Sufficient Statistics for Unobserved Heterogeneity in Dynamic Structural Logit Models

Victor Aguirregabiria, Jiaying Gu, Yao Luo

University of Toronto

November 2, 2017

Motivation

- Incorporating Unobserved Heterogeneity (UH) in Dynamic Panel Data (DPD) models
 Key issue: distinguish between state dependence ("true dynamics") and "spurious dynamics" due to persistent UH. [Heckman (1981)]
- Most common approaches to deal with UH in DPD models are Fixed Effects (FE) and Correlated Random Effects (CRE).
 - FE-1: brute force estimate UH and then bias correction for structural parameters (large N large T)
 - FE-2: difference out UH (very common for linear DPD models, challenging for non-linear DPD models).
 - CRE: regularize FE; imposes different types of restrictions: parametric, finite support, group structure, restrictions on initial conditions.

FE in structural dynamic discrete choice (DDC) models

- FE-1 approach is not feasible for structural DDC.
- FE-2 approach is very attractive because it does not impose any restriction on the distribution of the UH conditional on observable explanatory variables and the initial conditions (fully nonparametric).
 - Non-structural (myopic) dynamic logit: Chamberlain (1985), Honoré and Kyriazidou (2000), Magnac (2000)
- Not all DDC models can be estimated, root-N consistently, using FE-2 estimators.
 Examples:
 - Binary choice models other than logit (Chamberlain 2010).
 - Logit with UH multiplicative with explanatory variables.
- Structural dynamic logit model: Common wisdom is FE-2 cannot provide a consistent estimator of structural parameters:
 - Even if UH enters additively into the one-period payoff function, the solution of the model implies that UH appears non-additively in the continuation value.
 - All applications of structural DDC models with UH have considered a CRE approach. Examples:
 - Permanent UH (Finite mixture): Keane and Wolpin (1997), Aguirregabiria and Mira (2007), Kasahara and Shimotsu (2009), Arcidiacono and Miller (2011)
 - Permanent/time varying UH (K-mean classification): Bonhomme et al. (2017)

Contributions

- We propose a FE-2 approach to estimate (root-N) consistently the structural parameters of a structural dynamic logit models (i.e. Rust model with permanent UH).
- We build and extend Chamberlain (1985) to structural (forward-looking) DDC logit models with both choice-state-dependence and duration dependence.
 - Nonparametric identification of choice-state dependence and duration dependence separately.
 - Minimum sufficient statistics for UH in one-period payoff and continuation value.
 - Construct conditional MLE (à la Anderson (1970)) for structural parameters.

Practicality

- Structural model specified covers many important economic applications in the literature.
 - market entry and exit (binary or multinomial)
 - occupational choice
 - machine replacement
 - dynamic demand of differentiated products
- Identification results rely on finding set of sequences such that, once conditioned on, individual likelihood no longer depends on UH, but still depends on structural parameters of interest
- FE is consistent for finite T, fully robust, easy to compute.
- Application 1: Revisit Rust (1987) to estimate the structural parameter in maintenance cost.
- Application2: dynamic demand of a differentiated storable product using consumer scanner data.
 - brand-switching cost and inventory-level dependence
 - Scanner dataset used in Erdem, Imai and Keane (2003).
- (In progress): counterfactual experiment requires identification of distribution of UH.

Outline

- (1) Model and Assumptions
- (2) Identification of structural parameters [find pair of sequences to difference out UH]
- (3) Minimum Sufficiency for UH [efficiency]
- (4) Estimation and Inference
- (5) Some extensions
- (6) Empirical application

Model Elements and Assumptions

- Time is discrete and indexed by t. Agent is indexed by i.
- ullet Time horizon of agent's decision problem is ∞ -stationary.
- Observed individual choices have finite length: t = 1, 2, ..., T.

Observables

- Decision variable: $y_{it} \in \mathcal{Y} = \{0, 1, \dots, J\}$.
- Exogenous state variables: discrete and finite support z_{it} follows a Markov process with transition $f_z(z_{i,t+1}|z_{it})$.
- Endogenous state variables: xit.

Unobservables

- $\epsilon_{it}(y)$ i.i.d. type I extreme value distributed
- $oldsymbol{\eta}_i$: agent's permanent UH in the payoff (can be multidimensional)
- $\delta_i \in (0,1)$: agent-specific discount factor.
- Distribution of incidental parameters $\theta_i = (\eta_i, \delta_i)$ conditional on $\{\mathbf{x}_{it}, \mathbf{z}_{it} : t = 1, 2, \dots\}$ is unrestricted.
- One-period payoff:

$$U_{it}(y) = \alpha(y, \boldsymbol{\eta}_i, \mathbf{z}_{it}) + \beta(y, \mathbf{x}_{it}) + \epsilon_{it}(y)$$

• **Key assumption**: η_i and \mathbf{x}_{it} are additively separable in the payoff function.

Endogenous State Variables

- Two endogenous state variables that correspond to two types of state dependence: $\mathbf{x}_{it} = (y_{i,t-1}, d_{it})$.
 - dependence on the lagged decision variable $y_{i,t-1} \in \mathcal{Y}$ for t = 1, 2, ..., T.
 - dependence on duration: d_{it} is the number of periods since the last change in choice.
- Transition rule for d_{it} : for t = 1, 2, ..., T,

$$d_{i,t+1} = f_d(y_{it}, \mathbf{x}_{it}) = 1\{y_{it} = y_{i,t-1}\}d_{it} + 1$$

- Deterministic transition $f_{\mathbf{x}}(y, \mathbf{x}_{it}) = (y, f_d(y, \mathbf{x}_{it})).$
 - stochastic transition à la Rust (1987): cumulative mileage as a state variable (in progress)
- Initial condition $\mathbf{x}_{i1} = (y_{i0}, d_{i1})$.
- Structural state dependence $\beta(y, \mathbf{x}_{it})$: distinguishes two types of dependence

$$\beta(y,\mathbf{x}_{it}) = 1\{y \neq y_{i,t-1}\}\underbrace{\beta_y(y,y_{i,t-1})}_{\text{switching cost}} + 1\{y = y_{i,t-1}\}\underbrace{\beta_d(y,d_{it})}_{\text{duration dependence}}$$

- Occupational choice: (Miller 1984, Keane and Wolpin 1997).
 - cost of switching from occupation y to y': $\beta_y(y', y)$.
 - return of experience on worker's earning: $\beta_d(y,d)$.

Assumptions on structural parameters

- $\beta_y(y, y_{-1})$ and $\beta_d(y, d)$ are bounded.
- Zero switching cost if no switching: $\beta_y(y,y) = 0$.
- Limited return to duration: $\exists d^* < \infty$, $\beta_d(y, d) = \beta_d(y, d^*)$ for $d \ge d^*$.
 - For the moment: assume d^* is known to researcher.
 - d^* can be allowed to change for different $y \in \mathcal{Y}$.
 - Extension: identify d^* from the data.
- Plausible additional assumptions: $\beta_d(0,d)=0$ for all $d\geq 1$: No duration dependence for "outside alternative" y=0.
 - Occupational choice model: outside alternative is "unemployment".
 - Identification result does not rely on this assumption.
 - With this assumption, more sequences have identifying power.

Examples

- Market entry-exit (binary): (Roberts and Tybout 1997, Dunne et al. 2013)
 - stay active (y = 1) vs. exit (y = 0).
 - entry cost $\beta_{y}(1,0)$ vs. exit cost $\beta_{y}(0,1)$.
 - market experience on firm profit: $\beta_d(1,d)$.
 - marginal return of experience is zero once $d \geq d^*$.
- Markets entry-exit (multinomial): (Sweeting 2013, Caliendo et al. 2015)
 - cost of switching from market y to y': $\beta_y(y', y)$.
 - return from experience in market y: $\beta_d(y,d)$.
- Machine replacement: (Rust 1987, Das 1992, Kennet 1993, Kasahara 2009)
 - Keep a machine (y = 1) vs. replace a machine (y = 0).
 - only state variable d: machine's age.
 - Effect of age on firm's profit: $\beta_d(1, d)$.
- Dynamic demand of differentiated storable products: (Erdem, Imai and Keane 2003, Hendel and Nevo 2006)
 - level of inventory: duration d since last purchase captures inventory level.
 - switching cost from brand y to y': $\beta_y(y', y)$.
 - effect of inventory on consumer utility: $\beta_d(y, d)$.

