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Introduction

The growing availability of financial and macroeconomic data sets including a
large number of time series have generated interest in predictive models with

many possible predictors. Examples .

I Curse of dimensionality. . Standard techniques such as OLS, MLE, or Bayesian inference
perform poorly, since the proliferation of regressors magnifies estimation
uncertainty and produces inaccurate out-of-sample predictions.

As a consequence, inference methods aimed at dealing with the curse of
dimensionality have become increasingly popular.

Curse to blessing. Dense modeling techniques recognize that all possible
explanatory variables might be important for prediction, although the impact of
some of them can be small.

I Factor Models. Stock & Watson (2002) (Diffusion indexes). Comovements in
the predictors are treated as arising from a small number of unobserved sources,

or common factors. Factor
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Introduction: Approximate factor model

The approximate factor model of Chamberlain and Rothschild [1983] allows (i)
the number of observations to be large in both the cross-section (N) and the
time (T ) dimensions and, (ii) weak serial and cross-sectional correlation in the
idiosyncratic dynamics.

The large-dimensional nature of the panel opens the horizon for consistent
estimation of the factors, something that is not possible when the number of
cross-section units is small.

Large literature on estimating the (approximate) factor model, and developping
the large-sample inferential theory.

1 Principal components (PC) method: Stock & Watson (1998,
2002a,2002b), Bai & Ng (2002), Bai(2003), Forni, Hallin, Lippi, & Reichlin,
2000, 2005.

2 Factor Analysis and MLE: Geweke, 1977; Sargent & Sims, 1977; Geweke &
Singleton, 1980;Watson & Engle, 1983; Stock & Watson, 1989;; Doz,
Giannone& Reichlin, 2012; Bai and Li (2012a, 2012b)

BUT these methods are not efficient in the presence of
heteroskedasticity/dependence in the errors
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This paper

Novel principal components PC based estimation method when N is
large and errors are cross-sectionally dependent

PC are consistent estimators of the common factors for both the
cross-sectional dimension N and the sample size T going to infinity
PC are a solution of a computational problem since they can be easily
computed even if the cross-sectional dimension N is large and possibly
larger than the sample size T
PC are feasible since consistency can be achieved for any path of N and T

The estimator is computationally tractable:

based on PC method of a modified covariance matrix
doesn’t require inverting a large covariance matrix
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Efficiency Literature

Heterogeneity and time dependence:
Forni,et. al(2005, JoE) proposed a two-step dynamic principal components
approach in the frequency domain to exploit the cross sectional
heterogeneity of the idiosyncratic component;
Giannone, et. al (2004, 2005 JoE) used a parametric time domain two-step
estimator involving dynamic principal components and kalman filter to
exploit idiosyncratic heteroscedasticity;
Breitung & Tenhofen (2011,JASA) used a Gaussian log-likelihood to
estimate the factor structure in the case of heteroscedastic and serially
correlated errors.

Cross sectional dependence:
Choi (2012, ET): GPCE (FGPCE) of common components shown to be
more effciient than ordinary PCA, and the variance of the forecasting error
smaller. However, this estimator requires the inverse of sample covariance
matrix. It requires N < T .

This papar is concerned with cross sectional correlation: incorporate the
very feature that defines an approximate factor structure in the estimation
of the model without imposing any structure on the error covariance
matrix.
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Literature with cross sectional dependence and large N

Random matrix theory: Estimation of large (sparse) covariance matrices
using threshholding (Bickel & Levina (2008, Ann.Stat), Rothman et al.
(2009) and penalized MLE (Lam & Fan (2009), Bien & Tibshirani (2011))

Bai & Liao (2016): threshholding and penalized MLE to the approximate
factor model.

This paper is related to Bai & Liao (2016) BUT is different in two
dimensions:

this paper uses the PC estimation framework
this paper doesn’t explicitely put any structure on the covariance matrix
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Why care about Efficiency?

Boivin and Ng [2006]: forecasts are less efficient and the factor estimates
are adversely affected when the errors are cross correlated and/or have
vast heterogeneity in the variances:

”Weighting the data by their properties when constructing the factors also
lead to improved forecasts”
with cross-correlated errors the estimated factors may be less useful for
forecasting when more series are available.

