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Overview
This paper is the first to analyze a static network formation model
with two main features:

1. Multiple and unobserved agent-specific components.
2. Semiparametric approach.

Motivation: Friendships network.

Homophily and unobserved agent-specific heterogeneity.

This paper:

One large network is observed.

Unrestricted dependence.

No distributional assumptions on the unobserved components.
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Introduction

Network formation models study the creation of relationships.

e.g. friendships, partnerships, scientific collaborations.

Why are they important?

1. Peer effects: network endogeneity.
I Goldsmith-Pinkham and Imbens 2013.

2. Policy: social programs.
I Banerjee, Chandrasekhar, Duflo, and Jackson 2013.

3. Social meaning: homophily.
I McPherson, Smith-Lovin, and Cook 2001.
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Introduction

Network formation with unobserved agent-specific attributes.

Challenges:

Arbitrarily correlation with the observed attributes.

Semiparametric framework: identification?

Implications:

Biased and inconsistent results if these attributes are omitted.
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Friendship network

Definition (Network)
A network is an ordered pair, (Nn,Dn), where Nn = {1, · · · ,n} is a
set of nodes and Dn = (Dn

ij) is a n× n adjacency matrix.

Assume the network is

Undirected: Dn
ij = Dn

ji for any i, j ∈ Nn.

Unweighted: Dn
ij ∈ {0, 1} for any i, j ∈ Nn.

Normalize Dn
ii = 0 for any i ∈ Nn.
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Example: Friendship network

Figure: Undirected Network
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Example: Friendship network

Figure: Homophily on Observed Characteristics
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Example: Friendship network

Figure: Unobserved Agent-Specific Heterogeneity
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Model of Interest

Agents i, j ∈ Nn form an undirected link according to the equation:

Dn
ij =1

[
Xn′

ij β0 + µi + µj − εn
ij ≥ 0

]
, (NF)

for i 6= j.

Xn′

ij β0: systematic part of the net benefit.

µi, µj: unobserved agent-specific factors.

εn
ij: pair-specific exogenous factor.

β0 ∈ RK: unknown parameter.
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Overview
This paper is the first to analyze a static network formation model

Dn
ij =1

[
Xn′

ij β0 + µi + µj − εn
ij ≥ 0

]
.

with two main features:

1. Multiple and unobserved agent-specific fixed effects:

µi + µj.

2. Semiparametric approach:

Fεn
ij|x,µ and Fµ|x are unrestricted.

Objective: Identification and estimation of β0.

7 / 42



Main Results

1. New identification strategy.

I Point identification of β0.

I Identified set and bounds on each element of β0.

Semiparametric pairwise estimator.

Computationally tractable.

Asymptotics: Growing number of agents.

Empirical application.

Friendships network: Add Health dataset.

Homophily: age, GPA, and the level of father’s education.
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I Identified set and bounds on each element of β0.

2. Semiparametric pairwise estimator.

I Computationally tractable.

I Asymptotics: growing number of agents.

3. Empirical application.

I Friendship network: Add Health dataset.

I Evidence for homophily on age, Hispanic, and father’s education.
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Model - Framework

1. Triangular array of random networks

{(Nn,Dn) : n ∈ N} .

2. A dyad is a pair (i, j) of agents with i, j ∈ Nn and i 6= j.

I Unique dyads: N (2)
n ≡ {(1, 2), (1, 3), · · · · · · , (n− 1, n)}.

I Cardinality: N ≡ #N (2)
n = O(n2).

I Each (i, j) ∈ N (2)
n is endowed with Xn

ij, and let

Xn ≡
(
Xn

12, · · · ,Xn
n−1,n

)
.
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Model - Preferences
Agent i′s latent marginal benefit of adding the link {ij} to Dn is

Vij(Xn, ηij;β0) = uij(Xn;β0) + ηij.

uij(Xn;β0) denotes the systematic part:

uij(Xn;β0) ≡ 1
2

X
′

ijβ0.

ηij denotes the unobserved valuation component:

ηij ≡ µj −
1
2
εij.