Solving the model

Optimal decision rule

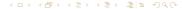
$$y_{it} = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \left\{ \alpha(y, \eta_i, \mathbf{z}_{it}) + \beta(y, \mathbf{x}_{it}) + \epsilon_{it}(y) + \underbrace{\delta_i \mathbb{E}_{\mathbf{z}_{i,t+1} | \mathbf{z}_{it}} [V(f_{\mathbf{x}}(y, \mathbf{x}_{it}), \mathbf{z}_{i,t+1}, \frac{\boldsymbol{\theta}_i}{\boldsymbol{\theta}_i})]}_{v(f_{\mathbf{x}}(y, \mathbf{x}_{it}), \mathbf{z}_{it}, \boldsymbol{\theta}_i)} \right\}$$

with $\epsilon_{it}(y)$ i.i.d. type I extreme value distributed

Conditional choice probabilities (CCP)

$$\mathbb{P}(y \mid \boldsymbol{\theta}_i, \mathbf{x}_{it}, \mathbf{z}_{it}) = \frac{\exp\{\alpha(y, \boldsymbol{\eta}_i, \mathbf{z}_{it}) + \beta(y, \mathbf{x}_{it}) + v(f_x(y, \mathbf{x}_{it}), \mathbf{z}_{it}, \boldsymbol{\theta}_i)\}}{\sum_{j \in \mathcal{Y}} \exp\{\alpha(j, \boldsymbol{\eta}_i, \mathbf{z}_{it}) + \beta(j, \mathbf{x}_{it}) + v(f_x(j, \mathbf{x}_{it}), \mathbf{z}_{it}, \boldsymbol{\theta}_i)\}}$$

- Even though $\alpha(y, \eta_i, \mathbf{z}_{it})$ is separable from state \mathbf{x}_{it} ,
- $\theta_i = (\eta_i, \delta_i)$ is generally not separable from \mathbf{x}_{it} in the continuation value.
- Common wisdom: FE not feasible: It is impossible to difference out θ_i without also differencing out $\beta(y, \mathbf{x}_{it})$.



Solving the model

Optimal decision rule

$$y_{it} = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \Big\{ \alpha(y, \eta_i, \mathbf{z}_{it}) + \beta(y, \mathbf{x}_{it}) + \epsilon_{it}(y) + \underbrace{\delta_i \mathbb{E}_{\mathbf{z}_{i,t+1} | \mathbf{z}_{it}} [V(f_{\mathbf{x}}(y, \mathbf{x}_{it}), \mathbf{z}_{i,t+1}, \frac{\boldsymbol{\theta}_i)}{\mathbf{e}_i})]}_{v(f_{\mathbf{x}}(y, \mathbf{x}_{it}), \mathbf{z}_{it}, \boldsymbol{\theta}_i)} \Big\}$$

with $\epsilon_{it}(y)$ i.i.d. type I extreme value distributed

Conditional choice probabilities (CCP)

$$\mathbb{P}(y \mid \boldsymbol{\theta}_i, \mathbf{x}_{it}, \mathbf{z}_{it}) = \frac{\exp\{\alpha(y, \boldsymbol{\eta}_i, \mathbf{z}_{it}) + \beta(y, \mathbf{x}_{it}) + v(f_x(y, \mathbf{x}_{it}), \mathbf{z}_{it}, \boldsymbol{\theta}_i)\}}{\sum_{j \in \mathcal{Y}} \exp\{\alpha(j, \boldsymbol{\eta}_i, \mathbf{z}_{it}) + \beta(j, \mathbf{x}_{it}) + v(f_x(j, \mathbf{x}_{it}), \mathbf{z}_{it}, \boldsymbol{\theta}_i)\}}$$

- Even though $\alpha(y, \eta_i, \mathbf{z}_{it})$ is separable from state \mathbf{x}_{it} ,
- $\theta_i = (\eta_i, \delta_i)$ is generally not separable from \mathbf{x}_{it} in the continuation value.
- Common wisdom: FE not feasible: It is impossible to difference out θ_i without also differencing out $\beta(y, \mathbf{x}_{it})$.

Too pessimistic!

Identification

Some intuition for identification

$$\mathbb{P}(y \mid \boldsymbol{\theta}_i, \mathbf{x}_{it}, \mathbf{z}_{it}) = \frac{\exp\{\alpha(y, \boldsymbol{\eta}_i, \mathbf{z}_{it}) + \beta(y, \mathbf{x}_{it}) + v(f_x(y, \mathbf{x}_{it}), \mathbf{z}_{it}, \boldsymbol{\theta}_i)\}}{\sum_{j \in \mathcal{Y}} \exp\{\alpha(j, \boldsymbol{\eta}_i, \mathbf{z}_{it}) + \beta(j, \mathbf{x}_{it}) + v(f_x(j, \mathbf{x}_{it}), \mathbf{z}_{it}, \boldsymbol{\theta}_i)\}}$$

- Structural DDC model without duration dependence
 - Only one state variable $x_{it} = y_{i,t-1}$, hence $f_x(y, x_{it}) = y$.
 - Continuation value: $v(f_x(y, x_{it}), \mathbf{z}_{it}, \theta_i) = v(y, \mathbf{z}_{it}, \theta_i)$, no longer depends on \mathbf{x}_{it} !
 - Let $\tilde{\alpha}(y, z_{it}, \theta_i) \equiv \alpha(y, \eta_i, z_{it}) + v(y, z_{it}, \theta_i)$.
 - Equivalent to a DDC model without continuation value.
 - Use identification strategy similar to Chamberlain (1985) [without z_{it}] and Honoré and Kyriazidou (2000) [set $z_{it} = z$ for some periods].

Some intuition for identification

- Structural DDC model with duration dependence
 - Switchers (identification β_y): if $y \neq y_{it-1}$

$$\alpha(y, \eta_i, \mathsf{z}_{it}) + \beta_y(y, y_{it-1}) + v(\underbrace{f_\mathsf{x}(y, \mathsf{x}_{it})}_{(y, 1)}, \mathsf{z}_{it}, \theta_i)$$

Consider choices $A = \{y_{it-1}, y, y'\}$ vs. $B = \{y_{it-1}, y', y\}$ where $y \neq y' \neq y_{it-1}$

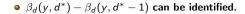
$$\begin{array}{ccc} \alpha(y,\eta_i) + & \beta_y(y,y_{i,t-1}) & +\nu((y,1),\theta_i) \\ \alpha(y',\eta_i) + & \beta_y(y',y) & +\nu((y',1),\theta_i) \end{array} \tag{A}$$

$$\begin{array}{ccc} \alpha(y', \eta_i) + & \beta_y(y', y_{i,t-1}) & + \nu((y', 1), \theta_i) \\ \alpha(y, \eta_i) + & \beta_y(y, y') & + \nu((y, 1), \theta_i) \end{array} \tag{B}$$

• Some linear combinations of β_y can be identified comparing choice histories with switches occurring in different orders.

Some intuition for identification

• Stayers (identification β_d) : $y = y_{it-1}$ $\alpha(y, \eta_i, \mathbf{z}_{it}) + \beta_d(y, d_{it}) + v\underbrace{(f_{\mathbf{x}}(y, \mathbf{x}_{it}), \mathbf{z}_{it}, \theta_i)}_{(y, \min\{d_{it}+1, d^*\})}$ for $d_{it} \in \{d^* - 1, d^*\}$ $\alpha(y, \eta_i) + \beta_d(y, d^* - 1) + v((y, d^*), \theta_i)$ $\alpha(y, \eta_i) + \beta_d(y, d^*) + v((y, d^*), \theta_i)$



Data and likelihood

The researcher observes panel data on individual choices over T periods of time.

$$\{y_{it}, \mathbf{z}_{it} : i = 1, 2, \dots, N; t = 1, 2, \dots, T\}$$

- N is large, T is small.
- Initial condition $\mathbf{x}_{i1} = (y_{i0}, d_{i1})$ is observed, $\mathbf{x}_{it} = (y_{i,t-1}, d_{it})$.
- Notation:
 - Let β collect all $\beta_v(y,y')$ and $\beta_d(y,d)$ for $(y,y') \in \mathcal{Y}^2$ and $d=1,2,\ldots,d^*$.
 - Let $\mathbf{y}_i = \{y_{i1}, \dots, y_{iT}\}\$ and $\mathbf{z}_i = \{\mathbf{z}_{i1}, \dots, \mathbf{z}_{iT}\}.$
 - Let $\alpha(y_{it}, \mathbf{z}_{it}, \boldsymbol{\eta}_i) \equiv \alpha_i(y_{it}, \mathbf{z}_{it})$ and $v(f_x(y_{it}, \mathbf{x}_{it}), \mathbf{z}_{it}, \boldsymbol{\theta}_i) \equiv v_i(f_x(y_{it}, \mathbf{x}_{it}), \mathbf{z}_{it})$.
- Individual likelihood of data conditional on x_{i1}:

$$\mathbb{P}(\mathbf{y}_i \mid \mathbf{x}_{i1}, \mathbf{z}_i, \boldsymbol{\theta}_i) = \prod_{t=1}^{T} \frac{\exp\{\alpha_i(y_{it}, \mathbf{z}_{it}) + \beta(y_{it}, \mathbf{x}_{it}) + v_i(f_x(y_{it}, \mathbf{x}_{it}), \mathbf{z}_{it})\}}{\sum_{j \in \mathcal{Y}} \exp\{\alpha_i(j, \mathbf{z}_{it}) + \beta(j, \mathbf{x}_{it}) + v_i(f_x(j, \mathbf{x}_{it}), \mathbf{z}_{it})\}}$$

