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Abstract
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equityholders’ ex-post reorganization incentives and price them into the ex-ante credit spreads.

Using a realistic dynamic bargaining model of reorganization, we show that the off-equilibrium

threat of costly renegotiation can lead to lower leverage, even with liquidation in equilibrium. If
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1 Introduction

In 2016, the U.S. bankruptcy court system received nearly 38,000 commercial bankruptcy filings

(American Bankruptcy Institute). For publicly traded firms, 80% of bankruptcies are handled under

Chapter 11, while only 20% are Chapter 7 liquidations (Corbae and D’Erasmo (2017)). Given the

significance of Chapter 11 filings among reasonably-sized firms, the possible contingency of a future

reorganization must be priced into the debt issued by such firms. We propose a model in which

equityholders can choose both their timing of default and the chapter of bankruptcy,1 then examine

how this flexibility alters capital structure decisions. In addition to providing novel mechanisms

for explaining debt conservatism and the “credit spread puzzle,” this model allows us to answer

other important questions: how do the characteristics of the Chapter 11 process impact the capital

structure of firms? Conversely, can the capital structure of firms impact their choice of bankruptcy

chapter?

In this work, we develop and solve a realistic continuous-time dynamic bargaining model of

Chapter 11. For tractability, we must make some simplifying assumptions, but we make every

effort to ensure our model accords with the U.S. Bankruptcy Code and its implementation. We

include many features of the Chapter 11 process, such as automatic stay, suspension of dividends,

the exclusivity period, post-exclusivity proposals by creditors, forced conversion to Chapter 7,

absolute priority rule (APR) in liquidation, and the unanimity rule (by creditor class) in approval

of a reorganization plan. The reorganized firm may issue new debt and continue operating. Chapter

11 entails inefficiencies which are distinct from Chapter 7, such as professional fees and a decline

in the cashflows that accumulate during reorganization. Moreover, both debtors and creditors face

uncertainty over future asset values as they debate reorganization plans. In our model, creditors

and equityholders are fully strategic in proposing and accepting plans, and we solve for a unique

Markov perfect equilibrium outcome in closed form. This outcome turns out to be Pareto optimal,

despite potential delays in agreement.

Using this equilibrium bargaining outcome, we extend the classic Leland (1994) model of en-

dogenous default by allowing firms to choose between Chapter 7 or Chapter 11 when they default.

As is standard in these models (see Strebulaev and Whited (2012) or Sundaresan (2013)), equi-

tyholders receive nothing in liquidation. It follows that at the moment of default, equityholders

choose Chapter 11 if and only if the expected bargaining outcome exceeds the fixed cost they must

pay to enter Chapter 11. Intuitively, in the subgame following debt issuance (ex-post), Chapter 11

is optimal for equityholders when the firm is sufficiently profitable at the moment of default. Taking

into account the ex-post, strategic behavior of equityholders, the firm issues rationally priced debt

at time zero (ex-ante) to exploit tax benefits.

The time zero capital structure decision depends on the relative efficiencies of Chapter 7 and

Chapter 11 (traded off against the tax benefits of leverage). Specifically, depending on model

parameters, there are three possible scenarios. The first two cases are rather stark and straight-

1Iverson (2017) reports that fewer than 2% of Chapter 11 filings are involuntary.
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forward. In the first case, Chapter 11 is significantly more efficient than Chapter 7, so equityholders

naturally find the former more attractive ex-post upon default. Thus, at time zero, debtholders

demand a higher credit spread to compensate them for the rents equityholders extract in the event

of a future reorganization. Notably, equityholders are willing to pay this higher spread since it is

the rational expectation of their contingent Chapter 11 proceeds. The net effect is an increase in

ex-ante firm value from the added option of a Chapter 11, due to the lower default costs of Chapter

11. Alternately, in the second case, Chapter 11 is extremely wasteful relative to Chapter 7. It

follows that equityholders are not willing to incur the fixed cost of entering reorganization. Thus

at time zero, equityholders optimally issue the same coupon as in the Leland (1994) model (which

neglects Chapter 11), and ex-post liquidate at the same stopping time as well. In this case, the

added option of Chapter 11 has no effect on ex-ante firm value.

The third case, in which Chapter 11 is slightly less efficient than Chapter 7, is the most in-

teresting. In this case, if equityholders issue the optimal coupon from Leland (1994), they will

ex-post find it optimal to enter Chapter 11. This is because large coupons imply the firm defaults

in profitable states of the world, where the prospects of Chapter 11 for equityholders justify the

fixed cost of entry. Debtholders thus demand a higher credit spread at time zero for such a coupon.

Equityholders are hesitant to pay this spread since reorganization destroys more value than Chap-

ter 7. For such parameters, equityholders have two choices. They can issue a large coupon to reap

tax benefits, and accept that they will pay for the ex-post Chapter 11 inefficiencies with a higher

credit spread at time zero. We call this the “optimal inefficient Chapter 11” strategy. Alternately,

equityholders can issue a smaller coupon consistent with ex-post optimal Chapter 7. In this case

they sacrifice the tax benefits of a larger coupon, but they enjoy a lower cost of debt due to the

rational expectation of a future, more efficient liquidation. We call this the “constrained debt

Chapter 7” strategy. Counterintuitively, regardless of which of these two strategies is optimal, the

added option of Chapter 11 actually reduces ex-ante firm value.

Graham (2000) points out that “paradoxically, large, liquid, profitable firms with low expected

distress costs use debt conservatively” and “the typical firm could double tax benefits by issuing

debt until the marginal tax benefit begins to decline.” Many existing dynamic models can produce

low leverage (for example, Hennessy and Whited (2005); DeAngelo, DeAngelo, and Whited (2011);

Strebulaev (2007) and others). However, our model generates a new mechanism for explaining low

leverage, even when the firm’s environment on the equilibrium path is identical to Leland (1994). If

the relative inefficiencies of Chapter 11 are large compared to the tax benefits of debt, equityholders

optimally use the “constrained debt Chapter 7” strategy and issue a modest coupon. For such a

coupon, they will find Chapter 7 optimal ex-post, which lowers the cost of debt ex-ante. Since this

entails forgoing tax benefits, equityholders issue the largest coupon consistent with future Chapter

7. In this case, for reasonable parameters, our model predicts a leverage ratio of 40%. For the same

parameters, the Leland (1994) model predicts a 70% leverage ratio. To an econometrician, our

model looks identical to the Leland model for such parameters: a firm issues debt then eventually

liquidates. However, the off-equilibrium considerations introduced by our bargaining model lead
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the firm to issue a much smaller coupon than in the standard Leland model. In this case, our model

predicts lower leverage than the Leland model, even for the 65% of (public and private) firms that

liquidate in Chapter 7 (Bernstein, Colonnelli, and Iverson (2017), henceforth BCI).

Endogenous default models of capital structure tend to underestimate credit spreads (Huang and

Huang (2012)). Under the “optimal inefficient Chapter 11” strategy, our model suggests that high

credit spreads could be due to the rational expectation of future rents extracted by equityholders in

Chapter 11. For these parameter ranges, firms are unwilling to sacrifice tax benefits to get a lower

cost of debt from issuing a low coupon consistent with ex-post Chapter 7. Instead, they accept

the higher cost of debt and issue a large coupon for the tax shield. Since the higher default costs

are internalized by equityholders when they issue debt, the overall coupon is still lower than in the

Leland model. For reasonable parameter values, credit spreads can be 17 basis points higher than

in the Leland model, even with an optimal leverage ratio that is 7 percentage points lower. While

many other models can produce higher credit spreads than Leland (1994), ours does so simply by

adding a realistic choice of bankruptcy chapter.

Finally, our model generates many other testable implications about the relationship between

Chapter 11 and capital structure. Consider the following list. Creditor rights might be interpreted

as the relative bargaining power of creditors in bankruptcy. Under this interpretation, stronger

creditor rights lead to higher optimal leverage and firm value, consistent with empirical evidence.

Firms with higher growth rates should be more likely to choose Chapter 11, so comparing Chapter

11 and Chapter 7 by the value of assets at the end of bankruptcy might overstate the efficiency of

Chapter 11. Firms with more volatile cashflows or lower growth rates should have longer bankrupt-

cies. Firms that choose Chapter 11 should have both more valuable assets and higher leverage ratios

at the time of default than firms which choose Chapter 7. When the “constrained debt Chapter

7” strategy is optimal, anything that makes Chapter 11 less appealing (for example, higher legal

costs) will actually improve firm value. Changes in parameter values can have surprising compar-

ative statics when they cause the firm to shift from Chapter 11 to Chapter 7 or vice versa.

Our paper contributes to the literature on dynamic contingent claims models of capital structure.

Relative to Leland (1994), we contribute by allowing equityholders to choose to file for Chapter 11

bankruptcy or Chapter 7 liquidation. Papers such as Fan and Sundaresan (2000) have extended

the Leland (1994) framework to allow for costless renegotiation in private workouts.2 Articles such

as Hackbarth, Hennessy, and Leland (2007) and Hackbarth and Mauer (2012) study the optimal

mixture of bank and public debt, where bank debt may be renegotiated in a private workout. These

works document important links between private workouts and optimal capital structure decisions,

but the details of the Chapter 11 procedure are not modeled.

François and Morellec (2004) and Broadie, Chernov, and Sundaresan (2007) are more similar to

2See also Anderson and Sundaresan (1996), Mella-Barral and Perraudin (1997). More recent papers which jointly
consider renegotiation and investment include Sundaresan and Wang (2007), Shibata and Nishihara (2015). Chris-
tensen et al (2014) have a similar model with dynamic capital structure. Earlier structural models of debt pricing
include Merton (1974), Brennan and Schwartz (1984), Kane et al (1984), Black and Cox (1976), and Fisher et al
(1989). More recent models of dynamic capital structure with endogenous default (solely through Chapter 7) include
Leland (1998), Goldstein et. al (2001), Titman and Tsyplakov (2007), Strebulaev (2007).
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our work. François and Morellec (2004) extend the model of Fan and Sundaresan (2000) to study

the Chapter 11 bankruptcy procedure. In their model, equityholders choose a threshold at which to

enter Chapter 11. While the asset value is below this threshold, equityholders and debtholders split

the cashflow according to Nash bargaining. If asset values do not rise back above the same threshold

before an exogenous window of time expires, then the firm liquidates. Moraux (2002) and Galai et

al (2007) use a similar formulation. Broadie, Chernov, and Sundaresan (2007) numerically extend

this by keeping track of accumulated earnings and accumulated arrears during the bankruptcy. In

their framework, the firm emerges from bankruptcy when accumulated earnings are sufficient to pay

off the accumulated arrears, where an exogenous fraction of the debt is forgiven. They study equity

and debt values when creditors pick the bankruptcy threshold compared to the same values when

equityholders choose the thresholds. Both François and Morellec (2004) and Broadie, Chernov, and

Sundaresan (2007) also consider a time zero capital structure decision. These papers capture the

impact of bankruptcy procedure on time zero capital structure, but only allow for liquidation after

the firm has already entered Chapter 11. In reality, the majority of firms go straight to Chapter 7

without ever entering Chapter 11 (BCI (2017)). By allowing equityholders to choose either Chapter

7 or Chapter 11, our model produces implications for the choice of bankruptcy procedure. This

also has important implications for the time zero capital structure decision which are impossible to

produce in either of the previously mentioned models. To our knowledge, the only models which

allow firms to enter Chapter 7 or Chapter 11 are Bernardo, Schwartz, and Welch (2016) and Corbae

and D’Erasmo (2017). Both models are extremely different from ours (for example, bankruptcies

always last one period and all debt matures in one period), so our analysis complements theirs

while providing novel insights.

A novel methodological contribution of our paper relative to all previous work is our bargaining

model of Chapter 11. We use a new continuous-time formulation of the stochastic bargaining

model from Merlo and Wilson (1995). This captures two important features of the bankruptcy

process. First, all impaired classes of creditors (including equity) must unanimously agree to a

reorganization plan to exit bankruptcy (see Section 3.1). The models mentioned previously assume

that equity or debt unilaterally decide the timing of the exit. Second, Chapter 11 bankruptcies can

take as long as 10 years, and all parties face significant uncertainty over how the value of the firm’s

assets will change in this time. The previously mentioned models, such as Corbae and D’Erasmo

(2017), assume that the split between equity and debt is either determined exogenously or by Nash

bargaining at the moment of entering Chapter 11. Our stochastic bargaining framework allows

parties to change their bargaining strategies as they observe the resolution of uncertainty.3

3A few earlier papers have bargaining models of Chapter 11 that are more strategic than Nash bargaining. For
example, Paseka (2003) considers a dynamic bargaining game in Chapter 11, but only equityholders can make take it
or leave it offers, there is no accumulation of cash flows, and the firm cannot relever after Chapter 11. Eraslan (2008)
structurally estimates a dynamic but deterministic bargaining model of Chapter 11 similar to Rubinstein (1982),
and Annabi et al (2012) numerically solve a bargaining model of Chapter 11 with exogenously many rounds of fixed
exogenous length. Earlier theoretical papers studying Chapter 11 include Franks and Torous (1989) and Longstaff
(1990) who model Chapter 11 as a right to extend the maturity date of debt. Lambrecht and Perraudin (1996) study
a creditor race in bankruptcy where multiple creditors might preempt one another in seizing assets (Bruche (2011)
examines a similar setup). Importantly, none of these consider the decision of whether to enter Chapter 7 or Chapter
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Our stochastic bargaining model produces results which cannot be replicated by a standard

Nash bargaining model of Chapter 11. For example, Chapter 11 outcomes like APR violations

or post-reorganization capital structure and firm value are unpredictable until the moment of

reorganization. Additionally, we find that equity’s expected bargaining outcome is increasing in the

size of the firm, consistent with empirical evidence. This relationship is used by Garlappi, Shu, and

Yan (2008) and Garlappi and Yan (2011) to explain a number of empirical facts about distress and

expected equity returns, even though their models use Nash bargaining which does not endogenously

produce this relationship. Our stochastic bargaining model thus provides a theoretical foundation

for proxying equity bargaining power with firm size. The realistic nature of the bargaining could

help improve the already strong fit of other structural contingent claims models with renegotiation

(for example, Favara, Morellec, Schroth, and Valta (2017) or Morellec, Nikolov, and Schuerhoff

(2018)).

The article proceeds as follows. Section 2 describes the model and reviews the Leland (1994)

setup. Section 3 provides institutional details then describes and solves for the equilibrium of the

Chapter 11 reorganization timing game. Section 4 derives the optimal decision to enter Chapter

11 or Chapter 7. Section 5 describes the time zero capital structure choice, provides our results on

capital structure, and gives additional empirical implications. Section 6 discusses possible general-

izations of the model and concludes.

2 Model setup

In this section we begin by describing the setup of our model of the leveraged firm. In particular, we

focus on the timing of the decision to enter Chapter 11 reorganization or Chapter 7 liquidation, the

continuous-time bargaining game that occurs during reorganization, and the endogenous emergence

from reorganization. This model is solved in Sections 3 and 4, working backwards through time.

As a useful benchmark, and for our own model prior to and following reorganization, in Section

2.2 we provide a brief derivation of the standard solution where Chapter 11 reorganization is not

considered.

2.1 Outline and assumptions of the baseline model

We consider a continuous time infinite horizon model of a firm, whose manager maximizes share-

holder value. At all times at which the firm is operating, its assets in place produce earnings before

interest and taxes (EBIT) δt. We assume the existence of a risk neutral measure with risk free rate

r under which δt follows a geometric Brownian motion

dδt = δtµdt+ δtσdBt, (1)

11, and none of these papers have any capital structure decision.
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Figure 1: Timeline of the Model

Time 0
t = 0

Equity picks coupon

C0. Equity receives

market value of

debt.

Time 1
t = TL ∧ TB

Equity receives (1 − τ)(δ −
C0)dt. Equity chooses time

TL to liquidate or TB to

enter Chapter 11. If Eq-

uity liquidates, the game

ends.

Time 2
t = TR ∧ Tc

Equity and Debt jointly

determine time TR to exit

bankruptcy, unless forced

conversion at Tc occurs

first. Equity and Debt

(Owners) endogenously

split firm at TR, issue new

debt C1.

Time 3
t = TL,1

Owners re-

ceive (1 −
τ)(δ − C1)dt.

Owners

choose time

TL,1 to liqui-

date.

where µ < r and σ > 0 are constants representing the risk neutral growth rate and volatility of

δt, respectively, and Bt is a Brownian motion under the risk neutral measure. The cashflow δt is

subject to effective corporate tax rate τ .

The model comprises a sequence of optimizations which are separated by four distinct times,

T = 0, 1, 2, 3. Figure 1 presents a graphical timeline of the model. Time 0 represents the initial

determination of the capital structure of the firm. Specifically, at Time 0, the firm can issue consol

debt with total perpetual coupon C0. Debt entails a tax shield, and we follow the literature in

assuming a full-loss offset provision, so the firm subsequently pays taxes τ(δt − C0)dt per unit

time. The firm chooses C0 to maximize firm value, the determination of which will depend on

expectations of future strategic decisions.

Once the firm has issued debt with coupon C0, they progress to the period between Time 0

and Time 1. During this period, the firm is operating and equityholders receive after-tax cashflow

(1 − τ)(δt − C0)dt per unit time. Equityholders choose Time 1, the moment of default and the

end of the period, and this can be either of two potential stopping times that the owners must

contemplate. One is the standard liquidation decision that is common in the literature. At any

stopping time TL, the equityholders may choose to liquidate, at which point equityholders receive

0, and debtholders receive the liquidation value

ζδTL =
(1− τ)(1− α)δTL

r − µ
. (2)

The liquidation value ζδTL is the expected discounted value of receiving (1 − τ)δt in perpetuity

given the current value of δTL , multiplied by a constant (1−α). As is standard in the literature, we

assume a fraction α ∈ (0, 1) of the firm value is lost in liquidation. If the firm chooses to liquidate,

the game ends.

Our novel contribution is the additional option for the firm to enter a Chapter 11 reorganization.

At any time TB, the firm may declare bankruptcy and enter into a Chapter 11 reorganization. In
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this case, they pay a fixed cost B > 0 and enter the next period.

If the firm enters Chapter 11, then the period between Time 1 and Time 2 represents the

time spent in Chapter 11 reorganization. In this period, debtholders and equityholders play a

continuous-time bargaining game to determine when to emerge from bankruptcy. During the

Chapter 11 process, which Section 3.1 describes in greater detail, the automatic stay provision

prevents creditors from demanding payments. At the same time, dividend suspension prevents

debtors (equityholders) from paying themselves dividends. We assume that the firm continues

to receive cashflows (1 − τ)hδdt per unit time, where h ∈ [0, 1] is a multiplier representing the

inefficiency of operations during bankruptcy, and these cashflows accumulate. At any stopping

time TR, the debtholders and equityholders may agree to a reorganization plan. At this time, the

equityholders and debtholders split the firm value V (δTR) minus a fixed reorganization cost R0 > 0.

They also receive the accumulated earnings, for a total payment of

PTR = V (δTR)−R0 + (1− τ)h

∫ TR

TB

δsds. (3)

In Broadie, Chernov, and Sundaresan (2007), the authors provide a model of Chapter 11 that

assumes equityholders receive the residual firm value after paying arrears at a time chosen by equi-

tyholders. We depart from this by modeling the reorganization as a bargaining process. Consistent

with the laws of Chapter 11, equityholders and debtholders alternate filing plans for how to split

the total Pt, and the process ends at the first time TR when one party makes a proposal the other

party accepts.

The period ends at Time 2 by either the debtholders and equityholders agreeing to a reorga-

nization plan at stopping time TR, or by a judge-mandated liquidation. With probability ιdt per

unit time, the judge converts the Chapter 11 reorganization into a Chapter 7 liquidation. In the

event of liquidation, debtholders receive the liquidation value ζδ plus the accumulated earnings

net of fees, equityholders receive nothing consistent with APR, and the game ends. While this

occurs exogenously, agents anticipate the possibility of liquidation and may endogenously increase

the likelihood of liquidation by stalling. If equityholders and debtholders agree to a reorganization

prior to liquidation, the game proceeds to the final period.

If the firm reorganizes, the period between Time 2 and Time 3 represents the operation of the

reorganized firm. Just as at Time 0, the new equityholders of the reorganized firm issue new debt

C1 to maximize firm value at Time 2. For the remainder of the period, equityholders receive a

payment (1− τ)(δt − C1)dt per unit time. For simplicity, we assume that the option to reorganize

no longer exists and the firm may only exit through liquidation (Section 6.1 discusses relaxing

this assumption). Thus, at any stopping time TL,1, equityholders may choose to liquidate the

firm. As described previously, at the time of liquidation (Time 3) equityholders receive 0, the new

debtholders receive ζδTL,1 , and the game ends.
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2.2 Benchmark model: The Leland model with only Chapter 7 liquidation

In the standard Leland model, a levered firm with coupon C chooses a liquidation time TL to

maximize equity value:

EL(δ) = sup
TL∈F δ

Eδ[
∫ TL

0
e−rt(1− τ)(δt − C)dt], (4)

where throughout the paper, Eδ represents expectation with respect to the probability law of

the process δt starting at δ0 = δ. We require that TL is a stopping time with respect to the filtration

F δ generated by δt. It is worth noting that there could be a time t < TL such that the cashflow to

equity is negative. Consistent with the prior literature, we assume in this case that equityholders

issue new shares and dilute their equity in order to pay the coupon to debtholders. For the optimal

TL, the value of equity will always be positive for t < TL, consistent with limited liability, so such

dilution is possible.

