
Identification of Random Resource Shares in Collective

Households Without Preference Similarity Restrictions

Geoffrey R. Dunbar, Arthur Lewbel, and Krishna Pendakur

Bank of Canada, Boston College, and Simon Fraser University

Original Oct 2015, Revised 2018

Abstract

Resource shares, defined as the fraction of total household spending going to each
person in a household, are important for assessing individual material well-being, in-
equality and poverty. They are difficult to identify because consumption is measured
typically at the household level, and many goods are jointly consumed, so that individ-
ual level consumption in multi-person households is not directly observed. We consider
random resource shares, which vary across observationally identical households. We
provide theorems that identify the distribution of random resource shares across house-
holds, including children’s shares. We also provide a new method of identifying the level
of fixed or random resource shares that does not require previously needed preference
similarity restrictions or marriage market assumptions. Our results can be applied to
data with or without price variation. We apply our results to households in Malawi,
estimating the distributions of child and of female poverty across households.

JEL codes: D13, D11, D12, C31, I32. Keywords: Collective Household Model, Cost of Children,
Bargaining Power, Sharing Rule, Demand Systems, Engel Curves

1 Introduction

Expenditure surveys generally collect consumption data at the level of households. Standard
poverty and welfare measurements based on such data are also typically calculated at the
household level. But well-being and utility apply to individuals, not households. When
household resources are distributed unequally across household members, official house-
hold level measures of income or consumption can seriously underestimate the prevalence of
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poverty and inequality in a country. For example, using the types of methods that we will
extend here, Dunbar, Lewbel and Pendakur (2013, hereafter denoted DLP), find poverty
rates for children in Malawi that are much higher than those of men. Another example is
Calvi (2017), who finds that the poverty rate among older married women in India increases
with age, primarily because their share of household resources declines with age.

The resource share of a given household member is defined as the fraction of total house-
hold consumption expenditures that are spent on goods and services that the given household
member consumes. Resource shares are in general difficult to identify, particularly children’s
resource shares, because consumption is measured typically at the household level, and many
goods are jointly consumed and/or shareable.

In this paper we provide two new theorems on the identification of resource shares within
households, and provide associated estimators. Our first theorem allows for unobserved het-
erogeneity in resource allocations across households. By treating resource shares as random
variables, our first theorem shows identification of the distribution (around an unknown
level) of resource shares across households. Our second theorem shows identification of the
level of resource shares. Unlike existing related theorems, this second theorem does not re-
quire assumptions regarding similarity of tastes across households of different composition
or across people within a household. This second theorem instead uses a new way to exploit
variation in so-called distribution factors, that is, variables that affect the allocation of re-
sources within households but do not affect the tastes of individuals. Taken together, our
theorems completely identify the joint distribution of resource shares across households.

We apply our results to household survey data from Malawi. We find that allowing
for unobserved heterogeneity in resource allocations across households matters for welfare
analysis in two important ways. First, we find that unobserved heterogeneity accounts
for about the same amount of variation in resource shares as does observed heterogeneity.
Second, we find that measured poverty rates are lower when allowing for random resource
shares rather than constraining them to be fixed.

In addition to identifying the level and distribution of resource shares, we also use our
results to test some of the behavioural restrictions that previous work required for identifi-
cation. We find evidence supporting the similarity across people (SAP) restriction that was
proposed by DLP for identification.

We start with the Pareto efficient type of collective household model of Becker (1965,
1981) and Chiappori (1988, 1992). The earlier literature on these models, including Brown-
ing, Bourguignon, Chiappori, and Lechene (1994), Browning and Chiappori (1998), Ver-
meulen (2002), and Chiappori and Ekeland (2009), showed that, even if one knew the entire
demand vector-function of a household (that is, how much the household buys of every good
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and service as a function of prices, income, and other observed covariates), one still can-
not identify the level of each household member’s resource. However, this earlier work also
shows that one can generally identify how these resource shares would change in response to
a change in observed covariates such as distribution factors. Other papers that make use of
this result include Bourguignon and Chiappori (1994), Chiappori, Fortin and Lacroix (2002),
and Blundell, Chiappori and Meghir (2005). Most of this earlier work also constrains goods
to be either purely private or purely public within a household, whereas we work with a
more general model based on Browning, Chiappori and Lewbel (2013) and DLP, that allows
some or all goods to be partly or fully shared.

Our first theorem extends this earlier literature by showing that, though the level of
resource shares is not identified without additional assumptions, one can identify the distri-
bution of random variation in these shares (around the unknown levels) across households.
Two prior results exist on identification of the distribution of random resource share, both
of which are much more restrictive than ours. One, by Matzkin and Perez-Estrada (2011), is
based on semiparametric restrictions of functional forms and focuses on variation in a single
good. The other, by Chiappori and Kim (2017) is closer to ours but unlike our Theorem
1, requires observed price variation, deals only with two member households, and requires
every good to be either purely private or purely public.

As noted above, from just observing household demand functions, one cannot identify
the absolute levels of resource shares; only variations in resource shares around those lev-
els are identified. Some interesting policy questions can be addressed without identifying
levels, such as identifying whether a policy that changes a distribution factor, like women’s
access to contraception, actually increases women’s share of resources within the household.
However, other fundamental policy questions, such as identifying the prevalence of women’s
or children’s poverty, requires identifying resource share levels. Our Theorem 2 provides
minimal additional assumptions needed to identify the levels of resource shares.

A number of previous approaches exist to address the fundamental nonidentification of
resource share levels just from household demand data. One direct approach, taken e.g. by
Menon, Perali and Pendakur (2012) and Cherchye, De Rock and Vermeulen (2012), is to
collect as much detailed data as possible on the separate consumption of each household
member, rather than just observing household-level consumption. To the extent that such
data can be collected, resource shares may be observed directly, by taking each individual’s
observed consumption as a fraction of the total. However, this method requires detailed
and difficult data collection, and is likely to suffer from considerable measurement errors,
particularly in the allocation of public and shared goods to individual household members.

A second approach is taken by Cherchye, De Rock and Vermeulen (2011). While the
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levels of resource shares cannot be identified without additional assumptions, these authors
show that it is possible to obtain bounds on resource shares, using revealed preference in-
equalities. Cherchye, De Rock, Lewbel, and Vermeulen (2015) considerably tighten these
bounds by combining Slutsky symmetry type restrictions with revealed preference inequal-
ities. Bounds can be further tightened, sometimes leading to point identification of shares,
by further combining revealed preference inequalities with assumed restrictions regarding
marriage markets. See, e.g., Cherchye, De Rock, Demuynck, and Vermeulen (2014).

A third method is to completely identify the level of resource shares from household
level data by imposing additional restrictions either on preferences, or on the household’s
allocation process, or both. Papers that use these methods include Lewbel (2003), Lewbel
and Pendakur (2008), Couprie, Peluso and Trannoy (2010), Bargain and Donni (2009, 2012),
Lise and Seitz (2011), Browning, Chiappori and Lewbel (2013), and DLP. These methods
all employ either strong restrictions on the functional forms of preferences, or assumptions
regarding similarity of preferences across households of different composition, or similarity
of tastes across people within a household. For example, Lise and Seitz (2011) impose
a particular functional form on utility functions, Browning, Chiappori and Lewbel (2013)
assume individual’s indifference curves over goods do not change when they marry, and DLP
assume tastes for an assignable good like clothing are similar either across people within a
household, or across people of the same type across households. Most of these papers that
impose preference restrictions on individuals do not require or exploit distribution factors.

Both Lewbel and Pendakur (2008) and DLP make an additional assumption that resource
shares do not depend on the total expenditures of the household (though they can still
depend on the total income or wealth of the household). This assumption allows them to use
data without price variation, i.e., to work with Engel curves instead of Marshallian demand
functions. This considerably reduces data requirements (relative to all other papers that
identify resource share levels) by, i) greatly simplifying the demand functions that need to
be estimated, ii) eliminating the need to collect price data, and, iii) allowing estimation using
data from a single cross section survey. Evidence supporting this assumption empirically can
be found in intra-household data collection papers like Menon, Perali and Pendakur (2012)
and in the bounds estimates of Cherchye, De Rock, Lewbel, and Vermeulen (2015).

Our second theorem provides a new set of minimal conditions that suffice for identification
of the level of resource shares. This theorem shows that if one maintains just the assumption
that resource shares not depend on total expenditures, and observes some assignable goods
and some distribution factors, then that alone can be enough to identify the level of resource
shares. No similarity restrictions on tastes like those discussed above are needed. Moreover,
like Lewbel and Pendakur (2008) and DLP, these conditions permit identification without
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requiring any price variation. Because this new identification result does not impose these
preference similarity restrictions, it allows us to empirically test those constraints.

After establishing identification, we show how these models can be estimated and tested.
A general semiparametric method of estimating individual’s demand functions within a
household, along with the distribution of resource shares, is given in the appendix. In
the main text we provide a simpler estimator that combines a commonly used functional
form for collective household model demands with nonparametric estimation of the random
variation in resource shares.

The next sections set up the model and provide our identification theorems. We then
describe our proposed estimators. This is followed by empirical results from applying our
model to a survey of households in Malawi. We use the results to test the types of preference
restrictions that earlier identification results required. We also report estimates of the dis-
tribution of child poverty (and female poverty) across households which account for random
variation in resource shares.

2 Resource Shares

A key component of collective household models, going back to the earliest frameworks
of Becker (1965, 1981) and Chiappori (1988, 1992), are resource shares. Resource shares
are defined as the fraction of a household’s total resources (spent on consumption goods)
that are allocated to each household member. Resource shares, which are closely related to
Pareto weights, are often interpreted as measures of the bargaining power of each household
member, however, they are also determined by altruism, particularly the shares claimed by
children. Our model starts with the Pareto efficient collective household model of Browning,
Chiappori and Lewbel (2013), hereafter BCL.

2.1 BCL and DLP

Unlike earlier collective household models, BCL does not require goods to be purely public
or purely private, but instead permits goods to be partly shared, using what is called a
consumption technology function. Like earlier results in this literature, BCL show that as a
result of the Pareto efficiency of the household’s resource allocation process, maximizing the
household’s objective function is observationally equivalent to a decentralised allocation. In
this allocation, each household member demands a vector of consumption quantities given
their preferences and a personal budget constraint, and the household purchases the sum of
these demanded quantities (adjusted to account for the extent to which goods are shared or

5



consumed jointly).
Given this decentralization, we can conceptualise the household’s behavior as creating

budget constraints for its members. These budget constraints, combined with the preferences
of individual household members, are sufficient to conduct ordinal welfare analysis. Each
person’s budget constraint is characterised by a shadow budget and a shadow price vector.
These are “shadow” budgets and prices because they govern each agent’s consumption de-
mands but are not observed and do not equal the observed household budget or market
prices.

Shadow budgets must add up to the full household budget. Each person’s share of the
household budget is called their resource share. Resource shares may be unequal across
household members, due to individual variation in bargaining power and altruism within the
household. BCL show that resource shares have a one-to-one correspondence with Pareto
weights on individual utilities in the overall household maximization problem. Resource
shares may depend on distribution factors, defined as variables that affect bargaining power
or claims on resources within the household, but do not affect preferences for goods and
services.

In the BCL model, shadow prices for goods must be the same for all household members.
(If they were not the same, then there would be gains from trade across household members, a
violation of the assumption of efficiency.) Shadow prices are determined by the consumption
technology of the household, and are less than or equal to market prices. The more a good
is shared, the lower is its shadow price. For goods that are not shared, the shadow price
equals the market price. In their empirical application, BCL impose the restriction that
the shadow price vector is a linear transformation of market prices. We do the same here.
This ensures that a linear household budget constraint given market prices implies a linear
shadow budget constraint for each household member.