Cross-sectional dependence is a likely feature of the data in many
applications, Fig-sparsity
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Approximate factor model: Notation

In matrix notation, the model is written as

X = FΛ′ + e, (1)

where X = [X1, · · · , XT ]′ is the T ×N matrix of observations,
e = [e1, · · · , eT ]′ is a T ×N matrix of idiosyncratic errors,
F = [F1, · · · , FT ]′ is the T × r matrix of common factors and
Λ = [λ1, · · · , λN ]′ is N × r matrix of factor loadings.

Additional assumptions include that the matrices ΣΛ and ΣF , where
1
N

∑N
i=1 λiλ

′
i → ΣΛ as N →∞, and 1

T

∑T
i=1 FtF

′
t → ΣF as T →∞, are

bounded and positive definite.
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Approximate factor model: dependence assumption

The approximate factor structure of Chamberlain & Rothschild (1983)
allows for weak cross-section correlation in the error component in the
following sense:
there exist a positive constant M such that for all N , t = 1, · · ·, T ,

1

N

N∑
i=1

N∑
j=1

|E(eitejt)| ≤M (2)

Assume errors are independent across time and time and cross-sectional
dynamics are separable, E(ete

′
t) = Ω. Ω an N ×N matrix
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GLS-PC estimation

The standard PCA estimates minimize

V (λi, Ft) = (NT )−1
N∑
i=1

T∑
t=1

(Xit − λ′iFt)2 = (NT )−1
T∑
t=1

e′tet.

The objective function V (λi, Ft) has an ordinary least squares form with
spherical errors.

Assume that the errors are independent across time and that the time and
cross sectional dynamics are separable: E(ete

′
t) = Ω

If Ω is known, a GLS type PC estimates can be constructed:

V ∗(λi, Ft) = (NT )−1
T∑
t=1

e′tΩ
−1et

A candidate estimate for Ω is the sample covariance matrix. However,
when N > T , Ω̂ is singular and minimizing V ∗(λi, Ft) is unfeasible.
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Weighted PCA

Boivin & NG (2006) propose to minimize

W (λi, Ft) =
N∑
i=1

T∑
t=1

wit(Xit − λ′iFt)2,

Weighting schemes they consider:

wit is the inverse of the diagonal element of Ω̂T estimated using data up to
time T

wit is the inverse of N−1
∑N
i=1 |Ω̂T (i, j)|
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Bai & Liao (2016, JoE)

The first is a two-step estimator that minimizes the negative log-likelihood
function,

−L1(Λ,Ω) =
1

N
log|det(ΛΛ′ + ΩN )|+ 1

N
tr
(
SX(ΛΛ′ + ΩN )−1) ,

where SX is the sample covariance matrix of the data. An estimator of
ΩN is obtained in a first step estimation using threshholding.

The second joint estimator they propose is an l1−penalized maximum
likelihood estimator that minimizes,

L2Λ,Ω) = −L1(Λ,Ω) +
1

N

∑
i6=j

µTwij |Ωij |
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This paper: Constrained PC estimation (Cn-PC)

Let τij,t = E(eitejt) = τij and eit = Xit − λ′iFt.
This paper proposes an estimator that solves:

minimize
λi,Ft

(NT )−1
N∑
i=1

T∑
t=1

e2
it

s.t
1

N

N∑
i=1

N∑
j=1

sign(τij)τij ≤M
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Constrained PC estimation

Let S be N ×N matrix with elements [Sij ] defined as,

Si,j = 0 for i = j (3)

Si,j = 1× sign(τij) for i 6= j. (4)

Let L1(F,Λ) =
∑T
t=1 e

′
tet and L2(F,Λ) = 1

NT

∑T
t=1 e

′
tSet −M .

The Cn-PC optimization can be written as:

minimize
Λ,F

{L1(Λ, F, r) s.t L2(F,Λ, r) ≤ 0}, (5)

under the normalization of either T−1∑T
t=1 FtF

′
t = Ir, or

N−1∑N
i=1 λiλ

′
i = Ir.
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The Cn-PC Estimator

Proposition

The constrained principal component estimator (Cn-PC) for F , denoted
F̂µNT is:
√
T times the matrix consisting of the eigenvectors corresponding to the r

largest eigenvalues of the matrix XANX′, where
(AN = IN + µNTS) /NT

The tuning parameter µNT is the Lagrange multiplier

The Cn-PC estimator for Λ0, denoted Λ̂ is given by Λ̂µNT = 1
T

XF̂µNT .

