal realizations. We also refer to S as
the firm’s implementation strategy.

8In the empirical application described in Section 4, we will strengthen this requirement by assuming
that quality is also identically distributed across innovations. This will enable us to estimate G using a cross-
section of A/B tests. All of our theoretical results, however, are derived without imposing such a restriction.
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The firm'’s payoff—which depends on both the experimentation and implementation strategies—
is the sum of the quality of implemented innovations. The A/B testing problem is to choose

an experimentation strategy m and an implementation strategy S to maximize the ex ante
expected payoff
[I(n,S)=E

S,

€S

: (1)

2.2 Discussion

One way to gain intuition about the model is to think about how it relates to our empir-
ical application: the Bing search engine (explained in detail in Section 4). The potential
innovations I correspond to the thousand innovations that engineers propose every year.
Bing triages these innovations, and selects a subset that makes it to A/B tests (by set-
ting n; > 0). These innovations are typically A/B tested for a week, with the average
n; of about 20 million users.” The number N of users available for experimentation is
constrained by the total flow of user-weeks in a year.'

We now discuss three important modeling assumptions.

First, the gain from implementing multiple innovations is additive. This is a simplifica-
tion because, in principle, there can be interactions in the effect of different innovations.
This was the subject of an early debate at the time when A/B testing started being im-
plemented in major technology companies (Tang et al., 2010; Kohavi et al., 2013). One
proposal was to run multiple parallel experiments, and analyzing them in isolation, to
increase sample sizes. Another proposal—based on the idea that interactions between
innovations could be important—was to use factorial designs that measure all possible
interactions. While both positions are theoretically defensible, the industry has moved
towards parallel experiments; which suggets that our modeling assumption is inline with
the industry standard.

Second, there is no cost of running an experiment, so that the scarce resources are in-
novation ideas and data for experimentation. This assumption is for simplicity, and we

%It is common practice to require the duration of the experiments to be a multiple of weeks in order to
avoid fishing for statistical significance and multiple testing problems; see Kohavi et al. (2013) p. 7. Also
treatment effects often vary with the day of the week, so industry practitioners have found an experiment
to be more reliable if it is run for whole multiples of a week (Kohavi et al., 2009a). While the timing in our
model is simpler than reality, it is closer to practice than the unrestricted dynamic experimentation in bandit
problems.

90ur model can also be related to the standard multi-armed bandit problem. The potential innovations
I corresponds to the bandit arms. The number of available users N corresponds to the number of periods
in the bandit problem. There are, however, three key differences. First, the A/B testing problem ignores
the payoffs during the experimentation phase because, in practice, they are dwarfed by payoffs after imple-
mentation. Second, multiple innovations can be implemented. Third, the timing of the A /B testing problem
is simpler: there are no dynamics.



argue later the introducing costs of experimentation do not change the main message of
the paper. However, some readers may find it counter-intuitive that data is scarce, given
the large sample sizes in major platforms. This point was even raised in early industry
discussions about A /B testing, where some argued that “there is no need to do statistical
tests because [...] online samples were in the millions” (Kohavi et al., 2009b p. 2). Despite
this intuitive appeal, this position has been discredited, and practicioners consider data to
be scarce. For example, Deng et al. (2013) say that “Google made it very clear that they
are not satisfied with the amount of traffic they have [...] even with 10 billion searches per
month.” And parallelized experiments are viewed as extremely valuable, which can only
be the case if data is scarce (Tang et al., 2010; Kohavi et al., 2013). Data is scarce because
large, mature platforms pursue innovations with small effect sizes, often of a fraction of a
percent increase in performance (Deng et al., 2013).

Third, experimental errors are normally distributed. This is a reasonable assumption in
our main application because the typical estimator for the unknown quality is a difference
between sample means with i.i.d. data, and treatment/control groups are in the millions.
It would be interesting to generalize the model beyond the normal case for applications
where sample sizes are potentially small and the Central Limit Theorem does not provide
a good approximation to the distribution of sample means.

2.3 Assumptions and Notation

We assume that the distribution G; has a smooth density with bounded derivatives of all
orders, and that g;(0) is strictly positive.

We use the following notation. Two functions h; and h, are asymptotically equivalent'' as n
converges to n if
iy ()
1m

n—no fg (n)

=1.

This is denoted as h; ~,,, ha, and we omit ny when there is no risk of confusion.
Given a sample size n; > 0 for experiment ¢ and signal realization 5; , denote the posterior
mean of the quality A; of innovation i as

Pz(gwnz) = E[AZ|A1 = 5@ ) nz]

If n, = 0, we abuse notation and define Pi(&-, n;) as the unconditional mean of A,;.

Because the experimental noise is normally distributed, it is known that P;(-, n;) is smooth
and strictly increasing in the signal provided n; > 0. Moreover, there is a unique threshold
signal 6} (n;) such that P,(d7(n;),n;) = 0 (see Lemma A.1).

1See Whitt (2002), Appendix A, p. 569.



3 Theoretical Results

3.1 The Optimal Implementation Strategy

The optimal implementation strategy is simple. The firm observes the signal §;, calcu-
lates the posterior mean P;(d;, n;) using Bayes’ rule, and implements innovation ¢ if this
posterior mean is positive. We formalize this observation as the following proposition.

Proposition 1 (Optimal Implementation Strategy). Consider an arbitrary experimentation
strategy m and an implementation strateqy S* that is optimal given m. Then, with probability
one, innovation i is implemented iff the posterior mean innovation quality P;(d;,n;) is positive.

In practice, the most common implementation strategy is to implement an innovation if it
has a statistically significant positive effect at a standard significance level, typically 5%.
Other versions of this strategy adjust the critical value to account for multiple hypothesis
testing problems. Proposition 1 shows that these approaches are not optimal in the A/B
testing problem. The optimal strategy is to base implementation decisions on the posterior
mean.

3.2 The Production Function

The A/B testing problem is greatly simplified by using neoclassical producer theory. Fun-
damentally, the firm combines inputs (potential innovations and data), to produce an out-
put (quality improvements). The value of potential innovation ¢ with no data equals its

mean, provided that it is positive,
E[A;]*.

If the firm combines innovation ¢ with data from n; users, the firm can run the experiment,
and only implement the idea if the posterior mean quality is positive. By Proposition 1,
the total value of A/B testing innovation i is the expected value of the positive part of the
posterior mean; this is

~

Thus, the value of investing data from n, users into potential innovation ¢ equals
filni) = E[H(Au n:) "] — E[A]* (2)

We term f;(n;) the production function for potential innovation i. We term f/(n;) as the
marginal product of data for i. With this notation, the firm’s payoff can be decomposed as
follows.
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Proposition 2 (Production Function Decomposition). Consider an arbitrary experimentation
strategy m and an implementation strategy S that is optimal given m. Then the firm's expected
payoff is
(n,S) = ZE[Ai]+ + Zfz(”z)
iel il
value of ideas with no data  additional value from data

That is, the payoff equals the sum of the gain from innovations that are profitable to implement
even without an experiment, plus the sum of the production functions of the data allocated to each
experiment. The production functions are differentiable for n; > 0.

This decomposition reduces the A /B testing problem to constrained maximization of the
sum of the production functions. Therefore, the shape of the production function is a cru-
cial determinant of the optimal innovation strategy. Figure 1 plots the production function
with illustrative model primitives. Panel B depicts the case of a normal prior. Panel A de-
picts the case of a fat-tailed ¢-distribution, for varying tail coefficients. The figure shows
that the production function can have either increasing or decreasing returns to scale, and
that the shape of the production function depends on the tail coefficients of the prior dis-
tribution.

3.3 Main Results: Shape of the Production Function

This section develops our main theoretical results, which characterize the shape of the
production function (and consequently speak to the optimal experimentation strategy).
Throughout this subsection, we consider a single innovation, and omit the subscript i
for clarity. To describe the optimal implementation strategy, define the threshold t-statistic
t*(n) as the t-statistic associated with the threshold signal, t*(n) = §*(n)/(c/v/n).

We establish two theorems. The first theorem characterizes the production function for
very large sample sizes, in the limit where the experiment is much more informative than
the prior.

Theorem 1 (Production Function for Large n). Consider n converging to infinity. We have the
following.

1. The threshold t-statistic t*(n) converges to 0. Moreover, if ¢'(0) # 0,

2. Marginal products converge to 0 at a rate of 1/n?. More precisely,
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Figure 1: The Production Function
Notes: The figures plot the production function as a fraction of the value of perfect information, f(n)/f(co). Panel A depicts a Student
t prior, and Panel B depicts a normal prior. The mean of all distributions is -3.6e-3. The standard deviation of the normal and the scale

parameter of the ¢ distributions are both 5.1e-2. The tail parameters of the ¢ distribution are depicted in panel A.
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fln) ~ 5 - g(0)- 0% —. )

The theorem shows that, for very large samples, the marginal product of additional data
declines rapidly. Moreover, this holds regardless of details about the distribution of ideas,
which only affects the asymptotics up to a multiplicative factor. The intuition is that addi-
tional data only helps to resolve edge cases, where the value of an innovation is close to 0.
Mistakes about these cases are not very costly, because even if the firm gets them wrong
the associated loss is small."

