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Motivation

@ Incorporating Unobserved Heterogeneity (UH) in Dynamic Panel Data (DPD) models
- Key issue: distinguish between state dependence (”true dynamics”) and ”spurious
dynamics” due to persistent UH. [Heckman (1981)]

@ Most common approaches to deal with UH in DPD models are Fixed Effects (FE) and
Correlated Random Effects (CRE).

° : brute force estimate UH and then bias correction for structural parameters
(large N large T)

° . difference out UH (very common for linear DPD models, challenging for
non-linear DPD models).

° : regularize FE; imposes different types of restrictions: parametric, finite support,

group structure, restrictions on initial conditions.
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FE in structural dynamic discrete choice (DDC) models

@ FE-1 approach is not feasible for structural DDC.

@ FE-2 approach is very attractive because it does not impose any restriction on the
distribution of the UH conditional on observable explanatory variables and the initial
conditions (fully nonparametric).

- Non-structural (myopic) dynamic logit: Chamberlain (1985), Honoré and Kyriazidou
(2000), Magnac (2000)

@ Not all DDC models can be estimated, root-N consistently, using FE-2 estimators.
Examples:

- Binary choice models other than logit (Chamberlain 2010).
- Logit with UH multiplicative with explanatory variables.

@ Structural dynamic logit model: Common wisdom is cannot provide a consistent
estimator of structural parameters:

- Even if UH enters additively into the one-period payoff function, the solution of the
model implies that UH appears non-additively in the continuation value.
- All applications of structural DDC models with UH have considered a approach.
Examples:
o Permanent UH (Finite mixture): Keane and Wolpin (1997), Aguirregabiria and Mira (2007),
Kasahara and Shimotsu (2009), Arcidiacono and Miller (2011)
@ Permanent/time varying UH (K-mean classification): Bonhomme et al. (2017)
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Contributions

@ We propose a FE-2 approach to estimate (root-N) consistently the structural parameters of
a structural dynamic logit models (i.e. Rust model with permanent UH).

@ We build and extend Chamberlain (1985) to structural (forward-looking) DDC logit models
with both choice-state-dependence and duration dependence.

o Nonparametric identification of choice-state dependence and duration dependence
separately.

o Minimum sufficient statistics for UH in one-period payoff and continuation value.

o Construct conditional MLE (a la Anderson (1970)) for structural parameters.
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Practicality

Structural model specified covers many important economic applications in the literature.

market entry and exit (binary or multinomial)
occupational choice

machine replacement

dynamic demand of differentiated products

Identification results rely on finding set of sequences such that, once conditioned on,
individual likelihood no longer depends on UH, but still depends on structural parameters of
interest.

@ FE is consistent for finite T, fully robust, easy to compute.

@ Application 1: Revisit Rust (1987) to estimate the structural parameter in maintenance cost.

©

Application2 : dynamic demand of a differentiated storable product using consumer scanner

data.

brand-switching cost and inventory-level dependence
Scanner dataset used in Erdem, Imai and Keane (2003).

(In progress): counterfactual experiment requires identification of distribution of UH.
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Model Elements and Assumptions

e 6 o o

Time is discrete and indexed by t. Agent is indexed by i.
Time horizon of agent’s decision problem is co-stationary.
Observed individual choices have finite length: t =1,2,... T.
Observables

o Decision variable: y; € ¥ ={0,1,...,J}.

o Exogenous state variables: discrete and finite support z;; follows a Markov process
with transition f;(zj ¢11|2zit).

o Endogenous state variables: x;;.

Unobservables

o €it(y) i.i.d. type | extreme value distributed
o 7);: agent’s permanent UH in the payoff (can be multidimensional)
o 0; € (0,1): agent-specific discount factor.

Distribution of incidental parameters 8; = (n);, ;) conditional on {xj,z; : t =1,2,...} is
unrestricted.

One-period payoff:
Uie(y) = aly,mi, zie) + By, xic) + €it(y)

Key assumption: 7; and x;; are additively separable in the payoff function.
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Endogenous State Variables

@ Two endogenous state variables that correspond to two types of state dependence:
Xit = (Vi,e—1, dit)-

o dependence on the lagged decision variable y; ;1 € Y for t =1,2,..., T.
o dependence on duration: dj; is the number of periods since the last change in choice.

@ Transition rule for dj: for t =1,2,..., T,
ditr1 = fa(Yie, Xie) = H{yie = yie—1}die + 1
@ Deterministic transition &(y,x;) = (v, fa(y, xit))-

- stochastic transition a la Rust (1987): cumulative mileage as a state variable (in
progress)

©

Initial condition x;1 = (Yyio, di1)-

©

Structural state dependence B(y, x;¢): distinguishes two types of dependence

By, xit) = Wy # yi,e—1} By (v, Yie—1) ¥y = yit—1} Baly, dir)
N—r N——

switching cost duration dependence

©

Occupational choice: (Miller 1984, Keane and Wolpin 1997).