Remarks:
Rules out:

I Network externalities: uij(Xn,Dn;β0).
I Unobserved complementarity: g(µi, µj) as in Candelaria (2016).
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Model - Stability Condition

A network Dn is stable with transfers if for each (i, j) ∈ N (2)
n :

1. for all Dij = 1, Vij(Xn, ηij;β0) + Vji(Xn, ηji;β0) ≥ 0;

2. for all Dij = 0, Vij(Xn, ηij;β0) + Vji(Xn, ηji;β0) < 0.

Equivalently, the network Dn is stable with transfers if:

Dij =1
[
X

′

ijβ0 + µi + µj − εij ≥ 0
]
, ∀(i, j) ∈ N (2)

n . (NF)
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Model-Assumptions

Assumption (A1)

The following hold for any n.

1 For any distinct (i, k), (j, l) ∈ N (2)
n :

εik ⊥⊥ εjl | Xn = x, µn = µ, and Fεik|x,µ = Fεjl|x,µ.

2 The pdf fεi1|x,µ is positive everywhere for all (x, µ).

A1 used in Graham (2017) and Menzel (2015).

Agnostic about Fεi1|x,µ and Fµ|x.
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Identification Strategy
Consider the subnetwork given by J,R,E ∈ Nn.

R

J

D

E

D JR
=

1 D
JE =

0

µ J
+
µR µ

J +
µ

E

µR − µE

E [DJR −DJE|DJR 6= DJE,Xn = x, µn = µ]

µ3 − µ4

E [D23 −D24|D23 6= D24,Xn = x, µn = µ]
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Identification Strategy
Consider the tetrad given by {J,R,E,D}.

R

J

D

E

µ
D +

µ
R µD

+
µE

µR − µE

E [DJR −DJE|DJR 6= DJE,Xn = x, µn = µ]

µR − µE

E [DDR −DDE|DDR 6= DDE,Xn = x, µn = µ]

15 / 42



Identification Strategy
Conditional on {Xn = x, µn = µ}:

R

J

D

E

µ
D +

µ
R µD

+
µE

µR − µE

E [DJR −DJE|DJR 6= DJE,Xn = x, µn = µ]

µR − µE

E [DDR −DDE|DDR 6= DDE,Xn = x, µn = µ]

15 / 42



Identification Strategy
Conditional on {Xn = x, µn = µ}:

R

J

D

E

µ
D +

µ
R µD

+
µE

µR − µE

E [DJR −DJE|DJR 6= DJE,Xn = x, µn = µ]

µR − µE

E [DDR −DDE|DDR 6= DDE,Xn = x, µn = µ]

15 / 42



Assumptions
Let

∆klXi ≡ Xik − Xil for any distinct (i, k), (i, l) ∈ N (2)
n ;

∆klXi = (∆klX
(1)
i ,∆klX

(−1)
i ).

Assumption (A2)

The following hold for any n, and any distinct (i, k), (i, l) ∈ N (2)
n .

1 ∆klXi is not contained in a proper subspace of RK.

2 Exists ∆klX
(1)
i with β(1)

0 6= 0 s.t. the cond. density of ∆klX
(1)
i is

positive everywhere for any ∆klx
(−1)
i .

Sign of β(1)
0 is identified, and scale is normalized: | β(1)

0 |= 1.

A2 used in Manski(1985,1987), Han (1987) and Abrevaya (1999).
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Assumption (A3)

For any i ∈ Nn,
supp(µi | Xn = x) ⊆ [−B,B],

for any x ∈ supp(Xn), and some B <∞.

Allows for continuous or a discrete fixed effects.
Intuitively:

supp(µk − µl | Xn = x) ⊂ supp(∆klX
′

iβ0)

Let:

XB = {x ∈ Xn : for any i, j, k, l ∈ Nn, | ∆klxiβ0 |≥ 2B, and

sign {∆klxiβ0} 6= sign
{

∆klxjβ0
}}
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Point Identification

For any distinct i, j, l, k ∈ Nn, let:

Y(s)
kl ≡ (Dsk −Dsl) for s = i, j,

Ω(ijlk) ≡
{

Dik 6= Dil, Djl 6= Djk︸ ︷︷ ︸
Within-ind

Dik 6= Djk︸ ︷︷ ︸
Across-inds

}
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Point Identification

Theorem
1 Let assumptions 1-3 hold. Then, for any n, and any i, j, k, l ∈ Nn:

Med
[
Y(i)

kl − Y(j)
kl |X

n = x,Ω(ijlk)
]

= 2× sign
{[

∆klxi −∆klxj
]′
β0

}
, (MC)

where x ∈ XB.