The intuition of the proof is as follows. Lemma A.2 in the appendix shows that, for all n,
the production function is differentiable and the marginal product equals

f(n) = % m(8*(n) . n) - Var [A|A = 5°(n)] @)
where m/(-, n) is the marginal distribution of the signal A. The marginal product depends
in an intuitive way on the elements of this formula. It is more likely that additional data
will be helpful if the existing estimate has few data points n, if the likelihood m(6*(n), n) is
large, and if there is a lot of uncertainty about quality conditional on the marginal signal.
The proof gives further intuition of why the exact formula holds. We then proceed to show
that m(6*(n), n)-Var [A\A =4 (n)] ~ g(0)o?/n?. Intuitively, this result can be thought of as
a consequence of the Bernstein-von Mises theorem, which says that Bayesian posteriors
are asymptotically normal, centered at the maximum likelihood estimator (MLE) , with
variance equal to that of the MLE. This implies that the threshold §*(n) is close to zero, and
the conditional variance in equation (4) is 0% /n. Thus, the general formula (4) simplifies
to the asymptotic formula (3).

Theorem 1 may only hold for extremely large sample sizes. For example, in Figure 1,
even experiments with millions of users only generate a fraction of the value of perfect
information. The theorem implicitly relies on a Bernstein-von Mises type approximation
where there is so much data that the prior is uninformative. This only happens when the
experiments are much more precise than the variation in the quality of ideas. Even large
platforms like Bing are far below this scale, as in the anecdotal evidence cited in section
2.2, and in the empirical evidence we give below.

Matters are very different for small n, where the exact shape of g has dramatic effects on
the shape of f. The next theorem shows that if the ex ante distribution of idea quality has
Pareto-like tails," the marginal product is determined by the thickness of the tails.

2This argument echoes themes developed by Vul et al. (2014) for more special distributions and by Fu-
denberg et al. (2017) in dynamic learning context.

B3The p.d.f.s covered by Theorem 2 include the generalized Pareto density of Pickands (1975), affine trans-
formations of the t-distribution (which is the model used in our empirical application), and any distribution
where the tails are Pareto, Burr, or log gamma.
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Theorem 2 (Production Function for Small n). Assume that the distribution of innovation
quality satisfies g(0) ~ ac(d) - |6|~ @) as § converges to +oo, where c(0) is a slowly varying

function and o > 1. Assume there is a constant C' > 0 such that c(§) > C for large enough |9|.
Assume also that E[A] < 0 and consider n converging to 0. We have the following.

1. The threshold t-statistic t*(n) converges to infinity at a rate of \/log 1/n (which is slower
than any polynomial of 1/n). More precisely,

£(n) ~ \/2(a —1)log %

2. Marginal products are, asymptotically,

fl(n) ~ % -ac(6*(n)) - (ot*(n)) @D T,

3. If the tails of g are sufficiently thick so that o < 3, then the marginal product at n = 0 is
infinity.

4. Otherwise, if a > 3, the marginal product at n = 0 is zero.

The theorem states that, for small n, f’(n) behaves as approximately proportional to nz.
This behavior determines the marginal returns of the production function in small A/B
tests. Much like in neoclassical producer theory, this behavior is crucial for the optimal
experimentation strategy. With relatively thin tails o > 3, marginal products are increas-
ing (and zero at n = 0), and we have increasing returns to scale. With relatively thick
tails, marginal products are decreasing (and infinite at n = 0), so that we have decreasing
returns to scale. These cases are illustrated in Figure 1.

The intuition for the theorem is as follows. If g is not sufficiently fat tailed, o > 3, then
a small bit of information is unlikely to change the optimal action as it is too noisy to
overcome the prior. A bit of information is therefore nearly useless. Only once the signal
is strong enough to overcome the prior does information start to become useful. This
makes the value of information convex for small sample sizes. This intuition has been
formalized in a classic paper by Radner and Stiglitz (1984). They consider a setting that
is, in some ways, more general, but that precludes the possibility of fat tails. Because they
assumed away fat tails, they concluded that the value of information is generally convex
for small n. Our theorem shows that their conclusion is reversed in the fat tail case.

Our theorem shows that if a < 3, most of the value of experimentation comes from a few
outliers and even extremely noisy signals will suffice to detect them. More precise signals
will help detect smaller effects, but if most of the value is in the most extreme outliers,
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such smaller effects have quickly diminishing value. Thus, the value of information is
concave for small n.

At first sight, it is not clear why the dividing line is @ = 3. As it turns out, @« = 3 can
be explained with a simple heuristic argument. Consider a startup firm that uses a lean
experimentation strategy. The firm tries out many ideas in small A/B tests, in hopes of
finding one idea that is a big positive outlier. Even though the A /B tests are imprecise, the
tirm knows that, if a signal is several standard errors above the mean, it is likely to be an
outlier. So the firm decides to only implement ideas that are, say, 5 standard errors above
the mean. This means that the firm will almost certainly detect all outliers that are more
than, say, 7 standard errors above the mean. This yields value

f(n) x / 0g(0)déd o / 66t 4§ = / 0% dé.
To/y/n To/\/n To/\V/n

Integrating we get

a—1

Fln) o (T /i) @Y cns,

Thus, the marginal product is proportional to n“z", asin the theorem.

The proof of the theorem formalizes and generalizes this heuristic. The starting point is to
show that the first order condition for the optimal threshold, and the marginal products
can be written as integrals. These integrals are dominated by regions where either quality
is in the mean of its distribution, but the signal is extreme, or where the signal is in the
middle of its distribution, but true quality is extreme. Much like in the heuristic argument,
these integrals can then be approximated by closed-form expressions, due to the power
law assumption.

3.4 The Optimal Experimentation Strategy

We now use the results to understand the optimal experimentation strategy.

Corollary 1 (Optimal Experimentation Strategy). Assume that all ideas have the same prior
distribution of quality, and that this distribution satisfies the assumptions of Theorem 2. Then:

o If the distribution of quality is sufficiently thin-tailed, o > 3, and if N is sufficiently small,
the firm should select a strict subset of ideas to experiment on, and allocate all of the data to
these ideas.

o If the distribution of quality is sufficiently thick-tailed, o < 3, it is optimal to run experi-
ments on all ideas. If, in addition, N is sufficiently small, then it is optimal to use the same
sample size for all experiments.



15

The corollary relates the experimentation strategy to the tail of the distribution of innova-
tion quality. If the distribution of innovation quality is sufficiently thin-tailed, most ideas
are marginal improvements. The production function is convex close to n = 0, because
obtaining a small amount of data is not sufficient to override the default implementation
decision. In this case, it is optimal to choose a few ideas, and run large, high-powered
experiments on them. We call this strategy “big data A/B testing” as it involves ensuring
all experiments run have large enough samples to detect fairly small effects. This strat-
egy is in line with common practice in many large technology companies, where ideas are
carefully triaged, and only the best ideas are taken to online A/B tests.

If the distribution of innovation quality is sufficiently thick tailed, a few ideas are large
outliers, with very large negative or positive impacts. These are commonly referred to as
black swans, or as big wins when they are positive. The production function is concave
and has an infinite derivative at n = 0. The optimal innovation strategy in this case is
to run many small experiments, and to test all ideas. We call this the “lean experimen-
tation” strategy, as it involves running many cheap experiments in the hopes of finding
big wins (or avoiding a negative outlier). This strategy is in line with the lean startup ap-
proach, which encourages companies to quickly iterate through many ideas, experiment,
and pivot from ideas that are not resounding successes (Blank, 2013).

4 Empirical Application

4.1 Setting

To understand the relevance of the model to practical A/B testing practice, we applied it
to a major experimentation platform, Microsoft’s EXP. This is an ideal setting because we
have detailed data on thousands of A/B tests that have been performed in the last few
years. We can use the data to estimate the ex ante distribution of innovation quality, and
understand optimal innovation strategy in this setting.

EXP was originally part of the Bing search engine, but has since expanded to help several
products within Microsoft run A/B tests. This expansion coincides with the rise of A/B
testing throughout the technology industry, due to the large increase in what is known as
cloud-based software. Traditional client-based software, like Microsoft’s Word or Excel,
runs locally in users” computers. Innovations used to be evaluated offline by product
teams, and implemented in occasional updates. In contrast, cloud based software, like
Google, Bing, Facebook, Amazon, or Uber, mostly runs on server farms. The move to
the cloud had a substantial impact on how these companies innovate. For these cloud-
based products, most innovations are evaluated using A/B tests, and are developed and
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shipped in an agile workflow. These practices have spread, and even traditional software
products like Microsoft Office now use A/B testing.

We limited our analysis to a narrow set of innovations in the Bing search engine. We
limited the scope of our analysis to circumvent some key challenges in research design,
and to guarantee high internal validity. We stress that this limits the external validity of
our empirical study. The point is to apply the theory to one, important, practical setting,
as opposed to arguing that innovations are always fat tailed or that production functions
always have some particular form. It is plausible that production functions are context-
dependent. For example, even at Microsoft there is anecdotal evidence that products
where A/B testing is less mature have a larger fraction of innovations with statistically
significant effects. Our results may be somewhat representative of major, well-established,
cloud products. But the results should not be extrapolated, especially to smaller and
newer products, or to completely different settings such as anti-poverty interventions.
Instead, researchers in other contexts have to perform a similar analysis to determine the
optimal innovation strategy.