CnPC
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Comparison to OLS-PC and GLS-PC

OLS-PC:

F̂ :
√
T × first r principal components of XX′/NT

GLS-PC:

F̂ :
√
T × first r principal components of XΩ−1X′/NT

Cn-PC:

F̂µ̂NT :
√
T × first r principal components of X (IN + µ̂NTS) X′/NT,

Λ̂µ̂NT : Λ̂µ̂NT = X′F̂µ̂NT /T,

µ̂NT : M = (NT )−1
N∑
t=1

ê′tS êt
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Choosing M

Boivin & NG (2006) use τ̂∗ = maxiτ̂
∗
i /N , where

τ̂∗i =
∑N
j=1 |T

−1∑T
t=1 êitêjt| as indicator for M/N , which should be

small and decreasing with N . That is, the bounding quantity M is of
order Op(N).

Cross validation. Let M0 =
∑N
j=1

∑N
i=1 |τ̂ij |, τ̂ij =

∑T
t=1 êitêjt/T .

Calibrate and estimate M by cross-validation. Using a normalized
parameter m = M/M0 to index the constrained estimates of F and Λ
over a grid of values of m between 0 and 1.

R. Ouysse Efficient estimation
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Asymptotic properties of Cn-PC

Theorem (Convergence)

For any fixed (known) r ≥ 1, there exists a suitable (r × r) full rank rotation
matrix H such that under Assumption A1-A5

1

T

T∑
t=1

∥∥∥F̂t −H′F 0
t

∥∥∥2

= Op(δ
−2
NT ) +Op(µ

−2
NT δ

−2
NT ),

where H =
(

Λ′ANΛ
N

)(
F ′F̂
T

)
V −1
NT . Or equivalently,

ω2
NT

(
1

T

T∑
t=1

∥∥∥F̂t −H′F 0
t

∥∥∥2
)

= Op(1),

where δNT = min
{√

N,
√
T
}

and ωNT = min {δNT , δNTµNT }.

where, VNT be an r × r matrix consisting of the largest eigenvalues of
1
NT

X (IN + µNTS) X′.
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Asymptotic properties of Cn-PC

Theorem (Limiting Distribution)

Suppose that Assumptions A1-A7 hold.

1 If
√
N

TµNT
→ 0,

√
N
(
F̂t −H′F 0

t

)
d−→ N(0, V −1/2QΨtQ′V −1/2).

Efficiency of Cn-PC: r = 1
Cn-PC:

F̂
t,Cn-PC w

F 0
t√

ΣF
+

1√
N
N

(
0,

1

ΣF
Σ−1

Λ∗ΨtΣ
−1
Λ∗

)
OLS-PC:

F̂
t,OLS-PC w

F 0
t√

ΣF
+

1√
N
N

(
0,

1

ΣF
Σ−1

Λ ΨtΣ
−1
Λ

)
,

Note: ΣΛ∗ = ΣΛ + µNT plim Λ′SΛ
N
≥ ΣΛ
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Monte Carlo design (Bai& Liao (2016,JoE))

The errors {uit}i≤N,t≤T are iid as N(0, 1).

The cross-sectional dynamics are generated as follows.

e1t = u1t, e2t = u2t + a1u1t, e3t = u3t + a2u2t + b1u1t,

ei+1,t = ui+1,t + aiui,t + bi−1ui−1,t + ci−2ui−2,t

where {ai, bi, ci} are independently drawn from N(0, d2) with d = 0.7

The factors are independently generated from N(0, 1), and the loadings
are i.i.d uniform on [0, 1].