Sufficient Statistics

• Build upon Chamberlain (1985) \bigcirc Build upon Chamberlain (1985) \bigcirc Build upon Chamberlain (1985) take the form $\mathbf{S}_i = \mathbb{I}\{\mathbf{y}_i \in \mathbb{S}(\mathbf{y}_i)\}$ such that

$$\mathbb{P}(\mathbf{y}_i \mid \mathbf{S}_i = 1, \mathbf{x}_{i1}, \boldsymbol{\theta}_i, \boldsymbol{\beta}) = \mathbb{P}(\mathbf{y}_i \mid \mathbf{S}_i = 1, \mathbf{x}_{i1}, \boldsymbol{\beta})$$

Individual likelihood of data conditional on x:1 is

$$\mathbb{P}(\mathbf{y}_i \mid \mathbf{x}_{i1}, \boldsymbol{\theta}_i) = \prod_{t=1}^{T} \frac{\exp\{\alpha_i(y_{it}) + \beta(y_{it}, \mathbf{x}_{it}) + v_i(f_x(y_{it}, \mathbf{x}_{it}))\}}{\sum_{j \in \mathcal{Y}} \exp\{\alpha_i(j) + \beta(j, \mathbf{x}_{it}) + v_i(f_x(j, \mathbf{x}_{it}))\}}$$

Theorem 1: A choice history $\mathbf{y} \in \mathbb{S}(\mathbf{y}_i)$ if and only if the following conditions hold:

- 1 Initial state matches: $\mathbf{x}_1^y = \mathbf{x}_{i1}$.
- The set of d^* -censored state variables of the two sequences for $t \in [1, T]$ has the same histogram.
- **3** The set of d^* -censored state variables of the two sequences for $t \in [2, T+1]$ has the same histogram.
- d^* -censored terminal state matches $\mathbf{x}_{T+1}^{\mathbf{y}} = \mathbf{x}_{i,T+1} = (y_{iT}, d_{i,T+1}).$

$$\mathbf{x}_{i} = (\mathbf{x}_{i1}, (\mathbf{x}_{i2}, \mathbf{x}_{i3}, \dots, \mathbf{x}_{iT})) \mathbf{x}_{iT+1}$$

$$\mathbf{x}^{y} = (\mathbf{x}_{i1}, (\mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}_{T})) \mathbf{x}_{T+1}$$

Sufficient statistics for θ_i are: $\mathbf{x}_{i1}, \mathbf{x}_{iT+1}$ and histogram of $\{\mathbf{x}_{i2}, \ldots, \mathbf{x}_{iT}\}$

Corollary: Sufficient Statistics (myopic with duration)

ullet If there is no forward looking, then individual likelihood of data conditional on ${f x}_{i1}$

$$\mathbb{P}(\mathbf{y}_i \mid \mathbf{x}_{i1}, \boldsymbol{\theta}_i) = \prod_{t=1}^{T} \frac{\exp\{\alpha_i(y_{it}) + \beta(y_{it}, \mathbf{x}_{it})\}}{\sum_{j \in \mathcal{Y}} \exp\{\alpha_i(j) + \beta(j, \mathbf{x}_{it})\}}$$

$$\mathbf{x}_{i} = \mathbf{x}_{i1}, \quad \mathbf{x}_{i2}, \mathbf{x}_{i3}, \dots, \mathbf{x}_{iT}, \quad \mathbf{x}_{iT+1} \\
\mathbf{x}^{y} = \mathbf{x}_{i1}, \quad \mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}_{T}, \quad \mathbf{x}_{T+1}$$

• Sufficient statistics for θ_i is: \mathbf{x}_{i1} and histogram of $\{\mathbf{x}_{i2}, \dots, \mathbf{x}_{iT}\}$ and y_{iT} .

Binary Choice dynamic logit model

Optimal decision rule

$$y_{it} = 1 \left\{ \begin{array}{c} \alpha_i(1) - \alpha_i(0) + \beta(1, y_{it-1}, d_{it}) - \beta(0, y_{it-1}, d_{it}) \\ + v_i(f_x(1, y_{it-1}, d_{it})) - v_i(f_x(0, y_{it-1}, d_{it})) + \epsilon_{it}(1) - \epsilon_{it}(0) \ge 0 \end{array} \right\}$$

• Assume no duration dependence for "0": $v_i(0,d)=0$ and $\beta_d(0,d)=0$ for any $d\geq 1$.

$$\beta(1, y_{it-1}, d_{it}) - \beta(0, y_{it-1}, d_{it}) = (1 - y_{it-1})\beta_y(1, 0) + y_{it-1}\beta_d(1, d_{it}) - y_{it-1}\beta_y(0, 1)$$
$$= \beta_y(0, 1) + \tilde{\beta}_y y_{it-1} + \tilde{\beta}_d(d_{it})y_{it-1}$$

with $\tilde{\beta}_y = -\beta_y(1,0) - \beta_y(0,1)$ and $\tilde{\beta}_d(d_{it}) = \beta_d(1,d_{it})$.

Myopic BC dynamic logit without duration

- No duration: $\tilde{\beta}_d(d_{it}) = 0$ for all d_{it} .
- The model can be represented as

$$y_{it} = 1\{\alpha_i + \tilde{\beta}_y y_{it-1} + \epsilon_{it} \ge 0\}$$

where

$$\alpha_i \equiv \alpha_i(1) - \alpha_i(0) + \beta_y(1,0)$$

$$\epsilon_{it} \equiv \epsilon_{it}(1) - \epsilon_{it}(0)$$

• Chamberlain (1985): T = 3: $A = \{0, 1, y_{i3}\}$ and $B = \{1, 0, y_{i3}\}$ with $\mathbf{x}_{i1} = (y_{i0}, d_{i1})$. The two histories visit the same choice states (with different timing):

$$\frac{\mathbb{P}(A \mid \alpha_i, \mathbf{x}_{i1})}{\mathbb{P}(B \mid \alpha_i, \mathbf{x}_{i1})} = \exp{\{\tilde{\beta}_y(y_{i3} - y_{i0})\}}$$

 $(y_{i0},y_{i3})=(1,0)$ or (0,1) (over)-identify $\tilde{\beta}_y$.

Forward-looking BC dynamic logit without duration

The model can be represented as

$$y_{it} = 1\{\alpha_i + \tilde{\beta}_y y_{it-1} + \epsilon_{it} + v_i \ge 0\}$$

where

$$\alpha_i \equiv \alpha_i(1) - \alpha_i(0) + \beta_y(1, 0)$$

$$\beta \equiv -\beta_y(1, 0) - \beta_y(0, 1)$$

$$\epsilon_{it} \equiv \epsilon_{it}(1) - \epsilon_{it}(0)$$

$$v_i \equiv v_i(1) - v_i(0)$$

 \bullet Same fixed effect estimator as before identifies $\tilde{\beta}_y.$

Myopic BC dynamic logit with duration dependence

The model can be represented as

$$y_{it} = 1\{\alpha_i + \tilde{\beta}_y y_{it-1} + \tilde{\beta}_d(d_{it})y_{it-1} + \epsilon_{it} \ge 0\}$$

•
$$T = 3$$
: $A = \{0, 1, y_{i3}\}$ and $B = \{1, 0, y_{i3}\}$ with $\mathbf{x}_{i1} = (y_{i0}, d_{i1})$

$$(y_{i0}, y_{i3}) = (0, 1)$$

$$\frac{\mathbb{P}(A_1 \mid \alpha_i, \mathbf{x}_{i1})}{\mathbb{P}(B_1 \mid \alpha_i, \mathbf{x}_{i1})} = \exp\{\tilde{\beta}_y + \tilde{\beta}_d(1)\}$$

•
$$(y_{i0}, y_{i3}) = (1, 0)$$
 if $d^* = 1$.

$$\frac{\mathbb{P}(A_2 \mid \alpha_i, \mathbf{x}_{i1})}{\mathbb{P}(B_2 \mid \alpha_i, \mathbf{x}_{i1})} = \exp\{\tilde{\beta}_y + \tilde{\beta}_d(1)\}\$$