In the region where liquidation is not optimal, standard dynamic programming arguments show

the value of equity EL(δ) satisfies the following ordinary differential equation (ODE):

rEL(δ) = DEL(δ) + (1− τ)(δ − C), (5)

where, defining “smooth” to mean continuously differentiable and twice continuously differen-

tiable almost everywhere, D is the differential operator from Ito’s lemma for smooth functions of

δt:

Df(δ) = f ′(δ)µδ + f ′′(δ)
σ2

2
δ2. (6)

As δ → ∞, the value of the option to liquidate should become worthless. This implies the

value of equity EL(δ) should approach the value of receiving the after-tax cashflows less the debt

payments in perpetuity, which is (1 − τ) [δ/(r − µ) − C/r]. Imposing this condition, the relevant

solution of (5) is

EL(δ) = A1δ
ψ + (1− τ)[

δ

r − µ
− C

r
],

where A1 is an arbitrary constant and ψ is the negative root of the characteristic polynomial

r − µz − σ2

2
z(z − 1) = 0.

It can be verified that the optimal liquidation time TL is a hitting time TL = inf{t : δt ≤ δL}
for some barrier δL. The constant A1 and the liquidation threshold δL are determined by value

matching and smooth pasting at δL. Since equity receives nothing in liquidation, the value matching

and smooth pasting conditions are
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A1δ
ψ
L + (1− τ)[

δL
r − µ

− C

r
] = 0 (7)

A1ψδ
ψ−1
L +

(1− τ)

r − µ
= 0. (8)

This system of equations has the usual unique solution

δL =
ψ

ψ − 1

r − µ
r

C (9)

A1 = δ−ψL (1− τ)[
C

r
− δL
r − µ

]. (10)

Taking the liquidation threshold δL as given, the value of the debt DL(δ) satisfies an ODE

similar to (5) prior to liquidation:

rDL(δ) = DDL(δ) + C, (11)

and similar logic shows the relevant solution of this ODE is

DL(δ) =
C

r
+A2δ

ψ (12)

for an arbitrary constant A2. As discussed in the previous section, at the time of liquidation TL

a fraction of firm value α is lost, leaving value ζδL for the debtholders. Imposing that DL(δL) = ζδL

uniquely determines the constant A2, which gives the rational expectations value of consol debt

with coupon C:

DL(δ) =
C

r
+ δψδ−ψL [−C

r
+ ζδL]. (13)

The standard Leland model features a time zero capital structure decision. Specifically, at

time 0 equityholders choose the coupon C for their consol debt to maximize the total firm value

EL(δ0) +DL(δ0). As in the standard tradeoff theory, the firm weighs the tax benefits of debt with

the loss of firm value in liquidation. For any arbitrary δ0, we can plug in (9) for δL and the resulting

expression for EL(δ0) +DL(δ0) is concave in C. Solving the first order condition gives the unique

optimal C∗ :

C∗ = δ0
r

r − µ
ψ − 1

ψ
[

−τ
ψ(1− τ)α+ (ψ − 1)τ

]
−1
ψ . (14)

Note that the optimal coupon C∗ is linear in the starting cashflow δ0. Since the liquidation

barrier δL is linear in C, it can be seen from equations (9, 10, 13, 14) that at the optimal coupon,

EL(δ0) +DL(δ0) = θδ0 (15)
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for a constant θ that is a known function of the model primitives given in Appendix A.

3 Chapter 11 as a stochastic bargaining game

Recall that our model is divided by four distinct times. Since we rule out a second reorganization,

in the period between Time 2 and Time 3 the equityholders solve the standard liquidation problem

described in Section 2.2. Likewise, at Time 2 they issue an optimal level of debt as described

above. In this section, we describe and solve the period between Time 1 and Time 2, the Chapter

11 process.

We first discuss some features of the Chapter 11 process that are important for our model in

Section 3.1. We then set up our model of bargaining in reorganization in Section 3.2. Notably,

the payoff is simplified by our Leland model benchmark from above. In Section 3.3, we determine

the optimal timing of reorganization, which coincides with the equilibrium timing due to a Pareto-

optimality result. Then, conditional on this optimal timing, we solve for the equilibrium bargaining

split in Section 3.4. Section 3.5 discusses implications of our dynamic bargaining model, and Section

3.6 compares our dynamic bargaining model to Nash bargaining.

3.1 Relevant features of Chapter 11

In order to be tractable, our model makes some simplifying assumptions regarding the Chapter

11 process. However, we make every attempt to ensure that our model is broadly consistent with

some of the most salient features of the actual Bankruptcy Code. In this section we summarize

some of the most important aspects of the Chapter 11 process that inform much of our modeling

assumptions. A comprehensive description of Chapter 11 is far beyond the scope of this paper.

First, over 98% of Chapter 11 cases begin with a voluntary filing (Iverson (2017)). In a voluntary

filing, the debtor (management on behalf of equityholders) chooses the bankruptcy chapter. In some

cases, creditors can file for an involuntary bankruptcy in their chosen chapter under 11 USC § 303.

However, courts only enforce a controverted filing if “the debtor is generally not paying such debtors

debts as such debts become due,” and in this case the debtor still “may file an answer to a petition

under this section” to choose the chapter (11 USC § 303(d,h)).

Second, the automatic stay provision of Chapter 11 (11 USC § 362) prohibits all entities from

“any act to obtain possession of property of the estate.” In particular, debtholders stop receiving

coupons and equityholders stop receiving dividends.

Third, in order to confirm a reorganization plan and exit Chapter 11, every impaired class of

creditors must accept the plan by 11 USC § 1129(a) (we ignore 11 USC § 1129(b) cram downs).

This gives equityholders, who constitute a class of claims, some power to hold up the reorganization

process and potentially extract rents. The APR refers to the idea, in Chapter 7 or 11, that

each creditor should only be compensated once all senior creditors are paid in full. However,

equityholders are often able to use their bargaining power to violate this in Chapter 11. Bris,

Welch, and Zhu (BWZ, 2006) find in their sample that APR is always followed in Chapter 7, while
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it is violated in 12% of Chapter 11 cases. Weiss (1990) finds violations in 29 of the 37 Chapter 11

cases he studies.

Fourth, at the start of the Chapter 11 process, equityholders enjoy an “exclusivity period.”

Specifically, the debtor-in-possession (DIP) enjoys the exclusive right to propose reorganization

plans for 120 days under 11 USC § 1121(a). Small businesses have 180 days. The debtors then have

another 60 days to get the plan approved by creditors. After this window, any party in interest

may file a plan. Under 11 USC § 1121(d), the court may reduce or increase this window. Since this

is at the judge’s discretion, both equityholders and creditors face uncertainty as to the length of

the exclusivity period, although it cannot exceed 18 months (20 months for small businesses).

Fifth, it is common for bankruptcy cases which begin as Chapter 11 reorganizations to be

converted to Chapter 7 liquidations. In the sample analyzed in BWZ (2006), 14% of the cases

which began in Chapter 11 were converted, while as many as 40% of cases were converted in the

sample of BCI (2017). While debtors may in principle choose to convert to Chapter 7, and creditors

may petition for such a conversion, the ultimate decision lies with the judge. This suggests that

modelling the conversion as exogenous and random is a reasonable approximation of reality. Indeed,

BCI (2017) use the random assignment of judges to bankruptcy cases as exogenous variation in the

probability of conversion:

U.S. bankruptcy courts use a blind rotation system to assign cases to judges, effectively

randomizing filers to judges within each court division. While there are uniform criteria

by which a judge may convert a case from Chapter 11 to Chapter 7, there is significant

variation in the interpretation of these criteria across judges.

Finally, Chapter 11 entails significant costs, some of which are fixed and invariant to the size of

the firm or length of the bankruptcy. Further, some nontrivial amount of these costs are borne by

the equityholders and may not be reimbursed from the estate. We discuss this in greater detail in

Appendix E.

3.2 The dynamic reorganization game

At Time 1, the firm enters Chapter 11, and the period ends at Time 2 with a reorganization or a

forced liquidation. Based on the analysis of Section 2.2, the total firm value available to be split

among debtholders and equityholders if a reorganization occurs at time TR is θδTR . This expression

takes into account the value of the debt the new equityholders will issue.

As discussed previously, there are no payments during the Chapter 11 process. We assume that

after-tax earnings accumulate into an account, and that the accumulated earnings
∫ TR
TB

(1− τ)hδtdt

are split among equityholders and debtholders. We allow for the possibility that the firm operates

less efficiently during bankruptcy by including a multiplier h ∈ [0, 1], so h < 1 implies a haircut.

This also can include a flow of professional fees.

We assume that with probability ιdt per unit time, exogenous to the decisions of any agent,

the bankruptcy case is converted and the firm is liquidated. The parameter ι can be positive or
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zero. While debtors may in principle choose to convert to Chapter 7, and creditors may petition for

such a conversion, the ultimate decision lies with the judge. If a conversion occurs at time Tc, we

assume APR is upheld so equityholders receive 0 and debtholders receive the liquidation value ζδTc

plus the accumulated earnings net of fees described below. While this occurs exogenously, agents

anticipate the possibility of liquidation and may endogenously increase the likelihood of liquidation

by stalling. However the firm emerges from bankruptcy, they must pay a fixed cost R0 > 0 where

R0 is a parameter. This represents the costs discussed in detail in Appendix E.

In summary, if the reorganization occurs at a time TR < Tc, then equityholders and debtholders

split PTR , where Pt is as defined in (3):

Pt = θδt −R0 + (1− τ)

∫ t

TB

hδsds.

The accumulated earnings complicate the problem, since now the current value δt is not sufficient

to determine the potential payoff. To handle this, we introduce a second state variable Rt which

measures the fixed cost of emerging net of the accumulated earnings:

Rt = R0 − (1− τ)

∫ t

TB

hδsds. (16)

Introducing this “net exercise price” allows us to write the reorganization payoff as Pt = θδt−Rt
and the liquidation payoff as ζδt −Rt.

One of our primary contributions relative to the literature is modelling Chapter 11 reorgani-

zation as a bargaining process. As discussed in Section 3.1, both the debtors and creditors have

opportunities to propose reorganization plans, and approval must be unanimous. Further, the

bargaining process is inherently dynamic. The average Chapter 11 case lasts two and a half years

(BWZ (2006)), so it is inevitable that the value of underlying assets fluctuates stochastically during

this period. In light of this, we model the Chapter 11 process as a dynamic, stochastic bargaining

game between debtholders and equityholders. Section 3.6 discusses the benefits of this dynamic

bargaining model relative a static model like Nash bargaining.

The bargaining procedure is the continuous-time equivalent of the bargaining game in Merlo

and Wilson (1995, 1998). The two players bargain over a time TR to emerge from bankruptcy,

which must be agreed upon unanimously, and a split of the firm value θδTR − RTR . If a forced

conversion occurs, the game ends and debtholders receive the entire liquidation payoff ζδTc −RTc .
At any moment in the game, exactly one player (equity or debt) is the proposer. The proposer

may make offers to the other player in any second, and the receiving player instantaneously decides

to accept or reject their proposed share of the payoff. The game ends when a proposed split is

accepted. The proposer in any instant is given exogenously by a time-homogeneous Markov chain

st taking values in two states which we label {e, d}. When st = e, equityholders get to propose

splits, and when st = d, debtholders get to propose splits. For simplicity, we assume the Markov

chain has constant transition intensities, so the probability of transitioning from state i to state j

per unit time is λidt, i = e, d.
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The stochastic proposer bargaining protocol is standard in the literature (see Merlo and Wilson

(1995, 1998); Baron and Ferejohn (1989); Yildiz (2003); Hart and Mas-Colell (1996); Rubinstein

and Wolinsky (1985); Binmore and Dasgupta (1987)). The rates of transitions are a tractable

representation of bargaining power. In this setting, equityholders have a strong bargaining position

if λe, the rate of transition away from state e, is low, and if the rate of transition λd into state e

is high. Likewise, equityholders have a weak bargaining position if st leaves state e quickly and

transitions into state e infrequently. Virtually all bargaining models (including continuous time

models like Perry and Reny (1993) and Admati and Perry (1987)) assume there is some discrete

length of time during which one player cannot make offers. In our model, that length is stochastic,

but for any fixed dt there exist transition probabilities such that all players have the chance to make

offers within the interval [t, t+ dt] with arbitrarily high probability. Merlo (1997) uses a structural

estimation to show the stochastic proposer model fits empirical data on government negotiations

well.

The main advantage of the stochastic proposer model is that it facilitates the analysis of time-

homogeneous strategies and equilibria. However, giving equityholders a window of exogenously

stochastic length during which they have the exclusive right to propose splits is actually a highly

realistic model of the exclusivity period. After the exclusivity period, creditors may file a competing

plan, and equityholders may file additional plans. If the reader would prefer a model in which

equityholders and debtholders may both make offers in any instant, letting λe, λd approach infinity

accomplishes this.

Given this bargaining protocol and the model primitives, equityholders (player e) and debthold-

ers (player d) form strategies. We will focus on equilibria in stationary strategies that only depend

on the current state (δ,R, s). A stationary strategy for player i consists of

1. A region Oi ⊂ R2 of (δ,R) values for which they make an offer when they are the proposer.

2. An offer function ωi : Oi → R such that they offer ωi(δt, Rt) to player j when (δt, Rt) ∈ Oi.

3. A correspondence Ai : R2 → R mapping current (δ,R) values to the set of offers that they

will accept when they are the receiver.

Stationary strategies allow for a great deal of flexibility. Each player chooses a triple of infinite

dimensional objects. However, restricting attention to stationary strategies does rule out some

possibilities. For example, players may not condition their actions on previous offers. They also

may not make decisions as explicit functions of the elapsed time since the start of the bargaining,

so without loss of generality we may take the starting time as t = 0 rather than t = TB.

The benefit of focusing on stationary strategies is that they clearly induce outcomes. If we fix

a stationary strategy (Oi, Ai, ωi) for each player, we can define

Ti = inf{t : st = i, (δt, Rt) ∈ Oi, ωi(δt, Rt) ∈ Aj(δt, Rt)}

as the first time that player i is proposer and the value of (δt, Rt) is such that player i makes a

proposal which is accepted by player j. It follows that T = Te ∧ Td is the time at which the game
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ends (unless liquidation occurs first), according to the fixed strategies. When the game ends in

reorganization, the payoff to player i depends on whose proposal is accepted. It will be convenient

to define the terminal payoff for player i, given fixed strategies, as

Ji(δ,R, s) = 1(s = i)[θδ −R− ωi(δ,R)] + 1(s = j)ωj(δ,R).

Intuitively, Ji(δ,R, s) equals the offer which player j makes to player i if s = j, while if the

game ends with a proposal from player i then it equals the stochastic payoff minus the offer made

by player i. Finally, given these definitions of T , Ji, we can define the outcome induced by the

fixed strategies. The expected payoff to equityholders, conditional on a starting state (δ,R, s) and

following the fixed stationary strategies, can be written as

E(δ,R, s) = E(δ,R,s)[1(T < Tc)e
−rT Je(δT , RT , sT )], (17)

while the expected payoff to creditors is

D(δ,R, s) = E(δ,R,s)[1(T < Tc)e
−rT Jd(δT , RT , sT ) + 1(T ≥ Tc)e−rTc(ζδTc −RTc)]. (18)

The expected payoffs take into account the possibility of a forced conversion, in which case equi-

tyholders receive 0 and debtholders receive ζδTc−RTc . Given the expected payoffs E(δ,R, s), D(δ,R, s)

induced by stationary strategies, we can define our equilibrium concept.

Definition: A Markov Perfect Equilibrium (MPE) consists of a stationary strategy (Oi, Ai, ωi)

for each player such that

1. Taking the opponents’ strategies as given, for every (δ,R, s), player e’s strategy maximizes

E(δ,R, s) and player d’s strategy maximizes D(δ,R, s).

2. Player e finds it optimal to set an acceptance policy Ae(δ,R) = [E(δ,R, d),∞) and player d

finds it optimal to set an acceptance policy Ad(δ,R) = [D(δ,R, e),∞).

Our definition of a MPE is highly intuitive. Condition 1 ensures that the equilibrium strategies

correspond to a Nash equilibrium in stationary strategies for any starting values. Condition 2 is

our notion of subgame perfection in continuous time: players must optimally accept offers if and

only if the offer exceeds their continuation value in the equilibrium.

The value functions E(δ,R, s), D(δ,R, s) corresponding to a MPE solve a fixed point problem.

Given the strategies, the expected equilibrium payoffs are E(δ,R, s), D(δ,R, s), and given the oppo-

nent’s strategy, each player finds it optimal to set an acceptance cutoff equal to their value function.

Nonetheless, the fixed point problem simplifies the calculation of such equilibria, since now we only

need to search for value functions, offer regions Oi, and offer functions ωi. The following lemma

simplifies analysis further:
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Lemma 3.1 In any MPE, ωe(δ,R) ≤ D(δ,R, e) and ωd(δ,R) ≤ E(δ,R, d) for all δ,R. For any

MPE, there exists another MPE with identical value functions in which all equilibrium offers are

accepted and the above inequalities hold with equality for all δ,R.

The lemma is sufficiently obvious that we do not provide a proof. As a consequence of this

lemma and the definition of MPE, it is without loss of generality to characterize a MPE by a

collection of value functions E(δ,R, s), D(δ,R, s) and offer regions Oi, with the interpretation that

the game ends the first time (δ,R, s) ∈ Oi × {i} for any i (unless liquidation occurs first). The

outcome is player i proposing an offer equal to player j’s value function, and player j accepting.

Given this lemma, we can prove the bargaining outcome must be Pareto optimal:

Proposition 1 In any MPE, E(δ,R, s)+D(δ,R, s) = V (δ,R), where V (δ,R) is the value function

of a social planner who picks the efficient reorganization time:

V (δ,R) = sup
TR∈F δ,R

E(δ,R)[1(TR < Tc)e
−rTR(θδTR −RTR) + 1(Tc ≤ TR)e−rTc(ζδTc −RTc)]. (19)

The proof is given in Appendix A, but it follows from three simple observations. First, the

sum of the value functions cannot exceed V . Second, letting TR denote the optimal reorganization

time solving (19), any player can deviate to force the game to end at the maximum of TR and the

equilibrium time T (unless liquidation occurs first). For this to not be profitable, each player must

weakly prefer to receive their terminal payoff at T rather than T ∨ TR. The final observation is

that in any cases where T > TR, it must be that waiting until T is just as good as waiting until

TR or else the proposer at time TR has a profitable deviation.

3.3 The optimal timing of reorganization

In light of Proposition 1, the first step in calculating the equilibrium is to find the social planner’s

value function defined by the optimal stopping problem in (19). By standard dynamic programming

arguments, in the region where continuation is optimal, the continuation value V (δ,R) solves a

partial differential equation (PDE):

rV (δ,R) = LV (δ,R) + ι[ζδ −R− V (δ,R)] (20)

where, letting subscripts denote partial derivatives, L is a differential operator defined on smooth

functions of δ,R by

Lf = δµfδ +
σ2

2
δ2fδδ − (1− τ)hδfR. (21)
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The first two terms are familiar from Ito’s lemma, and represent the sensitivity of the value

function to changes in EBIT. The third term represents the fluctuations in the continuation value

due to the accumulation of earnings. The final term in (20) captures the compensation for the risk

of a forced conversion to Chapter 7 liquidation.

Following Bartolini and Dixit (1991), we solve the PDE by making a change of variables. In

Appendix B, we solve for the general solutions of equation (20). We impose the intuitive boundary

condition that for fixed R > 0, the value function stays bounded by the liquidation value as δ → 0,

since reorganization could never be optimal if δ = 0 and R > 0. The unique solution of equation

(20) satisfying this is V (δ,R) = δv(R/δ), where the function v : R→ R is defined by

v(x) = A3x
γM(−γ,−2(γ − 1) +

2µ

σ2
,
−2h(1− τ)

σ2x
) +

ιζ + h(1−τ)ι
r+ι

r + ι− µ
− ιx

r + ι
. (22)

In this definition, A3 is an arbitrary constant, γ is the negative root of the polynomial

0 = [−(r + ι− µ)− µz +
σ2

2
z(z − 1)],

and M(a, b, z) is the confluent hypergeometric function

M(a, b, z) ≡ 1 +
a

b
z +

1

2!

a(a+ 1)

b(b+ 1)
z2 +

1

3!

a(a+ 1)(a+ 2)

b(b+ 1)(b+ 2)
z3 + ...

The confluent hypergeometric function can be thought of as a generalization of the exponential

function.

In the region where the social planner finds it optimal to immediately reorganize, we have

V (δ,R) = θδ − R. Given the form of the value function in the continuation region, we conjecture

there exists a threshold x̄ such that immediate reorganization is optimal if and only if x ≡ R/δ ≤ x̄.

In this case, δv(R/δ) should value match and smooth paste with θδ−R = δ(θ−R/δ) on the curve

R/δ = x̄. This is equivalent to the following system:

A3x̄
γM(−γ,−2(γ − 1) +

2µ

σ2
,
−2h(1− τ)

σ2x̄
) +

ιζ + h(1−τ)ι
r+ι

r + ι− µ
− ιx̄

r + ι
= θ − x̄ (23)

d

dx

(
A3x̄

γM(−γ,−2(γ − 1) +
2µ

σ2
,
−2h(1− τ)

σ2x̄
)

)
=

ι

r + ι
− 1. (24)

This system of algebraic equations is simple to solve numerically. However, we still must verify

that the optimal policy is in fact a barrier policy as conjectured. We prove the following proposition

in Appendix B:

Proposition 2 Suppose A3, x̄ solve (23, 24), and the following two conditions are met:
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x̄ ≤ −h(1− τ) + µθ + ι(ζ − θ)− rθ
r

(25)

v(x) ≥ θ − x, (26)

where v(x) is the function given in (22). Then the stopping time TR = inf{t : Rt < x̄δt} solves

(19) with associated value function

V (δ,R) =

 δv(Rδ ), R ≥ x̄δ

θδ −R, R ≤ x̄δ.
(27)

The conditions of Proposition 2 are intuitive: equation (25) ensures that reorganization does

not happen too early according to the barrier strategy, while equation (26) ensures it does not

occur too late. The conditions are easy to check numerically for a candidate A3, x̄, and we have

yet to find a case where they are not satisfied.