Ω1,1 = 1, Ω2,2 = 1+a2
1, Ω3,3 = 1+a2

2+b21, Ωi+1,i+1 = 1+a2
i+b

2
i−1+c2i−2,

and off diagonal elements,

Ω1,2 = a1, ω1,3 = b1, , Ω2,3 = a2 + a1b1,
then for i = 3, · · · , N − 1,Ωi+1,i = ai + ai−1bi−1 + ci−2bi−2,
Ωi+1,i−1 = bi−1 + ai−2ci−2,
Ωi+1,i−2 = ci−2,Ωi+1,i−3 = 0.
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Monte Carlo evaluation: Estimation

For l = 1, · · · , L(= 2000),

(i) Compute the OLS-PC estimators F̂
(l)
OLS−PC , Λ̂

(l)′

OLS−PC and the estimated

errors êlOLS−PC . Using the sample covariance matrix

Ω̂OLS−PC = ê′ê/NT , construct an estimate for sign matrix, Ŝ(l).

(ii) For M = m ·M0, where m ∈ [0, 1], compute
(
F̂ (l), µ̂lNT

)
:

Start µNT = µ0, µ0 = 0.5
√
tr(ê′ê)/tr(ê′AN ê), and Aµ = IN −µS, solve L(µ):

µ̂NT = arg maxµ(NT )−1
[
tr XAµX′ − tr F̂ ′µXAµX′F̂µ

]
−M,

where F̂µ is
√
T times eigenvectors corresponding XAµX′.

(iii) Estimation accuracy:

S
(l)

F̂ ,F0
=

tr
(
F0′ F̂ (l)

(
F̂ (l)′ F̂ (l)

)−1
F̂ (l)′F0

)
tr(F0′F0)

.

Small sample bias of F̃t ≡ H−1F̂t:bias(l) = 1
L

∑L
l=1 F̃

(l)
tk − F 0

tk, for k = 1 and

t = 1, [T/2], T .

Empirical mean squared errors (MSEs): MSEs(l) = r−1
∥∥∥F̂ (l)

t − F
0(l)
t

∥∥∥2
.
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Results: Estimation accuracy

1 Sample Bias: overall, the proposed Cn-PC estimator have smaller bias
compared to (OLS-PC). Table1 .

2 % explained variation SF̂ ,F0

The GLS-PC performs better in case of T large and N small.
When N is large, GLS-PC performs poorly with SF̂ ,F0 considerably lower

than the ones for the OLS-PC and Cn-PC estimators. Table2 .

3 Sample covariances Ω̂ij
The Cn-PC estimator’s sample covariances are shrunk relative to the
OLS-PC.
This shrinkage is less signifficant for the case of N = T = 150, although the

spread is still small for the Cn-PC. Figure6

4 The sampling distribution of maximum average cross-correlation τ̂∗ show
that the Cn-PC estimates are shrunk to zero relative to the OLS-PC. Figure7

5 Choosing M ... Figure5 SffFig

R. Ouysse Efficient estimation
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Empirical comparison: Data

Dataset consists of monthly observations on 125 U.S. macroeconomic time
series from 1959:01 to 2009:01, and is sourced from the replication files of
Stock & Watson (2012).

Predictors include real variables such as sectoral industrial production,
employment and hours worked; nominal variables such as consumer and
price indexes, wages, money aggregates; in addition to stock prices and
exchange rates.

- Real variables: sectoral industrial production, employment and hours
worked;

- Nominal variables: consumer and price indices, wages, money aggregates;
- Asset prices: stock prices and exchange rates

Data transformed to achieve stationarity: for real variables, take the
monthly growth rate (industrial production, sales · · ·) and first differences
for variables already expressed in rates (unemployment rate, capacity
utilization, · · ·)

R. Ouysse Efficient estimation
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Empirical comparison: data

The sample has a monthly frequency from 1959:01 to 2009:01.

The sample is divided into an in-sample portion of size T = 120 starting
from 1959 : 01− 1969 : 12, and an out-of-sample evaluation portion with
first date December 1970 and last date January 2009 with R = 458
out-of-sample evaluation points split into pre- and post-1985 periods with
cut-off date December 1984.

I consider rolling estimates with a window of 10 years, i.e. parameters are
estimated at each time T using the most recent 10 years of data.
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Forecasts Accuracy: relative MSFEs

It is observed that the gains in forecast accuracy depend on the sample
period and on the target series. Generally, the gains are not significant and
range from 0% to 6% decrease in the pseudo-out-of-sample mean-squared
forecast errors.