BCL fully identify both the consumption technology function and the resource shares, so
that they can completely characterise the shadow budget constraints faced by each house-
hold member. They accomplish this by imposing strong restrictions on the similarity of
preferences between individuals living alone vs living together, requiring data on both the
demands of singles and of couples, and by requiring substantial observed relative price vari-
ation. More recent work focuses on relaxing these assumptions and data requirements, and
as a result only on identifying some particular features of interest, such as resource shares.
Our paper falls in this category.

Lewbel and Pendakur (2008) and DLP modified BCL to permit identification of resource
shares from data that does not contain price variation (Engel curve type data), by placing
restrictions on how prices and the consumption technology function interact, and by im-
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posing the constraint that resource shares not vary with total expenditures. Both provide
theoretical and empirical evidence supporting this identifying assumption. DLP also sub-
stantially relaxed the BCL restriction limiting differences in preferences, and further relaxed
data and estimation requirements by only needing to observe and estimate household Engel
curves on one private, assignable good for each household member. Note that private goods
are defined as goods that are not shared, and an assignable good is one where we can observe
which household member consumes the good.

Unlike BCL, DLP permits identification of resource shares of both adults and of children,
where children are treated as having their own utility functions and welfare. This is in
contrast to most of the empirical collective household literature, where expenditures on
children are modeled just as public goods in the adults’ utility functions. The identification
of children’s resource shares is necessary to answer questions regarding the welfare of children
in the household, separate from the welfare of the parents.

The present paper, like DLP, is a model with both adult’s and children’s resource shares,
in a data environment based on observable assignable goods that does not require price vari-
ation. As discussed in the introduction, the present paper generalises DLP in two important
ways. One is the identification of resource shares without imposing the BCL or DLP re-
strictions on similarity of preferences across households of different composition, or across
people within a household. The other is by allowing resource shares to vary randomly across
households, equivalent to allowing for the existence of unobserved distribution factors, or
unobserved heterogeneity in bargaining power or altruism.

2.2 Children and Random Resource Shares

Let d denote a vector of distribution factors. Distribution factors are important variables
in the collective household literature for three reasons. First, distribution factors are closely
related to individual’s relative bargaining power within households, and so are important
components of marriage market models, and models of women’s empowerment (particularly
in poor and developing countries). As a result, distribution factors arise in other literatures
associated with household formation, stability, and function. Second, some types of dis-
tribution factors are policy variables, providing governments with the ability to affect the
within-household distribution of resources. Examples can include inheritance and divorce
laws, access to credit or banking for women, and local availability of education or medical
care. Third, in efficient collective households the response of resource shares to a change in
distribution factors can generally be identified just from household-level demand behaviour,
given many observations of the same or fully comparable household(s) in different price and
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income regimes, without additional assumptions.
Our model allows for random variation in resource shares across households. Equivalently,

we allow for the presence of unobserved distribution factors, which we will denote v. This
reflects that fact that the relative bargaining power of individual household members, or the
choice of social welfare function for the household, will in general vary across households
for unobserved reasons. So, e.g., two households that otherwise appear identical could have
different values of resource shares, due to unobserved differences in household member’s
personality traits, beauty, intelligence, altruism, etc. Both d and v are defined to be variables
that affect resource shares, but do not affect preferences.

Let the household be comprised of J individuals indexed by j. Our typical case will be
J = 3, consisting of a man, a woman, and children.1 Let x⇤ be the total expenditures of the
household, i.e., the household’s total budget.

Let z denote a vector of observable attributes of households and their members like age,
education, and number of children. Household attributes z may affect the preferences of each
household member and may also affect the household’s bargaining process or social welfare
function, and as a result may directly affect resource shares.

Let scalars y1,...,yJ denote quantities of private, assignable goods. Specifically, each yj is
the quantity of some good j that is only consumed by household member j. What makes each
yj assignable is that each appears in just one (known) person’s utility function, and what
makes each yj private is that it is not shared or consumed jointly. So, e.g., in a household
with a woman, a man, and a child, the private assignable goods could be women’s clothes,
men’s clothes, and children’s clothes.

Let p denote the vector of prices of all the goods and services that the household buys,
sorted so that the prices of assignable goods are the first J elements of p. Thus, p includes
the prices p1,...,pJ of the private assignable goods, as well as the prices of all other goods
the household buys. Let ⌘j(p, x⇤, z, d, v) denote the resource share of member j, that is, ⌘j
is the fraction of total household resources x⇤ that are allocated to member j.

Adapting BCL and DLP, in the Appendix we show that the household demand functions
of private assignable goods are given by

yj = hj (⌘j(p, x
⇤, z, d, v)x⇤, p, z) for j = 1, ..., J. (1)

The interpretation of this equation is that the resources allocated to member j are ⌘jx⇤ (the
share ⌘j of total household budget x⇤) and the function hj is that member’s Marshallian

1Due to data limitations in our empirical analysis, we treat all of the children as having a single utility
function, or equivalently, a unitary joint social welfare function. Other datasets could potentially allow
researchers to relax this restriction, by observing some component of consumption separately for each child.
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demand function for this good2. Since this good is private and assignable, the household’s
demand for the good equals just that member’s own demand for the good. It is important
to note that only private assignable goods have the simple form given by equation (1). The
demand functions for other goods are much more complicated, as in BCL.

We will assume that resource shares ⌘j are independent of the household budget x⇤. Lise
and Seitz (2011), Lewbel and Pendakur (2008), Bargain and Donni (2009, 2012) and DLP
all use this restriction in their identification results, and supply some theoretical arguments
for it. Cherchye, De Rock, Lewbel and Vermeulen (2015) and Menon, Perali and Pendakur
(2012) provide empirical support for this restriction using American and Italian data, re-
spectively. Also reducing the restrictiveness of this assumption is that resource shares are
only assumed to be independent of x⇤ after conditioning on covariates such as z and d, both
of which could include variables closely related to x⇤, such as wealth, income (which equals
x⇤ plus savings), education, wages, etc.

Our model allows for a certain type of measurement error in the household budget. Let
x denote the observed household budget, which is related to the true household budget x⇤

by
x⇤ = ex,

where e is measurement error, which we assume has mean one. We assume this error is
of the Berkson (1950) type, meaning that it is distributed independently of x. We assume
measurement error takes a multiplicative form because larger levels of expenditures are
likelier to be associated with larger errors. Our main reason for assuming Berkson errors is
pragmatic; with our particular model and identifying assumptions, we can allow for this type
of error essentially for free, i.e., with no additional assumptions and no added complexity in
estimation. In fact, in our empirical estimates reported later, we find little evidence of these
errors. It may be possible to also allow for ordinary (classical) measurement error using a
control function approach, though we do not pursue that possibility here.

The assumption that resource shares are independent of the household budget means
we may drop x⇤ from the ⌘j function, and our total expenditure measurement error model
means we can replace x⇤ with ex in equation (1). The result is

yj = hj (⌘j(p, z, d, v)ex, p, z) for j = 1, ..., J. (2)

We assume that we observe data {y1, ..., yJ , p, z, d, x} for a sample of households. However,
2Note that this hj function may depend on z not just because tastes may vary with z, but also because

households can vary in the extent to which they share goods other than the private assignable goods, and so
the hj functions include accounting for the resulting variation in shadow prices relative to market prices p.
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if all households in the sample face the same price vector, as in a cross section of Engel
curve data, then it is unnecessary to observe p, and all of our results will go through just
conditioning on that period’s prices.

The random unobservables in our model consist of the measurement error e and the
unobserved distribution factors v. Since the resource shares ⌘1,...⌘J depend on the unobserved
random vector v, these resource shares are themselves random variables. Our goal is to
nonparametrically identify the conditional distribution of ⌘1,...⌘J , conditioning on z, d and,
if price variation is observed, p. The identification is nonparametric in that the theory
assumes the functional forms of h1,...hJ are unknown, and functional forms of how ⌘1,...⌘J
depend on p, z, d and v are also unknown.

Our identification argument proceeds in two steps. First we show the distribution of
⌘1,...⌘J is identified around unknown conditional mean functions. The distribution of the
measurement error e is also nonparametrically identified. Then we provide sufficient condi-
tions for identifying these conditional mean functions, without imposing the DLP or BCL
type preference similarity restrictions, by exploiting variation in d. The advantage of sepa-
rating these two results is that identification of the conditional mean functions requires more
assumptions. Also, behavioural restrictions like those in DLP or BCL could be used instead
of, or in addition to, the method we provide here for identifying the conditional means of
the resource shares.

In an appendix we describe a general estimator based on these identification results. In
the main text we provide an estimator that is easier to implement, but is based on a particular
popular functional form for the demand functions hj. Both estimators are nonparametric
regarding the the distribution of resource shares ⌘1,...⌘J and of the measurement error e.

3 Nonparametric Identification of Resource Shares and
Their Distribution

In this section we first give some intuition for how we use observed distribution factors to
identify the levels of deterministic resource shares, providing an alternative to the restrictions
on preferences that were required by BCL, DLP, and others to identify levels. We then
allow resource shares to vary randomly across households (corresponding to the presence of
unobserved distribution factors) and give some intuition for how we can identify the joint
distribution of these resource shares. This is then followed by our formal list of assumptions
and identification theorems.
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3.1 Identification Intuition With Fixed Resource Shares

To simplify notation in this subsection, assume we have a sample with no variation in p, z,
or d. Assume also for now that there is no measurement error, so e = 1, and no unobserved
distribution factors v (and therefore no random variation in resource shares). Equation (2)
then simplifies to

yj = Gj (x) = hj (⌘jx) for j = 1, ..., J. (3)

where Gj (x) is an observable household demand function for person j’s private assignable
good. The goal is then identification of ⌘j, which is now just a constant for each household
member j.

3.2 BCL and DLP Identification

In this greatly simplified version of the model, the BCL identification would correspond to
identifying the hj functions by looking at singles (people living alone, for whom ⌘j = 1).
Then, with hj known, one could solve equation (3) for ⌘j. This requires assuming that
individual’s tastes for goods, and therefore the hj functions (apart from the consumption
technology) do not change when people form collective households (or, in particular, when
they marry).

Note we are just providing intuition here; the actual identification in BCL is more difficult
because (among other restrictions) they do not require the existence of private assignable
goods, they do not impose the constraint that ⌘j not depend on x, and they explicitly account
for the consumption technology (i.e. sharing) of other goods. Other papers like Lewbel and
Pendakur (2008) and Donni et. al. (2012) similarly make use of singles to identify hj and
thereby recover ⌘j.

DLP employ (two) different identification strategies that do not depend on singles. One
of DLP’s approaches is to instead suppose that hj is similar across people (SAP) within
the household. An extreme case would be if the hj function was the same across all the
j = 1, .., J people in the household, so we’d have yj = h (⌘jx) instead of yj = hj (⌘jx) for
some function h. Here, there are J � 1 unknown scalars ⌘j and one unknown function h to
identify from J observed functions Gj, so we meet the order condition for identification.

In particular, variation in x allows us to identify ⌘j. To illustrate, suppose h was linear so
h (⌘jx) = b⌘jx+ a for unknown coefficients b and a. Then the observable demand functions
(for these private assignable goods) are Gj (x) = cjx + a where cj = b⌘j. The coefficient
of x identifies cj. Using the fact that resource shares ⌘j sum to one, we can identify b by
PJ

j=1 cj =
PJ

j=1 b⌘j = b. Then, once we know b and each cj, we identify each ⌘j by ⌘j = cj/b.
Essentially, we identify the J coefficients c1, ...cJ , and from those we obtain the J parameters

11



b, ⌘1,...⌘J�1. The last parameter ⌘J is obtained from the constraint that shares sum to one.
For nonlinear h, we can do a similar construction with derivatives (denoted by apostro-

phes). For example, if Gj (x) = h (⌘jx) then G0
j (x) = ⌘jh0 (⌘jx). So G0

j (0) = ⌘jh0 (0) and
we can treat treat h0 (0) like b above. Again we are just providing intuition; the actual iden-
tification in DLP is more complicated than this illustration. For example, DLP allows for
hj functions that are not identical across people but merely similar (i.e., only having some
coefficients in common). DLP also consider cases where, instead of being similar across
household members, demands are similar across types (SAT), e.g., women having similar
demands regardless of whether the household has one, two, or three children.