In summary, a social planner would watch the movement of the EBIT and the net exercise price

and emerge from bankruptcy when the current EBIT is large or the net exercise price is low (i.e.,

when the accumulated earnings have offset enough of the fixed cost of emerging from bankruptcy).

To be clear, the fixed cost of exiting bankruptcy makes this analogous to a real option. For some

firms, this option is “in the money” at default so the reorganization is instantaneous, while for

other firms, the option value of reorganizing in the future leads to efficient delay and lengthy

reorganizations.

3.4 Calculating the split

From Proposition 2, the social planner chooses to emerge from bankruptcy when (δ,R) ∈ O∗ ≡
{(δ,R) : R ≤ x̄δ}. Proposition 1 then implies that the game cannot end when (δ,R) /∈ O∗ (except

by forced liquidation). Intuitively, in the region where a single agent would optimally choose to

wait, in equilibrium the proposer chooses to wait. Then the value function of each player in this

region must equal the discounted expectation of receiving their value function a second later. If

we conjecture that both value functions are smooth, then by a standard dynamic programming

argument, this implies the following system of linked PDEs:

rE(δ,R, e) = LE(δ,R, e) + λe[E(δ,R, d)− E(δ,R, e)] + ι[0− E(δ,R, e)] (28)

rE(δ,R, d) = LE(δ,R, d) + λd[E(δ,R, e)− E(δ,R, d)] + ι[0− E(δ,R, d)] (29)

rD(δ,R, e) = LD(δ,R, e) + λe[D(δ,R, d)−D(δ,R, e)] + ι[ζδ −R−D(δ,R, e)] (30)

rD(δ,R, d) = LD(δ,R, d) + λd[D(δ,R, e)−D(δ,R, d)] + ι[ζδ −R−D(δ,R, d)], (31)

which must hold for all (δ,R) /∈ O∗. Next, recall that in the definition of a MPE, each player i
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must find it optimal in every instant where st 6= i to accept an offer equal to their value function.

Player i’s outside option should they reject would be to wait a second and receive their value

function. This suggests that for the players receiving offers, their value functions should always

equal the discounted expectation of receiving their value function a moment later, even in the

region where offers are made. If player i’s value function in state s 6= i were ever strictly less

than the expected discounted value of waiting a second, it is suboptimal for player i to follow their

equilibrium strategy of accepting offers equal to their value function. Likewise, if player i’s value

function in state s 6= i were ever strictly greater than the expected discounted value of waiting

a second, then player i should be willing to accept an offer just below their value function. This

suggests that in an MPE with smooth value functions, the value functions should satisfy (28)-(31)

for all (δ,R) /∈ O∗, and the receiving value functions E(δ,R, d), D(δ,R, e) should satisfy (29, 30)

everywhere. The following proposition, which is proved in Appendix C, shows this constitutes a

MPE.

Proposition 3 Assume the conditions of Proposition 2 hold. Let E(δ,R, s), D(δ,R, s) be smooth

functions such that E(δ,R, s)+D(δ,R, s) = V (δ,R). Assume (28)-(31) are satisfied for all (δ,R) /∈
O∗, and (29, 30) hold everywhere. Then the following strategy for each player i constitutes a MPE,

with value functions E(δ,R, s), D(δ,R, s):

1. Offer player j their value function if and only if (δ,R) ∈ O∗.

2. Accept an offer equal to or greater than player i’s value function at any time, for any (δ,R).

Proposition 3 allows us to calculate the MPE for our bargaining game. In Appendix C we

prove Proposition 3 and calculate the unique smooth MPE value functions E(δ,R, s), D(δ,R, s) in

closed form. The solution, which requires solving a linked system of PDEs, combines the methods

of Proposition 2 with Markov chain techniques appearing in Guo, Miao, Morellec (2005), among

other papers.

3.5 Dynamic bargaining outcomes

In this section, we provide intuition for the outcome of our dynamic bargaining game. First,

we briefly motivate our baseline parameters. Our model shares parameters µ, σ, τ, r, α with the

standard Leland model. For these parameters, we follow the literature (see Strebulaev and Whited

(2012) Table 3). For the bargaining power parameters, we choose λe to correspond to the exclusivity

period in Chapter 11. Specifically, since equityholders begin with a 120 day window (or longer)

to exclusively make offers, we choose λe = 3 so that in expectation the equityholders’ first offer

window lasts 120 days. All parameters are annualized. To start the analysis, we set λd = λe. For

the rate of forced conversion to Chapter 7, we set a baseline value of ι = 0.06, which corresponds

to the 14% of Chapter 11 cases converted to liquidations in the sample of BWZ (2006), given the

average length of 2.5 years for a Chapter 11 case. For ease of interpretation, we use δ0 = 1 for all

our numerical analysis. Firm values may then be interpreted as years of earnings. These baseline

parameters are listed in Table 1, and unless otherwise stated all analysis uses these values.
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Table 1: Baseline Parameter Values

Common Parameters

µ 0.02
σ 0.25
r 0.05
τ 0.2
α 0.1
ι 0.06

λd 3
λe 3
δ0 1

(a) Constrained Debt Chapter 7

R0 4
h 0.9
B 0.3

(b) Optimal Inefficient Chapter 11

R0 3.3
h 0.95
B 0.12

This table shows the baseline parameters we use throughout the paper. When we reference Table 1(a), we are using

the h,R0, B values corresponding to panel (a), for which the firm liquidates on the equilibrium path. When we

reference Table 1(b), we are using the h,R0, B values corresponding to panel (b), for which the firm enters Chapter

11 on the equilibrium path.

The inefficiencies of Chapter 11, captured by h and R0, are difficult to quantify, so we consider

different values for these. For now we use h = 0.95 and R0 = 3.3 which correspond to Table 1(b).

Finally, it will be helpful at times to keep the EBIT in the moment of default fixed while we vary

other parameters. When we do this, we set δ to the exogenous value δdef = .3674, which is the

ratio of average firm assets for firms entering Chapter 11 to average firm assets of healthy firms in

Corbae and D’Erasmo (2017). In the next section we allow equityholders to endogenously choose

the EBIT at which the firm defaults, but using this exogenous value can be helpful for intuition.

Figure 2(a) shows how the firm value in Chapter 11, evaluated at δdef and R0, changes with

each parameter. Specifically, we calculate V (δdef , R0), then for each parameter, we increase the

parameter by 5% of its baseline value and calculate V (δdef , R0) again. Figure 2(a) plots the elas-

ticity of firm value with respect to each parameter, calculated as the percent change in V (δdef , R0)

from a 5% increase in each parameter. An increase in the cost of reorganizing (R0) decreases firm

value while an increase in the multiplier on cashflows in bankruptcy (h) increases firm value. Once

the costs of entering Chapter 11 B have been paid, the firm is always better off reorganizing than

liquidating, so firm value is decreasing in the rate of liquidation ι. Since the Chapter 11 outcome is

Pareto efficient, the bargaining power parameters λe, λd have no impact on firm value. The other

comparative statics are similar to the Leland model and thus omitted.
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(a) Bankrupt Firm Value (b) Equity’s Share

Figure 2: Chapter 11 Equilibrium Comparative Statics
Using the baseline parameters of Table 1(b), we calculate the value of the firm at the moment of entering bankruptcy

at δ = δdef , V (δdef , R0), as in the text. We also compute the corresponding expected fraction of value that equity

will receive, Eshare(δdef , R0, e), as in the text. Then, for each parameter individually, we increase that parameter

by 5% of its baseline value, and recalculate both of these quantities. Panel (a) plots the percentage change in the

bankrupt firm value from increasing each parameter, one at a time, by 5%. Panel (b) plots the corresponding changes

for the expected fraction of value that equity will receive.

Figure 2(b) shows how the underlying parameters of the model affect the bargaining split in

Chapter 11. We calculate the expected fraction of firm value accruing to equity as

Eshare(δdef , R0, e) ≡
E(δdef , R0, e)

E(δdef , R0, e) +D(δdef , R0, e)
.

Just as above, we increase each parameter one at a time by 5% of its baseline value and

recalculate the same quantity. Figure 2(b) plots the percentage change in Eshare(δdef , R0, e) from a

5% increase in each parameter. The typical intuition in dynamic bargaining models is that the more

patient party extracts more of the surplus (Rubinstein (1982)). Because of the exclusivity window,

equityholders have the first opportunity to make offers. Intuitively then, anything which makes

reorganization during the exclusivity window more attractive should improve equity’s bargaining

outcome. Accordingly, increasing r improves equity’s expected outcome since it makes everyone

more impatient. Conversely, increasing µ reduces the fraction of value that equity can extract,

despite improving firm value, since it speeds up reorganization. Increasing R0 (the cost of exiting

bankruptcy) or h (the profitability of the firm during Chapter 11) makes it optimal to wait longer

to exit bankruptcy, which in turn reduces equity’s share of the firm value.

Any improvement in the outside option of creditors (waiting for Chapter 7) helps the creditors

in the bargaining game. An increase in ι thus leads to a worse outcome for equity since, in the

event of forced conversion to Chapter 7, creditors receive everything. Conversely, an increase in
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α or τ helps equityholders, since the tax benefits of debt and the liquidation costs α are lost in

Chapter 7. It is well known that the ex-ante firm value in Leland (1994) decreases in σ while the

liquidation value does not depend upon σ, so an increase in volatility makes Chapter 7 relatively

more attractive and harms equity’s outcome. Finally, higher λe means equity’s offer window is

shorter, while lower λd means the creditors’ offer window is longer, so both of these reduce equity’s

expected share of the firm value.

3.6 Benefits of the dynamic bargaining framework

The remainder of this section provides three arguments for the benefits of our dynamic bargaining

model relative to Nash bargaining. First, in many existing models that rely on Nash bargaining,

all outcomes of the reorganization are known with certainty. For example, in Fan and Sundaresan

(2000), the bargaining occurs when the asset value hits a lower threshold and is instantaneous. It

follows that the firm value upon exiting bargaining, and the respective fractions of the firm value

which go to equity and creditors, is known with certainty even before the bargaining begins. Later

models featuring bargaining, like that in François and Morellec (2004), allow for the possibility

that the firm is liquidated prior to reorganizing. However, conditional on emerging, the value of

the firm and the split are both known with certainty. In contrast, the empirical evidence suggests

nothing about bankruptcy is predictable. Gilson, Hotchkiss, and Ruback (2000) find that the post-

reorganization market value of bankrupt firms is difficult to forecast. Using management’s cash

flow projections and a methodology employed by practitioners, they find that value estimates are

unbiased, but with a very large variance. The estimated values range from 20% to over 250% of

the realized market value.

The outcomes of Chapter 11 bargaining are similarly difficult to predict. Eberhart and Sweeney

(1992) look at whether post-bankruptcy-announcement bond prices are unbiased estimates of the

final settlement prices. They fail to reject the null hypothesis that the post-announcement bond

prices are unbiased estimates. However, in their Table 2, expected bond returns can only explain

42%-76% of realized bond returns over the bankruptcy. Wong et al (2007) try to predict cases

in which shareholders receive a nonzero payout at the end of Chapter 11 with little success -

they obtain a psuedo R2 of less than .18 with their Cox’s proportional hazards model (Table 6).

BWZ (2006) examine the determinants of creditor recovery rates (Table XV). The R2 in their

regressions ranges between .21 and .46. Their regressions which seek to predict APR violations

have R2 values between .18 and .6. All their regressions include pre-bankruptcy variables like

assets and leverage, which simpler Nash bargaining models predict should be sufficient to exactly

determine these quantities. Our model predicts that these Chapter 11 outcomes cannot be perfectly

forecast, consistent with the empirical evidence. Likewise, BWZ (2006) show regressions which seek

to predict time in bankruptcy have R2 values between .07 and .26. In their sample, the days in

bankruptcy vary from 56 to 2,215 days, while Fan and Sundaresan (2000) model an instantaneous

bargaining process and the models of François and Morellec (2004) and Broadie, Chernov, and

Sundaresan (2007) assume an exogenous upper limit on the length of Chapter 11. Our model
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allows for any length Chapter 11 to occur with positive probability, and this length is uncertain.

Additionally, all earlier models of Chapter 11 bargaining we are aware of assume that the capital

structure upon emerging from bankruptcy is known with certainty. Gilson (1997) finds adjusted R2

values between .14 and .24 when trying to predict post-Chapter 11 leverage ratios (Table II) with a

variety of explanatory variables (including pre-Chapter 11 leverage ratios). In our model of Chapter

11, the accumulation of cash flows introduces path dependence such that, in equilibrium, the EBIT

upon emerging from Chapter 11 is not known with certainty until the firm exits Chapter 11. Since

this EBIT determines the post-reorganization capital structure, this means the post-reorganization

capital structure cannot be perfectly predicted, consistent with empirical evidence.

Figure 3: Eshare(δ,R0, e)

This figure shows Eshare(δ,R0, e), the ratio of equity’s Chapter 11 value function to the total firm value in bankruptcy

if they default at a value δ and choose Chapter 11, as a function of δ. The parameters correspond to Table 1(b).

Second, our dynamic bargaining model produces an endogenous link between firm size and

equity’s bargaining outcome. In a standard Nash bargaining model like Fan and Sundaresan (2000),

equityholders rationally expect to receive a constant fraction (equal to their bargaining power

parameter) of the firm value, no matter when they begin the bargaining. However, the empirical

literature suggests that equityholders enjoy larger APR violations when the bankrupt firm is larger.

In Table 7 of Franks and Torous (1994), the authors find that a 1% increase in the size (liabilities)

of a firm at the time of default is associated with an approximate 1 percentage point increase

in the absolute priority deviation going to equityholders. Table 6 of Betker (1995) shows that

equity receives much larger APR violations when the firm is closer to solvency. Eberhart, Moore,

and Roenfeldt (1990) find a positive correlation between APR violations received by equity and the

market capitalization of the firm at the announcement of bankruptcy. Consistent with this empirical

fact, our model predicts that when the firm is larger (closer to the reorganization threshold) at the

time of default, equityholders receive a better outcome in bargaining. Figure 3 plots the expected
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fraction of firm value accruing to equity Eshare(δ,R0, e) as a function of δ. It can be clearly seen

that equity’s expected share of firm value is increasing in the EBIT. The intuition for why dynamic

bargaining produces this endogenous link between solvency and bargaining outcome is the same

one which explains Figure 2. If the firm’s condition improves to the point that exiting Chapter 11

is efficient before the exclusivity period expires, then creditors are less willing to wait for their turn

in the bargaining game. Anything which makes reorganization more likely during the exclusivity

period (like a higher starting EBIT) will thus improve equity’s outcome.

It is interesting in itself that our dynamic bargaining matches this empirical link between size

and shareholder bargaining outcome. However, by providing a strategic foundation for this result,

our model also lends theoretical support to other papers which rely on this fact. Garlappi, Shu,

and Yan (2008) and Garlappi and Yan (2011) use a modified version of Fan and Sundaresan (2000)

to produce testable implications on equity returns, default probability, and shareholder bargaining

power. In their empirical evidence, they show that if size is a proxy for expected shareholder recov-

ery, then debt renegotiation can explain the concentration of momentum profits among low credit

quality firms, as well as the lower expected returns and stronger book-to-market effects exhibited by

distressed firms. While the model they use has a constant bargaining outcome for shareholders, our

dynamic bargaining model endogenously produces exactly the link between size and shareholder

recovery which they need to explain all of these phenomena. A recent literature has shown that the

possibility for debt renegotiation can help explain empirical patterns in leverage (Morellec, Nikolov,

and Schuerhoff (2018)), investment (Favara, Morellec, Schroth, and Valta (2017)), and equity re-

turns (Hackbarth, Haselman, and Schoenherr (2015); Favara, Schroth, and Valta (2012)). Since

our dynamic bargaining adds this additional realism to the negotiation process, it is conceivable

that variations of our dynamic bargaining model could match the data even better.

Third, stochastic dynamic bargaining is inherently a more realistic description of Chapter 11.

The Nash bargaining model itself is an axiomatic, not strategic, model of bargaining which does

not describe noncooperative agents. It is well known that the Nash solution coincides with the

outcome of the strategic Rubinstein bargaining model. However, when the object of the bargaining

evolves stochastically, this is an unsatisfying answer. The Nash outcome is the one that would

occur if equity and debt could, off the equilibrium path, exchange infinitely many offers while the

rest of reality remains frozen in time. Our dynamic bargaining model allows participants to watch

uncertainty resolve while considering proposals, as in reality.

4 Analysis of the decision to reorganize or liquidate and capital

structure

In this section, we work backwards in time and solve for the firm’s optimal strategy prior to

defaulting. We first consider the firm’s optimal stopping problem for when to default, and whether

to file for Chapter 11 or Chapter 7. When the firm defaults, equityholders prefer to enter Chapter

11 if and only if their prospects in the bargaining equilibrium of the previous section justify the
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fixed cost they must pay to enter Chapter 11. Section 4.1 studies the problem of when to default

when only Chapter 11 is available. Section 4.2 solves the full problem in which equityholders may

choose either chapter, and Section 4.3 describes the time zero capital structure decision.

4.1 The levered firm with the option to reorganize

In this section we consider the decision of the equityholders between Time 0 and Time 1 to enter

Chapter 11. Ultimately, equityholders will have the option to reorganize or liquidate, but the first

step to solve this problem is to ignore the option to liquidate. We assume the bargaining game

starts with equityholders making proposals in the exclusivity period (i.e., in state s0 = e). Thus

if equityholders choose to enter Chapter 11, they receive E(δ,R0, e) − B, where E(δ,R, s) is the

unique smooth MPE value function for equityholders and B is a fixed cost of entering bankruptcy.4

The function E(δ,R, e) is calculated in closed form in Appendix C, for simplicity of notation we

define E(δ) ≡ E(δ,R0, e).

Prior to bankruptcy, equityholders receive cashflow (1 − τ)(δ − C0)dt per unit time, where C0

is the optimally chosen coupon at time 0. In this section, we assume the firm only has the option

to enter Chapter 11. In this case, equityholders choose a stopping time TB at which point the firm

enters Chapter 11 to solve

EB(δ) = sup
TB∈F δ

Eδ[
∫ TB

0
e−rt(1− τ)(δt − C0)dt+ e−rTB (E(δTB )−B)]. (32)

To solve for the optimal time to enter Chapter 11, we conjecture a lower barrier δB such that

equityholders declare bankruptcy the first time δt ≤ δB. Following the logic of Section 2.2, the

value of equity prior to entering bankruptcy must be

EB(δ) = A4δ
ψ + (1− τ)[

δ

r − µ
− C0

r
],

where A4 is an arbitrary constant and ψ is again the negative root of

0 = −r + µz +
σ2

2
z(z − 1).

4In Chapter 11, both debtors and creditors hire professionals. Professional fees incurred during bankruptcy are
typically reimbursed from the firm’s assets through §330(a) awards. Weiss (1990) estimates that such fees average
3.1% of firm value, but LoPucki and Doherty (2011) give many reasons why this is an underestimate. In extreme
cases like the bankruptcy of Allied Holdings, fees can reach 22% of firm assets (LoPucki and Doherty (2011) Appendix
A).

Firms also hire professionals prior to entering bankruptcy, and these prepetition fees are not reimbursed. It is thus
reasonable to think of these prepetition fees, which average 43% of total fees, as being incurred by equityholders
(LoPucki and Doherty (2011)).

Finally, there is empirical evidence that a substantial component of these fees are fixed costs, which do not vary
with the size of the firm or length of bankruptcy (Warner (1977); Guffey and Moore (1991); LoPucki and Doherty
(2004); LoPucki and Doherty (2011); BWZ (2006)). In the sample of BWZ (2006), firms with less than $100,000
in pre-bankruptcy assets incur expenses that average 31.5% of assets, while for firms with more than $10 million in
assets, fees average 1.3% of assets. See Appendix E for more details and evidence.
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The constant A4 is determined by value matching and smooth pasting on the bargaining value

at the point of bankruptcy. Using the closed form for E(δ), we solve the nonlinear system

A4δ
ψ
B + (1− τ)[

δB
r − µ

− C0

r
] = E(δB)−B (33)

A4ψδ
ψ−1
B + (1− τ)[

1

r − µ
] = E ′(δB). (34)

Proposition 4 provides conditions analogous to those in Proposition 2 under which the barrier

strategy is optimal:

Proposition 4 Assume the conditions of Proposition 2 hold. Suppose A4, δB solve (33, 34), and

the following two conditions are met:

1. On the set [0, δB], the function E(δ) satisfies

− r(E(δ)−B) + µδE ′(δ) +
σ2δ2

2
E ′′(δ) ≤ −(1− τ)(δ − C0). (35)

2. On the set [δB,∞), the function E(δ) satisfies

A4δ
ψ + (1− τ)[

δ

r − µ
− C0

r
] ≥ E(δ)−B. (36)

Then the stopping time TB = inf{t : δt < δB} solves (32) with associated value function

EB(δ) =

A4δ
ψ + (1− τ)[ δ

r−µ −
C0
r ], δ ≥ δB

E(δ)−B, δ ≤ δB.
(37)

The proof appears in Appendix D. Finally, once we have solved for δB, the calculation for the

value of debt is straightforward. Debt has value

DB(δ) = A5δ
ψ +

C0

r
, (38)

and A5 is calculated by value matching at δB:

A5δ
ψ
B +

C0

r
= D(δB, R0, e). (39)

Once we plug in the closed form solutions for D(δ,R0, e), E(δ), E ′(δ), equations (33-39) represent

a system of algebraic equations which are easily solved numerically. Likewise, the second derivative

in (35) is available in closed form, allowing us to numerically check the conditions for the verification.
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Figure 4: E(δ)−B

This figure shows E(δ)−B, the payoff to equity if they default at a value δ and choose Chapter 11, as a function of

δ. The parameters correspond to Table 1(a).