2 Let assumptions 1-3 hold. Then β0 is point identified.
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Point Identification
Ω(ijlk) contains the subnetworks with enough variation to identify β0.
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Figure: Subnetwork by the tetrad (i, j, k, l) in Ω(ijlk).
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Identification Failure
I. Thin Set

Let
Ωn ≡ {Ω(ijlk) : for any distinct i, j, k, l ∈ Nn} .

Theorem (Thin Set)

Under Ass. 1-3. If the class Ωn has probability zero, then:

Med
{

Y(i)
kl − Y(j)

kl

∣∣∣Xn = x
}

does not have identification power.

In the empirical application: P(Ωn) = 2.24%.
“Thin set identification” as in Khan and Tamer (2010).
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Thin Set

Lemma (Sufficient Conditions)

For any n, the class Ωn has probability zero if for any (i, j) ∈ N (2)
n :

1 Dn is empty, i.e.,

supp
(

X
′

ijβ0 | µn = µ, εij = e
)

=
(
−∞, µi + µj − e

]

2 Dn is dense, i.e.,

supp
(

X
′

ijβ0 | µn = µ, εij = e
)

=
[
µi + µj − e, ∞

)
3 Dn is homogeneous, i.e.,

supp
(
µi + µj | Xij = x, εij = e

)
= [ e− x′β0, ∞)
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Additional Identification Results

Is the large support assumption necessary for identification?

Suppose all the covariates have bounded support, and

1. A2’: there exists at least one continuous variable with

supp
(

∆klXiβ0 | ∆klX
(−1)
i = ∆klx

(−1)
i

)
= [−δ, δ]

⇒ β0 is still identified

2. A2”: they are all discrete variables.

⇒ Bounds for each element of β0 are obtained.

23 / 42



Additional Identification Results

Is the large support assumption necessary for identification?

Suppose all the covariates have bounded support, and

1. A2’: there exists at least one continuous variable with

supp
(

∆klXiβ0 | ∆klX
(−1)
i = ∆klx

(−1)
i

)
= [−δ, δ]

⇒ β0 is still identified

2. A2”: they are all discrete variables.

⇒ Bounds for each element of β0 are obtained.

23 / 42



Additional Identification Results

Is the large support assumption necessary for identification?

Suppose all the covariates have bounded support, and

1. A2’: there exists at least one continuous variable with

supp
(

∆klXiβ0 | ∆klX
(−1)
i = ∆klx

(−1)
i

)
= [−δ, δ]

⇒ β0 is still identified

2. A2”: they are all discrete variables.

⇒ Bounds for each element of β0 are obtained.

23 / 42



Additional Identification Results

Is the large support assumption necessary for identification?

Suppose all the covariates have bounded support, and

1. A2’: there exists at least one continuous variable with

supp
(

∆klXiβ0 | ∆klX
(−1)
i = ∆klx

(−1)
i

)
= [−δ, δ]

⇒ β0 is still identified

2. A2”: they are all discrete variables.

⇒ Bounds for each element of β0 are obtained.

23 / 42



Outline

1. Network Formation Model

2. Identification

3. Inference

4. Simulations

5. Application

6. Conclusions and Extensions



Inference
The identification condition in (MC) suggests an estimator for β0.

Limiting objective function:

Q(b) ≡ 2E
[
S(XB)× sign

{[
∆klXi −∆klXj

]′ b}× (Y(i)
kl − Y(j)

kl

)
| Ω(ijlk)

]
,

where, S(XB) = 1 if x ∈ XB, and 0 otherwise.

Q(b) is uniquely maximized at b = β0.

The semiparametric pairwise difference estimator is

β̂n = arg max
b∈B̃

Qn(b)
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Inference
Given a random sample of n agents, let

{
zn

ij

}
(i,j)∈N (2)

n

=
{

Dn
ij, xij

}
(i,j)∈N (2)

n

.