•
$$T = d + 3$$
, $A_3 = \{0, 1_{d+2}\}$ and $B_3 = \{1, 0, 1_{d+1}\}$ for $\mathbf{x}_{i1} = (1, d)$,

$$\frac{\mathbb{P}(A_3 \mid \alpha_i, \mathbf{x}_{i1})}{\mathbb{P}(B_3 \mid \alpha_i, \mathbf{x}_{i1})} = \exp\{\tilde{\beta}_d(d+1) - \tilde{\beta}_d(d)\}$$

• States $\mathbf{x}_{it} = (y_{it-1}, d_{it})$ visited from $t = 1, \dots, T+1$ for A and B:

Forward-looking BC dynamic logit with duration dependence

The model can be represented as

$$y_{it} = 1\{\alpha_i + \tilde{\beta}_y y_{it-1} + \tilde{\beta}_d(d_{it})y_{it-1} + \epsilon_{it} + v_i(f_x(1, y_{it-1}, d_{it})) - v_i(f_x(0, y_{it-1}, d_{it})) \geq 0\}$$

If $d^* > 1$

• Suppose $T \ge d^* + 2$. Consider initial condition $\mathbf{x}_1 = (1, d_1)$.

$$A = \{0, 1_{d^*+1}\}$$
$$B = \{1, 0, 1_{d^*}\}$$

$$B = \{1, 0, 1_{d^*}\}$$

• When $d_1 = d^* - 1$, we can identify

$$\ln \frac{\mathbb{P}(A \mid \mathbf{x}_{i1}, \boldsymbol{\theta}_i)}{\mathbb{P}(B \mid \mathbf{x}_{i1}, \boldsymbol{\theta}_i)} = \tilde{\beta}_d(d^*) - \tilde{\beta}_d(d^* - 1)$$

• States $\mathbf{x}_{it} = (y_{it-1}, d_{it})$ visited from $t = 1, \dots, T+1$ for A and B

Forward-looking BC dynamic logit with duration dependence (2)

If $d^* = 1$

• The model can be represented as

$$y_{it} = 1\{\alpha_i + \tilde{\beta}_y y_{it-1} + \tilde{\beta}_d(1)y_{it-1} + \epsilon_{it} + v_i(1,1) - v_i(0,1) \geq 0\}$$

• Use Chamberlain's estimator we can identify $\tilde{\beta}_y + \tilde{\beta}_d(1)$.

- Can we generalize from Binary choice to multinomial?
- Can we generalize for any T to find all relevant sequences that has identification power?

$$\mathbf{x}_i = \mathbf{x}_{i1}, \quad \mathbf{x}_{i2}, \mathbf{x}_{i3}, \dots, \mathbf{x}_{iT} \\
 \mathbf{x}^{\mathbf{y}} = \mathbf{x}_{i1}, \quad \mathbf{x}_{2}, \mathbf{x}_{3}, \dots, \mathbf{x}_{T} \\
 \mathbf{x}_{T+1}$$

- Theorem 1 is hard to use for several reasons:
 - We can not permute $\{\mathbf{x}_{i2},\ldots,\mathbf{x}_{iT}\}$ freely due to transition rule for d_{it} .
 - It is silent about identification of β .
- We need a better representation of the likelihood: Map choice history into choice runs.

Sufficient Statistics

Definition: A *choice run* is defined as a sequence of periods in which the same choice state is visited consecutively. It can be represented by two values $\binom{y}{n}$ where y is the choice alternative and n is the number of periods of the run.

A choice history $\{y_{i0}, \mathbf{y}_i\}$ can be represented as a sequence of R_i runs,

$$\mathbf{H}_i = \left\{ \begin{pmatrix} y_i^{(r)} \\ n_i^{(r)} \end{pmatrix}, r = 1, \dots, R_i \right\}$$

Modify $n_i^{(1)} \rightarrow n_i^{(1)} + d_{i1} - 1$ to record initial condition.

Example: $\{y_{i0}, \underline{y}_i\} = \{1, 1, 0, 1, 1, 1, 1, 1\}$ with $d_{i1} = 1$ is represented by 3 runs:

$$\left\{ \begin{pmatrix} 1\\2 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix}, \begin{pmatrix} 1\\4 \end{pmatrix} \right\}$$

• Instead of permuting state variable $\{x_{i2}, \dots, x_{iT}\}$, it is easier to permute runs.

Likelihood representation using choice runs

Individual likelihood of data conditional on \mathbf{x}_{i1}

$$\mathbb{P}(\mathbf{y}_{i} \mid \mathbf{x}_{i1}, \boldsymbol{\theta}_{i}) = \prod_{t=1}^{T} \frac{\exp\{\alpha_{i}(y_{it}) + \beta(y_{it}, \mathbf{x}_{it}) + v_{i}(f_{x}(y_{it}, \mathbf{x}_{it}))\}}{\sum_{j \in \mathcal{Y}} \exp\{\alpha_{i}(j) + \beta(j, \mathbf{x}_{it}) + v_{i}(f_{x}(j, \mathbf{x}_{it}))\}} \\
= \frac{\exp\{\sum_{t=1}^{T} \alpha_{i}(y_{it}) + \beta(y_{it}, y_{it-1}, d_{it}) + v_{i}(y_{it}, f_{d}(y_{it}, y_{it-1}, d_{it}))\}}{\exp\{\sum_{t=1}^{T} \sigma_{i}(y_{it-1}, d_{it})\}}$$

where $\sigma_i(y_{it-1}, d_{it}) = \ln \left[\sum_{j \in \mathcal{Y}} \exp\{\alpha_i(j) + \beta(j, y_{it-1}, d_{it}) + v_i(j, f_d(j, y_{it-1}, d_{it}))\} \right]$.

The individual log-likelihood can be represented as Details

$$\begin{split} \ln \mathbb{P}(\mathbf{y}_i \mid \mathbf{x}_{i1}, \boldsymbol{\beta}, \boldsymbol{\theta}_i) &= \sum_{r=2}^{R_i} \beta_y(y_i^{(r)}, y_i^{(r-1)}) \\ &+ \sum_{r=1}^{R_i} \beta_d^R(y_i^{(r)}, n_i^{(r)}) - 1\{d_{i1} \geq 2\} \sum_{d=1}^{d_{i1}-1} \beta_d(y_i^{(1)}, d) \\ &+ \mathbf{T}_i' \boldsymbol{\alpha}_i + \sum_{r=1}^{R_i} v_i^R(y_i^{(r)}, n_i^{(r)}) - \sum_{d=1}^{d_{i1}} v_i(y_i^{(1)}, d) \\ &- \sum_{r=1}^{R_i} \sigma_i^R(y_i^{(r)}, n_i^{(r)}) + 1\{d_{i1} \geq 2\} \sum_{d=1}^{d_{i1}-1} \sigma_i(y_i^{(1)}, d) + \sigma_i(y_i^{(R_i)}, n_i^{(R_i)}) \end{split}$$

Identification of β_y

• Sufficient statistics for θ_i is the last two rows of the likelihood representation.

$$\begin{aligned} &\mathbf{T}_{i}'\boldsymbol{\alpha}_{i} + \sum_{r=1}^{R_{i}} v_{i}^{R}(y_{i}^{(r)}, n_{i}^{(r)}) - \sum_{d=1}^{d_{i1}} v_{i}(y_{i}^{(1)}, d) \\ &- \sum_{r=1}^{R_{i}} \sigma_{i}^{R}(y_{i}^{(r)}, n_{i}^{(r)}) + 1\{d_{i1} \geq 2\} \sum_{d=1}^{d_{i1}-1} \sigma_{i}(y_{i}^{(1)}, d) + \sigma_{i}(y_{i}^{(R_{i})}, n_{i}^{(R_{i})}) \end{aligned}$$

where $\alpha_i = (\alpha_i(0), \ldots, \alpha_i(J))'$.

- Entries in the vector \mathbf{T}_i : $\sum_{r=1}^{R_i} 1\{y_i^{(r)} = j\}n_i^{(r)}$. # times j-choice is visited.
- $v_i^R(y, n) = \sum_{d=1}^n v_i(y, d)$ and $\sigma_i^R(y, n) = \sum_{d=1}^n \sigma_i(y, d)$.
- To identify β_y : permuting "runs in between"

$$\left\{ \left. \begin{pmatrix} y_i^{(1)} \\ n_i^{(1)} \end{pmatrix}, \left[\begin{pmatrix} y_i^{(2)} \\ n_i^{(2)} \end{pmatrix}, \dots, \begin{pmatrix} y_i^{(R_i-1)} \\ n_i^{(R_i-1)} \end{pmatrix} \right], \begin{pmatrix} y_i^{(R_i)} \\ n_i^{(R_i)} \end{pmatrix} \right\}.$$

• Provided after permuting, it is still a well-defined runs (i.e. $y^{(r)} \neq y^{(r+1)}$ for all $1 \leq r \leq R_i - 1$).