4.2 The levered firm with the option to reorganize or liquidate

In this section, we consider the decision of the equityholders prior to Time 1 to enter Chapter 11 or

enter Chapter 7. In the previous subsection we solved for the equity value EB when equityholders

may only choose Chapter 11, and showed the corresponding optimal stopping time TB is a first

hitting time with threshold δB. In Section 2.2, we derived the equity value EL when equityholders

could only liquidate, with corresponding optimal liquidation time TL and associated threshold δL.

In this section, we study the decision of how to optimally choose a time of liquidation TL and time

of bankruptcy TB to maximize

E0(δ) = sup
TL,TB∈F δ

Eδ[
∫ TB∧TL

0
e−rt(1− τ)(δt − C0)dt+ 1(TB < TL)e−rTB [E(δTB )−B]]. (40)

This decision is equivalent to picking a time of default TD = TL ∧ TB and whether to enter

Chapter 7 or Chapter 11 at that time. Using our results from Section 3, the latter decision is

trivial: either the bargaining value net of fixed costs E(δTD)−B is larger than zero, so Chapter 11

is optimal, or it is less than 0, so liquidation is optimal. Define

g(δ) ≡ max(E(δ)−B, 0). (41)

Then the decision of when to enter Chapter 7 or Chapter 11 is equivalent to

E0(δ) = sup
TD∈F δ

Eδ[
∫ TD

0
e−rt(1− τ)(δt − C0)dt+ e−rTDg(δTB )]. (42)
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Since g is continuous and nonnegative, standard results (Øksendal (2003) Chapter 10) show

that E0(δ) exists, with associated exercise region S ≡ {δ : E0(δ) = g(δ)}.
In reality, firms default in bad states of the world. However, if creditors have no rights in

Chapter 11, then equityholders might use Chapter 11 in good states of the world as an opportunity

to default on their existing debt, issuing more debt afterward to take advantage of the tax shield.

Since Chapter 11 is an opportunity to reduce, not increase a firm’s debt, so we rule out this

unrealistic case with the following assumption:

Assumption 1. The bargaining power of debtholders is high enough that

lim
δ→∞

E(δ)− (1− τ)δ

r − µ
= −∞.

This intuitive assumption says that as firms become infinitely profitable, the unlevered firm value

exceeds the value to equity of defaulting and entering Chapter 11. We give a specific condition on

underlying parameters that is sufficient for this in Appendix D. When this assumption holds, we

can obtain a clean characterization for the equityholders’ optimal policy in (40).

Proposition 5 Suppose the conditions of Propositions 2 and 4 are met, and in addition Assump-

tion 1 holds. For any fixed C, let S(C) ≡ {δ : E0(δ) = g(δ)} denote the set of δ values where the

firm defaults immediately, and let δL, δB be the optimal liquidation and reorganization thresholds

from Sections 2.2 and 4.1. Then δ̄(C) ≡ supS(C) is finite. Further, δ̄(C) equals the liquidation

trigger δL if and only if E(δ̄(C)) ≤ B and it equals the bankruptcy threshold δB if and only if

E(δ̄(C)) ≥ B.

This proposition says that for any fixed C, at a large enough δ the firm knows with certainty

which of Chapter 11 or Chapter 7 they will eventually enter, and it will occur at a lower threshold.

We next show that which of these occurs will depend on C:

Proposition 6 Suppose the conditions of Propositions 2 and 4 are met, and in addition Assump-

tion 1 holds. The default threshold δ̄(C) is a weakly increasing and continuous function of C, and

limC→∞ δ̄(C) =∞. There exists C̄ such that E(δ̄(C̄)) = B and C > C̄ implies E(δ̄(C)) > B.

Proposition 6 delivers the central intuition of the choice between Chapter 7 and Chapter 11 in

our model. When the firm has a larger coupon, they default at higher δ values. We see from Figure

4 that equity’s value in Chapter 11 E(δ) is strictly increasing in δ, so equity’s prospects in Chapter

11 are more likely to justify the fixed cost B of entering Chapter 11 when δ is high. Proposition 6

shows the existence of a C̄ such that when the firm has issued more debt than C̄, they will default

at a sufficiently profitable δ that Chapter 11 is preferable to Chapter 7 at that δ. Given the strict

monotonicity of E and δ̄(C) we observe numerically, equityholders will strictly prefer liquidation

for C < C̄, by the same logic.
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4.3 Analysis of the capital structure with Chapter 11 reorganization

In this section, we consider the decision of equityholders at Time 0 of how much debt to issue. Let

F j(δ0, C0) ≡ Ej(δ0, C0) +Dj(δ0, C0), j = L,B

denote firm value for a given coupon C0, assuming either a future Chapter 7 (j = L) or Chapter

11 (j = B) bankruptcy. Since equityholders receive the proceeds of the initial debt issue, at time

0 equity chooses the optimal coupon C0 to maximize the sum of the values of equity and debt,

subject to the constraint that equity will subsequently decide between Chapter 7 and Chapter 11

to maximize equity value. Under Assumption 1, as long as δ0 is large relative to C0, equity will

know immediately after they issue debt whether they will eventually enter Chapter 7 or Chapter 11

(Proposition 5), so the time zero value of equity equals the maximum of EB(δ0, C0) and EL(δ0, C0).

Under rational expectations, the time zero value of the firm for a given coupon C0 is then

F0(δ0, C0) ≡


FB(δ0, C0), EB(δ0, C0) > EL(δ0, C0)

FL(δ0, C0), EB(δ0, C0) < EL(δ0, C0)

FB∨L(δ0, C0), EB(δ0, C0) = EL(δ0, C0),

(43)

where FB∨L(δ, C) ≡ max(FL(δ, C), FB(δ, C)). In words, the value of the firm for a given

coupon is either the value of the firm conditional on eventual liquidation, or the value of the firm

conditional on eventual Chapter 11. Which of these cases occurs is determined by which is better

ex-post for equityholders. As is standard in dynamic models of capital structure, equityholders

lack commitment power. For a given coupon C0, equityholders might be able to get a better price

on debt (and higher overall time 0 value) if they could commit to a future Chapter 7. However, if

that C0 implies equity will prefer Chapter 11, the debt will be priced at time 0 under the rational

expectation of a future Chapter 11. From Proposition 6, and the observation that in all numerical

examples E(δ) is strictly increasing, we can obtain a cleaner characterization of how debt will be

priced at a given coupon: there will always exist C̄ such that for large δ0,

F0(δ0, C0) =


FB(δ0, C0), C0 > C̄

FL(δ0, C0), C0 < C̄

FB∨L(δ0, C0), C0 = C̄.

It follows that at time 0, the firm has two options. They may choose any coupon larger than

C̄ and receive the firm value FB(δ0, ·) under the rational expectation of a future Chapter 11

reorganization. Alternately, they may choose a coupon weakly less than C̄ and receive the firm

value FL(δ0, ·) under the rational expectation of a future Chapter 7 liquidation.

Using the solutions derived in the last two sections (and Section 2.2), we calculate F0(δ0, ·)
according to equation (43). We then numerically maximize F0(δ0, ·) on a grid of possible coupons

to find the optimal coupon C∗. In the cases we consider in the following section, C∗ is equal to one
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of the following three coupons:

C̄ = max{C0 : EB(δ0, C0) ≤ EL(δ0, C0)} (44)

CL = argmaxC0∈[0,∞)F
L(δ0, C0) (45)

CB = argmaxC0∈[0,∞)F
B(δ0, C0). (46)

In these equations, C̄ is the threshold coupon from Proposition 6. CL and CB are the optimal

coupons equity would choose if they were constrained to only use Chapter 7 or only use Chapter

11, respectively.

5 Capital structure and empirical predictions

5.1 Capital structure decisions and the relative efficiency of Chapter 11

In this section, we analyze the optimal capital structure of the firm with the option to reorganize or

liquidate. As is standard in capital structure models, the equityholders internalize the inefficiency

of their ex-post optimal bankruptcy procedure when they issue debt. Put differently, the price

equityholders can charge for their debt will exactly reflect the inefficiency of their future preferred

bankruptcy procedure. When one form of bankruptcy (Chapter 11 or Chapter 7) is so inefficient

relative to the other that equityholders would never find it optimal ex-post, equityholders can credi-

bly ignore that option. In these cases, equityholders are unconstrained by their lack of commitment

when choosing the coupon to maximize the tax benefits given their preferred future bankruptcy

form. Debtholders will correctly infer the future strategy of equityholders when they price the debt.

However, when Chapter 11 is slightly less efficient than Chapter 7, our model predicts a more

nuanced capital structure decision. In this region of the parameter space, debtholders prefer Chap-

ter 7 liquidation, since Chapter 11 reorganization only allows them to capture a fraction of a slightly

smaller pie. Equityholders would like to issue a large coupon to take advantage of tax benefits,

and commit to future liquidation to obtain a low cost of debt. However, for these parameters, the

result of Proposition 6 implies that these two goals conflict with each other: large coupons imply

equityholders will ex-post find Chapter 11 optimal. Debtholders recognize this and pay less for

debt with such a coupon at time 0. Since equityholders cannot formally commit to Chapter 7,

they have two choices. They can issue a large coupon to maximize tax benefits, and accept that

debtholders will charge extra for the future Chapter 11 inefficiencies. Alternately, equityholders

can issue the largest coupon C̄ consistent with Chapter 7 being optimal for equity ex-post. This

allows equityholders to get a better price for the debt they issue, but they forgo tax benefits since

for these parameters C̄ is smaller than the coupon they would otherwise issue.

To an econometrician, in this latter case our model looks identical to the Leland model: a firm

issues debt then eventually liquidates. However, the off-equilibrium considerations introduced by

our bargaining model lead the firm to issue a much smaller coupon than in the standard Leland
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model. In this case, our model predicts lower leverage than the Leland model, even for the 65% of

firms that liquidate in Chapter 7 (BCI (2017)).

To illustrate the capital structure decision in more detail, we now present examples of each case.

The parameters h,R0, B capture the inefficiencies of Chapter 11. To succinctly describe regions

of the (h,R0, B) parameter space, we introduce two measures of efficiency. The first measure is

RelEff, which is the ratio of total firm value upon entering Chapter 11 to the total firm value at

the moment of liquidation:

RelEff ≡
V (δdef , R0)−B

ζδdef
. (47)

Recall the numerator is the total firm value in Chapter 11 reorganization, which incorporates a

partial loss of earnings during Chapter 11 and a fixed cost of exiting Chapter 11, minus the fixed

cost B of entering Chapter 11. The denominator is the liquidation value debtholders receive by

selling the assets for their perpetuity value minus proportional liquidation costs. Since Chapter

11 entails fixed costs in our model while Chapter 7 does not, the value of this ratio is sensitive to

the δ at which it is evaluated. Intuitively, spending several years in court over a firm worth one

dollar would be extraordinarily wasteful relative to liquidating such a firm, regardless of the overall

efficiency of each procedure. This is why both are evaluated at the exogenous value δdef .

RelEff has no direct significance in the solution of our model, but is helpful for concisely sum-

marizing the inefficiencies of Chapter 11 and Chapter 7 without delving into the optimal strategy

of equityholders. The extent to which these inefficiencies impact firm value is of course endogenous.

It will be helpful to define a second measure which measures how much firm value is changed by

the added option of Chapter 11:

Choicevalue ≡ F0(δ0, C
∗)

FL(δ0, CL)
. (48)

The numerator is the time 0 value of the firm with the option to liquidate or enter Chapter 11,

evaluated at the optimal coupon. The denominator is the time 0 firm value in the Leland model

with only Chapter 7, evaluated at the corresponding optimal coupon. This measure provides

clearer intuition on how the optimal strategy changes with the Chapter 11 parameters. We will use

Choicevalue to partition the space of (h,R0, B) values into cases corresponding to distinct optimal

strategies, then reference RelEff to describe the exogenous inefficiencies which induce each case.

Case 1: Choiceval > 1. Suppose that Chapter 7 liquidation is less efficient than Chapter

11 reorganization. Since the tax benefits of debt are large empirically, equityholders like to issue

large coupons. Such coupons imply equityholders will default in profitable states of the world

(Proposition 6), and these are the states of the world where equity’s prospects in Chapter 11

justify the fixed costs of entering Chapter 11 (Proposition 5). Debtholders might dislike sharing

the firm with equityholders in Chapter 11, but since Chapter 11 is more efficient, the overall pie

is bigger. Equityholders are thus willing to pay a higher cost of debt associated with Chapter 11

being ex-post optimal, since they are compensated by the rents they eventually extract in Chapter
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Figure 5: Capital Structure Choice: RelEff=115%

This figure shows ex-ante firm value (Equity + Debt) as a function of the coupon C0. The dashed curve plots

FL(δ0, C0), the firm value under the assumption of future liquidation. The vertical dotted line descending from the

peak of the dashed curve marks CL, the optimal coupon under future liquidation, on the x-axis. The dotted curve

plots FB(δ0, C0), the firm value under the assumption of future Chapter 11. The vertical dotted line descending

from the peak of the dotted curve marks CB , the optimal coupon under future Chapter 11 reorganization, on the

x-axis. The solid curve plots the actual firm value F0(δ0, C0) as a function of the coupon C0. Finally, the vertical

dotted line ending in C̄ on the x-axis marks the largest coupon for which equity finds liquidation optimal ex-post.

The parameters corresponding to this figure are the baseline parameters from Table 1, with R0 = 0.6, h = 1, B = 0.1.

11, and they issue a large coupon to take full advantage of the tax shield.

Figure 5 plots firm value as a function of C0, the time 0 perpetual coupon on the consol debt.

We use the parameters of Table 1, except we use different (h,R0, B) values such that Chapter 11

is 15% more efficient than Chapter 7 by our metric RelEff. The dashed curve plots FL(δ0, C0), the

firm value under the assumption of future liquidation, as a function of the coupon C0. As usual, the

tradeoff between the tax shield of debt and the efficiency loss in liquidation leads to an inverted U

shape for firm value as a function of the coupon. The vertical dotted line descending from the peak

of the dashed curve marks CL, the optimal coupon under future liquidation, on the x-axis. The

dotted curve plots FB(δ0, C0), the firm value under the assumption of future Chapter 11. Again

there is a tradeoff between the tax shield of debt and the inefficiency of Chapter 11. The vertical

dotted line descending from the peak of the dotted curve marks CB, the optimal coupon under

future Chapter 11 reorganization, on the x-axis. Since we have assumed here that the bankruptcy

costs in Chapter 11 are less extreme than those in Chapter 7, the optimal coupon CB is larger than

CL as expected.
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Figure 6: Capital Structure Choice: RelEff=50%

This figure shows ex-ante firm value (Equity + Debt) as a function of the coupon C0. The dashed curve plots

FL(δ0, C0), the firm value under the assumption of future liquidation. The vertical dotted line descending from the

peak of the dashed curve marks CL, the optimal coupon under future liquidation, on the x-axis. The dotted curve

plots FB(δ0, C0), the firm value under the assumption of future Chapter 11. The vertical dotted line descending

from the peak of the dotted curve marks CB , the optimal coupon under future Chapter 11 reorganization, on the

x-axis. The solid curve plots the actual firm value F0(δ0, C0) as a function of the coupon C0. Finally, the vertical

dotted line ending in C̄ on the x-axis marks the largest coupon for which equity finds liquidation optimal ex-post.

The parameters corresponding to this figure are the baseline parameters from Table 1, with R0 = 4.4, h = 0.4, B = 2.

The solid curve plots the actual firm value F0(δ0, C0) as a function of the coupon C0. Since

equityholders lack commitment power, F0 is either equal to FB or FL, depending upon whether

equityholders will subsequently find it optimal to enter Chapter 11 or liquidate. The first vertical

dotted line marks C̄, the threshold coupon for Chapter 11 vs Chapter 7, on the x-axis. For C ≤ C̄,

the solid curve F0 follows the liquidation value FL since the firm will subsequently find it optimal

to liquidate. For C > C̄, the solid curve follows FB, since equityholders will subsequently enter

Chapter 11. In particular, if equityholders want to sell debt for the value under liquidation DL,

the largest coupon they may issue is C̄. Since Chapter 11 is good for firm value in this instance,

equityholders find it optimal to issue CB and credibly signal a future Chapter 11 reorganization,

since this is the maximal point on the solid curve. Equityholders are thus unconstrained by their

lack of commitment when they decide to maximize the firm value under future Chapter 11.

Case 2: Choiceval = 1. Another possible case is that Chapter 7 liquidation is much more

efficient than Chapter 11 reorganization. In this case, if equity had commitment power, they would
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Figure 7: Capital Structure Choice: RelEff=85%

This figure shows ex-ante firm value (Equity + Debt) as a function of the coupon C0. The dashed curve plots

FL(δ0, C0), the firm value under the assumption of future liquidation. The vertical dotted line descending from the

peak of the dashed curve marks CL, the optimal coupon under future liquidation, on the x-axis. The dotted curve

plots FB(δ0, C0), the firm value under the assumption of future Chapter 11. The vertical dotted line descending

from the peak of the dotted curve marks CB , the optimal coupon under future Chapter 11 reorganization, on the

x-axis. The solid curve plots the actual firm value F0(δ0, C0) as a function of the coupon C0. Finally, the vertical

dotted line ending in C̄ on the x-axis marks the largest coupon for which equity finds liquidation optimal ex-post.

The parameters corresponding to this figure are the baseline parameters from Table 1(b).

get the greatest time 0 value by committing to a future Chapter 7, and issuing debt with the

coupon CL that maximizes the firm value conditional on future Chapter 7. However, if Chapter

11 reorganization is very inefficient, there will be no commitment problem. Specifically, with an

inefficient Chapter 11 process, equityholders would have to default in a very profitable state of the

world in order for their bargaining prospects to justify the fixed costs of Chapter 11. They will only

default in such a state of the world if they have issued debt with a coupon C̄ much larger than CL.

So even without formal commitment power, equity can issue their favorite coupon CL and credibly

promise a future Chapter 7 liquidation. This is depicted graphically in Figure 6, with (h,R0, B)

values that correspond to a Chapter 11 process that is 50% less efficient than Chapter 7.

The interpretation of Figure 6 is exactly the same as Figure 5. The point on the x-axis where

the solid curve F 0 drops down from the dashed curve FL to the dotted curve FB corresponds to

the threshold coupon C̄. In this figure, we see that the solid curve F0 is maximized at the point

where FL is maximized, with corresponding coupon CL. Since CL < C̄, equityholders are able to

issue CL, credibly promise a future liquidation, and receive FL. In this sense, equityholders are
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Figure 8: Capital Structure Choice: RelEff=75%

This figure shows ex-ante firm value (Equity + Debt) as a function of the coupon C0. The dashed curve plots

FL(δ0, C0), the firm value under the assumption of future liquidation. The vertical dotted line descending from the

peak of the dashed curve marks CL, the optimal coupon under future liquidation, on the x-axis. The dotted curve

plots FB(δ0, C0), the firm value under the assumption of future Chapter 11. The vertical dotted line descending

from the peak of the dotted curve marks CB , the optimal coupon under future Chapter 11 reorganization, on the

x-axis. The solid curve plots the actual firm value F0(δ0, C0) as a function of the coupon C0. Finally, the vertical

dotted line ending in C̄ on the x-axis marks the largest coupon for which equity finds liquidation optimal ex-post.

The parameters corresponding to this figure are the baseline parameters from Table 1(a).

unconstrained in their decision to maximize the firm value under future liquidation.

Case 3: Choiceval < 1. Perhaps the most interesting case is when the Chapter 11 procedure

is less efficient than Chapter 7, but efficient enough that equityholders still find it attractive ex-

post for reasonable levels of debt. The inefficiency of Chapter 11, combined with equity’s lack of

commitment power, will actually reduce firm value in this region, relative to the value if Chapter

11 were not an option. To see this intuitively, suppose that Chapter 7 is slightly more efficient

than Chapter 11. In such a situation, equityholders might be able to get a much lower cost of debt

by committing to a future Chapter 7 liquidation. If equityholders had commitment power, in this

case they would promise a future Chapter 7 liquidation and issue the coupon CL that optimally

trades off tax benefits with the liquidation costs. However, such a coupon CL would imply that

equityholders default in a profitable state of the world, where the reasonably efficient Chapter 11

is appealing to equityholders. Since equityholders lack commitment power, debtholders recognize

that the coupon CL will correspond to a future Chapter 11, and charge a higher cost of debt.

This leaves the equityholders with two choices. If the higher cost of debt associated with
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Chapter 7 is small in magnitude relative to the tax benefits of debt, equityholders will optimally

issue the coupon CB which maximizes tax benefits relative to Chapter 11 inefficiencies. In this

case, equityholders are optimally choosing an inefficient Chapter 11 process and a high cost of

debt, because it allows them to capture tax benefits. An example of this case is shown in Figure

7, which plots firm value as a function of the coupon C0, for the parameters in Table 1(b) which

induce RelEff= 0.85.