- cost of switching from occupation y to y': B, (y’, y).
- return of experience on worker's earning: S4(y, d).
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Assumptions on structural parameters

©

By(y,y—1) and B4(y, d) are bounded.
Zero switching cost if no switching: 8,(y,y) = 0.
Limited return to duration: 3d* < oo, B4(y, d) = Ba(y,d*) for d > d*.

- For the moment: assume d* is known to researcher.
- d* can be allowed to change for different y € V.
- Extension: identify d* from the data.

©

©

©

Plausible additional assumptions: 34(0,d) = 0 for all d > 1: No duration dependence for
"outside alternative” y = 0.

o Occupational choice model: outside alternative is " unemployment”.
o ldentification result does not rely on this assumption.
o With this assumption, more sequences have identifying power.
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Examples

@ Market entry-exit (binary): (Roberts and Tybout 1997, Dunne et al. 2013)

©

stay active (y = 1) vs. exit (y = 0).

entry cost 3,(1,0) vs. exit cost 3,(0,1).

market experience on firm profit: S4(1, d).
marginal return of experience is zero once d > d*.

Markets entry-exit (multinomial): (Sweeting 2013, Caliendo et al. 2015)

cost of switching from market y to y’: B, (y’,y).
return from experience in market y: B4(y, d).

@ Machine replacement: (Rust 1987, Das 1992, Kennet 1993, Kasahara 2009)

Keep a machine (y = 1) vs. replace a machine (y = 0).
only state variable d: machine's age.
Effect of age on firm's profit: 84(1, d).

@ Dynamic demand of differentiated storable products: (Erdem, Imai and Keane 2003, Hendel
and Nevo 2006)

level of inventory: duration d since last purchase captures inventory level.
switching cost from brand y to y’: B, (y’,y).
effect of inventory on consumer utility: B4(y, d).
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Solving the model

©

Optimal decision rule

Vit = argmax{a(y, Mi,Zie) + B, Xit) + €ie(y) + 6iBq; )2, [V £y Xit), Zi 041, 07)] }

yey

v(fi(y xit),zit,0;)

with €i(y) i.i.d. type | extreme value distributed
o Conditional choice probabilities (CCP)

exp{aly, mi, zit) + By, xit) + v(i(y, xit), 2it, 6i) }
Zjey exp{oc(j7 i, fo) + ﬁ(.]? xif) + V(&(jv xff)7 Zjt, 0')}

Even though «a(y, ni, zit) is separable from state xi,

P(y | i, xit,zit) =

©

©

0; = (n;, ;) is generally not separable from x;: in the continuation value.

©

Common wisdom: FE not feasible: It is impossible to difference out 8; without also
differencing out B(y, xit).
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Solving the model

©

Optimal decision rule

Vit = argmax{a(y, Mi,Zie) + B, Xit) + €ie(y) + 6iBq; )2, [V £y Xit), Zi 041, 07)] }

yey

v(fi(y xit),zit,0;)

with €i(y) i.i.d. type | extreme value distributed
o Conditional choice probabilities (CCP)

exp{aly, mi, zit) + By, xit) + v(i(y, xit), 2it, 6i) }
Zjey exp{oc(j7 i, fo) + ﬁ(.]? xif) + V(&(jv xff)7 Zjt, 0')}

Even though «a(y, ni, zit) is separable from state xi,

P(y | i, xit,zit) =

©

©

0; = (n;, ;) is generally not separable from x;: in the continuation value.

©

Common wisdom: FE not feasible: It is impossible to difference out 8; without also
differencing out B(y, xit).

Too pessimistic!
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Identification

Identification
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Identification

Some intuition for identification

exp{a(y, ni, zit) + B(y, xit) + v((y, xit), zie, 0i)}
ey exp{ali, i, zie) + BU, xit) + v(E&U, xit), zir, 0;)}

P(y | 0;,%it,2it) =

@ Structural DDC model without duration dependence

Only one state variable x;; = y; :—1, hence fx(y, x;t) = y.

Continuation value: v(f(y, xit), zit, 0;) = v(y, zit, 0;), no longer depends on x;;!

Let G(y,zit, 0;) = aly,ni, zic) + v(y, zi, 0;).

Equivalent to a DDC model without continuation value.

Use identification strategy similar to Chamberlain (1985) [without z;] and Honoré and
Kyriazidou (2000) [set z; = z for some periods].

e 6 © ¢ ¢
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Identification

Some intuition for identification

@ Structural DDC model with duration dependence
o Switchers (identification 3,): if y # yir_1
a(y,nizit) + By (v, Yie—1) + v(E(y, Xit); Zit, ;)
~—

(v,1)

Consider choices A = {yit—1,y,y'} vs. B={yir—1,y’,y} where y #y’ # yir_1

aly,m)+  By(y.yie-1) +v((v,1),6;) (A)
aly’,ni)+  By(y',y) +v((y',1),0:)
aly’,ni)+  By(y',yie-1) +v((y',1),6)) (B)
aly,n)+  Byly,y') +v((y,1),6;)

o Some linear combinations of 3, can be identified comparing choice histories with
switches occurring in different orders.
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Identification

Some intuition for identification

o Stayers (identification 84) : y = yir—1

a(y,mi, zic) + Baly, di) + v((y, xit), zit, 6;)
N———
(y,min{d;;+1,d*})
for dip € {d* — 1,d*}

0‘(}’77’”)+ Bd(ya d* 71) +V((y7 d*)zei)
O‘(%"]:)+ ﬁd(y7d*) +V((y7 d*)7el)

o By(y,d*) — B4(y,d* — 1) can be identified.
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Data and likelihood

@ The researcher observes panel data on individual choices over T periods of time.