Identification of β_d

$$\left\{ \begin{pmatrix} y_i^{(1)} \\ n_i^{(1)} \end{pmatrix}, \begin{pmatrix} j \\ d^* - 1 \end{pmatrix}, \dots, \begin{pmatrix} j \\ d^* + 1 \end{pmatrix}, \begin{pmatrix} y_i^{(R_i)} \\ n_i^{(R_i)} \end{pmatrix} \right\} .$$

$$\left\{ \begin{pmatrix} y_i^{(1)} \\ n_i^{(1)} \end{pmatrix}, \begin{pmatrix} j \\ d^* \end{pmatrix}, \dots, \begin{pmatrix} j \\ d^* \end{pmatrix}, \begin{pmatrix} y_i^{(R_i)} \\ n_i^{(R_i)} \end{pmatrix} \right\} .$$

•
$$v_i^R(j, d^* - 1) + v_i^R(j, d^* + 1) = v_i^R(j, d^*) + v_i^R(j, d^*)$$

•
$$\sigma_i^R(j, d^* - 1) + \sigma_i^R(j, d^* + 1) = \sigma_i^R(j, d^*) + \sigma_i^R(j, d^*)$$

$$\bullet \ \beta_d^R(j,d^*-1) + \beta_d^R(j,d^*+1) \neq \beta_d^R(j,d^*) + \beta_d^R(j,d^*)$$

$$\bullet \ \{\beta_d^R(j,d^*-1)+\beta_d^R(j,d^*+1)\}-\{\beta_d^R(j,d^*)+\beta_d^R(j,d^*)\}=\beta_d(j,d^*)-\beta_d(j,d^*-1).$$

Identification of β_d

Identification of β_d : Parameter $\beta_d(j,d^*)-\beta_d(j,d^*-1)$ are identified for all j such that there exists at least one pair of (r,r') that

$$y_i^{(r)} = y_i^{(r')} = j$$

$$n_i^{(r)} + n_i^{(r')} \ge 2d^*.$$

Choice run examples

Example 1 (Multinomial)

•
$$A = \{1, 2, 0\}$$
 and $B = \{2, 1, 0\}$ and $\mathbf{x}_{i1} = (0, d_{i1})$

$$\mathbf{H}_{i}^{A} = \begin{pmatrix} 0 & 1 & 2 \\ d_{i1} & 1 & 1 \end{pmatrix} \quad \mathbf{H}_{i}^{B} = \begin{pmatrix} 0 & 2 & 1 & 0 \\ d_{i1} & 1 & 1 \end{pmatrix}$$

- Same first run.
- Same last run.
- Permuting two runs in between.

Example 2 (Multinomial)

•
$$A = \{y', y \times 1_{d^*+1}\}$$
 and $B = \{y, y', y \times 1_{d^*}\}$ and $\mathbf{x}_{i1} = (y, d^* - 1)$. Let $y = 1$ and $y' = 0$

$$\mathbf{H}_{i}^{A} = \begin{pmatrix} 0 & 1 & 0 \\ d^{*} - 1 & 1 & d^{*} + 1 \end{pmatrix} \quad \mathbf{H}_{i}^{B} = \begin{pmatrix} 0 & 1 & 0 \\ d^{*} & 1 & d^{*} \end{pmatrix}$$

- Same sequences of runs.
- \exists two runs of same choice: minimum run length $= d^* 1$, run length sum $\geq 2d^*$.

Condition MI E

- Let the set $\mathbb{S}(\mathbf{y}_i)$ collects all sequences that have identification power.
- Let γ collects all parameters that can be identified.
- ullet The conditional log-likelihood function for γ

$$\sum_{i=1}^{N} \ln \frac{\exp\{\mathsf{t}_y(\check{\mathbf{y}}_i)^{\top} \gamma\}}{\sum_{\lambda \in \mathbb{S}(\check{\mathbf{y}}_i)} \exp\{\mathsf{t}_y(\lambda)^{\top} \gamma\}}$$

where $t_y(y_i)$ picks out the corresponding elements in γ and is easy to be programmed.

- Duration dependence parameter that can be identified takes the form $\beta_d(y, d^*) \beta_d(y, d^* 1)$.
- Switching cost parameters that can be identified takes the form $\delta_{y}(y,y') = \beta_{y}(y,y') \beta_{y}(y,0) \beta_{y}(0,y')$.
- Interpretation: for $y \neq y' \neq 0$,

$$\delta_{y}(y, y') = \ln \frac{\mathbb{P}(y_{it} = y | \mathbf{x}_{it} = (y', d))}{\mathbb{P}(y_{it} = 0 | \mathbf{x}_{it} = (y', d))} - \ln \frac{\mathbb{P}(y_{it} = y' | \mathbf{x}_{it} = (0, d))}{\mathbb{P}(y_{it} = 0 | \mathbf{x}_{it} = (0, d))}$$

• Comparison between the switching cost from $y \to y'$ versus $y \to 0 \to y'$.

Extensions

Some extension and development in progress

Identification of d^*

- Take K as the hypothetical duration censoring point, find CMLE for $\beta_d(y,K) \beta_d(y,K-1)$. If $K > d^*$ then $\beta_d(y,K) - \beta_d(y,K-1) = 0$.
- If $K = d^*$, then $\beta_d(y, d^*) \beta_d(y, d^* 1) \neq 0$.
- d* can be identified as

$$d^* = \max\{K : \beta_d(y, K) - \beta_d(y, K - 1) \neq 0\}$$

In progress: counterfactual

Counterfactual: Once we get a robust CMLE for β , we should come back to estimate distribution of UH in order to do counterfactual analysis.

Consider Binary choice model without duration dependence:

$$y_{it} = 1\{\underbrace{\tilde{\alpha}_{i} + \tilde{v}_{i}}_{\mu_{i}} + \beta y_{it-1} + \epsilon_{it} \ge 0\}$$

- **①** Get CMLE for β .
- Nonparametric mixture model with parametric base distribution:

$$\mathbb{P}(\mathbf{y}_i \mid y_{i0}) = \int \mathbb{P}(\mathbf{y}_i \mid y_{i0}, \mu_i, \beta) dF(\mu_i \mid y_{i0})$$

Solve for $F(\mu_i \mid y_{i0} = 1)$ and $F(\mu_i \mid y_{i0} = 0)$.

The model implies:

$$\tilde{v}_i = \delta \ln \frac{1 + \exp(\tilde{\alpha}_i + \tilde{v}_i + \beta)}{1 + \exp(\tilde{\alpha}_i + \tilde{v}_i)} = \delta \ln \frac{1 + \exp(\mu_i + \beta)}{1 + \exp(\mu_i)} \equiv h(\mu_i, \beta, \delta)$$

hence $\mu_i = \tilde{\alpha}_i + \tilde{v}_i = \tilde{\alpha}_i + h(\mu_i, \beta, \delta)$ gives distribution for $\tilde{\alpha}_i$, with which we are ready for counterfactual analysis.

- Computationally very simple!
- With duration dependence (under development).

In progress

- We've ignored so far the exogenous state variable z_{it}.
- Extend the results to kernel-weighted CMLE in Honoré and Kiriazidou 2000.
- If z_{it} is continuous, estimator will no longer be root-N rate. Pairwise approach may be attractive to get better rate.
- Stochastic evolution for dit.

Empirical Application

Rust bus engine replacement

- Dataset from Rust (1987)
- Rust's model

$$U_{it} = \begin{cases} -c_0 - c_1(m_{it}) + \epsilon_{it}(1) & \text{if } y_{it} = 1; \text{ no replacement} \\ -RC + \epsilon_{it}(0) & \text{if } y_{it} = 1; \text{ replacement} \end{cases}$$

 In our notation: [allow for bus specific replacement cost (RC) and constant maintenance cost (c₀)]

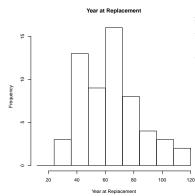
$$U_{it} = \begin{cases} \alpha_i(1) + \beta_d(d_{it}) + \epsilon_{it}(1) & \text{if } y_{it} = 1; \text{ no replacement} \\ \alpha_i(0) + \epsilon_{it}(0) & \text{if } y_{it} = 0; \text{ replacement} \end{cases}$$

with $\alpha_i(1) = -c_{0i}$ and $\alpha_i(0) = -RC_i$.

- 124 buses [group 1 8]. Rust focused on 104 buses [group 1-4].
- 45 buses no replacement, 58 buses one replacement, 1 bus two replacements.

Rust bus engine replacement

• Assume replacement decision is made every 12 months.