Figure 7 has the same interpretation as Figures 5 and 6. The highest firm value, corresponding

to the coupon CL, is on the dashed curve depicting firm value under future liquidation. However,

Chapter 11 is sufficiently attractive that C̄ < CL, so equity’s lack of commitment power prevents

them from obtaining this firm value. The highest attainable value on the solid curve corresponds to

CB, the optimal coupon given a future Chapter 11. Thus, even though Chapter 11 is less efficient

than Chapter 7, the tax benefits of a large coupon outweigh the increased cost of debt so equity

optimally chooses Chapter 11. We call this the “optimal inefficient Chapter 11” strategy.

The other choice that equity can make in Case 3 is to issue C̄. If the higher cost of debt

associated with Chapter 11 is large relative to the tax benefits of a larger coupon, equityholders

will sacrifice some tax benefits to issue a coupon that credibly commits them to a future Chap-

ter 7. Specifically, equityholders will optimally issue C̄, the largest coupon such that they will

subsequently find Chapter 7 optimal.

Figure 8 plots firm value as a function of the initial coupon C0, with a parameter set (Table 1(a))

corresponding to RelEff = 75%. Once again, the highest point on the graph occurs on the dashed

curve, at FL(δ0, CL), which corresponds to the firm value if equity could issue CL and commit to

Chapter 7. However, this value is unattainable for equityholders. If they issue debt with a coupon

larger than C̄, which is the point on the x-axis where the solid curve drops from the dashed curve

to the dotted curve, then the value they receive is FB. As a result, the best equityholders can do

is to issue C̄ and receive FL(δ0, C̄). We refer to this as the “constrained debt Chapter 7” strategy.

We reiterate that the equityholders optimally issue a lower coupon than in the Leland (1994)

model, even though they subsequently face the exact same liquidation costs. This is because we

have found a novel agency cost of debt: it encourages equityholders to destroy firm value in Chapter

11 bankruptcy. The coupon which optimally trades off tax benefits with liquidation costs and this

novel agency cost is lower than the one predicted by the Leland model.

5.2 Results on capital structure

In Graham (2000), he finds that “paradoxically, large, liquid, profitable firms with low expected

distress costs use debt conservatively” and “the typical firm could double tax benefits by issuing

debt until the marginal tax benefit begins to decline.” Contingent claims models like that in Leland

(1994) have historically had a difficult time matching the 20-25% quasi-market leverage ratios

typical of Compustat firms (Strebulaev and Whited (2012)) without assuming extreme liquidation

costs or adding much more complicated assumptions.

We solve our model for the parameters of Table 1(a), which correspond to the “constrained debt
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Chapter 7” case of our model, with a RelEff value of 75%. In this case, equityholders optimally

issue C̄, which is 0.64 for these parameters, in order to credibly commit to a future liquidation.

The optimal coupon with just liquidation (CL) is 1.36, roughly twice as large as C̄. We follow

the literature in evaluating leverage as D0(δ0, C
∗)/F0(δ0, C

∗), the value of debt at issuance divided

by the sum of equity and debt values at issuance, all evaluated at the optimal coupon. For these

exact parameters, the Leland model (see Section 2.2) predicts a leverage ratio of 70%, while in our

equilibrium the leverage ratio is just 40%. To be clear, many models predict lower leverage ratios

than the Leland model. However, simply by adding a realistic choice between Chapter 11 and

Chapter 7, our model can lead to a leverage ratio 30 percentage points lower than Leland (1994),

even though the equilibrium behavior is indistinguishable.

We calculate the unlevered firm value as U = (1−τ)δ0/(r−µ), the perpetuity value of the cash-

flows. The ratio of the levered firm value to the unlevered firm value, calculated as F0(δ0, C
∗)/U ,

captures the value of debt in our model. Without the Chapter 11 option, the tax benefits of debt

(net the liquidation inefficiencies) would add 11% to the unlevered firm value. However, in order to

credibly commit to Chapter 7, in our model firms can only add 8% to their unlevered firm value.

For these parameters, our model thus suggests the option to reorganize costs firms 3% of their

unlevered firm value.

Chapter 11 efficiency and capital structure: Figure 9 shows comparative statics for the

capital structure implied by our model. Starting with the parameter values in Table 1(a), we

compute the optimal coupon, leverage, and ratio of levered firm value to unlevered firm value as

above. Then, one parameter at a time, we increase the parameter by 5% of its value and recalculate

these quantities. The figure plots elasticities (the percent change resulting from a 5% change in

each parameter) for each of these quantities. In this “constrained debt Chapter 7” case, anything

which makes Chapter 11 less appealing will increase C̄. Intuitively, when Chapter 11 gets worse

for equityholders, it is easier for them to promise not to file for Chapter 11, which lets them issue a

higher coupon while receiving the lower cost of debt corresponding to Chapter 7. When we increase

R0 by 5%, panels (a) and (b) of Figure 9 show that the optimal coupon and leverage increase. Since

the marginal benefit of debt is positive, this increases the levered firm value as well (panel (c)).

Counterintuitively, a less efficient Chapter 11 process is actually increasing firm value. This general

effect can be observed in many parameters which affect the relative attractiveness of Chapter 11

for equityholders. Increasing the rate of conversion ι to Chapter 7 or increasing the cost to equity

B of entering Chapter 11 both lead to higher leverage and firm value. Increasing h, which improves

the efficiency of Chapter 11, actually increases leverage and firm value, but this is because it makes

equityholders worse off in the bargaining (Figure 2) which loosens their constraint.

Of course, all of these results depend upon the firm finding the “constrained debt Chapter 7”

strategy optimal. In Figure 10, we present the same comparative statics exercise for the parameters

of Table 1(b), for which the “optimal inefficient Chapter 11” strategy is optimal (RelEff=85%).

Here the firm is optimally choosing Chapter 11, so for small declines in the efficiency of Chapter 11

(for example, higher R0, B or lower h) the firm optimally reduces debt. This is the standard tradeoff
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(a) Optimal Coupon (b) Ex-Ante Leverage

(c) Levered Firm Value
Unlevered Firm Value

(d) Ex-Ante Credit Spread

Figure 9: Capital Structure Comparative Statics, “Constrained Debt Chapter 7” Case
Using the baseline parameters of Table 1(a), we calculate the optimal coupon and the corresponding ex-ante leverage,

ex-ante credit spread, and the ratio of the firm value to the unlevered firm value U as in the text. Then, for each

parameter individually, we increase that parameter by 5% of its baseline value, and recalculate each of the four

quantities. Panel (a) plots the percentage change in the optimal coupon from increasing each parameter, one at a

time, by 5%. Panels (b), (c), and (d) plot the corresponding changes for optimal ex-ante leverage, the ratio of the

time 0 levered firm value to the perpetuity value of the cashflows, and the ex-ante credit spread, respectively.
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theory logic, and this decline in efficiency is accompanied by a decline in firm value. However, an

increase in ι, the rate of conversion to Chapter 7, can still increase leverage. While such an increase

makes Chapter 11 slightly less efficient, it also makes Chapter 11 much better for debtholders since

it endogenously increases their outside option and thus their bargaining position. As a result,

equityholders take advantage of the lower cost of debt by issuing more debt, increasing firm value.

Creditor rights and capital structure: There is a growing empirical literature examining

the real effects of creditor rights. Li, Whited, and Wu (2016) study the enactment of antirechar-

acterization laws in seven states in the late 1990s and early 2000s. These laws protected the rights

of creditors who used special purpose vehicles to conduct secured borrowing, and several papers

argue these represent an exogenous increase in creditor rights. Li et al (2016) find this led to an

increase in leverage. Mann (2015) studies the same laws and also finds an increase in long term

debt over assets.

In our model, creditor rights might reasonably be interpreted as the relative bargaining power

of debtholders. Laws like the antirecharacterization laws certainly reduce the relative bargaining

power of equityholders since they may no longer hold up creditors with the threat of recharacterizing

assets held in special purpose vehicles. As noted in Section 3, the timing in the dynamic bargaining

game is not affected by the relative bargaining power of creditors and debtors. However, the

bargaining power of creditors affects the fraction of firm value that can be captured by equityholders

in Chapter 11, which factors into the capital structure decision of equityholders. Recall that higher

λe values correspond to shorter offer windows for equityholders and stronger creditor rights. In

the “constrained debt Chapter 7” strategy considered in Figure 9, an increase in creditor rights

(increasing λe by 5%) increases leverage by approximately 1%. Similarly, increasing λd lowers

leverage. This is the same mechanism discussed above: when creditor rights improve, Chapter 11

becomes less attractive to equityholders, so they may issue a larger coupon C̄ while still credibly

committing to a Chapter 7. In Figure 10 where Chapter 11 is optimal, better creditor rights still

lead to an increase in leverage, because it makes Chapter 11 more appealing to debtholders and

lowers the cost of debt. Thus our model generally predicts that stronger creditor rights lead to

higher leverage, consistent with the empirical evidence. The only exception to this is when an

increase in creditor rights pushes equityholders from Chapter 11 to Chapter 7. In unreported

results we have found that a decline in λd can make equityholders prefer the lower cost of debt

associated with Chapter 7 to the rents they can extract in Chapter 11. They then drastically reduce

their coupon from CB to C̄ and choose liquidation instead of Chapter 11.

In most cases, when creditor rights improve, the resulting increase in leverage leads to an

improvement in firm value. Under the “constrained debt Chapter 7” strategy, this is because the

marginal benefits of debt for the firm are positive at the optimum and equity’s constraint becomes

looser with stronger creditor rights. Thus the increase in debt has a net positive effect on firm value.

Under the “optimal inefficient Chapter 11” strategy, when creditor rights improve, the expected

costs of default endogenously decline. This is because creditors get a better Chapter 11 outcome so

equity waits longer to default for any given coupon. As a result, our model predicts that stronger
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(a) Optimal Coupon (b) Ex-Ante Leverage

(c) Levered Firm Value
Unlevered Firm Value

(d) Ex-Ante Credit Spread

Figure 10: Capital Structure Comparative Statics, “Optimal Inefficient Chapter 11”
Case
Using the baseline parameters of Table 1(b), we calculate the optimal coupon and the corresponding ex-ante leverage,

ex-ante credit spread, and the ratio of the firm value to the unlevered firm value U as in the text. Then, for each

parameter individually, we increase that parameter by 5% of its baseline value, and recalculate each of the four

quantities. Panel (a) plots the percentage change in the optimal coupon from increasing each parameter, one at a

time, by 5%. Panels (b), (c), and (d) plot the corresponding changes for optimal ex-ante leverage, the ratio of the

time 0 levered firm value to the perpetuity value of the cashflows, and the ex-ante credit spread, respectively.
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creditor rights should improve firm value. There is empirical evidence for this comparative static.

Ponticelli and Alencar (2016) find an increase in value after an increase in the enforceability of

creditor rights, and Ersahin (2017) finds greater productivity after the antirecharacterization laws

discussed previously. However, these empirical results have different mechanisms than the tax

benefits of debt which drives the result in our model.

Other model primitives: We briefly summarize the other predictions of our model for capital

structure. All our results vary depending on the cases described above, but we focus on the results

which do not appear in the standard Leland model. For example, it is possible for an increase in

µ to lead to lower optimal leverage (Figure 9). This is because higher expected tax benefits make

Chapter 11 more attractive. This forces equityholders to issue a lower coupon with lower leverage

to credibly commit to Chapter 7, which is in some cases optimal.

Unlike in the Leland model, higher volatility can lead to higher leverage. With only liquidation,

higher volatility lowers optimal leverage and the overall levered firm value. The last effect means

that the reorganized firm value is lower when volatility is higher. This tends to lower the relative

efficiency of Chapter 11, so for the “constrained debt Chapter 7” strategy this can lead to higher

leverage in our model.

In any tradeoff model, higher taxes imply greater tax benefits of debt and thus more debt.

However, Chapter 11 includes an embedded option to relever upon reorganizing, making it more

appealing to equityholders when taxes are high. Figure 9 presents an example where, when taxes

increase by 5%, the commitment effect outweighs the time 0 increase in tax benefits and the firm

optimally lowers its coupon to commit to Chapter 7. Finally, even when liquidation inefficiencies

are tiny (α = 0.005), the commitment problem in our model can lead to leverage as low as 44%,

compared to 78% in the Leland model.

Credit spreads: Our model produces credit spreads by the formula

CS =
C∗

D0(δ0, C∗)
− r, (49)

where D0(δ0, C
∗) is the value of debt at the optimal coupon at issuance. Panel (d) of Figures 9

and 10 suggest that changes in Chapter 11 costs and the bargaining parameters have similar effects

on credit spreads as they do on leverage and the optimal coupon. This is intuitive since higher

coupons always lead to earlier default and thus riskier debt.

What is perhaps most interesting in our model is not the comparative statics of credit spreads

but the levels. In cases where equityholders find Chapter 11 to be ex-post optimal, debtholders

demand a higher cost of debt to compensate them for the rents that equityholders will extract in

Chapter 11. The credit spread puzzle suggests that models like Leland (1994) tend to underestimate

credit spreads on risky debt. By adding the option of Chapter 11, we can produce credit spreads

higher than those in the Leland model. In the “optimal inefficient Chapter 11” strategy, the higher

default costs lead equityholders to issue less debt than if they only were able to liquidate. This is
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because they internalize the default costs when they issue debt at time 0. However, the debtholders

still demand compensation for the future Chapter 11 reorganization. As a result, for the parameters

in Table 1(b), the model can simultaneously generate a credit spread 17 basis points higher than

the Leland model while producing an optimal leverage ratio that is 7 percentage points lower.

5.3 The decision to enter Chapter 7 or Chapter 11

There is recent interest in empirical research about the causal effect of bankruptcy procedure

on future firm asset performance. The main challenge in such work is overcoming the selection

bias, that firms choosing Chapter 11 are inherently different from those choosing Chapter 7. Any

statements our model might generate about the causal effect of Chapter 11 vs Chapter 7 would be

dependent on the parameter values we assume. However, our model generates much more general

predictions about what types of firms choose Chapter 11 or Chapter 7.

Profitability, asset value, and choice of bankruptcy procedure: In our model, when

equityholders default, they choose Chapter 11 if and only if their value function in the subsequent

bargaining justifies their fixed cost of entering Chapter 11 (Proposition 5). Since the value function

is increasing in the current EBIT (δ), this implies that firms which are more profitable at default

will choose Chapter 11. It is standard in the Leland model to define the firm asset value as the

unlevered firm value U , which is linear in δ, so this also implies firms with more valuable assets at

default should choose Chapter 11. These predictions of our model are supported by BWZ (2006),

BCI (2017), and Corbae and D’Erasmo (2017). Specifically, in Table I of BWZ (2006), they find

that the average asset value of firms entering Chapter 11 is nearly four times as large as the average

asset value of firms entering Chapter 7. Their Table II shows in a Probit model that conditional

on being a reasonable size, firms with more valuable assets are more likely to choose Chapter 11.

Table 1 of Corbae and D’Erasmo (2017) similarly shows that firms entering Chapter 11 are roughly

four times as large as those entering Chapter 7, and Table 1 of BCI (2017) shows firms in Chapter

11 have four times as many plants as firms entering Chapter 7. While none of these tables show

statistics on unnormalized EBIT, firms entering Chapter 11 have a higher EBITDA normalized by

assets than firms entering Chapter 7 (Table 1 of Corbae and D’Erasmo (2017)). Also, multiplying

the median firm’s EBITDA over assets by the median firm’s assets in the same table suggests a

higher unnormalized EBITDA for firms entering Chapter 11.

Debt and Chapter 11: In Proposition 6, we show that firms with higher coupons tend to

choose Chapter 11 (specifically, those with a coupon above some threshold C̄). This implies the

prediction that defaulting firms should be more likely to choose Chapter 11 when they have a lot

of debt. Table I of BWZ (2006) shows that firms entering Chapter 11 have a higher Debt/Assets

ratio, and combining this with the higher denominator for firms in Chapter 11 mentioned previously,

firms entering Chapter 11 have more debt. This is also a significant predictor of Chapter 11 in their

Probit regressions. Table 1 of Corbae and D’Erasmo (2017) confirms these findings, consistent with

our model. In summary, Propositions 5 and 6 characterize the decision between Chapter 7 and
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(a) µ (b) σ

(c) B (d) λd

Figure 11: Chapter Choice
We start with the baseline parameters of Table 1(b), for which the firm optimally chooses Chapter 11. In each

subpanel, we change the pictured parameter to each of the nine values depicted on the x-axis. For each value, we

evaluate the bankruptcy chapter chosen on the equilibrium path. The shaded area covers parameter values on the

x-axis for which the firm chooses Chapter 11, while the white region covers parameter values for which the firm

chooses Chapter 7. In all cases, shading is “right continuous” in that the firm chooses the chapter corresponding to

the region immediately to the right of the x-axis value.
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Chapter 11 in our model, and both of the mechanisms enjoy empirical support.

Other comparative statics: Figure 11 plots how equity’s decision to choose Chapter 11 vs

Chapter 7 varies with four parameters. We start with the baseline parameters of Table 1(b). Then,

one parameter at a time for each of µ,B, σ, λd, we change the parameter to nine different values

and record the corresponding equilibrium chapter choice. Higher growth firms value the tax shield

of debt more, which makes them want to issue a large coupon. Higher µ also increases the relative

efficiency of Chapter 11 since it allows the firm to relever. This means that ceteris paribus, firms

with higher µ tend to prefer Chapter 11 (panel (a)), since larger coupons encourage Chapter 11

ex-post. To our knowledge, this is a novel empirical prediction. It also suggests that estimates of

the benefits of Chapter 11 might be overstated, since the firms which chose to enter Chapter 11

might have had higher growth rates on average.

Higher volatility has the opposite effect (panel (b)) as it decreases the relative efficiency of

Chapter 11. Intuitively, when it is more costly for equityholders to enter Chapter 11 (B increases),

equityholders are more likely to choose Chapter 7 (panel (c)). Stronger creditor rights (lower λd)

make Chapter 11 less appealing to equityholders, and this tends to encourage Chapter 7 (panel

(d)). Similarly, in unreported results we find a higher rate of conversion to Chapter 7 tends to

discourage equityholders from paying for Chapter 11.

5.4 Length of Chapter 11

As we discussed in Section 3.6, our model of Chapter 11 produces the realistic result that Chapter

11 cases of any length can occur with positive probability on the equilibrium path. Our model

also produces a comparative static for the length of bankruptcy which is consistent with empirical

evidence. Bandopadhyaya (1994) finds that firms with a greater interest burden have a significantly

higher instantaneous probability of exiting Chapter 11. In our model, firms with a larger interest

burden endogenously default in more profitable states, which leads them to reach their upper

reorganization threshold faster.

Our model also produces novel predictions for the length of Chapter 11 cases. The length of

Chapter 11 is stochastic, since it depends upon the path of the EBIT δt during bankruptcy. Rather

than simulate the average length, we use the metric R0/(x̄δB). Recall that δB is the endogenous

threshold at which equity defaults and enters Chapter 11, while the firm emerges from Chapter 11

the first time t that δt ≥ Rt/x̄, where x̄ is endogenous. When h = 0, we have Rt = R0 for all t, so

R0/(x̄δB) reflects the factor by which cashflows must improve to exit Chapter 11.

Figure 12 plots elasticities of this metric R0/(x̄δB) with respect to a 5% change in various

parameters from their baseline values (Table 1(b)). Based on Figure 12, we find that lower growth

firms, higher volatility firms, and firms with greater shareholder bargaining power all have longer

bankruptcy procedures. We are unaware of any empirical papers which test these findings.
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Figure 12: Comparative Statics for Equilibrium Length of Chapter 11

Using the baseline parameters of Table 1(b), we calculate the optimal reorganization threshold x̄ and the optimal

threshold δB for entering Chapter 11, and use them to calculate the ratio R0/(x̄δB). Then, for each parameter

individually, we increase that parameter by 5% of its baseline value, and recalculate R0/(x̄δB). This figure plots the

percentage change in R0/(x̄δB) from increasing each parameter, one at a time, by 5%.

6 Extensions and conclusion

In this section, we informally consider how two assumptions in our model might impact our results.

First, since in reality some firms enter Chapter 11 multiple times, in Section 6.1 we discuss what

might happen if we allowed firms to enter Chapter 11 more than once. Second, since empirically

firms adjust their leverage while our model allows for just one capital structure decision, Section

6.2 discusses how leverage adjustments might impact our results. Section 6.3 concludes.

6.1 Multiple Chapter 11 opportunities

For tractability, we assume that firms can only enter Chapter 11 once, so after reorganizing equi-

tyholders must liquidate if they subsequently default. If we were to extend the model to allow for

two Chapter 11 opportunities, we believe this would not significantly change the results. Suppose

we allow two Chapter 11 opportunities, and consider a history in which the firm chose to default,

entered Chapter 11, and has just emerged. When this reorganized firm is choosing its new capital

structure, it looks exactly like a firm at time 0 in our model, and makes the exact capital structure

decision we described in the previous section. If Choiceval > 1, then this relevered firm value is

more attractive than the corresponding reorganized firm value with only Chapter 7 available in

the future. Then, considering a history where the firm has not yet defaulted, Chapter 11 looks

more appealing, since the reorganized firm value is even higher. Since Choiceval > 1, the firm was

likely already going to choose Chapter 11, and now with two Chapter 11 opportunities this is even

more appealing, so the firm chooses Chapter 11 at the first default. Thus, in this case the choice
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of Chapter 7 vs Chapter 11 is unchanged, and the firm likely issues slightly more debt at time 0

since the first Chapter 11 is now less costly. It is unlikely that this increase in debt is significant,

since the reduction in the cost of Chapter 11 only occurs in an unlikely state of the world (where

the firm defaults and reemerges before a forced conversion) that is heavily discounted.