There are three key empirical challenges to obtain reliable estimates of the distribution of
innovation quality. First, the distribution g, represents the prior information about idea
i. Thus, to estimate g;, even with perfect observations of the realized true quality §;, we
need many observations of ideas that engineers see as coming from the same distribution.
To illustrate this problem, imagine that engineers test a set of ideas that look good, and
have a distribution ¢;, and ideas that look bad and have a distribution g,. If we do not
observe which ideas are good and which are bad, we would incorrectly think that the
ex-ante distribution of ideas is an average of g; and g,.

The second challenge is that online A /B tests suffer from a particular kind of non-classical
measurement error: many experimental results are flukes, caused by experimental prob-
lems. These problems arise because running many parallel A/B tests in a major cloud
product is a difficult engineering problem. The simplest examples are failures of random-
ization, which can be detected when there is a statistical difference between the number
of users in treatment and control groups. As another example, consider an experiment
that either takes the user directly to the control page, or redirects the user to the treatment
page. Then the treatment page will have a longer loading time, which will bias the test
against the treatment. Although this is a simple problem, it is present in many off-the-
shelf A/B testing products (Kohavi and Longbotham, 2011). Many other, more complex
experimental problems commonly happen." This kind of measurement error can bias
estimates of the distribution of innovation quality. For example, if true effects are nor-

“Por example, Bing caches the first few results of common queries. For the experiments to be valid,
every user has to cache the data for all the versions of all the experiments that she takes part on, even for the
treatments that she will not be exposed to. This both creates a cost of the experimentation platform, since it
slows down the website as a whole, and creates a challenge to run a valid experiment. As a final example,
consider a treatment that slows down a website. This treatment could cause a instrumentation issue if it
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mally distributed, but experimental flukes produce a few large outliers, a researcher may
incorrectly conclude that the distribution of true effects is fat tailed.

The third challenge is that our model assumes that innovations can be identified by a
single quality metric, that is additive across different innovations. In practice, this is a
challenge because there are multiple possible performance measures that can be used,
and because innovations can be complements or substitutes.

4.2 Data

We constructed our dataset to alleviate the key challenges pointed out above. We focused
on the experiments performed in relatively homogeneous areas of the Bing search engine.
One advantage is that prior beliefs about these innovations are relatively homogeneous
ex ante. Engineers currently view ideas in a relatively even footing because of their previ-
ous experience with A/B tests. Previous A/B tests revealed that it is very hard to predict
which innovations are effective ex-ante, and sometimes the best innovations come from
unexpected places. Kohavi et al. (2009b, 2013) describe their experience running experi-
ments at Bing as “humbling.” One of their major tenets is that “we are poor at assessing
the value of ideas.” They give several examples of teams in other companies that have
reached similar, if not even more extreme, conclusions.

We restricted attention to areas related to user experience, such as search ranking, and to
user interface. The advantage of this restriction is that user experience is well summarized
by key metrics. The main metric that we will use is a proprietary success metric that we
call success rate. The success rate for a user is the proportion of queries where the user
found what she was looking for. This measure is calculated from detailed data on user
behavior in each session. The success rate is a good overall measure of performance, and
plays a key role in shipping criteria. One advantage of focusing on the user experience
areas is that most of these innovations are not related to revenue. Thus, there is no need
to trade off revenue improvements with user experience. When revenue-performance
tradeoffs exist, engineers use a dollar value of the performance measure to make shipping
decisions. While this is a minor extension of the model, considering the user experience
areas has the advantage of allowing us to simply consider success rate as an aggregate
performance measure.

Besides success rate, thousands of other metrics are recorded. While our main analy-
sis uses session success rate, we will consider some of these other metrics in robustness
and placebo analyses. First, we consider three alternative user experience metrics. These
are other reasonable ways to measure performance based on short-term user interactions,

makes it easier for clicks to be detected. So, even if the treatment worsens user experience, it could seem to
be increasing engagement, only because it made it easier to detect clicks (Kohavi and Longbotham, 2011).
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much like success rate. We refer to them as alternative short-run metrics #1, #2, and #3.
These metrics help us validate our methodology, because qualitative results should be rel-
atively similar to the results for success rate. We will also consider two long-run metrics,
that measure overall user engagement in the long run. We refer to them as long-run met-
rics #1 and #2. Engineers consider the long-run metrics more important. However, it is
extremely hard to detect movements in these metrics, which is why most shipping deci-
sions are based on short-run metrics such as success rate. We can also use these metrics
to validate our methodology, because we should expect them to have a small amount of
signal relative to the experimental noise. All of the metrics we use are measured at the
user level, which is also the level of randomization of the experiments. Although these
metrics use different units, engineers commonly consider percentage improvements. We
define the delta of a metric in an experiment as the raw effect size divided by the control
mean, defined in percent. In the remainder of the paper, we will use deltas to analyze
experiments across all metrics. We refer to the sample delta in a metric in an experiment,
or signal, as the sample estimate of the percentage improvement. This corresponds to the
signal s; in the theoretical model. The signal is the sum of experimental noise and the true
percentage improvement, or true effect, ¢;.

We eliminated experiments that do not fit the most basic version of our model. Many
experiments apply only to a small set of searches. For example, a change in the ranking of
searches related to the National Basketball Association can be analyzed with data only on
a small percentage of queries, and its effect is zero for other queries. We eliminated these
experiments. There are also many experiments with multiple treatments, where engineers
test multiple versions of an innovation. We also eliminated these experiments.

Finally, we eliminated many experiments where the data was less reliable. We took a con-
servative approach of eliminating experiments where the data shows any signs of exper-
imental problems. We eliminated experiments in several steps. We consider only English
speaking users in the United States, because this is the market with the most reliable data.
We eliminated experiments with missing data on any of a number of key metrics, and that
had potential problems according to a number of internal measures, such as statistical dis-
crepancies between the number of users in treatment and control groups. We eliminated
experiments that had been run for less than a week. These are possibly aborted experi-
ments because EXP recommends running experiments for at least a week. We eliminated
experiments run for more than four weeks because it is rare to run long-run experiments,
and these are often innovations that are ex ante viewed as potentially valuable. We also
eliminated experiments with a very small sample (less than one million users). The rea-
son is that many of the experiments with small samples were performed only on a small
subset of queries (such as only for users with a particular device), but this had not been
recorded correctly in the data. After this procedure, we were left with 1,505 experiments.
We further eliminated some observations that were contaminated with engineering and
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design problems.

Table 1 displays summary statistics, at the level of experiments.

Table 1: Summary Statistics: Experiments

Mean Min Max Standard Interquartile
deviation range
All experiments (N = 1466)

Number of subjects 19, 365, 562 2,005,051 125,837,134 16,491, 626
Duration (days) 10.81 7.00 28.00 4.68

Probability valid 0.52 0.25 1.00 0.09

Sample delta

Success rate 0.001% —0.220% 1.525% 0.063% 0.036%
Short-run metric #1 —0.002% —0.234% 0.830% 0.045% 0.033%
Short-run metric #2 —0.026% —13.017% 5.880% 0.596% 0.139%
Short-run metric #3 —0.003% —0.465% 1.250% 0.078% 0.059%
Long-run metric #1 0.003% —2.157% 0.669% 0.158% 0.154%
Long-run metric #2 0.003% —0.484% 0.432% 0.083% 0.090%
Sample delta standard error

Success rate 0.029% 0.009% 0.099% 0.013%

Short-run metric #1 0.025% 0.009% 0.072% 0.011%

Short-run metric #2 0.103% 0.035% 0.271% 0.040%

Short-run metric #3 0.044% 0.012% 0.120% 0.020%

Long-run metric #1 0.158% 0.045% 0.459% 0.075%

Long-run metric #2 0.092% 0.030% 0.255% 0.044%

The table reveals three striking facts. First, Bing conducts large experiments, with the
average experiment having about 20 million subjects. This reflects both the fact that Bing
has a substantial number of active users, and also the fact that experiments are highly
parallelized. These large sample sizes are translated in precise estimation of all metrics.
For example, the average standard error for session success is of only 0.029%.

The second fact is that effect sizes of the studied interventions are also small. The mean
sample deltas are very close to zero, for all metrics. The standard deviation of the sample
delta for session success is of only 0.063%. This reflects the fact that Bing is a mature
product, so that it is hard to make innovations that have, on their own, a very large impact
on overall performance. Even though the effects are small in terms of metrics, they are
considered important from a business perspective. Practitioners consider that the value
of a 1% improvement in session success is of the order of hundreds of millions of dollars.
Thus, even gains of the order of 0.1% are substantial, and worth considerable engineering
effort.

Third, the summary statistics suggest that the distribution of measured effects is extremely
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skewed. Many experiments have very small measured deltas, while a handful show sub-
stantial gains. This can be seen in the histogram in Figure 2. The summary statistics
display telltale signs of fat tails. The interquartile ranges of measured deltas are markedly
smaller than the standard deviation, for all of the short term metrics. This is in contrast to
the normal distribution, where interquartile ranges are slightly larger than the standard
deviation. Moreover, for all metrics, the largest absolute value deltas are several standard
deviations away from the means.
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Figure 2: Distribution of measured deltas in session success

Notes: The figure displays a histogram of sample deltas, or signals, of session success, across all experiments.

A standard method to visualize fat tailed-distributions is what is known as a log-log plot.
This is a plot of the log of the rank of each observation versus the log of the observation. If
the variable s has a Pareto distribution with parameter o, then the probability of exceeding
s is proportional to s, and the log-log plot is a straight line with a slope of negative a.