3.3 Identification Using Observed Distribution Factors

Both BCL and DLP (and other related results in the literature) depend heavily on some
preference restrictions, like tastes not changing when forming couples, or similarity of tastes
across household members. But, unlike the earlier literature that only identified changes
but not levels in resource shares, the newer identification results like BCL and DLP do not
require distribution factors. Our new method for identifying levels of resource shares, given
as Theorem 1 in the next section, does not impose the types of preference restrictions needed
by results like BCL and DLP. Instead our new method exploits observable distribution factors
while maintaining the assumption that resource shares not depend on x.

For intuition on how Theorem 1 will work, continue to assume a sample with no variation
in p or z, no measurement error, and no unobserved distribution factors v, but now assume
we see some variation in distribution factors d, so the assignable good demand functions are
now

yj = Gj (d, x) = hj (⌘djx) for j = 1, ..., J. (4)

where Gj (d, x) is an observable demand function. The goal is identification of ⌘dj, which
now is just a different constant for each value that d and j can take on.

To keep things simple, suppose d is a discrete scalar that just takes the values 1, 2, ..., D
for some integer D. Again, just for intuition, consider the case where these hj demand
functions are linear, but we no longer impose the DLP similarity across people restriction,
so hj (⌘djx) = bj⌘djx+ aj for unknown coefficients bj and aj. Then the observable household
demand functions (for these private assignable goods) are Gj (d, x) = cdjx + aj where cdj =

bj⌘dj. For each value d can take on, the coefficient of x in the j’th equation identifies the
coefficient cdj. We can identify DJ coefficients, i.e., cdj for each value of d and j. The
unknown parameters are now b1,...bJ , and, for each value of d, ⌘d1,...⌘d,J�1 (again using that
⌘dJ = 1 �

PJ�1
j=1 ⌘dj). This gives a total of J + (J � 1)D unknowns. So if D � J , meaning
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that we have at least as many different values of the distribution factors as we have household
members, then we have enough equations to identify all the resource shares ⌘dj.

The above shows we have at least as many equations as unknowns. This is a necessary but
not sufficient condition for identification, so the identification proof also entails showing that
a corresponding rank condition holds. For example, consider the case where D = J = 2.
Then the equations cdj = bj⌘dj and ⌘d2 = 1 � ⌘d1 together imply c11/c21 = ⌘11/⌘21 and
c12/c22 = (1� ⌘11) / (1� ⌘21), which are two equations that, given some mild inequalities,
we can readily solve for the two unknowns ⌘11 and ⌘21.

Our actual identification theorem extends this idea to nonlinear demand functions, by
doing a similar analysis based on derivatives of Gj (d, x) with respect to x in place of linear
coefficients of x. Finally, in all of these results, everything we call constants above are, in
the real models, functions of z, and also of p if the data contain price variation.

The main result here is that, instead of requiring preference similarity restrictions, all
we need is an observable distribution factor vector d that can take on as many values as we
have family member types. For example, if J = 3 (man, woman, and children), then two
binary distribution factors are enough.

3.4 Identification Intuition For Random Resource Shares

Now consider identification in the presence of unobserved distribution factors v, or equiva-
lently, identification of the distribution of random resource shares. Again simplifying notation
as much as possible for intuition, assume we have a sample with no variation in p, z, or d,
and no measurement error, so e = 1. The private assignable demand functions are then

yj = hj (⌘j (v) x) for j = 1, ..., J. (5)

Here v is a realization of the random, unobserved resource share vector V , and yj is the
corresponding realization of a random quantity demand Yj. For simplicity just write ⌘j (V )

as ⌘j remembering now that ⌘j is a random variable, not a constant. From data we can
identify FY (y1, ..., yJ | x), that is, the joint distribution of Y1,...,YJ , conditional on x. The
goal is to identify the distribution of the random vector ⌘1,...,⌘J�1. Again since resource
shares sum to one, if that distribution is known then we also know the distribution of the
last resource share ⌘J .

What we show in our theorems is that knowledge of FY (y1, ..., yJ | x) is sufficient to
back out the joint distribution of ⌘1,...,⌘J�1 up to an unknown location for each ⌘j. For
example, just from FY we could not determine the mean of each ⌘j, but we can determine
its distribution around that unknown mean. The key element to showing this is that the
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unobserved V act on observed demands only through the resource shares ⌘j. If the functions
hj were known, we could invert them to get h�1

j (Yj) = ⌘j, and the distribution of ⌘j would
be identified from the distribution of h�1

j (Yj).
The key to our identification theorem is showing that the h�1

j function can be identified
up to an unknown location, thereby letting us identify the distribution of the resource shares
up to an unknown location for each share. We can then combine this identification with the
results from the previous subsection (or with DLP or BCL), to get the unknown locations
for each ⌘j, and thereby identify their entire joint distribution.

To see why it is possible to obtain the h�1
j function up to an arbitrary location, consider

the probability that Yj  y, conditional on x, for any given values of y and x. That
probability is something we can estimate from data, and by the model that probability equals
the probability that hj (⌘jx)  y. For any change in y, we can calculate the corresponding
change in x that leaves this probability unchanged, and hence leaves the value of hj (⌘jx)

unchanged. This allows us to trace out how the function hj (⌘jx) changes with x, identifying
h�1
j function up to an arbitrary location. As in the previous subsection, in our real theorems

we need to include z, d (if any) and p (if the data contain price variation) in the derivations.
Theorem 1 later formalizes this identification around unknown location, and Theorem 2

then adds the earlier described identification of location based on distribution factors. Using
a very different proof technique, Chiappori and Kim (2017) also obtain an identification result
for random resource shares around unknown locations, but their result requires substantial
price variation, deals only with two member households, and has no measurement error e.
So, e.g., their results could not be applied either to Engel curve data, or to a model with
children.

3.5 Some Details

Here we give a few more details regarding distribution identification. Formal theorems and
derivations are in the next subsection and the Appendix.

For exposition, focus on a single j, and continue to drop p, d, z, and e. Let FY j (yj | x)
be the distribution function of Yj given x that we can identify and estimate from data, and
let F⌘j (⌘j) denote the unknown distribution of the random resource share ⌘j. Assume the
function hj is invertible. For any given value yj and x we have that

FY j (yj | x) = Pr (Yj  yj | x) = Pr (hj (⌘jx)  yj | x)

= Pr
�
⌘jx  h�1

j (yj) | x
�
= Pr

 
⌘j 

h�1
j (yj)

x

!
= F⌘j

 
h�1
j (yj)

x

!
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where the last equality uses the assumption that the distribution of V and hence ⌘j is
independent of x. Let � = h�1

j (yj) /x. We want to use this expression to learn about the hj

function, but we don’t know F⌘j. However, we can use the above to get an expression only
involving hj. Consider the ratio of derivatives

�@FY j (yj | x) /@yj
@FY j (yj | x) /@ ln x

=
�@F⌘j

�
h�1
j (yj) /x

�
/@yj

x@F⌘j

�
h�1
j (yj) /x

�
/@x

=
�F 0

⌘j

�
h�1
j (yj) /x

� h�10
j (yj)

x

xF 0
⌘j

�
h�1
j (yj) /x

� h�1
j (yj)

�x2

=
h�10
j (yj)

h�1
j (yj)

=
@ lnh�1

j (yj)

@yj

where the apostrophe denotes differentiation. Note the second equality applies the chain
rule to both the numerator and denominator in the ratio of derivatives. The function F⌘j

drops out, leaving the log derivative of hj on the right hand side. The left side of this
equation is something identified (that we can estimate from data), so this log derivative of
h�1
j is identified. Integrating this expression with respect to yj then identifies the function

hj itself, up to an unknown constant of integration. This unknown constant of integration
is the unknown location or mean term discussed earlier.

In our data we have J quantity demands y1, ..., yJ to work with, but we only needed
to identify the distribution of J � 1 resource shares ⌘1,...,⌘J�1, because the last one ⌘J is
obtained from the others by the constraint that resource shares sum to one. This gives us
one more demand equation to work with than we need for Theorem 1, which we can use to
identify one more dimension of random variation. That is where the measurement error e

comes in. We assume the distribution of e is independent of the true resource shares, which
is reasonable since e is measurement error and the variation in resource shares corresponds
to true behavioural heterogeneity across households. With measurement error e, Theorem
1 uses a technique like that given above to identify the joint distribution of ⌘1e,...,⌘Je up
to unknown locations (means), and Theorem 2 identifies those locations. We can then
use

PJ
j=1 ⌘je = e to identify the distribution of e, and separate that out from the joint

distribution of the resource shares ⌘1,...,⌘J�1.

3.6 Formal Identification

In this section we provide formal assumptions and our associated identification theorems.
Proofs are in the Appendix.

ASSUMPTION A1: For every individual j 2 {1, ..., J} in the household there is a private,
assignable good, denoted as good j. The household’s demand function for good j is given by
Yj = hj (⌘jex, p, z). The unknown functions h1, ..., hJ are differentiable and strictly increasing
in their first element. Resource shares ⌘1,...,⌘J are random variables having some unknown
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joint distribution across households, with
PJ

j=1 ⌘j = 1. The measurement error e is also a
random variable that has an unknown distribution across households.

As discussed earlier, the assumptions that Yj = hj (⌘jex, p, z) with
PJ

j=1 ⌘j = 1 follow
immediately from the general framework of the Pareto efficient collective household model,
with the goods indexed by j being private and assignable (other goods may be shared and
non assignable). The assumption that each hj is increasing in its first element just means
that good j is a normal good, i.e., a good for which demand goes up when total expenditures
goes up.

Distribution factors d are defined to be characteristics that affect ⌘j but not hj. Previous
collective household models assumed that each ⌘j is a deterministic function of d and other
observed variables. In contrast, we assume that ⌘j varies randomly across households, or
equivalently, that there exist unobserved distribution factors. This variation in each ⌘j

induces variation in observed private assignable goods demands Yj.
Let FY (Y1, ...Yj | p, x, d, z) denote the joint distribution of expenditures on private assignable

goods Y1, ...Yj, conditioning on p, x, d, and z.

ASSUMPTION A2: FY (Y1, ...YJ | p, x, d, z) is identified from data for all p, x, d, and z

in some sets �p, �x, �d, and �z, respectively. The set �x is an interval, and the set �p is
not empty.

A sufficient but stronger than necessary condition for Assumption A2 to hold is that
we have iid observations of standard household survey data (Y1, ...YJ , p, x, d, z) where the
support of p, x, d, z includes �p⇥�x⇥�d⇥�z. But Assumption A2 could alternatively hold
under many other standard sampling schemes, such as repeated cross section data where
prices only vary by time, or situations where there is weak dependence in the observations,
such as mixing. The set �z could be empty, corresponding to not observing any demographic
or other characteristics z that might affect tastes. The set �p could just contain a single
element, in which case we will have Engel curve data with no price variation, as in a single
cross section of households. Having �x contain an interval implies that observed households
have some continuous variation in total expenditures x, though the range of observed total
expenditure values x, given by the interval �x, could be very small.