Wi, zie 11 =1,2,...,N;t =1,2,..., T}

©

N is large, T is small.

©

Initial condition xj1 = (yio, dj1) is observed, x; = (yi,t—1, dit)-

©

Notation:
o Let 3 collect all By(y,y’) and By(y,d) for (y,y’) € Y?> and d = 1,2,...,d*.
o Lety;={yn,...,yir} and z; = {zj1,...,zi7}.
o Let alyie, zit, M) = ai(Yit, zir) and v(£(Yie, Xit), i, 0;) = vi(f(Yit, Xit), Zit)-
@ Individual likelihood of data conditional on x;;:

H exp{a, ylt7zlt) + ﬁ(_ylt7xlt) + VI( (}/Ityxlt) zlt)}
ZJE)) eXP{a:(J zlt)+/8(.l7 lt)+vl(f(J xlt) t)}

P(y: | X1, Z,,
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Identification

Sufficient Statistics

@ Build upon Chamberlain (1985) , ignore z;; for the moment, the sufficient statistics
take the form S; = 1{y; € S(y;)} such that

P(y; | Si =1,%i1,0;,8) =P(y; | S; = 1,xj1, B)

@ Individual likelihood of data conditional on x;; is

-
By | x1.0) = [ | exp{ai(yit) +'ﬁ(}/fta X'it) + Vi(fX()’ity'Xit))}
- 1 ey explai(i) + B0, xie) + vi(f(, xit)) }
Theorem 1: A choice history y € S(X,-) if and only if the following conditions hold:
@ Initial state matches: x{ = Xj1.

@ The set of d*-censored state variables of the two sequences for t € [1, T] has the same
histogram.

© The set of d*-censored state variables of the two sequences for t € [2, T + 1] has the same
histogram.

@ d*-censored terminal state matches x’.'r+1 =X, 741 = (ViT, dj, T+1)-

Xj = Xi1, Xi2,Xj3;. .., X|T XiT+1
Zy: Xi1, X2, X3, ... XT XT+1
o Sufficient statistics for 8; are: x;1,X;7+1 and histogram of {x;2,...,%;7}.
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Identification

Corollary: Sufficient Statistics (myopic with duration)

@ If there is no forward looking, then individual likelihood of data conditional on x;;

exp{a;(yie) + B(Yie, Xit) }
Flyi [xn, 01) = H 1 2iey exp{ai() + BU, xi) }

Xi = [ Xi1, Xi2, Xi3,y -« - XiT XiT+1
Zy = Xj1, X2,X3; ..., XT s XT+1
x;T} and y;T.

o Sufficient statistics for 6; is: x;; and histogram of {x/z,
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Identification

Binary Choice dynamic logit model

@ Optimal decision rule

o 1{ a;i(1) — «;j(0) + B(1, Yit—1, dit) — B(0, yit—1, dit) }
Yie = +vi(f(1, Yie—1, die)) — vi(£(0, yie—1, dit)) + €it(1) — €:(0) > 0

@ Assume no duration dependence for "0": v;(0,d) =0 and 84(0,d) = 0 for any d > 1.
B(L,yie—1,dit) = B0, yir—1,dir) = (1 — ¥ie—1)By(1,0) + yie—184(1, dit) — yie—16y(0,1)
= By(0,1) + Byyie—1 + Ba(die)yie—1
with 8, = —3,(1,0) — 8,(0,1) and B4(dit) = Ba(1, dit).
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Identification

Myopic BC dynamic logit without duration

©

No duration: Bd(d;t) = 0 for all dj.
The model can be represented as

vie = Hai + Byyie—1 + €ir > 0}

©

where
o = Ol,'(l) — a;(O) + 5}/(1, 0)
€t = fit(l) — €it(0)
Chamberlain (1985): T =3: A={0,1,y;3} and B ={1,0,y;3} with x;1 = (¥j0,dj1). The
two histories visit the same choice states (with different timing):
]P(A | Oé,‘,X,'l)
P(B | Oé,',X,'l)

©

= exp{By(viz — vio)}

@ (yi0,¥3) = (1,0) or (0,1) (over)-identify j3.
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Forward-looking BC dynamic logit without duration

The model can be represented as
vie = Hai + Byyie—1 + €itvi > 0}
where
a; = ai(1) — ;(0) + By(1,0)
B = —By(1,0) — B,(0,1)
eir = €ir(1) — €it(0)
Vi= V,'(].) — V,'(O)