If Choiceval = 1, then when the firm emerges from the first Chapter 11, they ignore the option

to enter a second Chapter 11 and issue a coupon consistent with future Chapter 7. But then in a

history where the firm has not yet defaulted the first time, the first Chapter 11 looks exactly as

attractive as it would if there were no second Chapter 11 opportunity. In this case, the firm still

chooses Chapter 7 at the first default, and the time 0 coupon is unchanged.

If Choiceval < 1, it is possible the second Chapter 11 might change behavior. In particular,

the firm value upon emerging from the first Chapter 11 will now be lower than in the current

model, which makes the first Chapter 11 less appealing. This could slightly increase debt in the

“constrained debt Chapter 7” strategy, since it is easier for equity to promise ex-post not to enter

Chapter 11. However, it could also shift the strategy from “optimal inefficient Chapter 11” to

the “constrained debt Chapter 7” strategy, since now the inefficiency of the first Chapter 11 could

outweigh the tax benefits of the larger coupon CB > C̄.

In summary, adding a second Chapter 11 might lead to slightly higher debt in some cases, while

it could also drastically reduce debt if it causes a firm to shift from the “optimal inefficient Chapter

11” strategy to the “constrained debt Chapter 7” strategy. There is no change in the intuition if

we were to add a third, fourth, or general nth Chapter 11 opportunity.

6.2 Leverage adjustments and dynamic capital structure

In our model, we assume the firm can only issue debt once (as in Leland (1994)). There is em-

pirical evidence suggesting that some firms adjust their leverage ratios infrequently (Fama and

French (2002); Leary and Roberts (2005); Korteweg, Schwert, and Strebulaev (2014)). Further,

debt covenants are often written with tight interest coverage ratios, such that further issuance is

restricted even at the inception of the loan (Chava and Roberts (2006)). However, in reality many

firms adjust their book leverage over time: the within-firm standard deviation of book leverage

in Compustat is approximately 12% (see Korteweg, Schwert, and Strebulaev (2014); DeAngelo,

DeAngelo and Whited (2011); DeAngelo and Roll (2015); DeAngelo, Goncalves and Stulz (forth-

coming)). Our assumption that firms issue debt once is an abstraction from reality we make for

tractability, which has the added benefit that it makes our results simpler to interpret.

One potential means of relaxing this assumption would be to let firms issue callable debt with

an indenture restricting further issuance prior to calling existing debt. This is the assumption

made in the dynamic capital structure literature (Leland (1998), Goldstein, Leland and Ju (2001),

Strebulaev (2007)). The nonlinearity of equity’s Chapter 11 bargaining value function would violate

the scaling property needed to solve such models. However, we imagine this would not change the

implications of our model too drastically. In general, the tax benefits of any particular debt issue

are lower in these models since the firm may always refinance with a larger coupon if profitability
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improves. Thus at time 0 firms would generally issue less debt, and in our Case 3 it is more

likely that firms would find the “constrained debt Chapter 7” strategy optimal than the “optimal

inefficient Chapter 11” strategy since large coupons are less valuable.

Importantly, the ability to refinance and issue more debt in such a setting would not change

the ability of equityholders to credibly commit to Chapter 7. Should equityholders issue a coupon

C̄ consistent with future Chapter 7, the creditors purchasing this debt would recognize that if

equityholders want to issue more debt, the firm would first need to call the outstanding debt at

par, defending the existing creditors from devaluation by the shift to an ex-post optimal Chapter

11. This informal logic suggests our “constrained debt Chapter 7” strategy would be robust to

allowing multiple debt issuances.

6.3 Conclusion

This paper studies the choice of bankruptcy chapter and its relationship to capital structure de-

cisions. We provide a model of an equity value-maximizing firm that decides how much debt to

issue, then subsequently chooses when and under which bankruptcy chapter to default. We model

Chapter 11 reorganization with a novel continuous-time stochastic bargaining model in the style of

Merlo and Wilson (1995). Specifically, equityholders and debtholders observe the firm’s assets and

accumulated cashflows evolve stochastically, and they must unanimously agree when to emerge

from Chapter 11 and how to split the firm. The reorganized firm can then issue new debt and

continue operating.

There may often be a conflict between the desires of equityholders and creditors in terms of their

relative treatment in the two chapters of bankruptcy. Equityholders with larger debt obligations

endogenously default in more profitable states, in which they prefer the prospect of reorganization.

Creditors might enjoy higher recovery rates in Chapter 7 liquidation due to APR. Thus, when the

firm issues debt, creditors take these incentives into account and demand higher credit spreads for

large coupons that imply a subsequent Chapter 11. In some cases, the model predicts equityholders

will optimally issue a coupon that implies a future inefficient Chapter 11, leading to lower leverage

and higher credit spreads than the Leland (1994) model. In other cases, equityholders optimally

issue a small coupon, such that they will find Chapter 7 optimal ex-post, to obtain a lower credit

spread. For a reasonable parameterization of this case, our model predicts an optimal leverage

ratio of 40% while the Leland (1994) model predicts 70%, even though the firm liquidates on the

equilibrium path in both models. Stated another way, while in our model the observed bankruptcy

behavior may be identical to that of the Leland model in which only liquidation may be undertaken,

the off-equilibrium threat of reorganization delivers a much lower optimal leverage ratio. The added

option of Chapter 11 actually reduces ex-ante firm value in these cases, since equityholders cannot

commit to a future Chapter 7 liquidation.

Several extensions of our model may prove illuminating. The model could be generalized to

incorporate asymmetric information between equityholders and debtholders, given the rich tradition

in the corporate finance literature exploiting the implications of hidden information. In addition,
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the model could be extended to a multiple-firm industry equilibrium (similar to Lambrecht (2001);

Grenadier (2002); Miao (2005)). The latter extension could produce interesting interactions wherein

firms might push rivals toward Chapter 7 rather than Chapter 11 in order to reduce competition.

Finally, the model’s framework might prove useful for empirical work aimed at estimating the

relative inefficiencies of Chapter 7 and Chapter 11.

A Solving Chapter 11 efficiently

First, we provide an expression for the constant θ. In the notation of Section 2, let

p1 =
r

r − µ
ψ − 1

ψ
[

−τ
ψ(1− τ)α+ (ψ − 1)τ

]
−1
ψ

p2 =
ψ

ψ − 1

r − µ
r

,

so C∗ = p1δ and δL = p2C∗ = p1p2δ. Summing the values of equity and debt,

EL(δ) +DL(δ) = δψδ−ψL (1− τ)[
C∗

r
− δL
r − µ

]

+
(1− τ)

r − µ
δ − (1− τ)C∗

r
+
C∗

r

+ δψδ−ψL [−C
∗

r
+ (1− α)(1− τ)

δL
r − µ

]

=
1− τ
r − µ

δ +
τC∗

r
− δψδ−ψL [τ

C∗

r
+ α(1− τ)

δL
r − µ

].

Evaluating at δ0 and plugging in the above formulas, this is

=
1− τ
r − µ

δ0 +
τp1δ0
r
− δψ0 (p1p2δ0)

−ψ[τ
p1δ0
r

+ α(1− τ)
p1p2δ0
r − µ

]

= [
1− τ
r − µ

+
τp1

r
− (p1p2)−ψ[τ

p1

r
+ α(1− τ)

p1p2

r − µ
]]δ0

= θδ0

Next, in many of the proofs in this appendix, we will need to apply dominated convergence.

This next lemma allows us to do so under the assumption of r > µ, whenever the function in

question can be bounded by an affine function of δ,R.

Lemma A.1 For any fixed constants δ0, R0, B1, B2 > 0,

Eδ0,R0 [sup
t
e−rt(B1δt −B2Rt)] <∞.
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Proof of Lemma: Since r > µ, for an arithmetic Brownian motion Zt = (−r+µ− σ2

2 )t+σBt,

the supremum of Zt over all t has an exponential distribution with parameter λ̂ =
2|−r+µ−σ

2

2
|

σ2 > 1

(see, for example, Graversen and Peskir (1998)). It follows that

Eδ0 [sup
t
e−rtδt] = δ0E[sup

t
eZt ] = δ0

λ̂

λ̂− 1
<∞,

and, decomposing r = r1 + r2 with r1 > µ, r2 > 0,

Eδ0 [sup
t
e−rt

∫ t

0
δsds] ≤ Eδ0 [sup

t

∫ t

0
e−rsδsds]

≤ Eδ0 [

∫ ∞
0

e−rsδsds]

= Eδ0 [

∫ ∞
0

e−r2se−r1sδsds]

≤ Eδ0 [

∫ ∞
0

e−r2s(sup
s
e−r1sδs)ds]

= Eδ0 [(sup
s
e−r1sδs)

∫ ∞
0

e−r2sds]

=
1

r2
Eδ0 [(sup

s
e−r1sδs)],

which is similarly finite. Then putting everything together, we have that

Eδ0,R0 [sup
t
e−rt(B1δt −B2Rt)]

= Eδ0 [sup
t
e−rt(B1δt +B2h(1− τ)

∫ t

0
δsds−B2R0)]

≤ Eδ0 [| sup
t
e−rt(B1δt +B2h(1− τ)

∫ t

0
δsds)|]

≤ B1Eδ0 [sup
t
e−rtδt] +B2h(1− τ)Eδ0 [sup

t
e−rt

∫ t

0
δsds]

<∞,

completing the proof. As an immediate corollary, for any fixed δ,R,

V (δ,R) = sup
TR∈F δ,R

E(δ,R)[1(TR < Tc)e
−rTR(θδTR −RTR)

+ 1(Tc < TR)e−rTc(ζδTc −RTc)] <∞ (50)

since, letting T = TR ∧ Tc, there exist B1, B2 such that the expression in the expectation is less

than
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e−rT (B1δT −B2RT +B2R0)

with probability 1.

Proof of Proposition 1: We introduce some simplifying notation. Let O∗ ≡ {(δ,R) :

V (δ,R) = θδ − R} be the set of values where the social planner’s value function V (δ,R) equals

the payoff θδ − R. Fix a MPE with value functions E,D and equilibrium stopping time T . It

will be convenient to define the set E ≡ ∪iOi × {i} so the game ends when (δ,R, s) ∈ E . From

this point on, T is always defined as the first hitting time of E . Let V e(δ,R, s) ≡ E(δ,R, s) and

V d(δ,R, s) ≡ D(δ,R, s), and let y ≡ θδ −R and z ≡ ζδ −R.

Now, the proof proceeds in three steps. First, from the definition of Ji(δ,R, s), we see that∑
i Ji(δ,R, s) = y. Given this, we have

V e(δ,R, s) + V d(δ,R, s)

= E(δ,R,s)[1(T < Tc)e
−rT yT + 1(Tc < T )e−rTczTc ]

≤ V (δ,R) (51)

by the definition of V (δ,R). Second, we claim that if (δ,R) ∈ O∗, then V e(δ,R, s)+V d(δ,R, s) =

V (δ,R). From the first observation, the leftside cannot be strictly greater. If it were strictly less,

then letting s′ 6= s,

y − V s′(δ,R, s) = V (δ,R)− V s′(δ,R, s) > V s(δ,R, s)

where the first equality is the definition of O∗. It follows that player s would have a strictly

profitable deviation to offer the other player their value function. This implies that if (δ,R) ∈ O∗,
then

E(δ,R,s)[1(T < Tc)e
−rT yT + 1(Tc < T )e−rTczTc ] (52)

= V e(δ,R, s) + V d(δ,R, s)

= V (δ,R)

= E(δ,R)[1(τ∗ < Tc)e
−rτ∗yτ∗ + 1(Tc < τ∗)e

−rTczTc ]

where τ∗ = inf{t : V (δt, Rt) = yt} solves the optimal stopping problem. Third, any player

can demand the game end at the maximum T ∨ τ∗ with payoffs Ji. Specifically, any player i can

deviate to making offers when st = i and (δ,R) ∈ Oi ∩O∗ and accepting offers from player j when

(δ,R) ∈ Oj ∩ O∗. For this to be a MPE, this cannot be a profitable deviation for each player.

Summing across i, we have
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∑
i

V i(δ,R, s) (53)

≥ E(δ,R,s)[1(T ∨ τ∗ < Tc)e
−rT ∨τ∗yT ∨τ∗ + 1(Tc < T ∨ τ∗)e−rTczTc ]

= E(δ,R,s)[1(T > τ∗){1(T < Tc)e
−rT yT + 1(Tc < T )e−rTczTc}]

+ E(δ,R,s)[1(T < τ∗){1(τ∗ < Tc)e
−rτ∗yτ∗ + 1(Tc < τ∗)e

−rTczTc}].

Now, fix (δ0, R0, s0). Let Ft be the filtration generated by (δ,R, s), which are jointly Markov.

We have F0 ⊂ Fτ∗ where τ∗, δτ∗ , Rτ∗ , sτ∗ ,1(T > τ∗) are all Fτ∗ measurable. Then

E(δ0,R0,s0)[1(T > τ∗){1(T < Tc)e
−rT yT + 1(Tc < T )e−rTczTc}]

= E[1(T > τ∗){1(T < Tc)e
−rT yT + 1(Tc < T )e−rTczTc}|F0]

= E[1(T > τ∗)E{1(T < Tc)e
−rT yT + 1(Tc < T )e−rTczTc |Fτ∗}|F0].

Applying the Markov property, this equals

= E[1(T > τ∗)E(δτ∗ ,Rτ∗ ,sτ∗ ){1(T < Tc)e
−rT yT + 1(Tc < T )e−rTczTc}|F0],

and since (δτ∗ , Rτ∗) ∈ O∗ by definition, applying (52), this is

= E[1(T > τ∗)E(δτ∗ ,Rτ∗ ){1(τ∗ < Tc)e
−rτ∗yτ∗ + 1(Tc < τ∗)e

−rTczTc}|F0]

= E(δ0,R0,s0)[1(T > τ∗){1(τ∗ < Tc)e
−rτ∗yτ∗ + 1(Tc < τ∗)e

−rTczTc}].

Plugging this in to (53), we have that

∑
i

V i(δ,R, s)

≥ E(δ,R,s)[1(T > τ∗){1(T < Tc)e
−rT yT + 1(Tc < T )e−rTczTc}]

+ E(δ,R,s)[1(T < τ∗){1(τ∗ < Tc)e
−rτ∗yτ∗ + 1(Tc < τ∗)e

−rTczTc}]

= E(δ,R,s)[1(τ∗ < Tc)e
−rτ∗yτ∗ + 1(Tc < τ∗)e

−rTczTc ]

= V (δ,R),

completing the proof.

B Efficient Chapter 11

Recall that, suppressing arguments, the HJB is
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rV = −h(1− τ)δVR + δµVδ +
σ2

2
δ2Vδδ + ι[ζδ −R− V ],

where ζ = (1− α)(1− τ)/(r − µ) such that ζδ −R is the liquidation value of the firm, and ιdt

is the probability of liquidation per unit time.

We will solve this PDE by using a change of variables. Define v ≡ V/δ and x ≡ R/δ. Note this

means we expect exercise at low values of x. Straightforward calculus shows v′ = VR, −xv′ = Vδ−v,

v′′x2 = δVδδ. Then dividing by δ and substituting, we get

(r + ι− µ)v = −(µx+ h(1− τ))v′ +
σ2

2
x2v′′ + ι(ζ − x).

B.1 General solution of the homogeneous equation

To start, consider the homogeneous equation

(r + ι− µ)v = −(µx+ h(1− τ))v′ +
σ2

2
x2v′′.

Conjecture a solution v = xβw(x) for some function w and constant β. This implies derivatives

v′ = βxβ−1w + xβw′

v′′ = β(β − 1)xβ−2w + 2βxβ−1w′ + xβw′′

Plugging this conjecture in, we get

(r + ι− µ)v = −(µx+ h(1− τ))[βxβ−1w + xβw′]

+
σ2

2
x2[β(β − 1)xβ−2w + 2βxβ−1w′ + xβw′′].

First, gather v terms:

0 = v[−(r + ι− µ)− µβ +
σ2

2
β(β − 1)].

We define β such that this equals 0. That is, β is a positive or negative root of

0 = [−(r + ι− µ)− µβ +
σ2

2
β(β − 1)].

Let κ be the positive root and γ be the negative root, and for now let β be a placeholder for

either root. Plugging in this β, we’re left with

0 = −h(1− τ)βxβ−1w − (µx+ h(1− τ))xβw′ +
σ2

2
x2[2βxβ−1w′ + xβw′′].

Multiply through by x−β+2:
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0 = −h(1− τ)βxw − (µx+ h(1− τ))x2w′ +
σ2

2
[2βx3w′ + x4w′′]

Finally, conduct a second change of variables to z ≡ [−2h(1− τ)]/[σ2x] and f(z) = w(x). Then

w′ = f ′[2h(1− τ)]/[σ2x2] and

w′′ = −2f ′
2h(1− τ)

σ2x3
+ f ′′

4(h(1− τ))2

σ4x4
,

where combining implies

w′′ = −2
w′

x
+ f ′′

4(h(1− τ))2

σ4x4

x4w′′ = −2x3w′ + f ′′
4(h(1− τ))2

σ4

Plugging in,

0 = −h(1− τ)βxf − (µx+ h(1− τ))
2h(1− τ)

σ2
f ′

+
σ2

2
[f ′′

4(h(1− τ))2

σ4
+ 2(β − 1)xf ′

2h(1− τ)

σ2
].

Multiplying by −1/[h(1− τ)x] and rearranging,

0 = βf + ((−2(β − 1) +
2µ

σ2
)− z)f ′ + zf ′′,

which is Kummer’s ODE, with general solutions

f(z) = M(−β,−2(β − 1) +
2µ

σ2
, z)

f(z) = U(−β,−2(β − 1) +
2µ

σ2
, z).

Thus for either root β = κ, γ, and either solution f to Kummer’s ODE, we get a solution

A3x
βf(
−2h(1− τ)

σ2x
)

for some constant A3.

B.2 Applying boundary conditions

Since x = R/δ, and R can go negative, x starts out large and positive, then declines over time. We

conjecture that the option is exercised before x becomes negative (which we verify shortly). Then

we should be looking for a solution on a positive domain of x. Also, as x = R/δ → ∞, the cost

of exercise is large and the payoff is small, so the value should not explode. We now impose this

condition.
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As x → ∞, M(a, b,−2h(1 − τ)/[σ2x]) converges to M(a, b, 0) = 1. Thus xβM works as a

solution for the negative root γ, but will not work for the positive root κ since then xβ →∞.

As x → ∞, applying the positive root β = κ we get U(−β,−2(β − 1) + 2µ/σ2, 0) is a finite

constant. But then xβU goes to infinity. Applying the negative root β = γ, U(−β,−2(β − 1) +

2µ/σ2, z) explodes faster than xβ goes to 0, violating the boundary condition.

In conclusion, the homogeneous solution must take the form

v(x) = A3x
γM(−γ,−2(γ − 1) +

2µ

σ2
,
−2h(1− τ)

σ2x
)

for some constant A3.

B.3 Finishing the value function

Finally, we must add back in the risk of liquidation to the single agent optimization. Recall after

the change of variables, the HJB may be written

(r + ι− µ)v = −(µx+ h(1− τ))v′ +
σ2

2
x2v′′ + ι(ζ − x).

As discussed above, the only solution to the homogeneous equation satisfying the necessary

boundary conditions is

v(x) = A3x
γM(−γ,−2(γ − 1) +

2µ

σ2
,
−2h(1− τ)

σ2x
),

where γ is the negative root of

0 = [−(r + ι− µ)− µβ +
σ2

2
β(β − 1)].

The relevant particular solution including the last nonhomogeneous term is

ιζ + h(1−τ)ι
r+ι

r + ι− µ
− ιx

r + ι
,

leading to a solution

v(x) = A3x
γM(−γ,−2(γ − 1) +

2µ

σ2
,
−2h

σ2x
) +

ιζ + h(1−τ)ι
r+ι

r + ι− µ
− ιx

r + ι

for some constant A3. At exercise, the firm receives θδ − R so this should smooth paste on

θ − x. Conjecturing exercise occurs at a lower barrier x̄, the smooth pasting and value matching

conditions are

v(x̄) = θ − x̄

v′(x̄) = −1.
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Note that

d

dz
M(a, b, z) =

a

b
M(a+ 1, b+ 1, z),

so

v′(x) = A3γx
γ−1M(−γ,−2(γ − 1) +

2µ

σ2
,
−2h(1− τ)

σ2x
)

− ι

r + ι
+A3x

γ −γ
−2(γ − 1) + 2µ

σ2

2h(1− τ)

σ2x2

×M(−γ + 1,−2(γ − 1) +
2µ

σ2
+ 1,

−2h(1− τ)

σ2x
).

Solving for this v, we have V (δ,R) = δv(R/δ) for δ ≤ R/x̄ and V (δ,R) = θδ − R for δ ≥ R/x̄.

We now prove that this V is the value function for the social planner’s problem, and the optimal

policy is reorganize when R/δ ≤ x̄, or when δ ≥ R/x̄.

B.4 Proof of Proposition 2

Define an operator A that maps smooth functions V of δ,R to

−h(1− τ)δVR + δµVδ +
σ2

2
δ2Vδδ + ι[ζδ −R− V ].