Empirical Distribution of Choice Histories					
	Frequency				
Choice history	Absolute	%	% cumulative		
1101111111	3	5.17	5.17		
1110111111	11	18.96	24.13		
1111011111	9	15.51	39.64		
1111101111	18	31.03	70.67		
1111110111	7	12.07	82.74		
1111111011	5	8.62	91.36		
1111111101	3	5.17	96.53		
1111111110	2	3.45	100.00		

Estimates of d^* and β_d

Estimates of $\beta_d(\mathbf{d}^*) - \beta_d(\mathbf{d}^* - 1)$					
Value for d^*	Estimate	s.e.			
$d^* = 4$	-0.205	0.295			
$d^* = 3$	-1.07^{***}	0.121			

Dynamic demand of differentiated storable product

- Consumer scanner data (A.C. Nielsen) on ketchup purchases.
- Same dataset as in Pesendorfer (1998) and Erdem, Imai and Keane (2003).
- 2797 households over 123 weeks.
- ullet Three national brands (Heinz, Hunt's and Del Monte), and one store brand. $\mathcal{Y}=\{1,2,3\}.$
- Outside option "0": No purchase.
- Duration since last purchase represents inventory depletion.
- A consumer's choice sequence could look like

$$\{1,0,0,0,0,0,2,0,0,0,1,0,0,0...\}$$

A consumer's choice run

$$\mathbf{H} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \dots \right\}$$

• Duration dependence doesn't depend on brand choice: estimate $\beta_d(0, d^*) - \beta_d(0, d^* - 1)$.

Estimation of brand switching costs

Switching Costs parameters (under symmetry) Estimates (s.e.)

	Heinz	Hunts	Del Monte	Store
Heinz	-	1.052***(0.427)	1.711***(0.421)	2.199**(0.423)
Hunts		-	0.635(0.465)	1.225**(0.465)
Del Monte			-	1.016**(0.472)
Store				-

Estimation of d^*

$\beta_d(0,d^*) - \beta_d(0,d^*-1)$ (same for all brands) Estimates (s.e.)					
Value for d*	Estimate	s.e.			
$d^* = 16$ weeks $d^* = 15$ weeks $d^* = 14$ weeks $d^* = 13$ weeks $d^* = 12$ weeks	-0.025 -0.124 -0.287 -0.374 -0.516**	0.298 0.295 0.223 0.215 0.196			

Conclusion

- We study identification for fixed effect structural dynamic logit discrete choice model.
- A simple CMLE is proposed for choice-state-dependence and duration dependence parameters.
- FE estimator for structural parameter is consistent and fully robust.
- Results for myopic case fills in the gap for non-structural logit DDC with duration dependence.

Thank you!

Likelihood representation notations:

- $T_i = (T_i(0), T_i(1), \dots, T_i(J))'$ with $T_i(j) = \sum_{t=1}^{T} 1\{y_{it} = j\}$: one-to-one mapping to row sum of H_i .
- $\bullet \ \alpha_i = (\alpha_i(0), \alpha_i(1), \dots, \alpha_i(J))'.$
- $\beta_d^R(y, n) = 1\{n \ge 2\} \sum_{d=1}^{n-1} \beta_d(y, d)$
- $v_i^R(y, n) = \sum_{d=1}^n v_i(y, d)$
- $\sigma_i^R(y, n) = \sum_{d=1}^n \sigma_i(y, d)$.

Back to LikRepresent

Chamberlain's CMLE in non-structural DDC logit model

No forward looking, no duration dependence, no z_{it}, binary outcome

$$y_{it} = 1\{\beta y_{i,t-1} + \eta_i + \epsilon_{it} \ge 0\}$$

Likelihood conditional on vio

$$\mathbb{P}(\{y_{i1},\ldots,y_{iT}\} \mid y_{i0},\eta_i) = \frac{\exp\{\eta_i \sum_{t=1}^T y_{it} + \beta \sum_{t=1}^T y_{it} y_{i,t-1}\}}{\prod_{t=1}^T (1 + \exp\{\eta_i + \beta y_{i,t-1}\})}$$

- Minimum sufficient statistics for η_i : $(y_{i0}, y_{iT}, \sum_{t=1}^{T-1} y_{it})$.
- For T=3, $\sum_{t=1}^{T-1} y_{it} \in \{0,1,2\}$.

 - $\begin{array}{l} -\sum_{t=1}^{T-1}y_{it}=0, \text{ singleton set of choice paths } \{y_{i0},0,0,y_{i3}\}.\\ -\sum_{t=1}^{T-1}y_{it}=2, \text{ singleton set of choice paths } \{y_{i0},1,1,y_{i3}\}.\\ -\sum_{t=1}^{T-1}y_{it}=1, \text{ set of choice paths } \{A,B\} \text{ with } A=\{y_{i0},1,0,y_{i3}\} \text{ and } A=\{y_{i0},1,0,y_{i3}\}. \end{array}$ $B = \{v_{i0}, 0, 1, v_{i3}\}.$
- Identification of β : $\mathbb{P}(\mathbf{y}_i = A \mid A \cup B, \beta) = \frac{\exp\{\beta(y_{i0} y_{i3})\}}{1 + \exp\{\beta(y_{i0} y_{i3})\}}$.
- General T: for the observed choice paths, the sufficient statistics picks out a (non-singleton) set of relevant choice paths, denoted $\mathbb{S}(y_i)$, such that

$$\mathbb{P}(\mathbf{y}_{i} \mid y_{i0}, \{\mathbf{y}_{i} \in \mathbb{S}(\mathbf{y}_{i})\}, \eta_{i}) = \frac{\exp\{\beta \sum_{t=1}^{T-1} y_{it} y_{i,t-1}\}}{\sum_{\mathbf{d}: \mathbf{d} \in \mathbb{S}(\mathbf{y}_{i})} \exp\{\beta \sum_{t=1}^{T-1} d_{t} d_{t-1}\}}$$

Choice run matrix

There is a one-to-one mapping from the choice runs to a matrix \mathbf{H}_i of dimension $(J+1)\times R_i$ and element

$$\mathbf{H}_{i}(j,r) = \begin{cases} n_{i}^{(r)} & \text{if } y_{i}^{(r)} = j \\ 0 & \text{if } y_{i}^{(r)} \neq j \end{cases}$$

An augmentation to record initial state d_{i1} , let $n_i^{(1)} = n_{i0} + d_{i1} - 1$. n_{i0} is the number of times y_{i0} is observed consecutively.

- Each column has exactly one entry $\neq 0$.
- In each row: Non-zero entry does not appear in neighbouring position.

Sufficiency through run matrix

The individual log-likelihood

$$\begin{split} \ln \mathbb{P}(\mathbf{y}_i \mid \mathbf{x}_{i1}, \boldsymbol{\beta}, \boldsymbol{\theta}_i) &= \sum_{r=2}^{R_i} \beta_y(y_i^{(r)}, y_i^{(r-1)}) \\ &+ \sum_{r=1}^{R_i} \beta_d^R(y_i^{(r)}, n_i^{(r)}) - 1\{d_{i1} \geq 2\} \sum_{d=1}^{d_{i1}-1} \beta_d(y_i^{(1)}, d) \\ &+ \mathbf{T}_i' \alpha_i + \sum_{r=1}^{R_i} v_i^R(y_i^{(r)}, n_i^{(r)}) - \sum_{d=1}^{d_{i1}} v_i(y_i^{(1)}, d) \\ &- \sum_{r=1}^{R_i} \sigma_i^R(y_i^{(r)}, n_i^{(r)}) + 1\{d_{i1} \geq 2\} \sum_{d=1}^{d_{i1}-1} \sigma_i(y_i^{(1)}, d) + \sigma_i(y_i^{(R_i)}, n_i^{(R_i)}) \end{split}$$

- T_i records the total number of times each choice is visited \Rightarrow row sum of the run matrix H_i .
- $v_i^R(y,n) \equiv \sum_{i=1}^{n} v_i(y,d)$: Each run necessarily contributes $v_i(y_i^{(r)},1) \Rightarrow \#$ non-zero entry in each row of Ha
- Similar for $\sigma_i^R(y, n) \equiv \sum_{i=1}^n \sigma_i(y, d)$.
- Goal: Find another run matrix H' that keeps the same row sum and # non-zero entries in

Sufficient Statistics for (θ_i, β_d)

$$\mathbb{P}(\mathbf{y}_i \mid \mathbf{S}_i^2 = 1, \theta_i, \boldsymbol{\beta}) = \mathbb{P}(\mathbf{y}_i \mid \mathbf{S}_i^2 = 1, \underline{\beta_{\mathbf{y}}}) \quad \text{for} \quad \mathbf{S}_i^2 = 1\{\mathbf{y}_i \in \mathbb{S}^2(\mathbf{y}_i) \equiv \mathbb{S}_i^2\}$$

Necessary and sufficient conditions for \mathbb{S}^2_i : Provided $d^*>1$, a sequence $\mathbf{y}'_i\in\mathbb{S}^2_i$ if and only if