@ Same fixed effect estimator as before identifies 3, .
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Myopic BC dynamic logit with duration dependence
The model can be represented as

Vie = Hai + Byyie—1 + Ba(di)yie—1 + e > 0}

e T=3 A= {0717}’1’3} and B = {l,O,y,-3} with x;; = (y,-07dl-1)
o (yio,yi3) = (0,1) " |
P(A1 | aj, xj1 ~ ~
SR oy = exp{By + B4(1)}
[P)(Bl ‘ ai7xi1) Y
o (yio,yiz) = (1,0) if d* =1.
1P>(A2 ‘ afzxil) ~ ~
T = ep{B +B4(1)}
1P>(B2 ‘ afzxil) Y
o T=d+3, A3 ={0,1442} and B3 = {1,0,1441} for x;; = (1, d),

P(As | i, xj1) ~ 3
B(Bs | aj,xi1) exp{Bq(d + 1) — Bq(d)}

o States xjy = (Yit—1,djt) visited fromt=1,..., T + 1 for A and B:

A= (1, d) (0, 1) 1L 1y (1 2 ... (1 d+1)| (1, d+2)
xB= (1, d) | (1, d+1) (0, 1) (1, 1) ... (1, d) (1, d+1)
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Identification

Forward-looking BC dynamic logit with duration dependence

@ The model can be represented as
Yie = Wi + Byyie—1 + Ba(die)yie—1 + €irtvi(f(L, yie—1, dir)) — vi(£(0, yie—1, die)) > 0}

If d* > 1
@ Suppose T > d* 4 2. Consider initial condition x; = (1, d1).

A={0,1g+11}

B={1,0,14+}
@ When d; = d* — 1, we can identify
P(A|x1,0i) = %
In ————~ = B4(d*) — Bg(d* — 1
B(B | xn,0) o)D)

o States xjy = (yjt—1, dit) visited from t =1,..., T+ 1 for Aand B

A= (1, =1 [ (0, 1) (@1, 1) (1, 2) ... (1, d%) (1, d%)
xXB= (1, d*-1) | (1, d) (0, 1) (1, 1) ... (1, d*-1) | (1, d¥)
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Forward-looking BC dynamic logit with duration dependence (2)

Ifd*=1
@ The model can be represented as

vie = ey + Byyie—1 + Ba(1)yie—1 + €ie+vi(1,1) — v;(0,1) > 0}

@ Use Chamberlain’s estimator we can identify By + ,éd(l).
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Identification

(]

Can we generalize from Binary choice to multinomial?

©

Can we generalize for any T to find all relevant sequences that has identification power?

Xi = [ X1, Xj2, Xi3, -« o3 XiT XiT+1

21

X = %1, X2,X3,...,XT [ X741

@ Theorem 1 is hard to use for several reasons:

- We can not permute {X;2,...,X;7} freely due to transition rule for dj;.
- It is silent about identification of 3.

@ We need a better representation of the likelihood: Map choice history into choice runs.
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Identification

Sufficient Statistics

Definition: A choice run is defined as a sequence of periods in which the same choice state is
visited consecutively. It can be represented by two values (%) where y is the choice alternative
and n is the number of periods of the run.

A choice history {yio,yi} can be represented as a sequence of R; runs,

H,—{(i’?j) ,r:l,.,.,R,-}

Modify ntH) — ) + dj1 — 1 to record initial condition.

i i

Example: {y,-o,y,-} ={1,1,0,1,1,1,1} with dj; = 1 is represented by 3 runs:

()6)())

o Instead of permuting state variable {x/2,...,x;7}, it is easier to permute runs.
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Identification

Likelihood representation using choice runs

Individual likelihood of data conditional on x;;

« _ exp{ai(yit) + B(yi, xit) + vi(H(yie, xie)) }
Plyi |, 81) = H LS~ = explai0) + AU, xe) + vl )}

_ exp{>]_1 ai(yic) + Bt Yie—1. die) + vi(ie, fa(Vies Vie—1, die))}
exp{> /1 0i(¥ie—1. die)}

where o;(yjt—1, dit) = In [Zjey exp{a;(j) + BU, Yie—1, dit) + ViU, fa(, yie—1, dit))}]-

The individual log-likelihood can be represented as

Ri
InP(y; | xi1,3,6;) = Zﬂy(Y,-(r)7Y,-(r71))

r=2

R; dip—1
+ 28500 07) = 142 22} 35 a7 0)
= d=1

+ Tioy +Z VR, nt Zv,(y Y. d)
r=1

R; dip—1
= of 6 n) + 1dn 22} DT oily o) + oy, nf)
r=1 d=1
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Identification

Identification of 3,

@ Sufficient statistics for 8; is the last two rows of the likelihood representation.

R; din
Tiey + Z Ry, ) — > vily™, d)
= d=1
dip—1
—Zo% D)+ 1{ds > 2} Y ailyP, d) + 0i(y®, nl®)
d=1

where a; = (a;(0), ..., a;(J)).

o Entries in the vector T;: ZrR’Zl 1{yl.(r) :j}ngr). # times j-choice is visited.
n n
o vR(y,n) =3 vi(y,d) and of(y,n) = dZ: oi(y,d).