By construction, V (δ,R) = δv(R/δ) is smooth since it smooth pastes at δ = R/x̄. Also by

construction, AV = rV for δ ≤ R/x̄. For δ ≥ R/x̄ we have V = θδ −R, so in this region

AV = h(1− τ)δ + δµθ + ι(ζ − θ)δ

= [h(1− τ) + µθ + ι(ζ − θ)]δ,

and thus in this region, −rV +AV ≤ 0 if and only if

− r(θδ −R) + [h(1− τ) + µθ + ι(ζ − θ)]δ ≤ 0

⇐⇒ h(1− τ) + µθ + ι(ζ − θ)− rθ
r

δ ≤ −R

⇐⇒ −h(1− τ) + µθ + ι(ζ − θ)− rθ
r

≥ x,

which is guaranteed by the first condition of Proposition 2,

−h(1− τ) + µθ + ι(ζ − θ)− rθ
r

≥ x̄.

By construction of V , we have V (δ,R) = θδ−R when δ ≥ R/x̄, and by condition 2 of Proposition

2,
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V (δ,R) = δv(
R

δ
) ≥ δ(θ − x) = δθ −R,

so putting this together, under the conditions of Proposition 2, our candidate value function is

smooth and satisfies the variational inequality

max(θδ −R− V,−rV +AV ) = 0.

Next, we show that there is a constant C such that x ≥ x̄ ⇒ v(x) ≤ C. To see this, we can

use the fact that γ < 0 to write M(−γ,−2(γ − 1) + 2µ/σ2,−2h(1 − τ)/[σ2x]) = M(a, b, z) in its

integral representation

M(a, b, z) =
Γ(b)

Γ(a)Γ(b− a)

∫ 1

0
ezuua−1(1− u)b−a−1du.

For u ∈ [0, 1] we have ez1u ≤ ez2u for z1 ≤ z2 and all terms are positive, so M(a, b, z) is

positive and monotonically increasing in z. Then M(−γ,−2(γ − 1) + 2µ/σ2,−2h(1 − τ)/[σ2x])

is monotonically increasing in x for x ≥ x̄. Since the expression converges to M(a, b, 0) = 1 as

x→∞, it follows that M ∈ (0, 1) for x ≥ x̄. Then since γ < 0, we have xγM ≤ xγ ≤ x̄γ for x ≥ x̄.

It follows that

v(x) = A3x
γM(−γ,−2(γ − 1) +

2µ

σ2
,
−2h

σ2x
) +

ιζ + h(1−τ)ι
r+ι

r + ι− µ
− ιx

r + ι

≤ A3x̄
γ +

ιζ + h(1−τ)ι
r+ι

r + ι− µ
− ιx̄

r + ι
= C (54)

whenever x ≥ x̄. Thus V (δ,R) is bounded above by Cδ whenever R ≥ δx̄, while V (δ,R) = θδ−R
when R ≤ δx̄. Combining this, it is clear we can bound V (δ,R) from above by the affine function

Bδ − R + R0 as long as B > max(θ, C) and R ≤ R0, where the latter inequality holds almost

everywhere by definition of Rt.

We are now ready to finish the verification. Fix δ0, R0 and define Yt ≡ 1(t < Tc)e
−rtV (δt, Rt) +

1(t ≥ Tc)e−rt(ζδt −Rt). By Ito’s lemma for semimartingales, for t < Tc,

Yt = V (δ0, R0) +

∫ t

0
e−rs[−rV (δs, Rs) +AV (δs, Rs)]ds+Mt (55)

for a local martingale Mt with M0 = 0. Since V satisfies the variational inequality, for t < Tc,

Yt = e−rtV (δt, Rt) ≤ V (δ0, R0) +Mt,

where V is bounded below so Mt is a supermartingale. Take an arbitrary stopping time T and

let Tn be a sequence of stopping times increasing to T ∧ Tc.5 Applying optional sampling6 for the

5For example, Tn = max(0, T ∧ Tc − 1
n

)
6By an application of Fatou’s lemma, optional sampling for bounded below supermartingales holds for arbitrary
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bounded below supermartingale Mt at Tn:

Eδ0,R0 [YTn ] ≤ V (δ0, R0).

Since V (δ,R) ≥ θδ −R, it follows that

Eδ0,R0 [e−rTn1(Tn < Tc)(θδTn −RTn) + e−rTc1(Tn ≥ Tc)(ζδTc −RTc)] ≤ V (δ0, R0).

Taking n to infinity and using the bound V (δ,R) ≤ Bδ − R + R0 along with the lemma of

Appendix A to apply dominated convergence,

Eδ0,R0 [e−rT1(T < Tc)(θδT −RT ) + e−rTc1(T ≥ Tc)(ζδTc −RTc)] ≤ V (δ0, R0).

Now, define TR = inf{t : Rt/δt ≤ x̄} and fix R0, δ0 such that TR > 0.7 Then by definition of V ,

−rV +AV = 0 for t < TR, so applying Ito’s lemma as before gives

Yt = V (R0, δ0) +Mt.

let Qn be a sequence of stopping times increasing to TR∧Tc, let τn be the localizing sequence of

stopping times for the local martingale Mt, and let Tn = Qn ∧ τn ∧ n. Applying optional sampling,

Eδ0,R0 [YTn ] = V (δ0, R0).

Taking n to infinity and using the bound V (δ,R) ≤ Bδ − R + R0 along with the lemma of

appendix A to apply dominated convergence,

Eδ0,R0 [YTR∧Tc ] = Eδ0,R0 [1(TR < Tc)e
−rTRV (δTR , RTR) + 1(TR ≥ Tc)e−rTC (ζδTC −RTC )]

= Eδ0,R0 [1(TR < Tc)e
−rTR(θδTR −RTR) + 1(TR ≥ Tc)e−rTC (ζδTC −RTC )]

= V (δ0, R0),

where the penultimate equality follows from the definition of TR and V , completing the verifi-

cation.

C Proof of Proposition 3, calculating equilibrium

Proof of Proposition 3: Let V e(δ,R, s) ≡ E(δ,R, s) and V d(δ,R, s) ≡ D(δ,R, s). The proof

proceeds in two steps. First, we show it is without loss of generality to assume the offer strategy

stopping times.
7If TR = 0, the following conclusion is immediate.
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ωi(δ,R) = V j(δ,R, i) is optimal. If there were an alternate strategy (ω̂, Â, Ô) that performed

strictly better than the proposed strategy and ω̂i(δ,R) > V j(δ,R, i) for some δ,R, i, j, then another

strategy (ω̃, Â, Ô) does even better by setting ω̃i(δ,R) = V j(δ,R, i) in those cases. In words, offering

more than necessary to make the opponent accept is wasteful, since there is complete information

and offers cannot change future behavior according to stationary strategies. Likewise, if there

were an alternate strategy (ω̂, Â, Ô) that performed strictly better than the proposed strategy and

ω̂i(δ,R) < V j(δ,R, i) for some δ,R, i, j, then another strategy (ω̃, Â, Õ) does just as well where

ω̃i(δ,R) = V j(δ,R, i) and those cases are removed from the offer region. In words, if player i makes

an offer that they know will be rejected, they do just as well by not making the offer. Therefore,

when we consider profitable deviations, it is sufficient to consider deviations of Â, Ô where the

alternate offer function is still ωi(δ,R) = V j(δ,R, i).

Second, we show that the equilibrium time T solves

sup
Ti∈F (δ,R,s)

E(δ,R,s)[1(Ti < Tc)e
−rTiJi(δTi , RTi , sTi) + 1(i = d)1(Tc ≤ Ti)e−rTc(ζδTc −RTc)] (56)

with associated value function V i(δ,R, s). Since each player tries to optimize this quantity

subject to constraints imposed by the opponent’s strategy, and the equilibrium time T solves the

unconstrained problem, this implies each player acts optimally in the MPE.

To show this, define Nt = 1(t ≥ Tc) and for notational convenience define an operator Hs
mapping appropriately differentiable functions f(δ,R, s,N) to8

− h(1− τ)δfR(δ,R, s,N) + µδfδ(δ,R, s,N) +
σ2δ2

2
fδδ(δ,R, s,N) + λs[f(δ,R, s′, N)− f(δ,R, s,N)]

+ ι[f(δ,R, s, 1)− f(δ,R, s, 0)].

Fix N0 = 0. Defining U i(δ,R, s, 0) = V i(δ,R, s) and U i(δ,R, s, 1) = 1(i = d)(ζδ − R), by

construction U i solves

−rU i +HsU i = 0

except possibly when (δ,R, s) ∈ O∗×{i}. By assumption, we have U i+U j = V (δ,R).9 Also by

construction, when (δ,R, s) ∈ O∗i ×{i} we have −rU j +HsU j = 0 and −rV (δ,R) +HsV (δ,R) ≤ 0

by Proposition 2. By the linearity of Hs, it follows that

(−r +Hs)U i = (−r +Hs)[V (δ,R)− U j ] ≤ 0.

For t < Tc, applying Ito’s lemma for semimartingales (see, for example, Duffie (2010)) to U i

8The fact that Nt does not transition from 1 to 0 is irrelevant.
9In a slight abuse of notation, we sometimes view V as a trivial function of s that equals ζδ −R when N = 1.
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gives

e−rtU i(δt, Rt, st, Nt) = U i(δ0, R0, s0, N0)

+

∫ t

0
e−ru[(−r +Hsu)U i(δu, Ru, su, Nu)]du+Mt

for a local martingale Mt with Mt = 0. Applying an identical argument to that used in the

proof of Proposition 2 (Appendix B.4) gives that for an arbitrary stopping time T ,

Eδ0,R0,s0,0[U i(δT∧Tc , RT∧Tc , sT∧Tc , NT∧Tc)]

= E(δ0,R0,s0)[1(T < Tc)e
−rTV i(δT , RT , sT ) + 1(i = d)1(Tc ≤ T )e−rTc(ζδTc −RTc)]

≤ U i(δ0, R0, s0, 0)

= V i(δ0, R0, s0). (57)

For the equilibrium time T , we have t < T implies10 (δt, Rt, st) /∈ O∗i × {i} which implies

(−r +Hs)U i = 0, so an argument identical to that used in the proof of Proposition 2 (Appendix

B.4) gives that

Eδ0,R0,s0,0[U i(δT ∧Tc , RT ∧Tc , sT ∧Tc , NT ∧Tc)]

= E(δ0,R0,s0)[1(T < Tc)e
−rT V i(δT , RT , sT ) + 1(i = d)1(Tc ≤ T )e−rTc(ζδTc −RTc)]

= U i(δ0, R0, s0, 0)

= V i(δ0, R0, s0). (58)

Note that V (δ,R) ≥ θδ − R, combined with the assumption that
∑

i=e,d V
i(δ,R, s) = V (δ,R),

implies that

Ji(δ,R, s) = 1(s = i)[θδ −R− V j(δ,R, i)] + 1(s = j)V i(δ,R, j)

≤ 1(s = i)[V (δ,R)− V j(δ,R, i)] + 1(s = j)V i(δ,R, j)

= V i(δ,R, s)

so V i(δ,R, s) ≥ Ji(δ,R, s), and by definition V i(δT , RT , sT ) = Ji(δT , RT , sT ). Plugging this

into (57, 58) completes the proof.

C.1 Equilibrium value functions

Following Appendix B, general solutions of the homogeneous equation

10The conclusion is trivial when T = 0.
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(r + ι− µ)v = −(µx+ h(1− τ))v′ +
σ2

2
x2v′′

take the form

Gxβf(
−2h(1− τ)

σ2x
)

for a constant G, where f is either of the solutions to Kummer’s ODE:

f(z) = M(−β,−2(β − 1) +
2µ

σ2
, z)

f(z) = U(−β,−2(β − 1) +
2µ

σ2
, z)

and β is either root of

0 = [−(r + ι− µ)− µβ +
σ2

2
β(β − 1)].

First, consider general solutions in the range x ≤ 0. As x → −∞, each player’s value function

should be bounded above by θ− x, such that V i = δv is bounded above by the value of immediate

exercise with all proceeds going to one player. It turns out that none of the general solutions satisfy

this with G 6= 0,11 so the general solution in this region is 0.

Next, consider general solutions in the range x ∈ [0, x̄]. As x → 0 from above, z = −2h(1 −
τ)/[σ2x]→ −∞, and except for some devious corner cases M(a, b, z) is asymptotically proportional

to (−z)−a. Thus for either the positive or negative root β, the product

GxβM(−β,−2(β − 1) +
2µ

σ2
, z)

is finite at x = 0, z = −∞. The Tricomi U function, evaluated at a negative z, is complex

valued and cannot be multiplied by a constant Z to have all real values, so we rule this function

out.12 Thus the general solution in this region is

G1x
γM(−γ,−2(γ − 1) +

2µ

σ2
, z) +G2x

κM(−κ,−2(κ− 1) +
2µ

σ2
, z)

where κ (γ) is the positive (negative) root β of the above quadratic.

We are now ready to solve the system of equations (28)-(31) characterizing the value functions

for (δ,R) /∈ O∗. Recall these are

11We state this without proof, but by showing the conditions of Proposition 3 are met the final solution must be
the value function.

12Again, all that matters in the end is that the conditions of Proposition 3 are met.
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rE(δ,R, e) = LE(δ,R, e) + λe[E(δ,R, d)− E(δ,R, e)] + ι[0− E(δ,R, e)]

rE(δ,R, d) = LE(δ,R, d) + λd[E(δ,R, e)− E(δ,R, d)] + ι[0− E(δ,R, d)]

rD(δ,R, e) = LD(δ,R, e) + λe[D(δ,R, d)−D(δ,R, e)] + ι[ζδ −R−D(δ,R, e)]

rD(δ,R, d) = LD(δ,R, d) + λd[D(δ,R, e)−D(δ,R, d)] + ι[ζδ −R−D(δ,R, d)]

where

Lf = δµfδ +
σ2

2
δ2fδδ − (1− τ)hδfR. (59)

Start with equity values: letting r̂ ≡ r + ι and rearranging (28,29), we can use the linearity of

the operator L to write [
r̂ + λe −λe
−λd r̂ + λd

][
E(δ,R, e)

E(δ,R, d)

]
= L

[
E(δ,R, e)

E(δ,R, d)

]
.

The matrix

[
r̂ + λe −λe
−λd r̂ + λd

]
has eigendecomposition[

r̂ + λe −λe
−λd r̂ + λd

]
=

[
1 1

1 −λd
λe

][
r̂ 0

0 r̂ + λe + λd

][
1 1

1 −λd
λe

]−1
.

Define [
Ê(δ,R, e)

Ê(δ,R, d)

]
≡

[
1 1

1 −λd
λe

]−1 [
E(δ,R, e)

E(δ,R, d)

]

Then Ê follows the delinked system of HJBs[
r̂ 0

0 r̂ + λe + λd

][
Ê(δ,R, e)

Ê(δ,R, d)

]
= L

[
Ê(δ,R, e)

Ê(δ,R, d)

]
.

Define

ξ(x, γ) ≡ xγM(−γ,−2(γ − 1) +
2µ

σ2
,
−2h(1− τ)

σ2x
).

As before, let γ be the negative root of

0 = [−(r̂ − µ)− µβ +
σ2

2
β(β − 1)],

and let ν be the negative root of

0 = [−(r̂ + λe + λd − µ)− µβ +
σ2

2
β(β − 1)].
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Then as shown in Appendix B.3, in the region where x ≥ x̄, these equations have solutions

Ê(δ,R, e) = K1δξ(
R
δ , γ) and Ê(δ,R, d) = K2δξ(

R
δ , ν) for some constants K1,K2. Multiplying by[

1 1

1 −λd
λe

]
delivers

[
E(δ,R, e)

E(δ,R, d)

]
=

[
K1δξ(

R
δ , γ) +K2δξ(

R
δ , ν)

K1δξ(
R
δ , γ)− λd

λe
K2δξ(

R
δ , ν)

]
.

Given these value functions, we can define D(δ,R, s) ≡ V (δ,R)−E(δ,R, s), and by linearity of

the operator L,

(r − L)D(δ,R, s) = (r − L)(V (δ,R)− E(δ,R, s))

= (r − L)V (δ,R)− (r − L)E(δ,R, s)

= ι[ζδ −R− V (δ,R)]− [λs[E(δ,R, s′)− E(δ,R, s)]− ιE(δ,R, s)]

= ι[ζδ −R− (V (δ,R)− E(δ,R, s))] + λs[V (δ,R)− E(δ,R, s′)− (V (δ,R)− E(δ,R, s))]

= ι[ζδ −R−D(δ,R, s)] + λs[D(δ,R, s′)−D(δ,R, s)].

So D(δ,R, s) satisfies (30, 31) as desired. Thus we have determined the value functions for

(δ,R) /∈ O∗ up to two constants K1,K2. Now, in the region where (δ,R) ∈ O∗, we will solve for

the value functions while receiving offers, E(δ,R, d) and D(δ,R, d). Recall these must satisfy the

HJBs

rE(δ,R, d) = LE(δ,R, d) + λd[E(δ,R, e)− E(δ,R, d)] + ι[0− E(δ,R, d)]

rD(δ,R, e) = LD(δ,R, e) + λe[D(δ,R, d)−D(δ,R, e)] + ι[ζδ −R−D(δ,R, e)],

and since offers are made in equilibrium in this region,

E(δ,R, e) = θδ −R−D(δ,R, e)

D(δ,R, d) = θδ −R− E(δ,R, d).

Plugging this in and rearranging, this is

[
r̂ + λe λe

λd r̂ + λd

][
D(δ,R, e)

E(δ,R, d)

]
= L

[
D(δ,R, e)

E(δ,R, d)

]
+

[
λe

λd

]
(θδ −R) +

[
ι

0

]
(ζδ −R).

The matrix

[
r̂ + λe λe

λd r̂ + λd

]
has eigendecomposition[

r̂ + λe λe

λd r̂ + λd

]
=

[
1 1

−1 λd
λe

][
r̂ 0

0 r̂ + λe + λd

][
1 1

−1 λd
λe

]−1
.

62



Define [
D̂(δ,R, e)

Ê(δ,R, d)

]
≡

[
1 1

−1 λd
λe

]−1 [
D(δ,R, e)

E(δ,R, d)

]

Then Ê, D̂ follow the delinked system of HJBs[
r̂ 0

0 r̂ + λe + λd

][
D̂(δ,R, e)

Ê(δ,R, d)

]
= L

[
D̂(δ,R, e)

Ê(δ,R, d)

]

+

[
1 1

−1 λd
λe

]−1 [
λe

λd

]
(θδ −R) +

[
1 1

−1 λd
λe

]−1 [
ι

0

]
(ζδ −R).

Note [
1 1

−1 λd
λe

]−1
=

λe
λe + λd

[
λd
λe
−1

1 1

]
,

so this is[
r̂ 0

0 r̂ + λe + λd

][
D̂(δ,R, e)

Ê(δ,R, d)

]
= L

[
D̂(δ,R, e)

Ê(δ,R, d)

]
+

[
ιλd(ζδ−R)
λe+λd

λe(θδ −R) + ιλe(ζδ−R)
λe+λd

]
.

Let κ be the positive root of

0 = [−(r̂ − µ)− µβ +
σ2

2
β(β − 1)]

and let φ be the positive root of

0 = [−(r̂ + λe + λd − µ)− µβ +
σ2

2
β(β − 1)].

Then by the previous discussion, in the region where δx̄ ≥ R and R ≥ 0 (so x ∈ [0, x̄]), the

homogeneous ODEs associated with this system (i.e., ignoring δ,R terms) have general solutions

D̂(δ,R, e) = K3δξ(
R

δ
, γ) +K4δξ(

R

δ
, κ)

Ê(δ,R, d) = K5δξ(
R

δ
, ν) +K6δξ(

R

δ
, φ).

Given constants q, c, d, one can show the particular solution to

(q − µ)v = −(µx+ h(1− τ))v′ +
σ2

2
x2v′′ + cx+ d
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takes the form

v =
c

q
x+

(− ch(1−τ)
q + d)

q − µ

V = δv =
c

q
R+

(− ch(1−τ)
q + d)

q − µ
δ.

After carrying out the matrix multiplication, the relevant parameters for Ê(δ,R, d) are

c = −λe −
λe

λe + λd
ι

d = λeθ +
λe

λe + λd
ιζ

q = r̂ + λd + λe,

while for D̂(δ,R, e) they are

c =
−λd

λe + λd
ι

d =
λd

λe + λd
ιζ

q = r̂.