Figure 3 displays a log-log plot of the tail distribution of sample delta, with the 200 obser-
vations with largest absolute value in each metric. The figure displays slope coefficients
a calculated from the top 30 observations. The figure suggests that tail coefficients are
substantially below 3 for all short-run metrics. The log-log slopes should be taken with a
grain of salt, because these rough estimates suffer from well-known problems. The most
serious problem in our setting is that we have few observations in the tail of the distribu-
tion. Thus, we must estimate the slope based on a small number of points, which makes
the estimates sensitive to outliers. For that reason, we present these results to transpar-
ently describe the data, but we will focus on the results from our maximum likelihood
estimation described below.
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Figure 3: Log-log plots of the tails of the distribution of sample deltas
Notes: Each figure plots, in a log-log scale, the rank of the absolute value of sample deltas, versus the absolute value of sample delta
|s;|. Each panel corresponds to a particular metric. The absolute value of the slopes give a rough estimate of the Pareto coefficient of

the distribution of sample deltas.
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4.3 Identification and Maximum Likelihood Estimation

Fix a metric of interest (for example, session success rate). As we have mentioned before,
we would like to estimate the metric’s ex ante distribution of idea quality, which we de-
note succinctly by g. We start by summarizing each A /B test i affecting the corresponding
metric using the triplet

(Siaaivni>v (5)

where §; denotes the estimated delta of idea i, o; /+/n; is the estimated standard error, and

n; is the sample size."”

Following the theoretical analysis from Section 3, the distribution of 4, is given by a two-
stage hierarchical model:'

d; is distributed according to g, (6)

5;|0; is distributed as a N(8;,02/n;). )

That is, the estimator ¢, is normally distributed with known variance given the true quality
d;. This is a reasonable assumption because of the large sample sizes in each experiment.
This makes the errors approximately normally distributed, and the standard estimate for
the sample variance is consistent and precisely estimated relative to treatment effects.

NONPARAMETRIC IDENTIFICATION OF g: The prior g is nonparametrically identified. To
see this, note that the unconditional distribution of §, equals the sum of two independent
random variables:

0= 0; + (0:/+/n;)e, where §; has p.d.f. g, € is N(0,1), and §; Le;.

If we let ¢x(t) denote the characteristic function of X at point ¢, it is straightforward to
see that:

Uilt) = 5, (8) / exp (—%Z—t) . ®)

(3

It is a well-known fact that any probability distribution, in particular that of ¢, is fully char-
acterized by its characteristic function (Billingsley (1995), Theorem 26.2, p. 346). Conse-
quently, g is non-parametrically identified from the unconditional distribution of §;, which

5For notational simplicity—and given that we will estimate the ex ante distribution of idea quality sepa-
rately for each metric—we omit the use of subscript m throughout this section.

®Hierarchical models are used extensively in Bayes and Empirical Bayes statistical analysis (see Chapters
2 and 3 in Carlin and Louis (2000)). Two-stage hierarchical models are also known as mixture models (Seidel
(2015)), where g is typically called the mixing distribution.
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in principle can be estimated using data for different A /B tests with similar ;."”

MAXIMUM LIKELIHOOD ESTIMATION: Although the ex ante distribution of idea quality, g,
is non-parametrically identified, we estimate our model imposing parametric restrictions
on ¢.'"® In particular, we assume that

0~ M+ s-tg, )

where M € R, s € R, and ¢, is a t-distributed random variable with a degrees of freedom.
This means that we can write the second stage of our hierarchical model as

0 has distribution ¢(-; 8), with 5 = (M, s, a)’,

and the parametric likelihood of each estimate 4; as the mixture density
m(@i5i0,m) = [ 0 (8:6.0,/vm) (6. B)d5 (10)

In the equation above ¢(-; 9, 0;/,/n;) denotes the p.d.f of a normal random variable with
mean ¢ and variance o2 /n,;.

Now, we will write the likelihood for the results of n different A /B tests

A

8 =(b1,02,...,0).

If we assume that each estimator §; is an independent draw of the model in (10), then
the log-likelihood of & given the parameter 5 and the vector of standard errors: o =

(o1/\/11,02/\/N2, ..., 0n/y/T1y) is given by
log f(8]8;0) =Y log m(&i]B; 01, ms). (11)
=1

The Maximum Likelihood (ML) estimator, 3, is the value of 3 that maximizes the equation
above. Note that the likelihood in (11) corresponds to a model with independent, not

The identification argument above has been used extensively in the econometrics and statistics litera-
ture; see Diggle and Hall (1993) for a seminal reference. If, contrary to our assumption, the distribution of
(0/+/n)e were unknown, non-parametric identification of g would not be possible unless additional data is
available or additional restrictions are imposed; see for example Li and Vuong (1998).

8The default approach for doing nonparametric estimation of g in the mixture model given by equations
(6)-(7) is the infinite-dimensional Maximum Likelihood estimation routine suggested by Kiefer and Wol-
fowitz (1956), and refined recently by Jiang and Zhang (2009). It is known, see Theorem 2 in Koenker and
Mizera (2014), that the nonparametric Maximum Likelihood estimator of ¢ given a sample of size n is an
atomic probability measure with no more than n atoms. The tails of an atomic probability measure are never
fat, even if the true tails of g are. Because of this reason, we decided to follow a parametric approach for the
estimation of g.
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identically distributed data. Sufficient conditions for the asymptotic normality of the ML
estimator for 3 are given in Hoadley (1971)."

4.4 Estimation Results

We now present the Maximum Likelihood estimators of the parameter of interest 3 =
(M,s,a)’. Figure 4 reports the estimated degrees of freedom, «, for each of the metrics
under study.
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Figure 4: Maximum likelihood estimate of the tail coefficients.
Notes: The figure displays the maximum likelihood estimates of the tail coefficients o. SR1, SR3, and SR3 represent the alternative
short-run metrics, SRO represents session success, and LR1 and LR2 represent the long-run metrics. The solid lines represent 95%

confidence intervals.

The log-log rank plots of the previous section contained an informal description of the
tails of the underlying distribution of idea quality for each metric. In particular, Figure 3
in Section 4.2 readily suggests that the tails of g for the short-run metrics are fatter than
those of the long-run metrics.

The ML estimators displayed in Figure 4 formalize such observation. It is worth noting
that, qualitatively, the differences between the tails of short-run and long-run metrics are
in line with our intuition. Long-run metrics—which measure user engagement in the
long run—are more difficult to affect. This means that, mechanically, most of the A/B

YThe conditions in Hoadley (1971) essentially require that the first and second derivatives of the log-
likelihood with respect to 8 to be well-defined.
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tests for long-run metrics will have small estimated effects and outliers that are of smaller
magnitude than those observed for the short-run metrics.

We also note that, in contrast with the long-run metrics, all of the estimated tail coefficients
for the short-run metrics are below the threshold o = 3 (depicted as the dotted horizontal
line in the middle of Figure 4). This is an interesting finding, because according to the
theoretical analysis of Section 3 this is exactly the relevant cut-off to understand the value
of lean experimentation. Our estimation results—combined with our theory—suggest
that A/B tests for some of the short-run metrics (e.g., SR3) could be made lean, whereas
those of some long-run metrics (e.g., LR2) should stay big.”’

To fully characterize the estimated underlying distribution of idea quality for each metric,
Figure 5 also reports the ML estimators of the parameters (1, s). One first thing to note
is that there is qualitative difference between the ML estimator of M for short-run and
long-run metrics. The mean quality of ideas for any of the short-run metrics is negative
and significantly different from zero, whereas the ML estimator of m for long-run metrics
is positive. As we have mentioned before, anecdotal evidence suggests that detecting
changes in the long-run metrics is difficult. This feature might be the underlying cause
explaining why even though the estimated quality for long-run metrics is positive, the
corresponding standard errors are fairly large and the null hypothesis that M is negative
cannot be rejected at neither 5% nor 10% significance level.

Finally, we also note there is an important difference between the estimator for the pa-
rameter s across short- and long-run metrics. Figure 5 shows that the ML estimator of s
for long-run metrics is much smaller than the one obtained for the short-run metrics, and
very tightly concentrated around its estimated value.”!

Overall, the results in this section suggest that the unobserved distribution of idea qual-
ity for short-run metrics has tail coefficients smaller than 3. The asymptotic approxima-
tions in Section 3 thus suggest that lean A/B tests for these metrics have advantages
over big tests. The next section uses the two-stage hierarchical model in (6)-(7) and the
t-assumption for g to compute the counterfactual value of A/B tests for different sample
sizes. We will relate the numerical results with Theorem 2.

20We remind the reader that the theoretical results derived in Section 3 assumed that the tail coefficient of
g is strictly above 1. This implies, that for instance, our theoretical model is silent about the experimentation
regime that should be recommended for SR2.

2IThe estimated values of s for long-run metrics is close to zero (which is the boundary of its parameter
space). Based on the results of Andrews (1999) this suggests that the typical standard errors for long-run
metrics based on the Fisher Information matrix might be conservative.
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Figure 5: Maximum likelihood estimate of the mean and scale parameters.
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represent the alternative short-run metrics, SRO represents session success, and LR1 and LR2 represent the long-run metrics. The

dashed lines represent 95% confidence intervals.

4.5 Implications

The two-stage hierarchical model used for the theoretical and empirical analysis of our
data offers several insights about the value of A/B tests. In this section, we use the the-
oretical results derived in Section 3 and the ML estimates of the previous subsection to
understand three important aspects of A/B tests (all of which have implications to busi-
ness practice).