@ To identify 8,: permuting “runs in between”

v\ (yED
n@ ) R )

@ Provided after permuting, it is still a well-defined runs (i.e. y 75 y (r+1) for all
1<r<R —1).
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Identification

Identification of B4

1 . . R;
() () () (i
o vR(j,d* — 1)+ vR(j,d* + 1) = vR(j,d*) + vR(j,d*)
o oR(j,d* — 1)+ oR(j,d* + 1) = oR(j, d*) + oR(j, d*)
o BRU,d* = 1)+ BFG, d* + 1) # BEG, d*) + BF(, d7)
o {8, d* = 1)+ BEG, d* + 1)} = {BFU, d*) + BE(, d*)} = Balj, d*) — Ba(j, d* — 1).
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Identification

Identification of B4

Identification of S4: Parameter B4(j,d*) — Ba(j, d* — 1) are identified for all j such that there
exists at least one pair of (r, r’) that

Q yi(r) = yi(’ ) =J

@ min{n{) "} = d* —1

Q nl(.') + n,(rl) > 2d*.
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Identification

Choice run examples

Example 1 (Multinomial)
o A={1,2,0} and B = {2,1,0} and x;1 = (0, di1)

o @@ o o @i o
A _ B _
HF = (d,— 11 1) Hy = (d,—l 11 1)

@ Same first run.

@ Same last run.

@ Permuting two runs in between.
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Identification

Example 2 (Multinomial)
o A={y',y X 1441} and B={y,y’,y x 1g=} and xi1 = (y,d* —1). Let y =1 and

y'=0
A __ 0 1 0 B __ 0 1 0
Hi = (d*—l 1 d*+1) Hi = (d* 1 d*)

@ Same sequences of runs.

@ 3 two runs of same choice: minimum run length = d* — 1, run length sum > 2d~.

Victor Aguirregabiria, Jiaying Gu, Yao Luo Sufficient Statistics for DDC-UH



Condition MLE

@ Let the set S(y;) collects all sequences that have identification power.
@ Let «y collects all parameters that can be identified.
@ The conditional log-likelihood function for ~

N

" exp{t,(yi) "7}
ey ers(g,»)eXP{ty(/\)T’Y}

where t,(y;) picks out the corresponding elements in « and is easy to be programmed.

@ Duration dependence parameter that can be identified takes the form
Baly,d*) — Baly,d* —1).
@ Switching cost parameters that can be identified takes the form
Sy (v, ") = By(y,y") = By(y,0) — By(0,y').
@ Interpretation: for y # y’ # 0,
P(yie = ylxie = (v, d)) P(yic = y'[xie = (0,d))

Sy(y,y)=1In —In
) = O = 0 d) " Blyn = O = (0, )

@ Comparison between the switching cost from y — y’ versus y — 0 — y’.
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Extensions

Some extension and development in progress
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Identification of d*

@ Take K as the hypothetical duration censoring point, find CMLE for
Ba(y, K) — Baly, K —1).
If K > d* then B4(y, K) — Bq(y, K — 1) =0.

o If K = d*, then By(y,d*) — Ba(y,d* — 1) # 0.

@ d* can be identified as

d* = max{K: Bq4(y,K) — Ba(y, K — 1) # 0}
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Extensions

In progress: counterfactual

Counterfactual: Once we get a robust CMLE for 3, we should come back to estimate distribution
of UH in order to do counterfactual analysis.

@ Consider Binary choice model without duration dependence:
yie = H{&; + ¥ +Byir—1 + €ir > 0}
——

Hi

Q Get CMLE for 3.
@ Nonparametric mixture model with parametric base distribution:

P(y;i | vio) = /P(g’i | vio, i, B)dF (i | yio)

Solve for F(u; | yio = 1) and F(u; | yio = 0).
@ The model implies:

L+exp(d@+Vi+B) _ o1+ exp(ui+5)
1+exp(&; + %) 1+ exp(pi)

hence p; = &; + V; = &; + h(u;, 8, 9) gives distribution for &;, with which we are ready
for counterfactual analysis.

Vi=194In

= h(ulvﬁzé)

@ Computationally very simple!

@ With duration dependence (under development).
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Extensions

In progress

@ We've ignored so far the exogenous state variable z;;.
@ Extend the results to kernel-weighted CMLE in Honoré and Kiriazidou 2000.

@ If z;; is continuous, estimator will no longer be root-N rate. Pairwise approach may be
attractive to get better rate.

@ Stochastic evolution for dj;.

Sufficient Statistics for DDC-UH



Empirical Application

Empirical Application
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Empirical Application

Rust bus engine replacement

@ Dataset from Rust (1987)
@ Rust's model

D e ca(mit) + €i(1) if yir = 1; no replacement
TT)—RC + €it(0) if yi = 1; replacement

@ In our notation: [allow for bus specific replacement cost (RC) and constant maintenance
cost (co)]

Un — a;(1) + B4(dit) + €ic(1) if yir = 1; no replacement
e ;(0) + €;(0) if yir = 0; replacement

with a;(1) = —cp; and «;(0) = —RC;.
@ 124 buses [group 1 - 8]. Rust focused on 104 buses [group 1-4].