ASSUMPTION A3: Assume that ⌘1,...,⌘J , conditional on any p 2 �p, d 2 �d, z 2 �z,
x 2 �x, and any e, has a continuous distribution that is independent of x and e. Let
F⌘ (⌘1, ..., ⌘J | p, d, z) denote the unknown joint distribution of ⌘1,...,⌘J conditional on p, d, z.
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Lewbel and Pendakur (2008) and Bargain and Donni (2009) assume e = 1 and ⌘1,...,⌘J
independent of x as in Assumption A3 to obtain identification in the case of deterministic
rather than random resource shares. BCL and Lise and Seitz (2011) imposed ⌘1,...,⌘J inde-
pendent of x on their empirical models (again having deterministic shares). DLP and Menon,
Pendakur, and Perali (2012) provide both theoretical and empirical evidence supporting this
independence assumption, and Cherchye, De Rock, Lewbel and Vermeulen (2015) find that
identified bounds on resource shares also support this assumption. Note that this indepen-
dence only needs to hold after conditioning on observables z that can include demographic
characteristics and observable distribution factors. One way to interpret Assumption A3 is
to assume there exist unobservable distribution factors, including at least one that is con-
tinuously distributed, and that the distribution of unobserved distribution factors across
households does not depend on x, after conditioning on p and z.

ASSUMPTION A4: Assume that e > 0 is independent of ⌘1,...,⌘J ,p, d, x, and z, that
E (e) = 1, and that ⌘1, ..., ⌘J�1,e has a nonvanishing characteristic function.

The assumption that E (e) = 1 means that E (x⇤) = E (x), corresponding to the standard
measurement error assumption that the observed variable is on average correctly measured,
so total expenditures are not systematically over or undercounted.

THEOREM 1: Let Assumptions A1, A2, A3 and A4 hold. Then, for some unknown
functions c1 (p, z) , ..., cJ (p, z) the joint distribution of ⌘1ec1 (p, z) , ..., ⌘JecJ (p, z) conditional
on p, d, z is identified for all p 2 �p, d 2 �d and z 2 �z.

A well known nonidentification result in the collective household literature is that without
restrictions on preferences, the levels of (deterministic) resource shares cannot be identified
(see Chiappori and Ekelund 2009 for a current general version of this result). Instead, only
changes in resource shares with respect to observed distribution factors can be identified.
This is equivalent to saying that, if e and each ⌘J were deterministic functions of observ-
ables, then only ⌘1eC1 (p, z) , ..., ⌘JeCJ (p, z) could be identified for some unknown functions
Cj (p, z). Theorem 1 provides a substantial generalization of this result to random resource
shares. For example, consider the special case where e is constant. Theorem 1 then says that
when ⌘j are random, the entire joint distribution of resource shares (and hence the effect
of all unobserved distribution factors) is identified up to the same unknown deterministic
functions Cj (p, z) = ecj (p, z). The distribution identification result in Chiappori and Kim
(2017) is also a special case of Theorem 1, and in particular follows from Theorem 1 when e is
constant and J = 2. Note that Chiappori and Kim also require considerable price variation,
while our results allow �p to have few or even just one element.
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ASSUMPTION A5: Assume �d contains at least J elements, which without loss of
generality will be denoted d1, ..., dJ . Assume E (⌘j | p, d, z) 6= 0. Let T (p, z) be the J by J

matrix defined by having E (⌘j | p, dk, z) /E (⌘j | p, d1, z) in the row k and column j position.
Assume there exist sets �⇤

p and �⇤
z, which are subsets of �p and �z, such that for all p 2 �⇤

p

and z 2 �⇤
z, T (p, z) is nonsingular.

The key feature of Assumption A5 is the requirement that our set of distribution factors
must take on at least J values, recalling that J is the number of household members. The non-
singularity of T (p, z) required by Assumption A4 will generally hold, failing only when there
is some equality coincidence among the expected resource share functions E (⌘j | p, d1, z).
For example, in households with two members, it is straightforward to check that nonsin-
gularity will hold as long the distribution factor affects the mean of ⌘1 in any way, that is,
as long as E (⌘j | p, d1, z) 6= E (⌘j | p, d2, z). Also, regarding E (⌘j | p, d, z) 6= 0, we actually
only require that this hold for one tuple of given known, observed values of p, d, and z.

THEOREM 2: Let Assumptions A1, A2, A3, A4, and A5 hold. Then F⌘ (⌘1, ..., ⌘J | p, d, z)
is identified for all d 2 �d, p 2 �⇤

p and z 2 �⇤
z. The distribution of e is also identified.

Theorem 2 works by exploiting the fact that resource shares must sum to one within a
household. For example, if �d has J elements, this places J equality constraints on the set
of functions E (⌘j | p, d, z), one for each of the J values that the distribution factors can take
on. By Theorem 2, the E (⌘j | p, d, z) are identified up to J unknown functions, and the
J equality constraints allow us to recover these J unknown functions, c1 (p, z) , ..., cJ (p, z).
Given these cj (p, z) functions, by Theorem 2 the entire joint distribution of the resource
shares is identified.

Note that Theorems 1 and 2 do not require any price variation, and so can be applied to
Engel curve type data where all observations are drawn from a single price regime.

An immediate extension of Theorem 2 is that we could have identified the levels of
deterministic resource shares, e.g., in traditional nonstochastic collective household models,
given resource shares independent of total expenditures and observing some distribution
factors. Theorem 2 thereby overcomes the classic resource shares nonidentification problem.
So, e.g., the SAP and SAT preference restrictions employed by DLP could be replaced with
Assumption A4.

4 Semiparametric Estimation

Although we have established nonparametric identification of the model, completely non-
parametric estimation is likely to be infeasible with realistically-sized data sets, given the
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high dimensionality of the model. We therefore focus on estimation assuming a parametric
specifications for the private assignable demand equations and for the deterministic com-
ponent of resource shares, but nonparametric in the random variation in resource shares.
From the long literature on empirical demand estimation, a great deal is known about func-
tional forms for demand functions that are empirically successful. However, almost nothing
is known about the distribution of random variation in resource shares. We therefore employ
commonly used functional forms for utility, while leaving the distribution of resource shares
(and measurement error e) unspecified and nonparametric.

In our application we take men’s, women’s, and children’s clothes to be our private
assignable goods yj. Let ✓j be a vector of clothing demand parameters. Other variables
are defined as before. Based on our theorems, assume (⌘1, ⌘2, ⌘3, e) ? x | z, p, d and let
E (e | ⌘1, ⌘2, ⌘3, z, p, d) = 1. The general form of a demand function is

yj = hj(x⌘je, p, z | ✓j)

where the distribution of ⌘j can depend on z, p, d. In the appendix we provide a general
technique based on inverse demands for estimating ✓j and the values of ⌘1, ⌘2, ⌘3, e for each
individual in the sample. Below we give a simpler estimator based on our specifically chosen
functional form for hj.

Our empirical application uses cross-sectional data from a single time period, so we
assume that p is fixed, i.e., we work with Engel curve data. We can then drop p from the
above demand equation, and let each yj just equal observed expenditures on member j’s
clothing. The estimator described below will allow us to directly estimate the mean value of
(⌘1, ⌘2, ⌘3, e), conditional on covariates, and then later back out estimated values of ⌘1, ⌘2, ⌘3,
and e for each individual in each household in our sample.

We assume that the Marshallian demand function hj for the private assignable good has
the commonly used piglog (price independent generalised logarithmic) functional form. The
name piglog is due to Muellbauer (1976). This is one of the most widely used specifications
for Engel curves, e.g., the Jorgenson, Lau, and Stoker (1982) Translog demand system and
the Deaton and Muellbauer (1980) Almost Ideal Demand System have Engel curves of the
piglog form, and piglog Engel curves were also used in empirical collective household models
estimates by DLP and by Calvi (2017). Note that only the assignable goods are assumed to
be piglog, so more general specifications could apply to other goods, such as the QUAIDS
model of Banks, Blundell, and Lewbel (1997).

19



The piglog Engel curve model is3

hj(x, z | ✓j) = cj (z) x+ bj (z) x ln (x) (6)

where cj (z) and bj (z) are implicitly functions of parameters ✓j. The corresponding household
demand function for each private assignable good j is

yj = cj (z) x⌘je+ bj (z) x⌘je ln (x⌘je)

Let wj = yj/x be the budget share of person j’s assignable good as a fraction of total
household expenditures x. We then have that the household’s budget-share function for the
assignable good j is

wj = [cj (z) + bj (z) ln (x⌘je)] ⌘je

Define µj to be the conditional mean function for ⌘j, given by

µj (d, z) = E (⌘je | x, d, z) = E (⌘j | d, z) .

Define Uj to be a structural error term, which depends on the deviation of ⌘j from µj as

Uj =
⌘je

µj (d, z)
.

If resource shares ⌘j are deterministic functions of observables, then µj (d, z) = ⌘j, so in that
case µj are the resource shares. Otherwise, if resource shares ⌘j are random (functions of
unobserved distribution factors v) then Uj is the random variation in ⌘je across individuals.
Substituting these expressions into the household budget-share functions gives

wj = (cj (z) + bj (z) (ln (xµj (d, z)) + lnUj))µj (d, z)Uj

Gathering Uj terms this becomes

wj = [cj (z) + bj (z) ln (xµj (d, z))]µj (d, z)Uj + bj (z)µj (d, z)Uj lnUj. (7)
3Piglog demands are given by the class of indirect utility functions V (lnP, lnx, z) =

(lnx�A (P, z)) exp (B (P, z)) for some functions A (P, z) and B (P, z), where exp (A (P, z)) is homoge-
neous of degree one in P and B (P, z) is homogeneous of degree zero in P . Applying Roys identity
to this indirect utility gives the piglog demand functions, in which the budget share of good j equals
Aj (P, z)�A (P, z)Bj (P, z)�Bj (P, z) lnx, where Aj (P, z) is the partial derivative of A (P, z) with respect
the price of good j, and similarly for Bj (P, z). Holding prices fixed at some constant level P0, define
bj (z) = �Bj (P0, z) and cj (z) = Aj (P0, z)�A (P0, z)Bj (P0, z) to obtain equation (6).
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Since E (e | ⌘1, ⌘2, ⌘3, z, p, d) = 1 and E (⌘j | d, z) = µj(d, z), we have that E (Uj | x, d, z) =
1. Let sj = E (Uj lnUj | x, d, z), which for simplicity is assumed to be constant (letting sj

depend on covariates is feasible, but complicates the numerical evaluations below). This is
roughly analogous to a simplifying homoscedasticity type assumption. Define an additive
error term "j by "j = wj � E (wj | x, d, z), and therefore E ("j | x, d, z) = 0. Evaluating
E (wj | x, d, z) using the above expression for wj gives

wj = [Cj (z) + bj (z) ln (xµj (d, z))]µj (d, z) + "j (8)

where Cj (z) = cj (z) + bj (z) sj. We can think of the Uj’s as structural errors, while the "j’s
are ordinary regression errors.

We will later assume for estimation that Cj (z), bj (z), and µj (d, z) are all linear in their
arguments, so

µj (d, z) = ↵j0 + ↵0
jzz + ↵0

jdd, bj (z) = �j0 + �0
jzz and Cj (z) = �j0 + �0jzz

for constant scalars ↵j0, �j0, and �j0, and constant coefficient vectors, ↵jz, ↵jd, �jz, and �jz.
Substituting these expressions into equation (8) gives the model that we estimate, which for
each member j of each household h, is

wjh =
⇥
�j0 + �0jzzh +

�
�j0 + �0

jzzh
� ⇥

ln xh + ln
�
↵j0 + ↵0

jzzh + ↵0
jddh

�⇤⇤ �
↵j0 + ↵0

jzzh + ↵0
jddh

�
+"jh

(9)
Equation (9) for household members j = 1, ..., J now form a system of J equations that we
can estimate using a least squares estimator such as nonlinear seemingly unrelated regression.
We will also want to employ clustered (across equations), heteroskedastic robust standard
errors, to account for the fact that, by construction, the errors "j are heteroskedastic and
are correlated across the members of each household.