First, we report how the mean of the ex-ante distribution of idea quality is updated by
the results of an A/B test. Our theoretical results have already shown that the ‘posterior’
mean of idea quality is the relevant parameter to decide whether or not an idea should be
shipped. The quantitative results in this section complement our theoretical analysis by
giving a more concrete sense of how the threshold for shipping an idea is affected by the
size of the A/B test.

Second, we compute the estimated production function. As suggested by our asymp-
totic approximations, A /B tests exhibit marginal decreasing returns—for large and small
sample sizes—provided the tails of ¢ are fat enough. The results in this section provide
further quantitative details on this observation by showing that A/B tests of moderate
sample sizes (1 to 5 million participants) suffice to capture a large fraction of the value of
a 20 million trial.

Finally, we elaborate on the gains that could be realized by replacing big A /B tests by lean
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experiments. We show that running 20% times experiments (adjusting the sample size
accordingly) generates an increase in expected profits of 18.49%.

Throughout this section, we focus on the success rate metric. All the figures generated in
this section use the model in (6)-(7) evaluated at the ML estimators for (.

4.5.1 Bayesian Correction for Measured Effects

We start by reporting how the mean of the distribution of idea quality is updated given
the results of on A/B test. The ML estimate of the mean of ¢ was shown to be -0.0011%.
This suggests that if all of the ideas in our dataset had been implemented, quality would
have been reduced.
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Figure 6: Posterior mean of innovation quality as a function of the signal
Notes: The horizontal axis represents a signal z; of the sample delta in an experiment. The vertical axis represents the posterior
mean of innovation quality given the signal. The different colors correspond to different sample sizes for the experiment. The dashed
lines represent the signal values for which the posterior mean is zero, so that the platform would be indifferent between shipping the

innovation or not.

Figure 6 presents the updated mean of idea quality given the result obtained from an A/B
test. Suppose, for example, that the effect on session success measured by an A/B test
with 50 million participants is 0.1 (which corresponds to gains on the order of 10"millions
of dollars). Our ML estimates imply that the mean effect of idea quality would be updated
to a similar magnitude. Note that this is not the case if the same signal is obtained from an
A /B test of a smaller sample size. For either a 5 million or a 0.1 million trial the posterior
mean is updated to be positive, but it is of a much smaller magnitude than the observed
signal.



28

Figure 6 also depicts the threshold value of the signal that makes the posterior mean ex-
actly equal to 0. Consistent with our theoretical results, the implementation threshold is
more stringent for leaner experiments. For example, if an A /B test of 100,000 participants
is used to decide whether or not a idea that ex-ante has a negative effect on profits on
hundreds of thousand dollars should be shipped, it takes an estimated effect of the order
of tenths of million of dollars to reverse the prior. The threshold is much smaller if the
trial has 50 million participants.

4.5.2 Returns to Scale and Shape of the Production Function

Figure 7 plots the production function under our baseline estimates. To make the units
intuitive, we report the percentage of the value relative to the value of having perfect
information. That is, we report f(n)/f(c0) = f(n)/E[AT]. With our parameter estimates,
f(o0) is a percentage gain of 6e-03 in session success. That is, with perfect information,
testing 1,000 ideas generates an expected gain in session success of 6%.
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Figure 7: The Estimated Production Function

The figure shows that the production function is concave. This is consistent with The-
orem 1 and the fat tails. Moreover, returns to scale are rapidly decreasing, and small
experiments can recover a large share of the value of large experiments. In our data, the
average experiment size is about 20 million users. The figure shows that an experiment
with 1 million users would recover 75% percent of the value of an experiment with 20
million users. This suggests that lean experimentation strategies generate large gains in
this setting.
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4.5.3 Gains from Lean Experimentation

Our results suggest that, in our particular empirical application, the distribution of inno-
vation quality is extremely skewed, so that a lean experimentation approach is optimal.
We now consider some simple counterfactual computations to estimate the gains from
moving towards this lean approach.

Consider a firm that tests / innovations in a total of NV users. Suppose innovations are
homogeneous, and the firm splits users equally across innovations, so that there are n =
N/I users in each experiment. The total production Y is then

yzf-f@)zz-f(n). (12)

We begin by computing the gain of testing more ideas, keeping the total amount of data IV
tixed. In practice, this corresponds to the firm using less restrictive criteria for what ideas
are flown to A /B tests. Assume for now that the quality of the additional marginal ideas is
equal to the ideas currently being tested, so that total production is given by equation (12).
In the numerical computations, we use the estimated parameters for session success. We
assume that the standard deviation o of the experimental errors equals its average value.
We take the number of ideas I to be the total number of experiments (1,466) and take n to
be the average size of the experiment (about 20 million users).

Figure 8 displays the total gain in session success from increasing the number of innova-
tions tested by different amounts (solid line). The figure shows that there are large gains
from experimenting with more innovations, even if the sample sizes have to be smaller.
For example, increasing the number of A/B tested ideas in 20% would increase produc-
tion by almost 20%.

These results suggest that large gains are possible in the particular setting that we study.
Indeed, many areas at Bing perform extensive triage based on offline testing before taking
ideas to A /B tests. There is anecdotal evidence that, in some areas, about 20% of innova-
tions fail these offline tests, suggesting that it would be possible to test significantly more
ideas at almost no additional cost.”

2ZWe do not have data on the universe of innovations that have been developed, but not taken to A/B
tests. However, we have detailed information on the triage procedures followed in some subareas of Bing.
In the subarea where we have the most detailed information, innovations are subject to offline A/B tests,
with human evaluations of quality. Innovations with statistically significant movements in any of a number
of such evaluations do not go to A/B tests. Some preliminary analysis of this data suggests that about 20%
of innovations that are developed do not pass this triage procedure. Moreover, the triage metrics seem
to have low predictive power about the actual results of these innovations, suggesting that the marginal
innovations that are currently discarded are no less valuable than the average innovations that make it
to online experiments. This evidence suggests that productivity could be significantly increased in our
particular empirical setting by moving towards a lean experimentation strategy.
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Figure 8: Potential Gains from Lean Experimentation
Notes: The dashed line is a the 45 degree line.

We can gain intuition for this result by looking at the marginal and average products of
data and of innovations. To make the intuition clear, we need to choose units for equation
(12) that are appropriate to the practical setting of Bing. We will measure total production
Y as the percent gain in session success. Although we cannot reveal the valuation that the
company uses for these gains, it is helpful to keep in mind that a gain of 1 is considered
equivalent to a gain in the order of 10°® dollars of yearly revenue. The units of innovations
I are just the number of innovations. For units of IV, we have so far used the number of
users in an experiment. However, the relevant practical measure of quantity of data is
a number of users for some amount of time. The most intuitive unit is user-years. For
comparison with the value of innovations, the average revenue per user-year for a search
engine is about $28.” To convert our units to user-years, we will assume that the average
length of an experiment is of 10 days, and that users can be parallelized into 10 areas.

40 = 1/365 user-years. We will use these

. . 1
Thus, each user in an experiment equals 1; - 5

units for the remainder of this section.
We can calculate the marginal and average products of data from equation (12). We have
ay
dN

BGee, for example, http://money.cnn.com/2012/05/16/technology/facebook-arpu/
index.htm.

MPN: :f'(n)



http://money.cnn.com/2012/05/16/technology/facebook-arpu/index.htm
http://money.cnn.com/2012/05/16/technology/facebook-arpu/index.htm
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and v
n n
Empirically, this marginal product is of 6.14e-09 gain in success rate per user-year, while

the average product is 8.57e-08. These numbers have two implications.

First, data is extremely valuable. Average products are important compared to the rev-
enue per yearly user, and marginal products are only an order of magnitude lower. The
high average product is consistent with the common view in the technology industry that
experimentation is extremely valuable, and generates large performance improvements.
However, the high marginal product of data may seem unintuitive for most scientists. In
scientific research, we are used to much smaller sample sizes, so that an experiment with
twenty million users may seem very large, and it may seem that there is absolutely no
gain in obtaining more data. But this intuition is not correct in our setting because inno-
vations in mature products such as Bing often have small effects. Collecting more data
allows companies to test more innovations, and find more of the rare winners. Even if the
effect of each of these incremental innovations is small, the value generated is substantial
because innovations are scaled to hundreds of millions of users.

The second implication of these numbers is that developing further innovations is also ex-
tremely valuable, because the average product of data is much higher than the marginal
product. This wedge is what explains the effectiveness of the lean experimentation ap-
proach. To see this, note that the average and marginal value of innovations is given by

and Iy
MP]:E:TL(APN—MPN)

The average product of an innovation equals the sample size per innovation times the
average product of data. Thus, it is quite large, at 4.6e-03. The marginal product of data
equals the average product minus the average sample size times the marginal product of
data. This is also quite large, at 4.3e-03, because of the large wedge between the aver-
age and marginal product of data. This is the wedge that makes the gains from moving
towards lean experimentation so large.

5 Conclusion

A/B tests have risen in prominence with the increased availability of data, and the lower
costs of experimentation. An important example of this lower cost of experimentation
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are large cloud-based software products, such as search engines. But A/B tests have be-
come important in multiple other areas of business, policy, and academia. We developed
a theory of A/B testing, by reframing the problem in terms of neoclassical firm theory
and by interpreting the data using a simple hierarchical model. Our theory has practical
implications for how to evaluate innovations, and for how to value data and innovation
ideas.