- **(a)** Initial state and d^* -censored termination state matches: $\mathbf{x}_{i1}^{\mathbf{y}'} = \mathbf{x}_{i1}; \ \mathbf{\bar{x}}_{iT+1}^{\mathbf{y}'} = \mathbf{\bar{x}}_{iT+1}.$
- ② The run matrix of \mathbf{y}'_i has the same row sum as \mathbf{H}_i .
- Total number of non-zero entries in each row matches.
- The run matrix of \mathbf{y}_i' is a result of any (or a combination) of the following matrix operations on \mathbf{H}_i .
 - (a) Column Swapping: say (r, r') columns and r < r' WLOG.
 - (a.1) Columns in between: $1 < r < r' < R_i$ - (a.1.1) $y_i^{(r)} = y_i^{(r')}$. - (a.1.2) $y_i^{(r)} \neq y_i^{(r)}$.
 - (a.2) First column and column in between: $1 = r < r' < R_i$ provided $y_i^{(r)} = y_i^{(r')}$ and $n_i^{(r')} \ge d_{i1}$.
 - (b) <u>Run length revision</u>: for any $1 \le r < r' \le R_i$, provided $y_i^{(r)} = y_i^{(r')}$ and $\min\{n_i^{(r)}, n_i^{(r')}\} \ge d^*$, revise $(n_i^{(r)}, n_i^{(r')})$ to any element in

$$\mathcal{R}_{i}^{1}(r,r') = \{ (n^{(r)}, n^{(r')}) : n^{(r)} + n^{(r')} = n_{i}^{(r)} + n_{i}^{(r')}, \min\{n^{(r)}, n^{(r')}\} \ge d^{*} \}$$

Sufficient statistics for (θ_i, β_y)

$$\mathbb{P}(\mathbf{y}_i \mid \mathbf{S}_i^3 = 1, \theta_i, \boldsymbol{\beta}) = \mathbb{P}(\mathbf{y}_i \mid \mathbf{S}_i^3 = 1, \boldsymbol{\beta_d}) \quad \text{for} \quad \mathbf{S}_i^3 = 1\{\mathbf{y}_i \in \mathbb{S}^3(\mathbf{y}_i) \equiv \mathbb{S}_i^3\}$$

Necessary and sufficient conditions for \mathbb{S}^3_i : Provided $d^*>1$, a sequence $\mathbf{y}'_i\in\mathbb{S}^3_i$ if and only if

- **1** Initial state and d^* -censored termination state matches: $\mathbf{x}_{i1}^{\mathbf{y}'} = \mathbf{x}_{i1}; \ \mathbf{\bar{x}}_{iT+1}^{\mathbf{y}'} = \mathbf{\bar{x}}_{iT+1}$.
- ② The run matrix of \mathbf{y}_i' has the same row sum as \mathbf{H}_i .
- Total number of non-zero entries in each row matches.
- ① The run matrix of \mathbf{y}_i' is a result of any (or a combination) of the following matrix operations on \mathbf{H}_i .
 - (a) Column Swapping: say (r, r') columns and r < r' WLOG.
 - (a.1.1) Columns in between: $1 < r < r' < R_i$ and $y_i^{(r)} = y_i^{(r')}$.
 - (a.2) First column and column in between: $1 = r < r' < R_i$ provided $y_i^{(r)} = y_i^{(r')}$ and $n_i^{(r')} \ge d_{i1}$.
 - (b) <u>Run length revision</u>: for any $1 \le r < r' \le R_i$, provided $y_i^{(r)} = y_i^{(r')}$ and $(n_i^{(r)}, n_i^{(r')})$ satisfy Condition E*, revise $(n_i^{(r)}, n_i^{(r')})$ to any element in

$$\mathcal{R}_i^3(r,r') = \{(n^{(r)},n^{(r')}): n^{(r)} + n^{(r')} = n_i^{(r)} + n_i^{(r')}, (n^{(r)},n^{(r')}) \text{ satistifies Condition E*} \}$$

Condition E*: (1) $\min\{n^{(r)}, n^{(r')}\} \ge d^* - 1$; (2) $n^{(r)} + n^{(r')} \ge 2d^*$; (3) $n^{(r')} \ge d^*$ if $\max\{r, r'\} = R_i$.

When $d^* = 1$

- Only first year of experience matters, no learning afterwards. $d^* = 1$ and $\beta_d(y, 1) \neq 0$.
- \bullet From a likelihood point of view, state variable d_{it} always take value 1, so no need to track it.
- If the only state variable is lagged choice, then we can let $\tilde{\alpha}_i(y) = \alpha_i(y) + v_i(y)$.

•
$$\mathbb{P}(y \mid \boldsymbol{\theta}_i, y_{it-1}) = \frac{\exp{\{\tilde{\alpha}_i(y) + \beta(y, y_{it-1})\}}}{\sum_{j \in \mathcal{Y}} \exp{\{\tilde{\alpha}_i(j) + \beta(j, y_{it-1})\}}}.$$

- In the binary choice case:
 - No duration dependence for "0" choice: $\beta_d(0,1) = 0$
 - Duration dependence for "1" choice: $\beta_d(1,1) = \beta(1,1) \neq 0$.
 - $y_{it} = 1\{\gamma y_{it-1} + \check{\alpha}_i + \epsilon_{it} \geq 0\}.$
 - $\check{\alpha}_i = \tilde{\alpha}_i(1) \tilde{\alpha}_i(0) + \beta(1,0)$.
 - $\gamma = -\beta(1,0) \beta(0,1) + \beta(1,1)$.

Additional restriction on β

- In some applications, it is plausible to assume no duration dependence in outside alternative: $\beta_d(0,d)=0$ for all $d\geq 1$.
- This does not change set \mathcal{M}_i^3 .
- This may enlarge $\mathcal{M}_i^2 \setminus \mathcal{M}_i^1$.
- Revisit trinomial example: $A = \{0, 1, 2\}$ and $B = \{1, 0, 2\}$ with $\mathbf{x}_{i1} = (0, 1)$.

$$\mathbf{x}^{A} = \left\{ \left(\begin{array}{c} 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 2 \end{array} \right), \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 2 \\ 1 \end{array} \right) \right\}$$

$$\mathbf{x}^{B} = \left\{ \left(\begin{array}{c} 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 1 \\ 1 \end{array} \right), \left(\begin{array}{c} 0 \\ 1 \end{array} \right), \left(\begin{array}{c} 2 \\ 1 \end{array} \right) \right\}$$

Associated run matrix

$$\mathbf{H}_{i}^{A} = \begin{pmatrix} \mathbf{2} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \mathbf{H}_{i}^{B} = \begin{pmatrix} \mathbf{1} & 0 & \mathbf{1} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- The column with non-zero entries for first row is re-distributed. # non-zero entry in first row is different
- Column sum and # non-zero entries in **other** rows stay the same.
- In $\frac{\mathbb{P}(A \mid \theta_i, \mathbf{x}_{i1})}{\mathbb{P}(B \mid \theta_i, \mathbf{x}_{i1})}$ identifies $\delta_y(1, 2)$.

Trinomial Example (identification of β_y)

- $\mathcal{Y} = \{0, 1, 2\}, T = 3.$
- $A = \{1, 2, 0\}$ vs. $B = \{2, 1, 0\}$ and $\mathbf{x}_{i1} = (0, d_{i1})$.

$$\begin{split} \mathbf{x}^A &= \left\{ \left(\begin{array}{c} \mathbf{0} \\ d_{i1} \end{array} \right), \left(\begin{array}{c} \mathbf{1} \\ \mathbf{1} \end{array} \right), \left(\begin{array}{c} \mathbf{2} \\ \mathbf{1} \end{array} \right), \left(\begin{array}{c} \mathbf{0} \\ \mathbf{1} \end{array} \right) \right\} \\ \mathbf{x}^B &= \left\{ \left(\begin{array}{c} \mathbf{0} \\ d_{i1} \end{array} \right), \left(\begin{array}{c} \mathbf{2} \\ \mathbf{1} \end{array} \right), \left(\begin{array}{c} \mathbf{1} \\ \mathbf{1} \end{array} \right), \left(\begin{array}{c} \mathbf{0} \\ \mathbf{1} \end{array} \right) \right\} \end{aligned}$$

 $\bullet \ \ \mathsf{In} \, \frac{\mathbb{P}(A|\boldsymbol{\theta}_i, \mathbf{x}_{i1})}{\mathbb{P}(B|\boldsymbol{\theta}_i, \mathbf{x}_{i1})} \, \, \mathsf{identifies} \, \Delta_y(0 \to 0; 1, 2)$

$$\Delta_y(0 \to 0; 1, 2) = \{\beta_y(1, 0) + \beta_y(2, 1) + \beta_y(0, 2)\} - \{\beta_y(2, 0) + \beta_y(1, 2) + \beta_y(0, 1)\}$$