@ 45 buses no replacement, 58 buses one replacement, 1 bus two replacements.
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Empirical Application

Rust bus engine replacement

@ Assume replacement decision is made every 12 months.

Year at Replacement

— Empirical Distribution of Choice Histories

27 Frequency
— Choice history | Absolute % % cumulative
.~ 1101111111 3 5.17 5.17
z — 1110111111 11 18.96 24.13
: 1111011111 9 15.51 39.64
. 1111101111 18 31.03 70.67
© 1111110111 7 12.07 82.74
1111111011 5 8.62 91.36
1111111101 3 5.17 96.53
2 1111111110 2 3.45 100.00

Year at Replacement
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Empirical Application

Estimates of d* and (54

Estimates of (4(d") — 5,(d"—1)

Value for d* | Estimate s.e.
d* =4 —0.205 0.295
d* =3 —1.07*"" | 0.121

Victor Aguirregabiria, Jiaying Gu, Yao Luo
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Empirical Application

Dynamic demand of differentiated storable product

®© 6 6 6 6 o o

Consumer scanner data (A.C. Nielsen) on ketchup purchases.

Same dataset as in Pesendorfer (1998) and Erdem, Imai and Keane (2003).

2797 households over 123 weeks.

Three national brands (Heinz, Hunt's and Del Monte), and one store brand. Y = {1,2,3}.
Outside option "0": No purchase.

Duration since last purchase represents inventory depletion.

A consumer’s choice sequence could look like

{1,0,0,0,0,0,2,0,0,0,0,1,0,0,0...}
A consumer’s choice run

(0666 ¢) )

Duration dependence doesn’t depend on brand choice: estimate 84(0, d*) — 84(0, d* — 1).
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Empirical Application

Estimation of brand switching costs

Switching Costs parameters (under symmetry)
Estimates (s.e.)

Heinz  Hunts Del Monte Store
Heinz - 1.052**%(0.427) 1.711***(0.421) 2.199*%(0.423)
Hunts - 0.635(0.465) 1.225*%(0.465)
Del Monte - 1.016**(0.472)
Store -
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Empirical Application

Estimation of d*

Ba(0,d*) — B4(0,d* — 1) (same for all brands)
Estimates (s.e.)

Value for d* Estimate s.e.
d* = 16 weeks —0.025 0.298
d* = 15 weeks —0.124 0.295
d* = 14 weeks —0.287 0.223
d* = 13 weeks —0.374 0.215
d* =12 weeks —0.516"* 0.196
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Empirical Application

Conclusion

o We study identification for fixed effect structural dynamic logit discrete choice
model.

@ A simple CMLE is proposed for choice-state-dependence and duration dependence
parameters.

o FE estimator for structural parameter is consistent and fully robust.

@ Results for myopic case fills in the gap for non-structural logit DDC with duration
dependence.
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Empirical Application

Thank you!
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Likelihood representation notations:

o T; =(T;(0), T;(1),..., T;(J)) with T;(j) = Z;rzl 1{yit = j}: one-to-one mapping to row
sum of H;.

o a; = (a;(0),a;(1),...,a;(J))"-
B8y, n) = 1{n >2} 01 Ba(y, d)
vR(y,n) =30 vily, d)

o of(y,n) =i 0ily, d).

©

©

Back to
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__________________________________________________________
Chamberlain's CMLE in non-structural DDC logit model

@ No forward looking, no duration dependence, no z;;, binary outcome
vie = 1{Byi,t—1 +ni + € > 0}
@ Likelihood conditional on yjg
exp{mi S, yie + By vieyie-1}
[ (1 + exp{m; + Byi,e—1})
Minimum sufficient statistics for n;: (yio, yiT, ZtT;ll Yit)-
For T =3, Zz—:_ll yir €{0,1,2}.
- ZZ—:EI yir = 0, singleton set of choice paths {yjo, 0,0, yi3}.

P({yi1,---»yiT} | Yio,mi) =

©

©

- ZtT:*ll Yit = 2, singleton set of choice paths {yjo,1,1, yi3}.

- Z;r;ll yit = 1, set of choice paths {A, B} with A= {y;0,1,0,y;3} and
B = {yi0,0,1,yi3}.

o Identification of 8: P(y; = A| AUB, §) = exp{B(vio = vis)}

1+ exp{B(yio — yi3)}

@ General T: for the observed choice paths, the sufficient statistics picks out a
(non-singleton) set of relevant choice paths, denoted S(y;), such that
T—-1
exp{B> }/'ty',tfl}
P(y; | vio, {yi € S(y))},mi) = Sl
2ddes(y,) P12y dede—1}
Back to
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Choice run matrix

There is a one-to-one mapping from the choice runs to a matrix H; of dimension (J+1)x R;

and element
(r)

() -

. n’ ity =
Hi(j,r) = e () o
0 ify" #j

)

An augmentation to record initial state dj;, let ngl = njp + dii — 1. njo is the number of

times yio is observed consecutively.