More importantly, the theory has non-trivial implications for innovation strategy. The
preferred innovation regime turns out to depend on the particular context, and can be
identified by measuring the tails of the distribution of innovation quality.

In contexts with a thin-tailed distribution of innovation quality, it is desirable to perform
thorough prior screening of potential innovations, and to run a few high-powered precise
experiments. In the technology industry, this corresponds to rigorously screening inno-
vation ideas prior to A/B tests. In research on anti-poverty programs, it corresponds to
trying out only a few ideas with few but high-quality, high-powered research studies.

In contexts with a fat-tailed distribution of innovation quality, it is advantageous to run
many small experiments, and to test a large number of ideas in hopes of finding a big
winner. In the technology industry, this corresponds to doing little to no screening of
ideas prior to A/B tests, and to run many experiments even if this sacrifices sample sizes.
In research on anti-poverty programs, it corresponds to trying out many ideas, even if
particular studies have lower quality and statistical power, in hopes of finding one of the
rare big winners.

We applied our model to detailed data on the experiments conducted in a major cloud
software product, the Bing search engine. We find that incremental innovations on Bing
have small overall effects on performance, since Bing is a large and mature product. How-
ever, the distribution of innovations is fat-tailed. Consistent with our model, this implies
that lean innovation strategies are optimal. This suggests that large performance gains are
possible in our empirical context. These gains are substantial in dollar terms, and can be
achieved at a low cost.

We stress that our results on Bing should not be taken as externally valid for all contexts.
While it is plausible that these results extend to other similar products, it is quite pos-
sible that the distribution of innovations is different in different contexts. However, the
Bing application illustrates that it is possible to achieve large gains by understanding the
optimal innovation strategy, even in a setting that already uses cutting-edge experimen-
tation techniques. It would be interesting to extend this analysis to other contexts, to try
to increase the speed of innovation, especially in areas of high social value.
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A Appendix A

A.1 Notation

Denote the normal cumulative distribution with mean p and variance o2 as ®(-|i, 0%) and
density as ¢(-|u,0?). Denote the standard normal cumulative distribution as ®(-) and
density as ¢(-). The density of the signal ¢; conditional on true quality &; is ¢(d;|0;, 02/n;).
Therefore, the likelihood of &; and 0; is ¢(5;]6;, 02/n;) - g:(6;). The marginal distribution of the

signal 6, is
mz(gunz) E/ ¢ <8z

By Bayes’ rule, the posterior density of 6, given signal J; is

2

5;, 2—) - gi(8:) do. (A1)

7

gi((sz“gi;nz’) = ¢(5 |6“ l/n) ( )

mi(5i7 n;)
The posterior mean is

J - 6(6:18:, 0% /n) - 9:(8) dos

mi (85, ;)

1(6z,nz / i + gi 5]51,71@) do; = (A.2)

A.2 Basic Results

Lemma A.1 (Regularity Properties). For n; > 0, the marginal density m;(d;,n;) and the poste-
rior mean P; ((51, n;) are smooth in both variables. The posterior mean strictly increasing in 5, and
there exists a unique threshold signal & (n;) such that the posterior mean given n; and the signal
equals zero.

Proof. By equation (A.1) and Leibniz’s rule, m; is smooth and strictly positive. Efron’s
equation (2.8) then implies that P; is smooth. Efron (2011) p. 1604 shows that P, is trictly
increasing. Because of the strict monotonicity of P, to show that there exists a unique
threshold o} (n;), it is sufficient to show that the posterior mean is positive for a sufficiently
large positive signal and negative for a sufficiently large negative signal. Consider the case
of a large positive signal 6, > 1. Because g;(0) > 0, there exists &, with 0 < d, < 1 and
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9i(60) > 0. The numerator in the posterior mean formula (A.2) is bounded below by

/_ ;- 631105, 02 /) - gi(57) do
/a G610, 02 n) - g:(57) do,
$(5:]0,02 /n) - / di -+ gi (0

¢(8;]00, 02 /) - & - g:(6;) do.
40

The fact that g;(5) > 0 implies that the second integral is strictly positive. Moreover, as 6
converges to infinity, the ratio

$(0i0, o7 /m)

$(5:/0, 07 /n)
converges to infinity, so that the posterior mean is positive. The case of a large negative
signal is analogous. O

Proof of Proposition 1. The expected payoff of experimentation strategy n and implemen-
tation strategy S is given by equation (1). By the law of iterated expectations,

i(n,S) =E (E (ZAZ» A))

€S

€S

This implies that, conditional on the signals, it is optimal to implement all innovations
with strictly positive posterior mean, and not to implement innovations with strictly neg-
ative posterior mean. Moreover, any innovation strategy that does not do so with positive
probability is strictly suboptimal, establishing the proposition. O

Proof of Proposition 2. The decomposition of the expected payoff follows from the argu-
ment in the body of the paper. The smoothness of the production function follows from
equation (2) and from the smoothness of the marginal density of the signal and the poste-
rior mean established in lemma A.1. O
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A.3 Proof of the Main Theorems

Throughout this section, we omit dependence on the innovation ¢ because the results ap-
ply to the production function for a single innovation. To avoid notational clutter, we use
subscripts to denote the sample size n, as in ¢} and t;. We denote the variance of the
experiment as o2 = o //n.

We now give a formula for the marginal product, which is used in the proof of the main
theorems.

Lemma A.2 (Marginal Product Formula). The marginal product equals

f'(n) = % -m(8*,n) - Var[A|A = 6%, n). (A.3)

Proof. The total value of an innovation combined with data n; equals the expectation of
the value of the innovation times the probability that it is implemented. Moreover, the
innovation is implemented iff the signal is above the optimally selected threshold. There-
fore,

f(n) = mgxx/5 -Pr{A > §|A = 6,n} - g(8)ds — E[A]*
:m(?x/é-q) (5_5> - 9(0) d6 — E[A]”.

n

And this expression is maximized at § = 6 by Proposition 1. The maximand is a smooth
function of § and n. Therefore, by the envelope theorem and Leibniz’s rule,

d §—10
! = R .
ro=[a[ge (20| a0
Taking the derivative,

P =g [ 565020 (T )0

On

0=6},

n

1 N "
=%-/5-<a—5n>~so(6n|5,ai)-g@dé

1 * * *
— o () [[5(5-5;) - g(615;.m) d5

Writing the integrals as conditional expectations we have

! _ 1 * 21 A ok s A CF
f'n) = 5 ml6;,m) - (BIA%A = 67,n] = GEIAIA = 67,m))
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The result then follows because E[A|A = §*, n] = 0 at the optimal threshold 4.

A.3.1 Proof of Theorem 1

Part 1: Preliminary Results We will use a standard result from Bayesian statistics, known
as Tweedie’s formula, which holds because of the normally distributed experimental noise.
Tweedie’s formula expresses the conditional mean and variance of quality using the marginal
distribution of the signal.

Proposition A.1 (Tweedie’s Formula). The posterior mean and variance of A conditional on a
signal 6 and n > 0 are

P(d,n) =6 + 02% log m(6,n) (A4)
and
. 2 .
Var[A|A = §,n] = 02 + o - —logm(d, n).
dé?
Proof. See Efron (2011) p.1604 for a proof and his equation (2.8) for the formulas. O

The next lemma allows us to apply Tweedie’s formula to obtain our asymptotic results.

Lemma A.3 (Convergence of the Marginal Distribution of Signals). For large n, the marginal
distribution of signals is approximately equal to the distribution of true quality, and the approxi-
mation holds for all derivatives. Formally, for any k = 0,1,2 ..., as n converges to infinity,

ko k
d—Am(5, n) = dA
do* do*

9(8,n) +O(1/n)
uniformly in 6.

Proof. The kth derivative of the marginal distribution of the signal equals

dF (5,71) d* /9(5) - (5’(5’ UZ) ds

—m = —
do¥ do*
d* 1 [(6-6
o | 90) -0 ( p )
With the change of variables
u_é—é
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we have du = dd /o, so that

dkz R k
—Am(5, TL) = dA
do* do*

/9(5 + o,u) - ¢ (u) du.

The integrand and its derivatives with respect to ¢ are integrable. Thus, we can use Leib-
niz’s rule and differentiate under the integral sign, yielding

d* A v .
—m(d,n) = —q(0 + o,u) - o (u) du.
SomB,n) = [ oo+ o) 6w

By Taylor’s rule,

dk R dk R dk+1 R 0721,”2
dgkm(é,n) = / [ﬁg@) + e - g(0)onu + h(opu) - 5| ¢ (u) du,

where the function h is bounded by H = sup; d**2¢(4)/dé*+2. H is finite by the assumption
that the derivatives of g are bounded. Integrating we have

koo k
d—Am((S, n) = dA
dok do*

2,2
oo

g(8) + / h(onu) - - (u) du.

The integral is bounded by Ho2 /2, yielding the desired approximation.
O

Substituting this approximation in the Tweedie formulas in Proposition A.1 yields the
following asymptotic versions of the Tweedie formulas. Note that the variance formula is
consistent with the intuition from the Bernstein von-Mises theorem, that the asymptotic
variance of the Bayesian posterior is close to o2, which is the variance of a frequentist
estimator that ignores the prior.