In our empirical work, due to data limitations we assume a single utility function for all the
children in the household. This utility function includes a childrens’ assignable good, which is
children’s clothing and shoes (DLP make the same assumption for the same reason). If we had
observed separate clothing and or shoes expenditures for each child, we could have allowed
each to have their own utility function. Let j = children index the children’s aggregate
resource share and their aggregate clothing budget share. For simplicity in reporting the
estimated results, assume the children split their resource shares equally. As a result, the
children’s aggregate clothing budget share equation is given by equation (9), except that we
replace ln xh with ln (xh/s) where s is the number of children in the household.

An interesting feature of this model and our associated estimator is that the estimating

21



equations (9) for each j are the same regardless of whether resource shares are random or not.
If resource shares are not random then sj = 0 making cj (z) = Cj (z) and ⌘jh = µj (dh, zh),
where ⌘jh is the resource share of member j in household h. But if resource shares are random,
then (given the parameter estimates) we can use fact that the errors "jh are known functions
of the random components Ujh to recover random resource shares for each household, as
follows.

By construction, we have that for each household member j of each household h,

"jh = wjh � E (wjh | xh, dh, zh) = (Ujh � 1) 0jh + (lnUjh � sj)Ujh 1jh (10)

where  0jh and  1jh, are known functions of our estimated parameters. Specifically, from
equations (8) and (7),

 0jh = [Cj (zh) + bj (zh) ln (xµj (dh, zh))]µj (dh, zh)

 1jh = bj (zh)µj (dh, zh) .

So for each member j of each household h, given the residual "jh and our estimates of  0jh

and  1jh, if we knew sj we could numerically solve (10) for Ujh. By iterating over the sample
averages of Ujh lnUjh and plugging these in for sj in (10), we arrive at sample values of Ujh

consistent with the observed error terms "jh and the model. Note that equation (10) may
have up to two solutions Ujh. We use only strictly positive solutions for Ujh, and where there
are two strictly positive solutions, we use the one that gives us sample means closest to one
(since the true mean of Ujh is one).4

Once we have obtained each person’s Ujh, we then calculate

eh =
XJ

j=1
Ujhµj (dh, zh) and ⌘jh =

Ujhµj (dh, zh)

eh

where eh is the multiplicative measurement error in xh for household h and ⌘jh is the resource
share of person j in household h. These expressions follow from the constructions Ujh =

⌘jheh/µj (dh, zh) and
PJ

j=1 ⌘jh = 1.

4We could impose the restriction that the mean of Ujh is exactly one by implementing a GMM estimator
that includes the moment conditions based on E[(Ujh lnUjh � sj) | x, d, z] = 0 and E[(Ujh � 1) | x, d, z] = 0,
where Ujh is defined implicitly by equation (10). We instead just take sj to be the sample mean of Ujh lnUjh

and check that the sample mean of Ujh is close to one, for each value of j.
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5 Empirical Results

5.1 Malawian Expenditure Data

We use almost the same Malawian household expenditure and demographic data as DLP,
supplemented with some additional distribution factor variables.5 Malawi is a very poor
former British protectorate in southern Africa. With a population density of approximately
190 persons per sq. km, it is one of the most densely populated countries in Africa, even
though roughly 83% of the population lives in rural areas. Unlike many poor African coun-
tries, Malawi’s recent political history is remarkable for the absence of military coups and for
occasional multi-party elections, most recently in 2009. Despite its relative political stability,
Malawi has numerous socio-economic tensions including extreme poverty, a high incidence
of HIV/AIDs, high infant mortality and one of the lowest life expectancies in the world (51
years).

While household level poverty rates are quite high, we find that accounting for intra-
household allocations results in even higher rates of poverty. In particular, our results show
many people (particularly children) are individually below a poverty line, despite living
in households where everyone in the household would be above the line if intra-household
resources were distributed more equitably.

These are relatively high quality data. Enumerators were sent to individual households
to collect the data for IHS2. Enumerators were monitored by Field Supervisors in order
to ensure that the random samples were followed and also to ensure data quality. Cash
bonuses, equivalent to roughly 30 per cent of average household income in Malawi, were
used as an incentive system in the IHS2 for all levels of workers. Roughly 5 per cent of the
original random sample was resampled because dwellings were unoccupied. Only 0.4 per
cent of initial respondents refused to answer the survey in the IHS2, so endogenous selection
of reporters is not likely to be a problem in these data.

In the Survey, households are asked questions from a number of modules relating to
health, education, employment, fertility and consumption. Households are asked to recall
their food consumption (one week recall) and their non-food expenditure broken into four
recall categories (one week, one month, three months and one year). In our work, we convert
consumption to the annual level (e.g., multiplying one month recall consumption by 12).
Consumption amounts also include the value of home produced goods and services imputed

5The data used in this paper are from the second Malawi Integrated Household Survey (IHS2), conducted
in 2004-2005, and jointly designed by the National Statistics Office of the Government of Malawi and the
International Food Policy Research Institute and the World Bank. The survey includes roughly 11,000
households. The data are confidential, and were released under agreement with the Central Bank of Malawi.
Below we discuss the small differences between our data selection and DLP.
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at the value of those services consumed in the market.
The consumption data include (in the three month recall questionnaire) household ex-

penditures on clothing and shoes for the household head, spouse(s), and children aged 14
and under. These are the assignable goods whose demand functions we model. We use a
single private assignable good for each person equal to the sum of clothing and footwear ex-
penditures for that person. As noted above, we treat “children” as an aggregate person, and
interpret that resource share as being divided equally among the children in the household.

Our new method for identifying the level of resource shares depends on observing distri-
bution factors, defined as variables that affect resource shares but do not affect individual
preferences. We construct distribution factors based on the following variables: 1) indicators
that the husband and wife live in their home village; 2) the natural logarithm of one plus the
distances to the nearest doctor, the nearest bank, the nearest post-office, the nearest weekly
market, and the nearest government high school in kilometers; 3) self-reported quality of
local elementary and secondary school, on a scale from -0.2 to 0.6, where 0 is the sample
mode; 4) an indicator that the household has experienced a climate shock in the preceding
4 years that affected agricultural productivity; 5) the natural logarithm of the local mill
price in Kwache, reflecting the value of home production. We note that only 1), 3) and 4)
are individually-varying variables; all distances and the local mill price are community-level
variables. To mitigate multicollinearity issues, we extract the first three principal compo-
nents of the above list of variables, and use these principal components as the distribution
factors d in our structural models. Note that our primary interest is in using variation in d

for resource share identification, rather than uncovering the effects of any of these specific
variables on resource shares.6

We include some demographic variables, denoted z, which may affect both preferences
and resource shares of each household member. We include 17 demographic variables in our
models: region of residence (non-urban North and non-urban Central with non-urban South
as the left-out category); the average age of children less 5; the minimum age of children
less 5; the proportion of children who are girls; the age of the man less 28 and the age of
the woman less 22 (the average ages of men and women in the sample); the education levels
of the household head and spouse (ranging from �2 to 4, where 0 is the modal education
level); the log of the distance of the village to a road and to a daily market; a dummy
indicating that the 3 month recall period for consumption occurred over the dry season; and
dummy variables indicating that the household is christian or muslim (with animist/other
as the left-out category). Additionally, we include the number of children, s, among our

6If desired, factor loadings on these variables could be used to uncover the effect of any particular variable
(through the distribution factor principal components) on resource shares and within household inequality.
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demographic variables, in the form of separate dummy variable indicators for 2-,3- and 4-
child households. These are the same demographic variables as used in DLP. Thus, z has 17
elements: 14 demographic elements and 3 elements equal to values of s.

We use almost the same sample restrictions as DLP. As in that paper, our sample con-
sists of married couples with one to four children all under 15 years of age that satisfy the
following sample restrictions: (1) polygamous marriages are excluded; (2) observations with
any missing data on the age or education of members are excluded; (3) households with chil-
dren aged 15 or over are excluded; (4) households with any member over 65 are excluded;
and (5) urban households are excluded. In the current paper, though, we additionally ex-
clude households with servants (dropped 78 households) and include households that have
missing data not used in the estimation, such as wealth variables used by DLP (added 89
households). Further, we dropped any household with missing values for any of the above
distribution factors (dropped 206 households).

Our final sample contains 2599 households. Table 1 gives some summary statistics.

5.2 Estimation

We estimate equation (9), by nonlinear seemingly unrelated least squares. To account for
variation in the number of children across households, in equation (9) we replace ln xh in
the childrens’ assignable good equation with ln (xh/s). The three distribution factors d are
included in all models.

To reduce the complexity and potential multicollinearity of the nonlinear estimation, we
impose the restriction that, while the three dummy variables for 2-,3- and 4-child households
(s = 2, 3, 4) enter both the slope terms �0

jzzh and the level terms �0jzzh, the other 14 demo-
graphic variables enter only through the level terms �0jzzh. Thus, we hereafter refer to �js
as budget response parameters for the three types of people j (man, woman, children) and
three household sizes (s = 2, 3, 4), while �j0 refers to the baseline budget response (equal to
the budget response for the left-out household size where s = 1).

We provide estimates where identification hinges on the existence of observed distribution
factors as in Theorem 1. We also provide estimates imposing the similar across people (SAP)
restrictions of DLP. Note in particular that SAP imposes the constraint that �js does not
vary across household members, so �js = �s for s = 0, 2, 3, 4.

For the model identified using observed distribution factors, the sum-of-squared residuals
function had many local minima in our empirical context, regardless of the set of distribution
factors chosen. To circumvent difficulties with local minima, we performed a grid search over
1250 random starting values for ⌘ and � and selected the estimates corresponding to the
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minimum of the observed sum-of-squared residuals. All estimates employ this grid search
strategy.7

Unlike identification based on distribution factors, identification using the SAP restriction
did not suffer from the problem of multiple local minima in the objective function. DLP
noted similar results when just comparing SAT and SAP, noting that the SAP restriction
facilitates identification of resource share parameters in particular.

The next subsection reports our estimates of the levels of resource shares. This is then
followed by estimates of the random distribution of resource shares around these levels, and
then the resulting estimates of separate povery rates for men, women, and children.

5.3 Estimated Coefficients and Levels of Resource Shares

Table 2 gives estimates of selected elements of �js and of the resource share parameters ↵
for our model, and for the more restrictive SAP model of DLP (Table A1 in the Appendix
provides the full set of estimates of all parameters). At the bottom of the SAP block, we
provide a test of these restrictions �js = �s, which is a test of SAP subject to the validity of
the distribution factors.

In the upper panel of the leftmost block, we show selected estimates of resource share
parameters where identification comes from the 3 observed distribution factors, denoted DF.
Consider first the estimated values for the number of children. The upper left coefficient
is ↵man,0 which gives the estimated level of the resource share for a man in a household
with 1 child and all other demographic variables and distribution factors equal to 0. This
indicates that the man in such a household has a shadow budget equal to roughly 34.7 per
cent of the overall household budget. The estimate of 0.392 for ↵woman,0 indicates that the
woman in such a household has a shadow budget equal to about 39.2 per cent of the overall
household budget. This leaves 26.1 per cent of the household budget for the child. Values
for the children’s resource share parameters are thus calculated rather than estimated, and
their standard errors are obtained via the delta-method.

Despite differences in our sample, regressors, and particularly in the identification strat-
egy relative to DLP, our estimated level of resource shares of men, women and children are
similar to that earlier work. In particular, as the number of children in the household goes
up, the man’s resource share doesn’t change, the woman’s resource share goes down, and the
childrens’ (aggregate) resource share goes up. The sample value of the �2

3 test statistic for the
Wald test of the hypothesis that the man’s resource share does not respond to the number of
children is 0.87, which does not reject at conventional levels. In contrast, the sample values

7We used Stata 14 on a 600 node Linux cluster to compute the estimates, using five different seeds and
drawing 250 starting values per seed.
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of the test statistics for the analogous restriction on the women’s and children’s shares are
15.16 and 9.10, respectively, which do reject at conventional levels.