Consumer price Index forecasts appear to benefit the most from
incorporating dependence features using the Cn-PC estimators of the
predictors F̂t. These benefits are more appreciable during the period of
post moderation of 1985-2002. Table3
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Concluding remarks

I presented a simple and novel PC-based method for estimating for large
approximate factor models with cross sectional dynamics in the errors.

The estimator is computationally more tractable than ML-based
alternatives. It doesn’t require estimating large covariance matrices and is
obtained by performing PC of a regularised data matrix.

Monte carlo results suggest the estimator outperforms the OLS-PC and
the GLS-PC in estimating the space of the true factors.

Applied to forecasting, small improvements oer OLS-PC. Perhaps more
gains in the context of APT and pricing of returns.
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THANK YOU...
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To summarize,

F̂µ̂NT
:
√
T × first r principal components of X (IN + µ̂NTS))X′, (6)

Λ̂µ̂NT
: Λ̂µ̂NT

= X′F̂µ̂NT
/T, (7)

µ : M = (NT )−1
N∑
t=1

ê′tSêt (8)

I solve for (F̂µ̂, µ̂) which minimizes the reduced Lagrangian L(F, µ) in (??) subject to
the constraint F ′F/T = Ir. The problem can be solve as in the standard primal-dual
procedure, whereby the Lagrangian is further concentrated to a reduced function of µ,

after replacing F by F̂ (µ). The dual problem solves the maximum of the concentrated
objective function, L(µ), which is equal to:

(NT )−1
[
tr X (IN + µ̂NTS)X′ − tr F̂ ′µ̂NT

(
X (IN + µ̂NTS)X′

)
F̂µ̂NT

]
− µ̂NTM (9)

Back to The Cn-PC Estimator .
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Example: Crosse section of macroeconomic variables used in forecasting

Figure: Sparsity of the sample covariance matrix and total dependence, τ̂i, for series
Xi, i = 1, · · · , N

Back to Efficiency .
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Macro 1: Macroeconomic forecasting using many predictors. Macro 1 .

Macro 2: The determinants of economic growth in a cross-section of
countries. The database includes data for 90 countries and 60 potential
predictors, Barro and Lee (1994).

Finance 1: Equity premium prediction. study the predictability of US aggregate
stock returns

Finance 2: Explaining the cross section of expected returns.

Micro 1: Understanding the decline in crime rates in US states in the 1990s.

Micro 2: The determinants of government takings of private property in US
judicial circuits

Back to Introduction .
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Macroeconomic forecasting

Aim. Forecasting monthly growth rate of US industrial production, Consumer Price
index yt+h|It

Dataset consists of monthly observations on 130 U.S. macroeconomic time series
from 1959:01 to 2009:01, and is sourced from the replication files of Stock &
Watson (2012).

Predictors include:

- Real variables: sectoral industrial production, employment and hours
worked;

- Nominal variables: consumer and price indices, wages, money aggregates;
- Asset prices: stock prices and exchange rates

Forecasting with many predictors provides opportunity to exploit a much richer
base of information than is conventionally used for time series forecasting.

Using many predictors may provide some robustness against structural instability
that plagues low-dimensional forecasting.

However, many predictors forecasting brings substantial challenges: many
parameters which overwhelms the information in the data with estimation error.

Back to Examples .
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The curse of dimensionality

Let Zt be the N−vector of covariance stationary processes. We are interested in
estimating the linear projection, yt+h = proj{yt+h|Zt−s, s = 0, 1, 2, · · ·}.
Traditional time series methods approximate the projection using a finite number,
p, of lags of Zt,

yt+h = Z′tβ0 + · · ·+ Z′t−pβp + ut+h = X′tβ + ut+h,

Given a sample of size T , let X = (Xp+1, · · ·, XT−h)′ be the
(T − h− p)×N(p+ 1) matrix of observations for the predictors and

y = (yp+h+1, · · ·, yT )′ . The traditional forecast is given by ŷLS
T+h|T = X′β̂LS ,

where β̂LS = (X′X)−1X′y.