The sample analog of Q(b):

Qn(b) ≡
(

n
4

)−1∑
Cn,4

h(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b), (Qn)

where Cn,4 indexes all the unique tetrads in {1, 2, · · · ,n}.

Kernel function:

h(zi1,3 , zi1,4 , zi2,3 , zi2,4 , b) ≡ 2
4!

∑
P4

{
sign

{
[∆3,4x1 −∆3,4x2]

′ b
}

× (y(1)
3,4 − y(2)

3,4)× 1
{
|y(1)

3,4 − y(2)
3,4 | = 2

}
× S(xi1,3 , xi1,4 , xi2,3 , xi2,4 ,B)

}
,

where P4 denotes the 4! permutations of {i1,3, i1,4, i2,3, i2,4}.
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Choice of B

1. If B is known

XB = {x ∈ Xn : for any i, j, k, l ∈ Nn, | ∆klxib |≥ 2B, and

sign {∆klxib} 6= sign
{

∆klxjb
}}

2. Trimming

XB(γn) = {x ∈ Xn : for any i, j, k, l ∈ Nn, | ∆klxib |≥ γn, and

sign {∆klxib} 6= sign
{

∆klxjb
}}

,

with γn →∞.

sup
γn∈Γ

sup
b∈B̃
||Qn(b; γn)− E [Qn(b; γn)]|| p→ 0.
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Assumptions

Assumption (B1)

The researcher observes a random sample of n agents. For each dyad in
N (2)

n , the researcher observes the link status and dyad-level attributes.{
Dij, xij

}
(i,j)∈N (2)

n
.

Used in Graham (2017), Leung (2015b) and Menzel (2015).

Assumption (B2)

The parameter space B̃ is compact and β0 is an interior point of B̃.

Used in Han (1987), Sherman (1993, 1994) and Abrevaya (1999).
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Assumptions

Assumption (B3)

Let pn ≡ P (Ωn) , where
1 pn → p0 ≥ 0, as n→∞.
2
√

Npn →∞, as n→∞.

The probability pn is allowed to decay as n→∞.

28 / 42



Consistency

Theorem (Consistency)

Let assumptions A1, A2, B1-B3 hold. Then,

β̂n − β0
p→ 0

as n→∞.
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Theorem (Asymptotic Normality)

If assumptions A1, A2, B1-B4. hold, then:

pn
√

N(β̂n − β0)
d→ N (0,V−1∆V−1) (AN)

with

4V = E [∇2τ2(·, β0) | Ωn] ,

∆ = E [∇1τ(·, β0)] [∇1τ(·, β0)]
′
.

Recall that N = O(n2).
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Convergence Rate

The convergence rate depends on the limit of pn ≡ P (Ωn).

1. Regular Estimator: pn → p̄ > 0, as n→∞.

2. Irregular Estimator: pn → 0, as as n→∞.
(Newey 1990, Andrews and Schafgans 1998 and Khan and Tamer
2010).

Theorem (Information bound)
In model given by equation (NF), under assumptions A1, A2, B1-B4.

If pn → 0, then the information bound for β0 is zero.
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Adaptive Rate Inference

Consider the “studentized” estimator, as in Andrews and Schafgans
(1998) and Khan and Tamer (2010),

Σ̂
−1/2
n
√

N(β̂n − β0)
d→ N (0, I), as n→∞

where Σ̂n,

Σ̂n = Ŝn/p̂2
n,

and Ŝn is the Bootstrap estimate of

S = V−1∆V−1.

Subbotin (2007): Bootstrap validity for Maximum Rank estimators.
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Computation

The objective function Qn(b) is a 4th order U-statistic.

O(n4) operations.

Proposition

The estimator β̂n can be equivalently computed from:

Q̃n(b) ≡ 1
n(n− 1)(n− 2)

∑
i 6=j6=k

S(B)Rankj,k
[
(xik − xil)

′ b
]

y(i)
k,l

Q̃n(b) can be computed in O(n3log(n)) operations.
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Simulations

Consider the following model:

Dij = 1
[
X′ijβ0 + µi + µj − εij ≥ 0

]
, for (i, j) ∈ N (2)

n .