@ Each column has exactly one entry # 0.

@ In each row: Non-zero entry does not appear in neighbouring position.
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-
Sufficiency through run matrix

The individual log-likelihood

Ri
InP(y; | xi1,3,6;) = Zﬁy(}/,-(r)d/,-(ril))
r=2

R; di—1
+ 38560, n) — 1{da > 2} 37 BayM, d)
r=1 d=1
Ri diy
+Tioi+ > VR 0™ =Y v, d)
r=1 d=1
R; di—1
- Zo,R(y,-(r), ) + 1{dy > 2} > oy, d) + i (y ), i)
r=1 d=1

T, records the total number of times each choice is visited = row sum of the run matrix H;.

n
o vi(y,n) = dzl vi(y, d): Each run necessarily contributes v,-(yl.(r)7 1) = # non-zero entry in

each row of H;

n
o Similar for of(y,n) = 3 oi(y, d).
d=1

Goal: Find another run matrix H’ that keeps the same row sum and # non-zero entries in
each row as H

Victor Aguirregabiria, Jiaying Gu, Yao Luo

Sufficient Statistics for DDC-UH



Sufficient Statistics for (8;, 84)

P(yi |S7=1,6;,8) =P(y; | S; =1,8,) for S} =1{y; € S°(yi) =S7}
Necessary and sufficient conditions for Sl?: Provided d* > 1, a sequence yf € SI? if and only if

/ /
@ Initial state and d*-censored termination state matches: x¥} = x;1; X7 ; = X;T41-
@ The run matrix of yf has the same row sum as H;.

© Total number of non-zero entries in each row matches.
© The run matrix of y; is a result of any (or a combination) of the following matrix
operations on H;.
(a) Column Swapping: say (r,r’) columns and r < r’ WLOG.
(a.1) Columns in between: 1 < r < r' < R;
- (a.1.1) yi(r) = yl.(’,).
- (a12) y # .
(a.2) First column and column in between: 1 = r < r’ < R; provided y/.(’) = yl.(

’
(b) Run length revision: for any 1 < r < r’ < R;, provided y,.(r) = yl.(' )

min{ngr), nl(.r/)} > d*, revise (nl(.r), nl(.r/)) to any element in

) and (™) > di.

i

and

i

R (r,r') = {(n(, n(’/)) ) 4l = n,(.') + n('l)7 min{n("), n(’/)} > d*}
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Sufficient statistics for (6;, 3,)

P(y; | S} =1,0;,8) =P(yi | S} =1,84) for S} =1{y; € S*(y;) =5}}
Necessary and sufficient conditions for S?: Provided d* > 1, a sequence !:/‘ € S? if and only if
Q Initial state and d*-censored termination state matches: xf'll = Xj1; )_(?.lr_*_1 = XiT+1-
@ The run matrix of X; has the same row sum as H;.

© Total number of non-zero entries in each row matches.

@ The run matrix of y; is a result of any (or a combination) of the following matrix
operations on H;.

(a) Column Swapping: say (r,r’) columns and r < r’ WLOG.
(a.1.1) Columns in between: 1 < r < r’ < R; and yl.(r) = yl.(’,).
(a.2) First column and column in between: 1 = r < r’ < R; provided y(') = y,.(',) and n,('/) > di.
’
(b) Run length revision: for any 1 < r < r" < R;, provided y(’) = y( ") and (n,(r), nl(r ))
(r )7 n{

satisfy Condition E*, revise (n; ) to any element in

R3(r,r') = {(n", n(rl)) (4" = nl(»r)—O—nE’/), (n("), n(rl)) satistifies Condition E*}

Condition E*: (1) min{n(", (")} > d* —1; (2) n() +n(r) > 2d*; (3) n(r) > d* if max{r,r'} =

g
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When d* =1
@ Only first year of experience matters, no learning afterwards. d* =1 and B4(y, 1) # 0.
@ From a likelihood point of view, state variable dj; always take value 1, so no need to track it.
@ If the only state variable is lagged choice, then we can let &;(y) = a;(y) + vi(y).
exp{&i(y) + B(y, yie—1)}
o B(y |8, yie-) = P £ AU Sie-1)

Zjey eXp{&i(j) + B(j’)/ftfl)} .

@ In the binary choice case:

No duration dependence for " 0" choice: 34(0,1) =0
Duration dependence for "1” choice: 4(1,1) = 3(1,1) # 0.
Yit = H{vyie—1 + & + € > 0}

& = &;(1) — &;(0) + B(1,0).

Y= _6(170) - ﬁ(07 1) + ﬁ(]': 1)

© © 6 0 o
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-
Additional restriction on 3

@ In some applications, it is plausible to assume no duration dependence in outside
alternative: 84(0,d) =0 for all d > 1.