Back to Introduction .
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Factor Models and factors based forecasts

Let Xit be the observed data for the ith cross-section unit at time t
(i = 1, · · ·, N, t = 1, · · ·, T ). Consider

Xit = λ′iFt + eit, (10)

where Ft = {Fkt}1≤k≤r , is an r × 1 vector of common factors, λi = {λik}1≤k≤r is the
corresponding vector of factor loading for cross-section unit i, and eit is an idiosyncratic component.

Let us assume that there are r common fcators driving the co-movements in the
the data matrix X = {X1, · · · , Xi, · · · , XN}′, Xi = [Xi1, · · · , Xit, · · · , XiT ]′:

Xit = λ′iFt + eit

Ft are called common factors, λi are called factor loadings

Let F̂ be the T × r matrix of factors estimates, and define

Ift = span{f̂1t, · · ·, f̂rt}, with r � m× (p+ 1) is a parsimonious representation
of the information set It.

The principal component forecast is defined as:

yPCT+h|T = proj{yT+h|IfT }. (11)

The projection is computed by OLS of yt on F̂t for t = 1 : T :

yPCT+h|T = θ̂′F̂T , (12)

θ̂ = (F̂ F̂ ′)−1F̂ ′T y, F̂ = (f̂1T , · · ·, f̂rT )′. (13)

Back to Introduction .
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Back to Results1 .
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Back to Results1 .
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Back to Results1 .
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Back to Results1 .
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Back to Empirics .
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Appendix A1: Cn-PC Estimators

The critical points of the function (3.10) are found by solving the first order conditions
on the feasible set:

(I) :
∂L(Λ, F )

∂Λ
|Λ̂,F̂ = 0 (7.1)

(II) :
∂L(Λ, F )

∂F
|Λ̂,F̂ = 0 (7.2)

M ≥ (NT )−1

N∑

t=1

ê′tS êt, µ̂NT ≥ 0, µ̂NT

(
M − (NT )−1

N∑

t=1

ê′tS êt

)
= 0 (7.3)

The conditions in (7.3) are known as the complementary slackness. The first two sets
of conditions in (7.4) and (7.6), lead to the following:

(I) :
T∑

t=1

(IN + µ̂NTS) êtF̂
′
t = 0 (7.4)

Λ̂ =

(
T∑

t=1

X tF
′
t

)(
T∑

t=1

FtF
′
t

)−1

(7.5)

(II) :
T∑

t=1

Λ̂′ (IN + µ̂NTS) êt = 0 (7.6)

F̂t =
(

Λ̂′ (IN + µ̂NTS) Λ̂
)−1

Λ̂′ (IN + µ̂NTS)X t (7.7)

Substituting (7.5) into the Lagrangian and imposing the identification restriction F ′F/T =
Ir, this concentrates out Λ to obtain a reduced Lagrangian that is a function of F and
µ:

L(F̂ , µ̂NT , r) = (NT )−1

T∑

t=1

ê′têt − µ
[
M/N − (N2T )−1

N∑

t=1

ê′tS êt

]

= (NT )−1trace [ê (IN + µ̂NTS) ê]−M

=
trace X (IN + µ̂NTS)X ′

NT
− trace F̂ ′ (X (IN + µ̂NTS) X′) F̂

NT
− µ̂NTM

For a given µ̂NT , the optimization problem is identical to maximizing trace F ′
(

X(IN+µ̂NTS)X′

T

)
F

with respect to F . The estimated factor matrix, denoted by F̂µ̂NT to the latter problem
is the matrix with columns consisting of the principal components of, X (IN + µ̂NTS) X′.
Technically, consider the spectral decomposition of the matrix of,

Ψ′N,µ̂ = X (IN + µ̂NTS) X′,

ΨN,µ̂Γµ̂ = Γµ̂∆µ̂,

27

Back to Constrained Estimation .

R. Ouysse Efficient estimation


	Main Talk
	Introduction
	This paper: Contribution

	Efficiency Literature
	Does Efficiency matter?

	The approximate factor model
	The literature

	Cn-PCE
	Choosing M
	Asymptotic Properties
	Monte Carlo Experiment
	Results: Estimation accuracy

	Empirical Illustration
	Conclusion

	Appendix