Turning to the distribution factors, we find that they are in general somewhat weak in
driving resource shares. In particular, no distribution factor is statistically significant at the
5 per cent level, and only 3 are statistically significant at the 10 per cent level (the first
and second principal component for men, and the first principal component for women).
The test that all three distribution factors can be excluded from the resource shares is
6.64 and 4.08 for the man’s and woman’s resource share, respectively, indicating marginal
statistical significance for men only. The main reason for the relatively low significance of
the distribution factors appears to be a multicollinearity problem, in that these factors are
highly correlated with our observed demographic preference shifters.

Next consider the slope parameters �js. We find that the estimated values of the param-
eters �j0 are all positive and statistically significant (nonzero slope coefficients are required
for our resource share identification). Positive �j0 indicates that clothing is a luxury good
in the Malawian context. We find that the values of �man,0, �woman,0 and �children,0 vary
somewhat across people, e.g., the estimated value for women is 0.023 and for men is 0.016.
However, these differences across people are not statistically significant. In particular the
sample value of the �2

8 test statistic for the hypothesis that the man, woman and children
have the same budget responses at each household size is 7.97, which has a p-value of 0.436.
Thus, we cannot reject the restriction that preferences are similar across people (SAP).

Some of the resource share estimates described above have relatively large standard er-
rors, due to the weakness of the distribution factors noted above. However, since the SAP
restrictions are not rejected, we can consider imposing them to increase estimation precision,
noting that SAP estimation did not suffer from the numerical problem of multiple minima.

The right-hand panel of Table 2 shows the estimated values of resource shares, distribu-
tion factor coefficients, and �s coefficients given SAP. The resource shares are quite similar
to the estimates that didn’t impose SAP, but imposing SAP substantially reduces standard
errors. Even with SAP, the distribution factor coefficients remain mostly insignificant.

Let µjh = µj (dh, zh). Table 3 summarizes the variation in µjh, that is, the variation
in estimated resource shares due only to variation in observed demographic variables z and
distribution factors d.

For men, women and children, we give the mean and standard deviations (across z and
d values) of µjh in the row labeled “all.” The mean and standard deviation of µjh just due
to variation in distribution factors is given in the row denoted “d”. For men, the average
resource share is 0.468 (the average contribution from observed distribution factors is zero
because by construction the distribution factors themselves have an average of zero). The
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standard deviation of resource shares for men is 0.155 and that of the contribution from
distribution factors is 0.013, about a tenth as large. We find similar relative contributions
of resource shares for women and children.

The lower bloc in each panel gives the average and standard deviation of resource shares
for households with varying numbers of children. The pattern of children’s shares rising at
the expense of women’s shares conditional on demographic characteristics (observed in Table
2) remains evident here where we average across those demographic characteristics.

5.4 Estimates of Random Resource Shares

Here we provide estimates of the distribution of the unobserved random variation in resources
shares, based on the estimated models reported above. For each household member type j,
given a value of sj we numerically invert equation (10) to obtain Ujh for each household h.
We then construct a new value for sj as the sample average of Ujh lnUjh across households,
and iterate until these sample averages of Ujh lnUjh converge. However, for households that
have µjh close to zero, the resulting value of Ujh becomes very large, resulting in very large
sample values of Ujh lnUjh which then destabilises the iteration procedure. To avoid this, we
trim the data by dropping observations where µjh < 0.01 for any household member (this
entailed dropping just 3 and 2 households respectively, for our two models).

In Table 4, we present, separately for men, women and children, summary statistics of
the distribution of values of Ujh, and the implied values of resource shares ⌘jh. We also give
statistics for µjh for comparison. This table incorporates a number of checks on the model.
Our model assumes that Ujh are mean 1, and independent of p, x, z, d. However, as a check on
the model we do not impose these features in the estimation or inversion. The sample average
values of Ujh for men, women and children are 1.07, 1.05 and 0.84, respectively, which are
reasonably close to their theoretical value of 1. Below the means, we report the correlations
between the random resource share shifters, Ujh, and the deterministic part of resource
shares, µjh. These correlations are 0.14, 0.03 and �0.06, respectively, for men, women and
children, which are reasonably close to zero. Another implication of the model that we do
not impose is that the mean of the Berkson errors e equals one. Our estimated sample mean
of e is 1.02, which is very close to what the model predicts. Our estimated standard deviation
of e is .73. Overall, these results suggest that strong distribution restrictions implied by our
model appear to be satisfied.

Now we turn to the distribution of resource shares ⌘jh. As we saw in Table 3, there
is substantial variation in resource shares driven by observed covariates. In Table 4, we
consider how much additional variation in resource shares emerges when we allow for possible
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unobserved distribution factors. Recall that ⌘jh = µjhUjh/eh, where µjh = µj (dh, zh) is the
deterministic part of ⌘jh (varying by demographics and distribution factors), while Ujh/eh is
the idiosyncratic random component of the resource shares. For men, the standard deviation
of µjh is 0.155, while the standard deviation of ⌘jh is 0.277. So accounting for random
component Ujh/eh of resource shares (and hence accounting for unobserved distribution
factors) roughly doubles the observed variation in resource shares. The estimates for women
show a similar pattern. The standard deviation of µjh is 0.095 but that of ⌘jh is 0.228,

roughly twice as large. For children, the standard deviation of µjh is 0.084 but that of ⌘jh
is 0.177. These results suggest that using richer datasets to find additional determinants of
intra-household inequality (i.e., additional distribution factors) may be an important avenue
for future policy research.

These random resource share estimates were obtained using a model that was identified
by Theorem 1, based on distribution factors. The right-hand columns of Table 4 gives
comparable values for the resource share distribution in the model that imposes SAP, and so
has levels identified by DLP. Here, we see much the same pattern. Random resource shares
have roughly twice the standard deviation of resource shares that vary only with observed
covariates. The bottom line is that unobserved distribution factors appear to be roughly as
important as observed covariates in determining the variation in resource shares

5.5 Estimated Poverty Rates

In our data, we observe that 95.3 per cent of households in our sample have household
total expenditures of less than a household-level poverty line (defined as the sum of 2 US
dollars per adult plus 1.20 US dollars per child) per day. Households vary by size, and larger
households are more likely than smaller ones to fall below this threshold. As a result, 91.4
per cent of people in our sample live in households with household total expenditures below
the threshold. However, this calculated povery rate ignores the fact that individuals within
households may have unequal access to household resources. As noted in DLP, identification
of the levels of resource shares allows us to calculate poverty rates at the person-level, rather
than at the household-level, in a way that accounts for variation in access to household
resources. In this subsection, we go beyond DLP to show the additional effect that accounting
for random variation in resource shares has on the measurement of poverty at the individual
level.

Table 5 gives estimated poverty rates for men, women and children using just the deter-
ministic (fixed) part of resource shares, µjh, and also gives poverty rates that account for
the random component of resource shares, ⌘jh. To estimate the poverty rate for men, for
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example, for each household h we compute the father’s estimated resources, equal to µman,h

times xh or ⌘man,h times xh (the former for fixed resource shares and the latter for random
resource shares) and we count the fraction of households for which these estimated men’s
resources are less than the poverty threshold. For children, the personal budget of each child
in a household is equal to µchildren,h times xh/s or ⌘children,h times xh/s, where s is the number
of children in the household. The poverty thresholds we use are 2.0 US dollars per day for
men and for women, and 1.20 US dollars per day (60% of the adult world poverty line, as
implied by OECD standard equivalence scales) for children.

Similar to DLP, we find much lower poverty rates for men than for women or for children.
In Table 5 the estimated poverty rates based on fixed resource shares µjh are 59 per cent for
men, 86 per cent for women, and 98 per cent for children. Estimates that impose SAP are
very similar.

Allowing for random heterogeneity in resource shares results in lower estimated poverty
rates. Our estimated poverty rates based on ⌘jh, which include the random component Ujh,
are 56 per cent for men, 79 per cent for women, and 95 per cent for children. These estimated
rates are 3 per cent lower for men and for children, and are 7 per cent lower for women. Very
similar numbers are obtained from the model that additionally imposes SAP.

The reason allowing for random variation in resource shares tends lower estimate poverty
rates is because the poverty line is above the mode of the (unimodal) µjh distribution for
each j. The random component Ujh moves some fraction of people who had µjh near to but
above the poverty line down below it, and pushes a different fraction of people who were
below the line up above it. The poverty line is in the downward sloping part of the density
of µjh, so there are more people close to but below the line than those close to but above
the line, and hence more who are randomly moved from below to above than those who are
randomly moved from above to below.

The reduction in estimated poverty from allowing for the random component of resource
shares is larger for women than for men or children for two reasons. First, the slope of the
estimated density in the neighborhood of the poverty line is steeper for women. And second,
the random component of resource shares is smaller for children. Looking back at Table 4,
allowing for random resource shares increases the standard deviation of women’s resource
shares by 0.13, but only increases the standard deviation of children’s resource shares by
0.09.

We can summarize these results as follows. Calculating poverty rates in the standard way,
at the household level, essentially assumes equal sharing within the household and thereby
ignores actual intra-household allocation. Ignoring intra-household allocations greatly over-
estimates men’s poverty rates, and greatly underestimates the poverty rates of women and
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children, as reported by DLP and others (and reconfirmed here). However, failing to account
for random variation in resource shares results in estimated poverty rates that are biased
upwards. Essentially, some individuals who seem poor on the basis of their observed char-
acteristics (demographics and distribution factors) are in fact non-poor due to unobserved
characteristics.

6 Conclusions

In this paper, we consider random resource shares and a new way of identifying the level
of resource shares. In Theorem 1 we show identification of the distribution (around an
unknown level) of resource shares that are permitted to vary randomly across households.
In Theorem 2 we show identification of the level of resource shares that does not require
previously needed assumptions regarding similarity of tastes across households of varying
compositions or across people within a household. This second theorem uses a new way to
exploit variation in so-called distribution factors, that is, variables that affect the allocation
of resources within households but do not affect the tastes of individuals.

We apply our results to household survey data from Malawi. We find that identification
using distribution factors is empirically practical, but can result in imprecise estimates if
distribution factors are too highly correlated with other regressors. We use our results
to test some of the behavioral restrictions that previous results required for identification.
We find that the similarity across people (SAP) restriction proposed by Dunbar, Lewbel
and Pendakur (2013) for identification is an acceptable restriction, and can be combined
with observed distribution factors to yield more efficient (and numerically better behaved)
estimates.

Our estimates of the distribution of random resource shares show that unobserved factors
account for about as much variation in resource shares as do observed covariates. We find
that accounting for unobserved factors (i.e., random variation) in resource shares across
household members matters a great deal for poverty analyses. In particular, accounting for
such unobserved heterogeneity results in lower estimated poverty rates.
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8 Appendix: Proofs and Additional Results

This Appendix has three sections. The first is derivation of the household demand equations
for the private assignable goods. The second give proofs of our Theorems. The third describes
an estimator of the resource share distribution for general demand equation functional forms,
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instead of the estimator given the text that was specific to the class of functional forms we
use for our empirical analysis.

8.1 Derivation of household demand equations of private assignable

goods

Here we summarize the derivation of equation (1), which is based on same machinery used
in BCL and DLP to analyze collective household models where most goods can be shared to
varying extents. Unlike DLP, we explicitly include price variation, unlike BCL, we focus on
assignable goods and include more than two household members, and unlike both DLP and
BCL we explicitly include distribution factors, both observable d and unobservable v.