1. Dyad-specific attributes, Xij for (i, j) ∈ N (2)
n :

Xij =
[
zi1zj1, zi2zj2, zi3zj3

]
.

where the individual-specific attributes are drawn as:

zi1 ∼Normal(0, 3),

zi2 ∼Uniform {−1, 0, 1} with pk = 1/3,
zi3 ∼Uniform(−2, 2).
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Simulations

2. Fixed effects:

αi = λ (zi1 + zi2 + zi3) /3 + (1− λ)Normal(0, 1),

where λ ∈ {1/4, 1/2, 3/4}measures the degree of dependence.

µi =


−B if αi < −B
αi if − B ≤ αi ≤ B
B if B < αi

,

with B = 1.

3. Link-specific disturbance term: ε(2)
ij ∼ Normal(0, 2).

True DGP: β0 = [1, 1.5, −1.5]′
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MC Simulations: Normal(0,2)

Pairwise Difference Graham (2015) P(Ωn)

Median Mean Bias(%) RMSE Median Mean Bias(%) RMSE

N = 100 7.914%

β2/β1 = 1.5 1.630 1.585 5.715 0.727 1.651 1.665 7.454 0.437
β3/β1 = −1.5 -1.734 -1.702 13.613 1.836 -1.735 -1.763 15.712 0.438

N = 250 7.376%

β2/β1 = 1.5 1.567 1.551 5.061 0.686 1.524 1.512 4.133 0.325
β3/β1 = −1.5 -1.677 -1.632 7.245 1.074 -1.691 -1.674 13.128 0.325

M=500, λ = 0.5
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Simulation: Discrete and Bounded Support:

Consider the next specification for the observed covariates:

X(1)
ij takes the values {0, 1, 2, 3, 4}.

X(2)
ij takes the values {−1, 0, 1}.

X(3)
ij takes the values {−1, 0, 1, 2}.

Thus, the support of Xij contains 60 points.
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Discrete and Bounded Support: Sharp Bounds
Figure: Bounds and Rectangular Superset
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Empirical Application

This application estimates a model of friendships formation using the
Add Health dataset.

Objective: Estimate the preferences for homophily.

Dataset: Add Health is a longitudinal national survey.

High school students: Grades 7-12 during the 1994-95 school
years.

Observed network: availability of respondents’ friendship net-
work.

Saturated high schools: each student nominates at most 5 male
and 5 female friends.

Wave I In-home interview: One high school with 319 students.
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Exogenous Covariates

Table: Descriptive Statistics

Variable Mean Std. Dev. Min Max
Household Income 51.405 29.68 4 200
Age 15.707 1.183 14 19
Female 0.441 0.497 0 1
Grade 10.255 1.085 9 12
Hispanic 0.025 0.150 0 1
White 0.942 0.233 0 1
Black 0.006 0.079 0 1
Asian 0.014 0.121 0 1
Indian 0.029 0.170 0 1
Other races 0.036 0.187 0 1
Overall GPA 2.346 0.956 0 4
Mother’s Education 4.240 2.419 0 9
Father’s Education 4.147 2.794 0 9
Sample size = 469.

40 / 42



Estimation Results

Logistic Pairwise Difference Graham (2015)

Age −1.245∗∗∗ −0.826 −1.088
Female −1.875∗∗∗ 0.635∗∗ 0.032
Grade 0.764∗∗∗ 1.264∗ 0.553∗

Hispanic 0.772 1.322∗∗∗ 1.100∗∗∗

White −3.758∗∗∗ 1.661∗∗ 1.544∗∗∗

Black 0.382 0.085
Asian −1.172∗∗ −1.491∗∗

Indian −0.597 −0.318 −0.742
Other races −0.461 −0.553∗ −1.061
Overall GPA −0.102∗∗∗ 2.436∗∗ 2.350∗∗

Mother Education 0.276∗∗∗ −0.352∗ −0.615∗

Father Education 0.240∗∗∗ 1.549∗∗∗ 0.748
P(Ω) = 2.24%
Average Degree = 3.62.
Number of Students = 319.
Number of dyads = 50,721.