Plugging this in, the relevant particular solutions are

D̂ =

−λd
λe+λd

ι

r̂
R+

(
λd

λe+λd
ιh(1−τ)
r̂ + λd

λe+λd
ιζ)

r̂ − µ
δ

Ê =
−λe − λe

λe+λd
ι

r̂ + λd + λe
R+

(
[λe+

λe
λe+λd

ι]h(1−τ)
r̂+λd+λe

+ [λeθ + λe
λe+λd

ιζ])

r̂ + λd + λe − µ
δ

or, adding back the general solutions,

[
D̂(δ,R, e)

Ê(δ,R, d)

]
=

[
K3δξ(

R
δ , γ) +K4δξ(

R
δ , κ)

K5δξ(
R
δ , ν) +K6δξ(

R
δ , φ)

]

+


−λd
λe+λd

ι

r̂ R+
(

λd
λe+λd

ιh(1−τ)

r̂
+

λd
λe+λd

ιζ)

r̂−µ δ

−λe− λe
λe+λd

ι

r̂+λd+λe
R+

(
[λe+

λe
λe+λd

ι]h(1−τ)

r̂+λd+λe
+[λeθ+

λe
λe+λd

ιζ])

r̂+λd+λe−µ δ

 .
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Multiplying by

[
1 1

−1 λd
λe

]
gives

[
D(δ,R, e)

E(δ,R, d)

]
=

[
K3δξ(

R
δ , γ) +K4δξ(

R
δ , κ) +K5δξ(

R
δ , ν) +K6δξ(

R
δ , φ)

−K3δξ(
R
δ , γ)−K4δξ(

R
δ , κ) + λd

λe
[K5δξ(

R
δ , ν) +K6δξ(

R
δ , φ)]

]
+

[
c1δ + c2R

c3δ + c4R

]
,

where

[
c2

c4

]
=

[
1 1

−1 λd
λe

]
−λd
λe+λd

ι

r̂
−λe− λe

λe+λd
ι

r̂+λd+λe


[
c1

c3

]
=

[
1 1

−1 λd
λe

]
(

λd
λe+λd

ιh(1−τ)

r̂
+

λd
λe+λd

ιζ)

r̂−µ

(
[λe+

λe
λe+λd

ι]h(1−τ)

r̂+λd+λe
+[λeθ+

λe
λe+λd

ιζ])

r̂+λd+λe−µ

 .
Finally, because R can become negative, we need a different solution for the off-equilibrium

region where δ ≤ R/x̄ and R < 0. Luckily, the only general solution satisfying the boundary

conditions is 0, so in this region [
D(δ,R, e)

E(δ,R, d)

]
=

[
c1δ + c2R

c3δ + c4R

]
for the same constants c1 − c4. We thus have 6 unknowns, and we require E(δ,R, e) and

E(δ,R, d) to value match (VM) and smooth paste (SP) at R/δ = x̄ (already calculated) and at

R/δ = 0. Recall in the exercise region, E(δ,R, e) = θδ −R−D(δ,R, e), where θδ −R is obviously

smooth, so imposing VM and SP for D(δ,R, e) at R/δ = 0 is sufficient and necessary for VM and

SP of E(δ,R, e) at R/δ = 0. These conditions are easiest to impose by switching back to x = R/δ:13

0 =

[
K3ξ(0, γ) +K4ξ(0, κ) +K5ξ(0, ν) +K6ξ(0, φ)

−K3ξ(0, γ)−K4ξ(0, κ) + λd
λe

[K5ξ(0, ν) +K6ξ(0, φ)]

]

0 =

[
K3ξ

′(0, γ) +K4ξ
′(0, κ) +K5ξ

′(0, ν) +K6ξ
′(0, φ)

−K3ξ
′(0, γ)−K4ξ

′(0, κ) + λd
λe

[K5ξ
′(0, ν) +K6ξ

′(0, φ)].

]
We verify two of these are redundant,14 and thus these are actually equivalent to two equations:

13Note we arrive at these equalities by first subtracting c1δ + c2R or c3δ + c4R from both sides.
14Specifically, since ξ converges as x → 0 (z → −∞), its derivative must converge to zero. This can be shown

directly with the asymptotic properties of the Confluent Hypergeometric function.
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[
K3ξ(0, γ) +K4ξ(0, κ) +K5ξ(0, ν) +K6ξ(0, φ)

−K3ξ(0, γ)−K4ξ(0, κ) + λd
λe

[K5ξ(0, ν) +K6ξ(0, φ)]

]

=

[
K3ξ

′(0, γ) +K4ξ
′(0, κ) +K5ξ

′(0, ν) +K6ξ
′(0, φ)

−K3ξ
′(0, γ)−K4ξ

′(0, κ) + λd
λe

[K5ξ
′(0, ν) +K6ξ

′(0, φ)]

]

In addition to these two equations, we require the four equations corresponding to VM and SP

at x̄:

[
θ − x̄− [K3ξ(x̄, γ) +K4ξ(x̄, κ) +K5ξ(x̄, ν) +K6ξ(x̄, φ)]

−K3ξ(x̄, γ)−K4ξ(x̄, κ) + λd
λe

[K5ξ(x̄, ν) +K6ξ(x̄, φ)]

]

= −

[
−c1 − c2x̄
c3 + c4x̄

]
+

[
K1ξ(x̄, γ) +K2ξ(x̄, ν)

K1ξ(x̄, γ)− λd
λe
K2ξ(x̄, ν)

]
[
−1− [K3ξ

′(x̄, γ) +K4ξ
′(x̄, κ) +K5ξ

′(x̄, ν) +K6ξ
′(x̄, φ)]

−K3ξ
′(x̄, γ)−K4ξ

′(x̄, κ) + λd
λe

[K5ξ
′(x̄, ν) +K6ξ

′(x̄, φ)]

]

= −

[
−c2
c4

]
+

[
K1ξ

′(x̄, γ) +K2ξ
′(x̄, ν)

K1ξ
′(x̄, γ)− λd

λe
K2ξ

′(x̄, ν)

]
.

This is a linear system which is easily solved for K1 −K6, once one notes that

ξ′(x, γ) = γxγ−1M(−γ,−2(γ − 1) +
2µ

σ2
,
−2h(1− τ)

σ2x
)

+ xγ
−γ

−2(γ − 1) + 2µ
σ2

2h(1− τ)

σ2x2

×M(−γ + 1,−2(γ − 1) +
2µ

σ2
+ 1,

−2h(1− τ)

σ2x
).

D Period 1 decision to liquidate or enter Chapter 11

First, we provide a proof of Proposition 4, which gives the solution to the problem of optimally

entering Chapter 11.

D.1 Proving Proposition 4

The conditions of Proposition 4 imply the following variational inequality holds:

max(E(δ)−B − EB(δ),−rEB(δ) +DEB(δ) + (1− τ)(δ − C0)) = 0,

where
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Df(δ) = f ′(δ)µδ + f ′′(δ)
σ2

2
δ2. (60)

Since the candidate EB is smooth, applying Ito’s lemma to e−rtEB(δt) delivers

e−rtEB(δt) = EB(δ0) +

∫ t

0
e−rs[−rEB(δs) +DEB(δs)]ds+Mt

for a local martingale Mt with M0 = 0. By the variational inequality,

EB(δ0) +

∫ t

0
e−rs[−rEB(δs) +DEB(δs)]ds+Mt

≤ EB(δ0) +

∫ t

0
e−rs[−(1− τ)(δs − C0)]ds+Mt,

implying

e−rtEB(δt) +

∫ t

0
e−rs[(1− τ)(δs − C0)]ds ≤ EB(δ0) +Mt.

Let τn be the sequence of localizing stopping times for Mt, let T be an arbitrary stopping time,

and let Qn = T ∧ τn ∧ n. Then we can apply optional sampling to write

Eδ0 [e−rQnEB(δQn) +

∫ Qn

0
e−rs[(1− τ)(δs − C0)]ds]

≤ EB(δ0) + Eδ0 [MQn ]

= EB(δ0) +M0

= EB(δ0).

Since δψ → 0 as δ → ∞, there exist constants k0, k1 such that EB(δ) ≤ k0 + k1δ. Also, it is

clear that

|
∫ t

0
e−rs[(1− τ)(δs − C0)]ds| ≤ (1− τ)

∫ ∞
0

e−rsδsds+
C0

r
,

where the rightside is integrable. Thus we can apply the lemma of Appendix A to use dominated

convergence, and clearly Qn → T as n→∞, so

Eδ0 [e−rTEB(δT ) +

∫ T

0
e−rs[(1− τ)(δs − C0)]ds]

≤ EB(δ0).

By the variational inequality, this implies
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Eδ0 [e−rT (E(δT )−B) +

∫ T

0
e−rs[(1− τ)(δs − C0)]ds]

≤ EB(δ0).

Applying the same argument for the optimal TB, and using the fact that δ ≥ δB implies

−rEB(δ) +DEB(δ) + (1− τ)(δ − C0) = 0 by the construction of EB, we get

Eδ0 [e−rTB (E(δTB )−B) +

∫ TB

0
e−rs[(1− τ)(δs − C0)]ds] = EB(δ0),

completing the proof.

D.2 Liquidation vs Chapter 11 Renegotiation

First, recall that asymptotically E(δ) = E(δ,R0, e) approaches (θ − c1)δ − (1 − c2)R0. Thus a

sufficient condition for Assumption 1 is that (θ − c1) < (1− τ)/(r − µ).

In period 1, the firm can decide to liquidate and receive 0 or enter Chapter 11 and receive

E(δ)−B = E(δ,R0, e)−B. Specifically, they solve

E0(δ) = sup
TB ,TL∈F δ

Eδ[
∫ TB∧TL

0
e−rt(1− τ)(δt − C0)dt+ 1(TB < TL)e−rTB [E(δTB )−B]]. (61)

Note that choosing stopping times TB, TL is equivalent to choosing T = TB ∧ TL and whether

to liquidate or enter Chapter 11 at time T . The latter decision is of course trivial since the firm

will always choose the larger of E(δT , R0, e)−B and 0. Thus (61) can be rewritten equivalently as

E0(δ) = sup
T∈F δ

Eδ[
∫ T

0
e−rt(1− τ)(δt − C0)dt+ e−rT g(δT )], (62)

where g(δ) ≡ max(0, E(δ)−B). Further, we can define the Ito process Gt ≡
∫ t
0 e
−rs(1− τ)(δs−

C0)ds and

ĝ(G, δ, t) ≡ G+ C0/r + e−rtg(δ) ≥ 0

to write

Ê0(δ,G, t) = sup
T∈F δ,G,t

Eδ,G,t[ĝ(GT , δT , T )], (63)

which exists by Øksendal (2003) Theorem 10.1.9. It is clear from inspection that E0(δ) =

Ê0(δ, 0, 0)− C0/r. We can thus define, for any fixed C0, the exercise region S(C0) = {δ : E0(δ) =

g(δ)}.
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Proof of Proposition 5: For any fixed C, let δB(C), δL(C) denote the corresponding optimal

thresholds from Proposition 4 and Section 2.2, respectively. By Assumption 1, there exists δ(C)

such that

1− τ
r − µ

δ′ − (1− τ)C

r
> g(δ′)

for all δ′ > δ(C). Then it cannot be that E0(δ
′) = g(δ′) for δ′ > δ(C), or else deviating to

T = ∞ would produce a reward greater than the value function, a contradiction. Thus δ(C) =

sup{δ : E0(δ) = g(δ)} is finite. Suppose that E(δ(C)) > B. Then, again by Øksendal (2003)

Theorem 10.1.9, if we define T ≡ inf{t : δt ≤ δ(C)}, for δ > δ(C) we have

E0(δ) = Eδ[
∫ T

0
e−rt(1− τ)(δt − C0)dt+ e−rT g(δT )]

= Eδ[
∫ T

0
e−rt(1− τ)(δt − C0)dt+ e−rT (E(δ(C))−B)].

Since δB(C) maximizes this by Proposition 4, it must be that δ(C) = δB(C).15 Finally, suppose

that E(δ(C)) ≤ B. Then for δ > δ(C) we have

E0(δ) = Eδ[
∫ T

0
e−rt(1− τ)(δt − C0)dt+ e−rT g(δT )]

= Eδ[
∫ T

0
e−rt(1− τ)(δt − C0)dt],

and again since δL(C) maximizes this, it must be that δ(C) = δL(C).

Given the existence of δ̄(C), we may apply a standard formula for the first hitting time of a

geometric Brownian motion to write the value function explicitly for δ > δ̄(C):

E0(δ) = (1− τ)[
δ

r − µ
− C

r
] + (

δ

δ̄(C)
)ψ[g(δ̄(C))− (1− τ)[

δ̄(C)

r − µ
− C

r
]].

It will be helpful to define

I(δ, x, C) ≡ (1− τ)[
δ

r − µ
− C

r
] + (

δ

x
)ψ[g(x)− (1− τ)[

x

r − µ
− C

r
]]

and note that, for fixed C, E0(δ) = supx≤δ I(δ, x, C).

Finally, before we prove Proposition 6, the following lemma is useful.

15Specifically, we have EB ≤ E0, so if δB were different from δ(C) then EB could be improved to E0 by deviating
to T .
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Lemma D.1 E(δ) diverges to infinity as δ →∞.

Proof of Lemma: Using the notation of Appendix C, we first prove c2 > −1. Multiply the

expression for c2 by r̂(r̂ + λe + λd):

− r̂ λd
λd + λe

ι− λdι− λer̂ − r̂
λe

λd + λe
ι

= −r̂ι− λdι− λer̂

> −r̂ι− r̂r − λdι− λdr − λer̂

= −r̂(r̂ + λd + λe).

Since c2 > −1, it must be that c1 < θ. If not, then asymptotically as δ → ∞, the debt value

function approaches c1δ + c2R > θδ −R, the reorganized firm value. This is a contradiction, since

it implies equity accepts a negative offer. Therefore, in the limit as δ → ∞, we have E(δ) =

E(δ,R0, e) = (θ − c1)δ − (1− c2)R0 starts to increase in δ and thus also goes to infinity.

Proof of Proposition 6: First, we note that if Ĉ > C, then S(C) ⊂ S(Ĉ).16 As a result,

δ̄(C) must be weakly increasing in C.

Next, we show that δ̄ diverges to infinity. Suppose by contradiction this weren’t the case: there

exists K such that δ̄(C) ≤ K for all large enough C. For any ε > 0, we can pick δ0 > K arbitrarily

high so that (δ0/K)ψ < ε. For arbitrary C, the value function as above must be

E0(δ0) = (1− τ)[
δ0

r − µ
− C

r
] + (

δ0
δ̄(C)

)ψ[g(δ̄(C))− (1− τ)[
δ̄(C)

r − µ
− C

r
]].

By continuity, g(δ)− (1− τ)δ/(r − µ) attains a maximum H on the compact set [0,K], so

E0(δ0) ≤ (1− τ)[
δ0

r − µ
− C

r
] + (

δ0
δ̄(C)

)ψ[H +
C(1− τ)

r
]

≤ (1− τ)[
δ0

r − µ
− C

r
] + ε[max(H, 0) +

C(1− τ)

r
].

Now, send C to infinity, keeping δ0 constant and taking ε < 1. This clearly becomes negative, a

contradiction. Then δ̄(C) increases to infinity as C →∞, and by the previous lemma E(δ) increases

to infinity as δ → ∞, so there must exist some C̄ such that E(δ̄(C)) > B whenever C > C̄. Since

E(0) = 0, if δ̄(C) is continuous in C then we can take C̄ to satisfy E(δ̄(C̄)) = B.

The remainder of the proof shows δ̄(C) is continuous in C. By the analysis of Appendix C, as

δ → ∞ we have that E(δ) converges to an affine function aδ + b with 0 < a. By Assumption 1,

16The value function corresponding to Ĉ is clearly weakly smaller than that corresponding to C. If there were a
point y ∈ S(C) such that y /∈ S(Ĉ), then by definition of S(C), S(Ĉ) the value function corresponding to Ĉ would
be strictly larger at y (since the payoff is independent of C, Ĉ) which is a contradiction.
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a < (1− τ)/(r − µ). Then there exists a constant d such that E(δ) < aδ + d, so

(1− τ)C

r
− (1− τ)δ

r − µ
+ E(δ)−B

<
(1− τ)C

r
− δ((1− τ)

r − µ
− a) + d.

Then defining

φ(C) ≡ (
(1− τ)

r − µ
− a)−1d+ (

(1− τ)

r − µ
− a)−1

(1− τ)C

r
,

we have for any C that δ ≥ φ(C) implies

(1− τ)C

r
− (1− τ)δ

r − µ
+ E(δ)−B < 0.

In this case, for δ > φ(C), it must be that the value function E0(δ) is defined by a lower

threshold δ̄(C) with δ̄(C) < δ, since exercise for δ ≥ φ(C) is strictly suboptimal. We are now ready

to show, for any C̃, that δ̄(C) is continuous on [0, C̃]. To see this, fix δ > φ(C̃). Pick some arbitrary

C ∈ [0, C̃] and let EC0 (δ) be the associated value function. As above,

EC0 (δ) = sup
x≤δ

I(δ, x, C),

and since we just showed the value function has a lower threshold x ≤ φ(C), it must be that

this equals

= sup
x≤φ(C)

I(δ, x, C).

This is a parameterized constrained optimization where the objective is continuous, and the

correspondence C → [0, φ(C)] is clearly continuous and compact valued. Define

I∗(δ, x, C) ≡ sup
x≤φ(C)

I(δ, x, C).

Applying Berge’s Theorem, the correspondence

C ⇒ Z(C) ≡ {x : I∗(δ, x, C) = I(δ, x, C)}

mapping C to the set of optimal x corresponding to C is upper hemicontinuous. Since any

x ∈ Z(C) must be in S(C) (the region where EC0 (x) = g(x)), we have δ̄(C) ≥ supZ(C), but if

δ̄(C) > supZ(C) then the firm is not acting optimally by definition of Z(C), so δ̄(C) = supZ(C). A

standard argument shows the supremum of the image of an upper hemicontinuous correspondence

is continuous, completing the proof.17

17For any ε, C, by upper hemicontinuity there exists ε1 such that for all y satisfying |y − C| < ε1 and any z ∈
Z(C), u ∈ Z(y), we have |z − u| < ε/3. Pick z ∈ Z(C) with | sup(Z(C)) − z| < ε/3. Then, for any y satisfying
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E Fixed costs of Chapter 11

This appendix provides more details on the costs of Chapter 11. Both debtors and creditors

hire professionals (i.e., accountants, lawyers, investment bankers, financial advisors) who charge

nontrivial fees. Fees incurred during bankruptcy are typically reimbursed from the estate (the

firm’s assets):

“The large bulk of bankruptcy professional fees and expenses are awarded under Bankruptcy

Code Section 330(a). Section 330(a) awards are to professionals employed by the DIP... or employed

by an official committee... the DIP pays the awards from the estate (LoPucki and Doherty (2011)).”

Creditors have further opportunities for fee reimbursement through 11 USC § 503(b) and § 506(b).

Weiss (1990) estimates that such fees average 3.1% of firm value, but LoPucki and Doherty (2011)

give many reasons why this is an underestimate. In extreme cases like the bankruptcy of Allied

Holdings, fees can reach 22% of firm assets (LoPucki and Doherty (2011) Appendix A).

While these fees are typically awarded and thus subtracted from the total estate to be split

between creditors, prepetition fees are an important exception. Firms hire professionals prior to

filing for Chapter 11 (prepetition), and the court “does not award prepetition fees” (LoPucki and

Doherty (2011)). Indeed, while firms are supposed to report prepetition fees and expenses in

connection with a future Chapter 11 under 11 USC § 329(a), they frequently fail to report. Within

the dataset used for LoPucki and Doherty (2011) (which is generously provided on LoPucki’s

website), prepetition fees averaged 43% of the subsequent total 11 USC § 330(a) awards in cases

where the firm reported both. These fees must be paid by the firm (i.e., equityholders) since they

are not awardable.

Fixed costs: Larger firms and firms with longer bankruptcies certainly pay more in profes-

sional fees. However, there is substantial empirical evidence suggesting these fees have a fixed

cost component. White (1989) assumes entering Chapter 11 entails a fixed cost, citing court fees,

lawyers’ fees, and the lost time of management. White (2016) surveys the literature on small busi-

ness bankruptcy and states “that the costs of Chapter 11 reorganization are high and that they

have a fixed component that prevents small corporations from using the procedure.”

Early bankruptcy studies focused on particular industries, and many found evidence of fixed

costs. For example, Warner (1977) examines railroad bankruptcies and finds “this evidence suggests

that there are substantial fixed costs associated with the railroad bankruptcy process, and hence

economies of scale with respect to bankruptcy costs.” He also finds that the length of bankruptcy

cannot explain these costs. Guffey and Moore (1991) find that direct bankruptcy costs exhibit

substantial economies of scale in a sample of trucking firms.

Later studies examine bankruptcies across many industries and find similar results. For example,

Table 1 of LoPucki and Doherty (2004) presents results of a regression of log fees on log assets,

log number of days in bankruptcy, the number of professional firms, and a constant. They find

significant coefficients of 0.414 and 0.535 on assets and length of bankruptcy, respectively. The

|y − C| < ε1, choose u ∈ Z(y) with | sup(Z(y))− u| < ε/3 so by triangle inequality | sup(Z(y))− sup(Z(C))| < ε.
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constant term, however, is large and positive with a t-statistic nearly three times as large as either

assets or bankruptcy length. This suggests that larger and longer bankruptcies entail higher fees,

but there is a significant fixed cost faced by all firms. As an extreme example, Farm Fresh Inc.,

with less than $200 million in assets upon declaring bankruptcy, spent three million in fees on a 44

day bankruptcy (LoPucki and Doherty (2011) Appendix A).

BWZ (2006) examine direct and indirect costs of bankruptcy in a comprehensive sample of

small and large corporate bankruptcies in Arizona and New York from 1995 to 2001. In section

V.B, they show that the ratio of chapter 11 expenses to pre-bankruptcy assets is drastically higher

for small firms than for large firms. For firms with less than $100,000 in pre-bankruptcy assets,

expenses average 31.5% of assets, while for firms with $100,000 to $1 million in assets, fees average

10.2% of assets. For firms with more than $10 million in assets, fees average 1.3% of assets. This

stark result is consistent with a large fixed cost component of legal fees. Again, the economies

of scale which bankruptcy fees exhibit are not driven by shorter bankruptcies for larger firms. In

section IV.A they find the weakly positive relationship between firm size (measured in asset value)

and bankruptcy duration is not statistically significant.

Put together, these five studies (Warner (1977); Guffey and Moore (1991); LoPucki and Doherty

(2004); LoPucki and Doherty (2011); BWZ (2006)) all document economies of scale in bankruptcy

fees that strongly suggest a fixed cost component to bankruptcy fees.
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