Start by assuming the household chooses what to consume using the program

max
y1,...,yJ ,r1,...,rJ

eV [V1 (y1, r1, z) , ..., VJ (yJ , rJ , z) | d, z, p/x⇤, v] (11)

such that r =
JX

j=1

rj and x⇤ = p0rA (z) r +
JX

j=1

pjyj

where Vj (yj, rj, z) for j = 1, ..., J is the utility function of household member j, and the
function eV describes the social welfare function or bargaining process of the household,
which exists because the household is pareto efficient.

Recall z denotes a vector of observable attributes of households and their members like
age, education, and number of children. Household attributes z may affect preferences, and
so appear inside the utility functions Vj. These z variables may also affect the bargaining
process or social welfare function given by eV (by, e.g., affecting the relative bargaining power
of members), and as a result may affect resource shares.

We have scalars y1,...,yJ that are the quantities of private, assignable goods, where mem-
ber j has quantity yj in his or her utility function, and does not have y` for all ` 6= j in his
or her utility function. Each member’s utility function also depends on a quantity vector of
other goods rj. The market prices of these goods are given by the vector pr. The square
matrix A (z) is what BCL call a linear consumption technology function over goods. Having
A (z) differ from the identity matrix is what allows goods in r to be partly shared and/or
consumed jointly. In particular, A (z) r equals the quantity vector of these goods that the
household actually purchases, while r =

PJ
j=1 rj is total quantity vector of these goods that

the household consumes. These quantities are not the same due to sharing and joint con-
sumption. The smaller an element of A (z) r is relative to the corresponding element of r,
the more that good is shared or jointly consumed. See BCL for details. The vector of all
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prices p includes, pr, the vector of prices of the elements of r, and p1,...,pJ , the prices of the
private assignable goods y1,...,yJ .

What makes the vectors d and v be distribution factors (observed and unobserved, re-
spectively) in the model is that they appear only as arguments of eV , and so only affect the
allocation of resources within the household, but not the tastes of the individual household
members.

Applying duality theory and decentralization welfare theorems, it follows from BCL that
the household’s program above is equivalent to a program where each household member j

chooses what to consume using the program

max
yj ,rj

Vj (yj, rj, z) such that ⌘j(p, x
⇤, z, d, v)x⇤ = p0rA (z) rj + pjyj (12)

where ⌘j = ⌘j(p, x⇤, z, d, v) is the resource share of member j, that is, ⌘j is the fraction of
total household resources x⇤ that are allocated to member j. This member then chooses
quantities yj and the vector rj subject to a linear budget constraint. The vector prA (z)

equals the vector of shadow prices of goods r. These shadow prices for the household are
lower than market prices, due to sharing. Being private and assignable, the shadow price of
each yj equals its market price pj. The shadow budget for member j is exj = ⌘jx⇤. As shown
in BCL, the resource share functions ⌘j(p, x⇤, z, d, v) for each member j in general depend
on the function eV and on the utility functions V1...,VJ .

BCL show that the more bargaining power a household member has (i.e., the greater is
the weight of his or her utility function in eV ), the larger is their resource share ⌘j. Resource
shares ⌘j all lie between zero and one, and resource shares sum to one, that is,

PJ
j=1 ⌘j = 1.

As in DLP, we will not work with the household demand functions of all goods (which,
as shown in BCL, can be rather complicated). Instead, we only make use of the demand
functions of the private assignable goods yj, which are simpler. Since equation (12) is
an ordinary utility function maximised under a linear budget constraint (linear in shadow
prices and a shadow budget), the solution to equation (12) is a set of Marshallian demand
equations for yj and rj. Let hj (exj, p, z) be the Marshallian demand function of person j’ for
their private assignable good, that is, hj (exj, p, z) is the quantity person j in a household with
member attributes z would demand of their assignable good if they had a budget equal to
their shadow budget exj and faced the within-household shadow price vector that corresponds
to the market price vector p. Since each yj is private and assignable, the quantity yj that
member j chooses to consume equals the quantity of this good that the household buys.
It therefore follows from the above that the household’s quantity demand of each private
assignable good yj is given by equation (1).
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8.2 Proofs

PROOF OF THEOREM 1: Let h�1
j (yj, p, z) denote the inverse of the function hj with

respect to its first argument, which exists by Assumption A1. Let FYj (yj | p, x, d, z) be the
identified conditional distribution of Yj. Let e⌘j = e⌘j and let Fe⌘j (e⌘j | p, d, z) be the unknown
conditional distribution of e⌘j. Then for any yj 2 supp (Yj | p, x, d, z),

FYj (yj | p, x, d, z) = Pr (hj (e⌘jx, p, z)  yj | p, x, d, z) = Pr

 
e⌘j 

h�1
j (yj, p, z)

x
| p, x, d, z

!

= Fe⌘j

 
h�1
j (yj, p, z)

x
| p, x, d, z

!
= Fe⌘j

 
h�1
j (yj, p, z)

x
| p, d, z

!

where the last equality follows from Assumption A3. By continuity of the distribution of e⌘j,
the distribution function Fe⌘j is differentiable, and

�x@FYj (yj | p, x, d, z) /@yj
@FYj (yj | p, x, d, z) /@x

=
�x@h�1

j (yj, p, z) /@yj

�xh�1
j (yj, p, z)

=
@ lnh�1

j (yj, p, z)

@yj

It follows by the continuity assumptions and interval support of x that supp (Yj | p, z) is an
interval. Let j (p, z) denote any given nonzero element in this support. Define the identified
function rj by

rj (yj, p, z) = exp

 Z yj

j(p,z)

E

✓�x@FYj (yj | p, x) /@yj
@FYj (yj | p, x) /@x

| yj, p, z
◆
dyj

!

= exp

 Z yj

j(p,z)

@ lnh�1
j (yj, p, z)

@yj
dyj

!

= h�1
j (yj, p, z) cj (p, z)

where cj (p, z) = 1/h�1
j (j (p, z) , p, z) is an unknown function.

Now h�1
j (Yj, p, z) = e⌘jx so rj (Yj, p, z) /x = e⌘jcj (p, z). Applying the same derivation

used above to relate FYj to Fe⌘j we have

FY1,...YJ (y1, ...yJ | p, x, d, z) = Fe⌘1,...e⌘J

✓
h�1
1 (y1, p, z)

x
, ...

h�1
J (yJ , p, z)

x
| p, d, z

◆

= Fe⌘1,...e⌘J

✓
r1 (y1, p, z)

c1 (p, z) x
, ...

rJ (yJ , p, z)

cJ (p, z) x
| p, d, z

◆

Since the FY1,...YJ is known and the rj (Yj, p, z) functions are identified, this shows that
the Fe⌘1,...e⌘J distribution is identified up to the unknown location terms c1 (p, z),..., cJ (p, z).
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Equivalently, we can say that the joint distribution of r1 (Yj, p, z) /x,... rJ (Yj, p, z) /x condi-
tional on p, d, z is identified from identification of FY (Y1, ...Yj | p, x, d, z) and of the functions
rj (yj, p, z). This joint distribution of r1 (Yj, p, z) /x,... rJ (Yj, p, z) /x conditional on p, d, z

equals the joint distribution of e⌘1c1 (p, z) , ..., e⌘JcJ (p, z) conditional on p, d, z, which proves
the Theorem.

PROOF OF THEOREM 2: Define the identified function tj by

tj (p, d, z) = E

✓
rj (Yj, p, z)

x
| p, d, z

◆
= E (e⌘jcj (p, z) | p, d, z)

= E (e)E (⌘j | p, d, z) cj (p, z)

so
tj (p, dk, z)

tj (p, d1, z)
E (⌘j | p, d1, z) = E (⌘j | p, dk, z)

It follows that T (p, z) defined in Assumption A4 equals the J by J matrix that has tj (p, dk, z) /tj (p, d1, z)
in the row k and column j position, and therefore that the matrix T (p, z) is identified. We
also have

JX

j=1

tj (p, dk, z)

tj (p, d1, z)
E (⌘j | p, d1, z) =

JX

j=1

E (⌘j | p, dk, z) = E

 
JX

j=1

⌘j | p, dk, z
!

= 1

Let E (⌘ | p, d1, z) be the vector of elements E (⌘j | p, d1, z) for j = 1, ..., J , and let 1J

denote the J vector of ones. Then the above equation for k = 1, ..., J is equivalent to
T (p, z)E (⌘ | p, d1, z) = 1J , and so, using Assumption A4, E (⌘ | p, d1, z) = T (p, z)�1 1J ,
and therefore E (⌘j | p, d1, z) is identified for j = 1, ..., J . We can then identify the functions
cj (p, z) for j = 1, ..., J by cj (p, z) = tj (p, d1, z) /E (⌘j | p, d1, z). By Theorem 1, the joint
distribution of e⌘1c1 (p, z) , ..., e⌘JcJ (p, z) conditional on p, d, z, is identified, and since cj (p, z)

for j = 1, ..., J is identified, we can divide elements of one by the other to conclude that
the joint distribution of e⌘1, ..., e⌘J conditional on p, d, z, is identified. Now e = e⌘1+, ...,+e⌘J
and therefore the distribution of e is identified. We have that the joint distribution of
ln e⌘ = ln ⌘ + ln e conditional on p, d, z, is identified, and the distribution of ln e is identified
and independent of ln ⌘, so by a deconvolution the joint distribution of ln ⌘ and hence of ⌘,
conditional on p, d, z, is identified.

8.3 A General Estimator

In the text we provided an estimator for the model that depended in part on features of our
chosen piglog functional form for Engel curves. Here we describe a more general estimation
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method that doesn’t depend on specific properties of the piglog, but is more complicated to
apply in that it requires estimating an inverted demand system. Suppress z for the moment:
both hj and ⌘j depend on it. Suppress p also and for now consider an Engel curve exercise.
Assume we have some parameterization of the clothing demand functions hj, so the model
is

Yj = hj(x⌘je, z | ✓j)

where ✓j is a vector of clothing engel curve parameters, ⌘j are random resource shares, and
e is multiplicative measurement error on total expenditures.

For j = 1, 2, 3 assume that E (⌘j | x, d, z) = E (⌘j | d, z), so on average resource shares
do not depend on x. Let

sj (d, z | �) = E (⌘j | d, z)

so sj is an assumed parameterised functional form for mean resource shares, which depends
on a parameter vector �. Resource shares sum to one, that is, ⌘1+⌘2+⌘3 = 1, so s1 (d, z | �1)+
s2 (d, z | �2) + s3 (d, z | �3) = 1.

We assume e is multiplicative measurement error, with E [e | d, x, z, ⌘1, ⌘2, ⌘3] = 1. Let Yj

be normal goods, so that hj is invertible. Let gj(.) = h�1
j (.) be the inverse demand functions

for each j. Then by definition
0 = gj(Yj | ✓j)� x⌘je

Taking conditional expectations gives

0 = E [gj(Yj | ✓j)� x⌘je | d, x, z, ⌘1, ⌘2, ⌘3]

= E [gj(Yj | ✓j) | d, x, z, ⌘1, ⌘2, ⌘3]� x⌘jE [e | d, x, z, ⌘1, ⌘2, ⌘3]

= E [gj(Yj | ✓j) | d, x, z, ⌘1, ⌘2, ⌘3]� x⌘j

Now take conditional expectations of this, just conditioning on d, x, z, and applying the law
of iterated expectations to get

0 = E [gj(Yj | ✓j) | d, x, z]� xE [⌘j | d, x, z]

= E [gj(Yj | ✓j) | d, x, z]� xE [⌘j | d, z]

= E [gj(Yj | ✓j) | d, x, z]� xsj (d, z | �)

= E [gj(Yj | ✓j)� xsj (d, z | �) | d, x, z]

Based on this last equation estimate the parameters ✓j and � for j = 1, 2, 3 by GMM, using
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unconditional moments of the form

0 = E [[gj(Yj | ✓j)� xsj (d, z | �)] r (d, x, z)] = 0

for j = 1, 2, 3, where instruments r (x, d, z) are functions of the variables x, d, and z that we
choose, and gj and sj have the functional forms we choose.