*,**,*** represents the significant at 10%, 5%, and 1% level.
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Conclusions

1. Semiparametric network model with unobserved heterogeneity.

2. Point identification and sharp bounds for each component of β0.

3. Semiparametric pairwise difference estimator.

4. Empirical application considers a friendship network.
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Thanks!
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Covariates with Bounded Support
I. At Least One Continuous Covariate

Assumption (A2’)

The following hold for any n, and any i, l, k ∈ Nn, with l 6= k.

1 The random vector ∆klXi has a bounded support on RK.
2 For some δ > 0, there exists an interval Iδ = [−δ, δ] and a set

Nδ ∈ RK−1 such that
I Nδ is not contained in any proper linear subspace of RK−1.
I P

(
∆klX̃i ∈ Nδ

)
> 0.

I For almost every ∆klx̃ ∈ Nδ , the distribution of ∆klX′iβ0 conditional on
∆klX̃i = ∆klx̃i has a probability density that is everywhere positive on Iδ .

Proposition

Let Assumptions A1, A2’, and A3 hold; then β0 is point identified.
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Covariates with Bounded Support
II. Discrete Support

I obtain sharp bounds for each component in β0 using Komarova
(2013).

Assumption (A2”)

For any n, and any i, k, l ∈ Nn, with k 6= l.
1 The support of FXik is not contained in any proper linear space of RK.
2 The profile vector of observed attributes Xn ≡ (X12, · · · ,Xn−1,n) has a

discrete support given by

supp(Xn) =
{

x1, · · · , xD} ,
for a finite D.
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Thin Set
Table: Stochastic Dominance and Sparsity

Empty Sparse Dense
E [Degree] P [Ωn] E [Degree] P [Ωn] E [Degree] P [Ωn]

(%) (%) (%)
λ = 0.25
Log 20.30 4.32 49.53 16.71 97.15 0.06
LnN 9.34 1.01 36.98 13.73 95.88 0.11
N 19.47 3.84 49.52 18.11 98.56 0.00
Gam 19.54 3.87 49.36 19.63 87.12 1.56
T 28.59 8.30 49.45 18.25 90.54 1.03
λ = 0.5
Log 23.56 5.71 49.44 16.95 95.48 0.21
LnN 10.58 1.28 36.62 13.72 92.34 0.47
N 22.44 5.03 49.39 18.58 98.13 0.01
Gam 23.11 5.41 49.32 21.04 76.73 4.72
T 33.90 11.29 49.30 18.84 84.53 2.71
λ = 0.75
Log 27.81 7.88 49.30 17.14 91.75 0.86
LnN 12.38 1.74 36.06 13.64 80.39 3.52
N 26.38 6.92 49.21 18.82 96.75 0.07
Gam 27.08 7.34 49.20 22.42 54.40 11.08
T 40.51 15.00 49.26 19.29 72.11 7.27

Notes: N=100, M=500.
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Thin Set

Table: Thin Set Simulations: Homogeneous Network

µ = 10 ∗ Bernoulli(p) + (−5) ∗ (1− Bernoulli(p))
N=100 E [Degree] P [Ω(ijkl)] (%) Jaccard SI (Mean) Cosine SI (Mean)

(%) (Mean) (Mean)
p = 0.2
Log 37.66 0.38 0.55 0.70
LnN 20.52 0.83 0.35 0.53
N 36.66 0.31 0.60 0.73
Gam 31.14 0.42 0.56 0.70
T 27.30 0.34 0.57 0.70
p = 0.8
Log 92.56 0.12 0.87 0.93
LnN 83.46 1.16 0.74 0.85
N 95.10 0.01 0.91 0.95
Gam 94.42 0.05 0.90 0.94
T 93.26 0.10 0.88 0.93

Notes: M=500.
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Identification Failure
II. Nonlinear Panel Data Identification Strategy

Proposition

1. Let assumption 1 hold; then, for any n, and any i, l, k ∈ Nn.

Med(Dik −Dil|Xn = x,Dil + Dik = 1)

= sign [(xik − xil)
′β0 + (µk − µl)] (MS)

2. Let Assumptions 1 and 2 hold; then, the equation (MS) does not have
identification power.
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