Corollary A.1 (Asymptotic Tweedie’s Formula). Consider S with 9(50) > 0. Then, for all B
in a neighborhood of dy, as n converges to infinity,

~ ~

P(.n) =5+ a2+ S logg(5) + O(1/n?)
and
Var[§|A = §,n] = o2 + O(1/n?).

These bound hold uniformly in §. In particular,

lim P(0y,n) = d.

n—oo
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Part 2: Completing the Proof

Proof of Theorem 1. Consider 6 > 0 with g(0) > 0 and g(—4) > 0. By corollary A.1, P(4,n)
converges to 4 > 0 and P(—d,n) converges to —0 < 0. By the monotonicity of P, the limit
of 6% must be between —4 and 4. Because ¢(0) > 0, there exist arbitrarily small such 5, SO
the limit of &7 is zero.

The threshold 7 satisfies P(d;,n) = 0. Substituting the asymptotic Tweedie formula for
P from Corollary A.1, we get

ox afl%logg(é,t) +0(1/n?)

n__

:_ag-gglé§;+o<%-5;)+o(%>.

The approximation in the second line follows because ¢g(0) > 0 and the second derivative
of g is bounded. This proves the desired asymptotic formula for ¢;.

For the marginal product, if we substitute the aproximation for the marginal density in
lemma A.3 and for the variance in corollary A.1 into the marginal product formula (A.3),
we obtain

P =5 00) -2+ (102),

2n n

implying the desired formula.
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A.3.2 Proof of Theorem 2
Throughout this section we assume there is a slowly varying function c(§) such that**
g(8) ~ ac(8)6~ 0+ (A.5)
as |0| — oo. In words, we will be assuming that the p.d.f. ¢(¢) is reqularly varying at co

and —oo with exponent —(a + 1). We assume the existence of a strictly positive constant
C such that ¢(6) > C for |d| large enough. Finally, we assume that E[A] = M < 0.

Part 1: Integration Formulas and Auxiliary Definitions:

Define

5 e\ 2
1.(6,5,8) = /5 529(5) exp (-% (5 . ‘5”) ) ds. (A6)

Both the marginal density and the posterior moments evaluated at the threshold signal J;;
can be written in terms of (A.6):

Am(é:; n) = (\/%Un)_lfn(—oo,oo,()),
E[AP|A=6%n] = I,(—00,00,3)/I,(—00,00,0).

Y
*
n

The definition of the threshold signal implies that /,(—o00,00,1) = 0. We establish the
asymptotics of the threshold ¢6*(n) and the marginal product in a series of claims.

Claim 1: Divergence of the Threshold t-statistic
Claim 1. t& = 6% /o, — .

Proof. We establish the claim using a contradiction argument. Suppose ¢} /o,, - oo. This
implies the existence of a subsequence along which 6;; /o, — C, where either i) —co <
C' < oo orii) C'= —o0. In the first case

§—a0:\"
—% ) = C? Ve

Oy,

#In a slight abuse of terminology we say that a positive function ¢(-) is slowly varying if
lim|5| 00 ¢(A0)/c(d) — 1 for any A > 0. Examples include constant functions, logarithmic functions, and
others.
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The integrand in /,,(—o0, 00, 1) is dominated by the integrable function d¢g(d). The Domi-
nated Convergence Theorem thus implies that

00 02 02
Lo (=00, 00,1) — / d9(d) exp <—7) dd = M exp (—7> <0,

which contradicts the optimality condition I,(—o00,00,1) = 0 for all n. Thus, i) cannot
hold.

Suppose ii) holds. Since E[A] < 0 and

fn) = [ g (ﬂ) 9(0)db,

—00 Unk

the Dominated Convergence Theorem implies f(n;) — M < 0. This is a contradiction:
one can achieve a higher product by using the implementation strategy that does not
implement any innovation regardless of the signal observed. O

Claim 2: Approximation for the integral near J;

By Claim 1, for any 0 < € < 1 there exists n small enough such that
on < Bp(€) = €d) <07,

Claim 2. For any power § >1 and any 0 < e < 1:

I.(6;, — Bn(€), 6, + Bu(e), ) ~ \/ﬁanéiﬂg(@i),
~ V2ro,0c(65)5E P! (A7)

Proof. Using the change of variables u = /4 we can write
In((s:; - Bn(6)7 6:; + Bn(e)v ﬁ)

as (1+e€) 1 )
((5;)’8“/ u’ g(ud?) exp (—5 (u—1) t’:f) du. (A.8)
(

1—¢)

Define:
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L = /((HE) u?(g(ud;)/g(5,)) exp <—% (u— 1)2t22) du,

1—e)

(o 1 2 109
/ u? = exp (—— (u—1)"tr ) du,
(1-9) 2

(1+¢) 1 5 .o
I; = / u” exp (——(u—l) t )du.
(1-0 2

Laplace’s method (Small (2010), Proposition 2, p. 196) implies that:

I

.[2 ~ \/271'/25:;“']3

as t; — oo. Since g is bounded, Theorem A.5, Appendix A of Whitt (2002) implies that for
0<e<l,
9(ud})/g(8,) — w0+

uniformly over u € [1 — ¢,1 + €]. Therefore, for any ¢ > 0 there exists n(¢) small enough
below which
I —Cl3 <L < I+ (s

Since ( is arbitrary we conclude that
I ~V2r/t), = V2mo,/d).
Equation (A.8) implies that
Ln(0, = Bu(€), 05 + Bu(e), B) = (6,)"g(0;) 1.

Therefore:

[n<5:; - Bn(E), 5:; + Bn(e), ﬂ) ~ \/271-0—”5;5!}(5;) -~ \/%O'nOéC((S:L)(SZ’B_a_l.

Claim 3: Upper bound on 9

Claim 3.

6F < (14 o(1))v/2(a — 1) log 0,0,
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Proof. Take 0 < € < 1. The optimality condition /,,(—o0, 00, 1) = 0 implies that

I(—00,0,1) + I,((1 — €)3%, (1 + €)3%, 1) < I(—00,00,1) = 0. (A.9)

The first term in the equation above is bounded from below:

0

I,(—00,0,1) > /

—00

1 1
dg(0) exp (—5222) dd = —Dexp (—51522) ,

where D = [ EOO |d]g(0)dé is finite and nonzero by assumption. Claim 2 and equation (A.9)
imply that

1
(14 o(1))V2mo,ac(6))0r " < Dexp (—it,*f) :
which we can write as
1
(14 o(1))V2ral“ac(dX)t: ™ < Dexp (_§t:’2) :
Taking logarithms on both sides and dividing by —(1/2)t%? implies

2(a—1)logo, 2log(c(dy))
( 3 _ e > 14 o(1).

By assumption ¢(6;) is bounded from below by a constant C' > 0. Hence

2(a—1)logoy,
t*2

> 1+ 0(1),

which implies that:

(1+0(1))v/2(a — 1) log 0,0, > 6.

Claim 4: Integral around 0 for 1 < 3 < «

Claim 1 implies A,(7) € o(0,) and A,(y) < 6, for n small enough. Claim 3 implies
A, () — ocoand A, (v) € o(c2/5:). In the remaining part of this appendix we will often
use A, instead of A,(v), for the sake of notational simplicity.

For v € (0,1) define
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We split the integral I, into different regions. Most of the value of the integral comes
from two regions: § € [—A,(7), An(7)] (Where g is large and the exponential is small) and
0y, € [6F — By(e), 0; + B, (€)] (Where g is small and the exponential is large).

Claim 4. For any integer 3 such that 1 < 8 < o, E[A?] # 0;and any 0 < v < 1,

T(=Au(7), Au(7), B) ~ E[AP) exp {—%t} |

Proof. The difference
(= Any A ) - B8 exp —5127)

can be decomposed as
An 1/0—05\" 1/65\°
B . —_ n — S
/Ané g(0) [exp{ 5 ( p ) } exp{ 5 (Un) }dé
Ap 00 1 /6% 2
+ [/ 67 g(0)ds —/ 5’89(5)d5:| - eXp {—5 (—”) } (A.10)
—A, — 00 On

The first term in equation (A.10) is smaller than

5:1 1 * 2
E[|A|°] {exp {An : U—%} - 1} - exp {—515” } :

By construction A, € o(c2/47), implying the term above is o (exp(—(1/2)t;?)). The second

term equals
—Ap o0 1 5 2
- {/ 67 g(6)ds +/ (559(5)d5} - eXp {—— (—”) } :
—o0 An 2 \o,

Since 8 < a, Karamata’s integral theorem (Theorem 1a p. 281 in Feller (1967)) implies the
second term equals

_(1+o(1))[ T (A)ABe (1) c(—An)Aga}-exp{—%t;;Q}.

a—f a—f

Since any slowly varying function is such that |§| "¢(|6|) — 0 for all > 0 (see equation 2
in Karamata (1962)), then

I.(=A,, Ay, B) — E[AP] exp (-%t;;?) =0 (exp {—%t;;?}) .
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Since E[A?] # 0, the result follows.

O
Claim 5: Integral around 0 for arbitrary
Claim 5. For any integer f > 1 and any 0 < v < 1,
1
L0, 08 0 (A e {202 ).
Proof. |I,(—A,, Ay, B)| is bounded by
An 175 —5\2
[ w4 ()}
_A, 2 Un
An 1 /56— 5\2
< A / 1619(8) exp {—— (5 25”) do
A, 2 o
1
= A oA e {30t |
where the last line follows from an argument identical to the proof of Claim 4. O

Claim 6: Integral below —A4,,

Claim 6. Let 0 < v < 1. For any « > 1, and any integer 3 > 1:

(oo ~An().8) € o (37 exp { 522} ).