Now
g1(Y1 | ✓j) + g2 (Y2 | ✓2) + g3(Y3 | ✓3) = (⌘1 + ⌘2 + ⌘3) ex = ex

So, given estimates of the parameters b✓j, we can recover estimates of the value of e, ⌘1, ⌘2,
and ⌘3 for each consumer j in each household i by

bei =
g1(Y1i | b✓j) + g2

⇣
Y2i | b✓2

⌘
+ g3(Y3i | b✓3)

xi

and
b⌘ji =

gj(Yji | ✓j)
beixi

We could estimate the population distribution of e and the joint distribution of resource
shares by kernel density estimation using the above estimates of each consumer’s bei, and b⌘ji
as data. Also, given bei, and b⌘ji, the demand function of a consumer j in household i is given
by hj(beib⌘jixi | b✓j).
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Table 1: Summary Statistics
mean std dev min max

clothing man 0.013 0.026 0.000 0.529
shares woman 0.019 0.026 0.000 0.479

children 0.015 0.020 0.000 0.264
(left-out) s = 1 0.306 0.461 0.000 1.000

s = 2 0.302 0.459 0.000 1.000
s = 3 0.231 0.422 0.000 1.000
s = 4 0.161 0.367 0.000 1.000

principal first 0.000 1.373 -4.147 3.767
components second 0.000 1.096 -3.596 3.071
of dist. factors third 0.000 1.051 -6.473 2.727
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Table 2: Selected Parameter Estimates
DF SAP

est std err est std err
↵man constant 0.347 0.058 0.316 0.054

s = 2 0.009 0.031 0.016 0.026
s = 3 0.028 0.032 0.031 0.028
s = 4 0.015 0.044 0.014 0.034
d1 0.007 0.005 0.007 0.004
d2 -0.007 0.004 -0.007 0.004
d3 0.005 0.005 0.004 0.005

↵woman constant 0.392 0.098 0.396 0.049
s = 2 -0.065 0.021 -0.074 0.022
s = 3 -0.072 0.023 -0.080 0.023
s = 4 -0.095 0.027 -0.102 0.027
d1 -0.007 0.004 -0.007 0.004
d2 0.002 0.003 0.002 0.003
d3 -0.002 0.004 -0.001 0.004

↵children constant 0.261 0.092 0.288 0.042
s = 2 0.056 0.020 0.058 0.016
s = 3 0.044 0.018 0.048 0.015
s = 4 0.080 0.029 0.088 0.021
d1 0.000 0.003 0.000 0.003
d2 0.005 0.004 0.005 0.003
d3 -0.002 0.004 -0.003 0.004

�man constant 0.016 0.003 0.018 0.003
s = 2 0.005 0.003 0.005 0.004
s = 3 0.006 0.004 0.007 0.004
s = 4 0.002 0.004 0.000 0.004

�woman constant 0.023 0.009
s = 2 -0.001 0.008
s = 3 0.006 0.008
s = 4 -0.011 0.010

�children constant 0.013 0.007
s = 2 0.021 0.011
s = 3 0.014 0.010
s = 4 0.009 0.011

test, p-val 7.97 0.436
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Table 3: Summary Statistics for Estimated Resource Shares
DF SAP

2599 observations mean std dev est std dev
man all 0.468 0.155 0.438 0.157

d 0.000 0.013 0.000 0.012
s = 1 0.451 0.157 0.421 0.159
s = 2 0.464 0.152 0.438 0.154
s = 3 0.482 0.156 0.452 0.158
s = 4 0.489 0.156 0.453 0.158

woman all 0.312 0.095 0.324 0.094
d 0.000 0.010 0.000 0.010
s = 1 0.357 0.092 0.371 0.091
s = 2 0.300 0.087 0.308 0.086
s = 3 0.299 0.090 0.311 0.088
s = 4 0.267 0.090 0.282 0.088

children all 0.220 0.084 0.238 0.091
d 0.000 0.006 0.000 0.006
s = 1 0.192 0.082 0.208 0.089
s = 2 0.236 0.083 0.254 0.089
s = 3 0.219 0.081 0.238 0.087
s = 4 0.244 0.082 0.265 0.088
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Table 4: Random Resource Shares
DF (2596 obs) SAP (2597 obs)
mean std dev est std dev

man ⌘man 0.493 0.278 0.477 0.277
µman 0.468 0.155 0.438 0.157
d 0.000 0.013 0.000 0.012
Uman 1.071 1.036 1.077 1.031
Uman lnUman 0.494 1.643 0.494 1.637
corr(Uman, µman) 0.139 0.140
corr(⌘man,µman) 0.671 0.680

woman ⌘woman 0.321 0.228 0.320 0.221
µwoman 0.312 0.095 0.324 0.094
d 0.000 0.010 0.000 0.010
Uwoman 1.055 1.025 1.022 0.993
Uwoman lnUwoman 0.512 1.530 0.467 1.431
corr(Uwoman, µwoman) 0.027 0.022
corr(⌘woman,µwoman) 0.571 0.530

children ⌘children 0.186 0.178 0.203 0.190
µchildren 0.220 0.084 0.238 0.091
d 0.000 0.006 0.000 0.006
Uchildren 0.836 0.904 0.832 0.885
Uchildren lnUchildren 0.276 1.283 0.265 1.229
corr(Uchildren, µchildren) -0.059 -0.060
corr(⌘children,µchildren) 0.396 0.401
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Table 5: Measured Poverty
DF (2596 obs) SAP (2597 obs)
fixed random fixed random

person-level men 58.7% 56.4% 62.2% 58.0%
women 86.1% 79.0% 84.0% 79.0%
children 97.6% 95.2% 96.9% 94.0%
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Appendix Table A1: Detailed Parameter Estimates, man
BITE SAP

est std err est std err
↵man constant 0.347 0.058 0.316 0.054

s = 2 0.009 0.031 0.016 0.026
s = 3 0.028 0.032 0.031 0.028
s = 4 0.015 0.044 0.014 0.034
North 0.369 0.054 0.378 0.055
Central 0.233 0.039 0.235 0.036
avg (child age) -5 0.037 0.045 0.031 0.041
min (child age) -5 -0.032 0.027 -0.030 0.026
man age -28 0.046 0.104 0.037 0.097
woman age -22 -0.131 0.116 -0.136 0.108
man education 0.051 0.063 0.056 0.062
woman education 0.004 0.091 0.012 0.089
ln(dist to road) 0.134 0.034 0.134 0.035
ln(dist daily mkt) -0.170 0.054 -0.177 0.050
dry season -0.133 0.025 -0.130 0.024
Christian 0.081 0.042 0.081 0.038
Muslim 0.111 0.050 0.114 0.047
d1 first princ. comp. 0.007 0.005 0.007 0.004
d2 second princ. comp. -0.007 0.004 -0.007 0.004
d3 third princ. comp. 0.005 0.005 0.004 0.005

�man constant 0.059 0.009 0.067 0.009
s = 2 -0.002 0.005 -0.002 0.005
s = 3 -0.005 0.005 -0.006 0.005
s = 4 -0.010 0.005 -0.012 0.005
North -0.026 0.005 -0.032 0.006
Central -0.024 0.005 -0.029 0.005
avg (child age) -5 -0.004 0.007 -0.003 0.007
min (child age) -5 0.008 0.004 0.009 0.004
man age -28 -0.027 0.011 -0.028 0.012
woman age -22 0.011 0.012 0.012 0.013
man education -0.013 0.008 -0.015 0.008
woman education 0.003 0.011 0.001 0.011
ln(dist to road) -0.017 0.004 -0.019 0.005
ln(dist daily mkt) 0.010 0.006 0.012 0.006
dry season 0.026 0.005 0.029 0.004
Christian -0.012 0.006 -0.013 0.007
Muslim -0.015 0.007 -0.017 0.008

�man constant 0.016 0.003 0.018 0.003
s = 2 0.005 0.003 0.005 0.004
s = 3 0.006 0.004 0.007 0.004
s = 4 0.002 0.004 0.000 0.004
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Appendix Table A1: Detailed Parameter Estimates, woman
BITE SAP

est std err est std err
↵woman constant 0.392 0.098 0.396 0.049

s = 2 -0.065 0.021 -0.074 0.022
s = 3 -0.072 0.023 -0.080 0.023
s = 4 -0.095 0.027 -0.102 0.027
North -0.195 0.071 -0.182 0.043
Central -0.088 0.042 -0.076 0.028
avg (child age) -5 0.022 0.035 0.031 0.035
min (child age) -5 0.011 0.022 0.011 0.021
man age -28 -0.012 0.103 -0.012 0.095
woman age -22 0.038 0.108 0.051 0.101
man education -0.002 0.050 -0.001 0.051
woman education -0.071 0.068 -0.087 0.070
ln(dist to road) -0.083 0.029 -0.085 0.027
ln(dist daily mkt) 0.172 0.047 0.179 0.042
dry season 0.101 0.027 0.099 0.020
Christian -0.069 0.037 -0.068 0.033
Muslim -0.098 0.044 -0.094 0.041
d1 first princ. comp. -0.007 0.004 -0.007 0.004
d2 second princ. comp. 0.002 0.003 0.002 0.003
d3 third princ. comp. -0.002 0.004 -0.001 0.004

�woman constant 0.077 0.031 0.072 0.015
s = 2 0.008 0.012 0.016 0.007
s = 3 0.010 0.013 0.011 0.007
s = 4 -0.009 0.013 0.004 0.007
North 0.079 0.027 0.069 0.023
Central 0.027 0.009 0.023 0.007
avg (child age) -5 -0.008 0.009 -0.009 0.008
min (child age) -5 -0.002 0.006 -0.002 0.006
man age -28 0.009 0.021 0.010 0.020
woman age -22 -0.052 0.025 -0.052 0.022
man education 0.000 0.017 0.000 0.017
woman education 0.016 0.022 0.019 0.021
ln(dist to road) 0.012 0.009 0.012 0.009
ln(dist daily mkt) -0.051 0.020 -0.050 0.014
dry season -0.004 0.005 -0.002 0.005
Christian 0.010 0.007 0.009 0.007
Muslim 0.030 0.013 0.028 0.010

�woman constant 0.023 0.009
s = 2 -0.001 0.008
s = 3 0.006 0.008
s = 4 -0.011 0.010
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Appendix Table A1: Detailed Parameter Estimates, children
BITE SAP

est std err est std err
�children constant 0.049 0.024 0.052 0.013

s = 2 0.064 0.033 0.033 0.009
s = 3 0.063 0.033 0.048 0.009
s = 4 0.052 0.032 0.032 0.010
North 0.122 0.061 0.120 0.045
Central 0.048 0.025 0.046 0.015
avg (child age) -5 0.009 0.010 0.008 0.009
min (child age) -5 0.002 0.006 0.003 0.005
man age -28 0.010 0.021 0.007 0.019
woman age -22 -0.052 0.029 -0.043 0.021
man education 0.044 0.022 0.043 0.016
woman education -0.003 0.022 -0.004 0.019
ln(dist to road) 0.022 0.012 0.017 0.009
ln(dist daily mkt) -0.013 0.013 -0.012 0.011
dry season 0.007 0.006 0.008 0.004
Christian 0.006 0.007 0.006 0.006
Muslim 0.011 0.009 0.012 0.008

�children constant 0.013 0.007
s = 2 0.021 0.011
s = 3 0.014 0.010
s = 4 0.009 0.011

3