@ This does not change set M,3
@ This may enlarge M2\ M1
@ Revisit trinomial example: A ={0,1,2} and B = {1,0, 2} with x;; = (0,1).

<={(7)(2) (1) (1)}
<={(1)(1)(1) (1)}

@ Associated run matrix

2 0 O 1 01 O
Hf‘:(O 1 0 H?:(O 1 /0 0
0 0 1 0 0 0 1

@ The column with non-zero entries for first row is re-distributed. # non-zero entry in first
row is different

@ Column sum and # non-zero entries in other rows stay the same.
P(A | 9,’,X,’1)
P(B | 0;,xi1)

o In identifies 6, (1, 2).
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Trinomial Example (identification of f3)

e ¥y=1{0,1,2}, T=3.

® A={1,2,0} vs. B={2,1,0} and x;; = (0, dj1)
*={(a ) (1) (1) (1)}
“={(a ) (1) (1)(1)}
° |n% identifies A, (0 — 0;1,2)

Ay(0—0:1,2) = {By(1,0) + B,(2,1) + 5y(0,2)} — {5,(2,0) + By(1,2) + B,(0,1)}
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Trinomial Example (identification of f3)

o ¥y=1{0,1,2}, T=3.
o A={1,2,0} vs. B={2,1,0} and x;; = (0, dj1).

“={(g ) (1)(1)(3)}
“={( g ) (7)(1) (7))}

identifies A, (0 — 0;1,2)

[uny

]P’(A\B,—,x,—l)
]P)(B|0,‘7X,'1)
Ay(0—0;1,2) = {B,(1,0) + By(2,1) + By(0,2)} — {By(2,0) + B, (1,2) + B,(0,1)}

o In

@ Similarly Ay (1 — 1;2,0) and A, (2 — 2;1,0) can be identified.
Ay(1—1;2,0) = {By(2,1) + B8,(0,2) + By(1,0)} — {8,(0,1) + B,(2,0) +
Ay(2—2,1,0) = {By(1,2) + B,(0,1) + B,(2,0)} — {B(0,2) + B(1,0) +

By(1,2)}
By(2,1

1)}
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Trinomial Example (identification of f3)

e y=1{0,1,2}, T=3.
o A={1,2,0} vs. B={2,1,0} and x;; = (0, d;

~

0
(2 (D()(D)
(D)
R |n% identifies A,(0 — 0;1,2)
i Xi1

Ay(0—0:1,2) = {By(1,0) + B,(2,1) + 5y(0,2)} — {5,(2,0) + By(1,2) + B,(0,1)}

@ Similarly Ay (1 — 1;2,0) and A, (2 — 2;1,0) can be identified.
Ay(1—1;2,0)={8,(2,1) + 5,(0,2) + By(1,0)} — {B,(0, 1) + By(2,0) + By(1,2)}
Ay(2—2,1,0) = {By(1,2) + B,(0,1) + B,(2,0)} — {8y(0,2) + B,(1,0) + 5y(2,1)}

o Let 6,(1,2) = B,(1,2) — By(1,0) — B,(0,2) and 6,(2,1) = B,(2,1) — B,(2,0) — B,(0,1),
we can identify 6, (1,2) — 6,(2,1)

)

@ If we further assume no duration dependence for ”0” choice, then
Ay(0—2;0,1) =46,(2,1) and Ay(0 — 1;0,2) = 6,(1,2) are identified.
@ Interpretation of d,(1,2)
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Trinomial Example (identification of (4)

@ Suppose T > d* 4 2. Consider initial condition x; = (y, d1) for y € {0,1,2}.
o Let y’ # y and let
A={y,y x Lg=11}
B={y,y,yx1g:}

o Ifdi >d*—1
]P(A | X,‘l,g,')

P(B ‘ X,'1,0,')
@ When di = d* — 1, parameter 84(y, d*) — Ba(y,d* — 1) is identified for all y € {0,1,2}.

= () (1) (1) (3) o (&) [ (&)
X% = (d*y—l) (dy> (yll) (?) <d*y71) (dy>

In = Ba(y,d1 +1) — Ba(y, dr)
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Connection to Binary choice DDC with more than one lag

@ Binary choice DDC with two lages (Chamberlain 1985)
yie = H{ai +yinyie—1 + Y2¥ie—2 + €ir > 0}
exp{a; + viYie—1 + VaYie—2}
1+ exp{ay +vi1yie—1 + voyie—2}
@ Test for duration dependence: Hp : 72 =0
@ Use pair of sequences {yjo,...,yi5}: A=4{1,0,1,0,0,0} and B={1,0,0,1,0,0}. Suppose

di=d>1
A (1010 , (1010
H *(d 113 W=lag 2 102

Identification for 84 when d* = 2.

Test for v» = 0 is equivalent to test 84(0,d*) — B84(0,d* — 1) =0 if d* = 2.
If d* > 2, we may reject Hp : 72 = 0 due to forward looking behaviour.

If d* =1 and B4(1,1) # 0, but we will always get v» = 0.

o Logit: P(yir = 1| yit—1,Yit—2) =

o
o
o
o
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