Trinomial Example (identification of β_y)

- $\mathcal{Y} = \{0, 1, 2\}, T = 3.$
- $A = \{1, 2, 0\}$ vs. $B = \{2, 1, 0\}$ and $\mathbf{x}_{i1} = (0, d_{i1})$.

$$\begin{split} \mathbf{x}^A &= \left\{ \left(\begin{array}{c} \mathbf{0} \\ d_{i1} \end{array} \right), \left(\begin{array}{c} \mathbf{1} \\ \mathbf{1} \end{array} \right), \left(\begin{array}{c} \mathbf{2} \\ \mathbf{1} \end{array} \right), \left(\begin{array}{c} \mathbf{0} \\ \mathbf{1} \end{array} \right) \right\} \\ \mathbf{x}^B &= \left\{ \left(\begin{array}{c} \mathbf{0} \\ d_{i1} \end{array} \right), \left(\begin{array}{c} \mathbf{2} \\ \mathbf{1} \end{array} \right), \left(\begin{array}{c} \mathbf{1} \\ \mathbf{1} \end{array} \right), \left(\begin{array}{c} \mathbf{0} \\ \mathbf{1} \end{array} \right) \right\} \end{aligned}$$

 $\bullet \ \ \mathsf{In} \ \frac{\mathbb{P}(A|\boldsymbol{\theta}_i, \mathbf{x}_{i1})}{\mathbb{P}(B|\boldsymbol{\theta}_i, \mathbf{x}_{i1})} \ \mathsf{identifies} \ \Delta_y(\mathbf{0} \to \mathbf{0}; \mathbf{1}, \mathbf{2})$

$$\Delta_{y}(0 \to 0; 1, 2) = \{\beta_{y}(1, 0) + \beta_{y}(2, 1) + \beta_{y}(0, 2)\} - \{\beta_{y}(2, 0) + \beta_{y}(1, 2) + \beta_{y}(0, 1)\}$$

• Similarly $\Delta_y(1 \to 1; 2, 0)$ and $\Delta_y(2 \to 2; 1, 0)$ can be identified.

$$\Delta_{y}(1 \to 1; 2, 0) = \{\beta_{y}(2, 1) + \beta_{y}(0, 2) + \beta_{y}(1, 0)\} - \{\beta_{y}(0, 1) + \beta_{y}(2, 0) + \beta_{y}(1, 2)\}$$

$$\Delta_{y}(2 \to 2; 1, 0) = \{\beta_{y}(1, 2) + \beta_{y}(0, 1) + \beta_{y}(2, 0)\} - \{\beta_{y}(0, 2) + \beta_{y}(1, 0) + \beta_{y}(2, 1)\}$$

$$\Delta_y(2 \to 2; 1, 0) = \{\beta_y(1, 2) + \beta_y(0, 1) + \beta_y(2, 0)\} - \{\beta_y(0, 2) + \beta_y(1, 0) + \beta_y(2, 1)\}$$

Trinomial Example (identification of β_y)

- $\mathcal{Y} = \{0, 1, 2\}, T = 3.$
- $A = \{1, 2, 0\}$ vs. $B = \{2, 1, 0\}$ and $\mathbf{x}_{i1} = (0, d_{i1})$.

$$\begin{split} \mathbf{x}^{A} &= \left\{ \left(\begin{array}{c} \mathbf{0} \\ d_{i1} \end{array} \right), \left(\begin{array}{c} \mathbf{1} \\ \mathbf{1} \end{array} \right), \left(\begin{array}{c} \mathbf{2} \\ \mathbf{1} \end{array} \right), \left(\begin{array}{c} \mathbf{0} \\ \mathbf{1} \end{array} \right) \right\} \\ \mathbf{x}^{B} &= \left\{ \left(\begin{array}{c} \mathbf{0} \\ d_{i1} \end{array} \right), \left(\begin{array}{c} \mathbf{2} \\ \mathbf{1} \end{array} \right), \left(\begin{array}{c} \mathbf{1} \\ \mathbf{1} \end{array} \right), \left(\begin{array}{c} \mathbf{0} \\ \mathbf{1} \end{array} \right) \right\} \end{aligned}$$

 $\bullet \ \ \mathsf{In} \ \frac{\mathbb{P}(A|\boldsymbol{\theta}_i, \mathbf{x}_{i1})}{\mathbb{P}(B|\boldsymbol{\theta}_i, \mathbf{x}_{i1})} \ \mathsf{identifies} \ \Delta_y(0 \to 0; 1, 2)$

$$\Delta_y(0 \to 0; 1, 2) = \{\beta_y(1, 0) + \beta_y(2, 1) + \beta_y(0, 2)\} - \{\beta_y(2, 0) + \beta_y(1, 2) + \beta_y(0, 1)\}$$

• Similarly $\Delta_y(1 \to 1; 2, 0)$ and $\Delta_y(2 \to 2; 1, 0)$ can be identified.

$$\Delta_{y}(1 \to 1; 2, 0) = \{\beta_{y}(2, 1) + \beta_{y}(0, 2) + \beta_{y}(1, 0)\} - \{\beta_{y}(0, 1) + \beta_{y}(2, 0) + \beta_{y}(1, 2)\}$$

$$\Delta_{y}(2 \to 2; 1, 0) = \{\beta_{y}(1, 2) + \beta_{y}(0, 1) + \beta_{y}(2, 0)\} - \{\beta_{y}(0, 2) + \beta_{y}(1, 0) + \beta_{y}(2, 1)\}$$

- Let $\delta_y(1,2) \equiv \beta_y(1,2) \beta_y(1,0) \beta_y(0,2)$ and $\delta_y(2,1) \equiv \beta_y(2,1) \beta_y(2,0) \beta_y(0,1)$, we can identify $\delta_v(1,2) \delta_v(2,1)$.
- If we further assume **no duration dependence for "0" choice**, then $\Delta_y(0 \to 2; 0, 1) = \delta_y(2, 1)$ and $\Delta_y(0 \to 1; 0, 2) = \delta_y(1, 2)$ are identified.
- Interpretation of $\delta_y(1,2)$

Trinomial Example (identification of β_d)

- Suppose $T \ge d^* + 2$. Consider initial condition $\mathbf{x}_1 = (y, d_1)$ for $y \in \{0, 1, 2\}$.
- Let $y' \neq y$ and let

$$A = \{y', y \times 1_{d^*+1}\}$$

$$B = \{y, y', y \times 1_{d^*}\}$$

• If $d_1 \ge d^* - 1$

$$\ln \frac{\mathbb{P}(A \mid \mathbf{x}_{i1}, \boldsymbol{\theta}_i)}{\mathbb{P}(B \mid \mathbf{x}_{i1}, \boldsymbol{\theta}_i)} = \beta_d(y, d_1 + 1) - \beta_d(y, d_1)$$

• When $d_1 = d^* - 1$, parameter $\beta_d(y, d^*) - \beta_d(y, d^* - 1)$ is identified for all $y \in \{0, 1, 2\}$.

Connection to Binary choice DDC with more than one lag

- Binary choice DDC with two lages (Chamberlain 1985) $y_{it} = 1\{\alpha_i + \gamma_{i1}y_{it-1} + \gamma_2y_{it-2} + \epsilon_{it} \ge 0\}$
- Logit: $\mathbb{P}(y_{it} = 1 \mid y_{it-1}, y_{it-2}) = \frac{\exp\{\alpha_i + \gamma_{i1}y_{it-1} + \gamma_2y_{it-2}\}}{1 + \exp\{\alpha_i + \gamma_{i1}y_{it-1} + \gamma_2y_{it-2}\}}$
- Test for duration dependence: $H_0: \gamma_2 = 0$
- Use pair of sequences $\{y_{i0}, \dots, y_{i5}\}$: $A = \{1, 0, 1, 0, 0, 0\}$ and $B = \{1, 0, 0, 1, 0, 0\}$. Suppose $d_{i1} = d > 1$.

$$\mathbf{H}^A = \begin{pmatrix} 1 & 0 & 1 & 0 \\ d & 1 & 1 & 3 \end{pmatrix} \quad \mathbf{H}^B = \begin{pmatrix} 1 & 0 & 1 & 0 \\ d & 2 & 1 & 2 \end{pmatrix}$$

- Identification for β_d when $d^* = 2$.
- Test for $\gamma_2 = 0$ is equivalent to test $\beta_d(0, d^*) \beta_d(0, d^* 1) = 0$ if $d^* = 2$.
- If $d^* > 2$, we may reject $H_0: \gamma_2 = 0$ due to forward looking behaviour.
- If $d^*=1$ and $\beta_d(1,1)\neq 0$, but we will always get $\gamma_2=0$.