Proof. |I,(—oo, —A,, B)| is bounded above by the product of exp {—(1/2)¢;?} and

—An 526 1 ( 6\

Since 0 < 0, equation (A.11) is further bounded by

— A,
/ 1619(8) Hy(161) 5. (A12)

[e.e]
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—s2
where Hz(0) = 67 e is defined for 6 > 0. In this range, the function Hj(-) is maximized
at 5 = (8 — 1)"/20,,.” The integral in (A.12) can then be bounded by

_A,
() [ plgto)as (A13)

o0

—(B-1)

where Hs(61) = (B—1)7 ez "0,/ 1 =0 (0,°71) if p > 1,and H:(6;) = 1 when § = 1.
By assumption, E[|A|] < 400, as a result f::ol" |0]g(0)do € o(1). Therefore

|1,(—00, — Ay, B)| € 0 (0" Fexp {—(1/2)t:%}) .

Since o,, € 0(d%), we conclude that

[L(=00, = A, B)] € 0 (6 exp {~(1/2)1;7}) .

Claim 7: Integral between A,, and 0 — B,,(¢)

Claim 7. Take any oo > 1 and 3 > 1. For any €,y € (0, 1) such that v > 2(1 — ¢), then

LA, 3 = Bt 9) € o (37 e {512 ).

Proof. |1,(An,d; — Bn(€), 8)| equals

where Hz(8) = 0% Lexp _—522 + %9 Hy(+) is an increasing function on the interval A, (1-
B 2Un On B g
€)6*].2°Consequently, |I,,(A,, 8" — B, (¢), #)| can be bounded by the product of exp { —1t*2
and
PThe derivative of Hg(-) is given by Hj(8) = [(8 — 1) — (62 /o2)|Hg(6)/0.
B H(6) = [-6%+ 650+ (8 —1)02]Hp(6)/(d07). The sign of the derivative thus depends on the sign of the
uadratic function—§2 + 6% + (8 — 1)o2, which can be written as —(§ — &, )(6 — &) where
q n n n n

5t = %ﬂ (1 +/1+4(8 - 1)0%/5:;2)

For nsmall enough, we have §;, <0< A,, and (1 —€)d; < & ~ 47.
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(1-€)dy,
/A 59(0) Hs((1 — €)52)d6 < Ha((1 — €)57) R,

where R, = sz dg(6)dé. Karamata’s integral theorem (Theorem 1a p. 281 in Feller (1967))
implies that

L« 2 L« —(a-1)
R, - 1Ang(An) —4n c(Ay).
Consider0 <n=(a—1)/2<a—1:
AL, = AT,
a—1 a—1
a
_ Af(ozfl)/2 1
a — 1 n O( )7
(since for any n > 0, A, "7¢(A,,) = 0as A,, — o)

o' 1
_ wy(a—1)/2
a1 el

n

(by definition of A,,(7)).

Therefore,
1
wy(a—1)/2
R, €0 (tn gv(a—l)/2> .

n

The definition of Hg(-) further implies that

2 2
20z o

Hy((1—5) = (1— P67 exp (—

= -0t (12 (-9 - 50 - 7).
(- P exp (1 12/2)

1—€)252  §(1 —e€)o*
n+ n n

Claim 3 showed that t:?/2 < (1 + o(1))(a — 1) log 7,,. Consequently:

Hs((1—¢€)d;) < (1-— 6)5_15;;5_1 exp (1 —¢e)(1+o(1))(a—1)logay,),
_ (1 . E)Bfla;t;,b’fl0_(176)(a71)(1+0(1))

n

Therefore .
Hﬁ((l — 6)5;)Rn = Hﬂ((l - 6)5:;)0 (t::y(a_l)/2 7(&—1)/2) ’

n
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and the bound on Hz((1 — €)d;) implies

|
. * *8—1 *y(a—1)/2
Hs((1 = €)0,) B < 6,70 (tn U(w(al)/z)(1e>(a1><1+o(1>)) :

n

Using again the upper bound for ¢} in Claim 3 gives.

log o, (/2
. * *B—1 n
Hg((1 = €)0,) R < 6,70 (mga_n/z)[v—2<1—e><1+o(1>>1

Since vy —2(1—¢€) > 0, theny—2(1—¢)(1+0(1)) > 0 for n small enough. We conclude that
Hg((1 —€)0%) R, € 0(6:°~") and therefore

(A0~ B0, 0] € (07 e {52 ).

Claim 8: Integral to the right of J; + B,,(¢) is small
Claim 8. Forany 8 < a+1land 0 <€ < 1:
16, + Ba(€), 00, 8) € 0 (0,8,79(5%) )

Proof. Define:

ho= [t s e (- 1) du
1+4€
° 1
I, = tfl/ wP=) exp (——(u 1)22?;';2) du,
1+e 2
I; = tfl/ u” exp (——(u 1)2t22) du,
1+e€
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1. Sincef<a+1

L < V2 (14 )P~ (1 - d(et?)),
(by definition of the standard normal c.d.f.)
= Vor (1+€)P ) o(—et?),

0 <exp (—%et:f)) .

(by equation 26.2.12 in Abramowitz and Stegun (1964))

2. Laplace’s method implies that I, ~ /2.

3. By assumption, g is bounded. Hence, Theorem A.5, Appendix A of Whitt (2002)
implies that for e > 0:

(g(udy)/g(07) = u=F

uniformly over u € [1 — €, 00).
Therefore, for any ~ there exists small enough n(v) below which

Il SIQ+’)/I3 SIQ+’YI4:IQ+’}/(1+O<1))\/27T

Using the change of variables u = §/4;, and the inequality above

0 < L((1+ )8, 00, B8) /.65 g(67) = I
(I + (1 + o(1))V2r)

o(en( 1)

(1 +o(1))V2r)

ININ

+

Since this holds for any v > 0, we conclude that

L((1+€)5;,00,8) € 0 (0,8,79(33) ).

Part 2: Asymptotics of the Threshold

Lemma A.4. Under the assumptions of Theorem 2

th =65 o ~ /2(a — 1)logo,.
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Proof. Since o > 1, the optimality condition /,,(—o00, 00,1) = 0 and Claims 1, 2, 4, 6, 8, and
7 imply that

(14 0(1)) - (=m) - exp {—%tzz} = V210,65 9(57) = (14 o(1))V2rol % ac(:)t: ™.
Taking logs on both sides implies that
o(1) + log(—m) — %t;’;z = log(V2ma) +log(c(d;)) + (1 — o) log o, — aty,

which implies that for every n > 0

(1 4+ 0(1)) 122 = (0 — 1 — 1) log o, — log(e(5) /5.

Since ¢(6;;) /0" — 0 for every n > 0, for any small enough n.

1
St = (L+o(1) - (a—1—1)logo,.

We conclude that for any > 0

liminf f >1- 1
"% —1)logo, — a—1
Claim 3 then implies
52 ~ 2(a — 1) log o,.

Part 3: Asymptotics of the Marginal Product

Lemma A.5. Under the assumptions of Theorem 2

Proof. The proof has 3 steps.

STEP 1: Lemma A .4 implies that:
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1
exp {—itff} € 0 (0,059(57)).
STEP 2: Claims 2, 5, 6, 7, 8 and the fact that A, (v) € o(J;) for any 0 < v < 1 imply that

1
I(—00,00,2) = 0(1)d; exp {—ﬁtzz} + (1 + 0o(1)V2710,6:29(57)
Step 1 and §; — oo imply that:

Ir(—00,00,2) = (1 + 0(1))V275,0:2g(8%)
STEP 3: The envelope theorem formula implies that:

1
2n+/2no,

Steps 2 and 3 imply that for any o > 1:

f(n)

I,(—00,00,2).

’ i *2 * i *\ ok —(a—1)

Part 4: Completing the Proof
Below we establish the four parts of Theorem 2.

1. Lemma A.4 showed that t:*> ~ 2(a — 1)logo,. The continuity of the square root
function and the definition of the asymptotic equivalence relation(~) imply that

t:b ~ \/2(05 - 1) lOg On,;
where o, = o/ /n.

2. Lemma A.5 showed that



Since t! = §% /o, then

3. Note that
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1
o)~ goac@)t 0o e

n )

2n
1 a—
= Soac(d)(ot;) VY,

1
= 5040((5;)(atfl)’(o"l)n(a’:s)/?

(1 +o{1)) gaC(oty) = V=12

(since we have assumed that ¢(d)) > C),
O(1) (log Un)—(oa—l)/2n(a—3)/2’

(by Part 1 of Theorem 2),

oo (=)0 )

The result follows, as for 1 < o < 3

4. Foranyn >0

1 -1 1 (3=a)/(a—1)
lim <log (—)) <—) — Q.
n n

n—0

= O0(M)e(d,)(t;

n)—(a—l)n(a—?))/?’

Since e > 3, there exists ) > 0 such that « — 1 > nand a — 3 > 7. For any such 7 :

lim (c(6,) /6,7 (t,,) "~ nlemSm2 = g,

n—0

as for any slowly varying function ¢(6;)/6;" — 0 as 0; — oo (Lemma 2 in Feller

(1967) p. 277).
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