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Motivation

I Correlations are changing, and increase during market downturns.

I Correlation risk negatively affects investor welfare by making
diversification more difficult.

I The estimation of the correlations and factor models are typically
performed using historical data.
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Major Goals and Contributions

1 Construct option-implied covariances (COV) without historical data.

2 Use options on sectors to infer correlations in and between sectors.

3 Identify and estimate an option-implied linear factor model.

4 Find the risk channel through which implied correlation (IC) predicts
market returns.
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Summary of the Major Results

I Correlations and variances (+premiums) vary across economic sectors.

I Implied correlation (IC) between sectors contains enough information
to predict market returns and systematic risk.

I IC predicts not just (RC), but also the lower bound of
non-diversifiable market risk—σ2(βM).

A high IC predicts a lower cross sectional dispersion of betas → βM more clustered

around the mean → less diversification benefits.

I Fully option-implied COV from sector data results in factors explaining
more of stock dynamics than historical or hybrid approaches.
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Literature Review

From many option-based variables two stand out in predicting market
returns and risk:

I VRP performs best at the quarterly horizon - Bollerslev, Tauchen, and

Zhou (2009)

I IC works at horizons up to a year - Driessen, Maenhout, and Vilkov (2005)

I Both variance and correlations contribute to the market variance risk.

I Pricing of the Index variance depends on the pricing of the individual
variance and the correlation risk.
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Input Correlation Matrix - inferred from option prices

Two alternatives are so far available in the literature:

1 Homogenous IC - option-implied - Equicorrelations
Driessen, Maenhout, and Vilkov (2005), Skinzi and Refenes (2005).

2 Heterogeneous IC - historical correlations adjusted by a parametric
correlation risk premium - Buss and Vilkov (2012).

NEW: Sector-based implied correlations: heterogenous correlation
matrix built exclusively from options.
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Data and Preparation of Variables - Data Availability

I Major Indices: S&P500, S&P100, DJ Industrial Average (DJ30).

I Sector Indices: ETFs for nine economic sectors of the S&P500.

I Individual Level: All constituents

The data on options are available until April 2016.
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Source: http://blog.spdrs.com
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Data and Preparation of Variables - Three Databases

I Index composition from Compustat (GVKEY and IID) → merged
with return data and market cap from CRSP (PERMNO).

I Matching CRSP/Compustat with Option Data through historical
CUSIP link provided by Option Metrics.

I Options on SPDR ETFs serve as proxy for nine economic sectors.

I Group stocks corresponding to the composition of the respective
indices and the nine Select Sector SPDR ETFs.

PERMNO is used as the main identified in our merged database.
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Option-Implied Variables - Moments

Time horizon: 30, 91, 365 days.

I For computing the option-based variables we rely on the Surface
Data from Option Metrics.

I Option-implied variance (σ2) are computed as Simple Variance Swaps
(SMFIV) - Martin (2013).

I SMFIV is the risk-neutral expected quadratic variation of the
underlying (robust to jumps).

I For realized variances we use daily returns (window = time horizon).

I VRP is computed in an ex ante version: SMFIVt − RVt−∆t,t..

How is the Implied Correlation calculated?
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Option-Implied Variables - Implied Correlations

ICs (for each day) are constructed using several methods:

Fully option-implied:

1 Equicorrelations - pairwise correlations are equal.

2 Sector-based correlations - equal correlations for stocks in the same
sector, and between any two stocks in different sectors.

Hybrid:

3 Heterogeneous correlations Buss and Vilkov (2012)

� ρQ
ij (t) = ρP

ij (t)− αQ(t)(1− ρP
ij (t))
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Option-Implied Variables - Main Identifying Restriction

Main Identifying Restriction (MIR): The variance of an index is equal
to the variance of the portfolio, which the index represents:

σ2
I (t) =

N∑
i=1

N∑
j=1

wiwjσi (t)σj (t)ρij (t).

=
N∑

i=1

w2
i σ

2
i (t) +

N∑
i=1

N∑
j 6=i

wiwjσi (t)σj (t)ρij (t).
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Option-Implied Variables - Equicorrelations

Equicorrelations: use ρij (t) = ρ(t) and solve for ρ(t):

ρ (t) =

σ2
I (t)−

N∑
i=1

w2
i σ

2
i (t)

N∑
i=1

∑
j 6=i wiwjσi (t)σj (t)

,
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For example: Reduced Sector-Based Correlations for the S&P500

I Consider only the nine sector ETFs (as assets).

Hence:

σ2
I (t) =

N=9∑
i=1

N=9∑
j=1

wiwjσi (t)σj (t)ρ(t).

14 / 34



Option-Implied Variables - Block Diagonal COV

Full Sector-Based Correlation Matrix:

1 Estimate the equicorrelations ρsect using the MIR for each sector.

2 Determine the remaining correlations ρoff−diag (t) between stocks in
different sectors using the identifying restriction:

σ2
I (t) =

Nsect∑
sect=1

∑
i∈sect

∑
j∈sect

wiwjσi (t)σj (t) ρsect(t)

+
N∑

i=1

∑
j :sect(i)6=sect(j)

wiwjσi (t)σj (t) ρoff−diag (t).
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Option-Implied Variables - Block Diagonal COV

For one sector the option implied correlation matrix looks as follows:

ΩQ
mat =


1 ρmat . . . ρmat

ρmat 1 . . . ρmat
...

...
. . .

...
ρmat ρmat . . . 1


For the S&P500 (i.e for the nine sectors), the full sector-based
block-diagonal correlation matrix (at a specific date t) looks as follows:

ΩQ
FSB =


ΩQ

mat ρoff−diag . . . ρoff−diag

ρoff−diag ΩQ
hea . . .

...
...

...
. . .

...

ρoff−diag . . . . . . ΩQ
utl


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The Price of Variance and Correlation Risks

I Heterogeneity in the average IC & CRP among economic indices.

I Within the S&P500 the correlations in the sectors are linked less than
perfectly.
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Table 1: (Some) Sector ICs and CRPs: Summary Statistics

IC CRP = IC-RC
30 91 365 30 91 365

Sector: Materials
Mean 0.520 0.520 0.549 0.038 0.041 0.080
p-val 0.000 0.000 0.000 0.000 0.000 0.000
Sector: Health Care
Mean 0.415 0.397 0.433 0.048 0.035 0.075
p-val 0.000 0.000 0.000 0.000 0.007 0.000
Sector: Energy
Mean 0.702 0.715 0.717 0.009 0.022 0.024
p-val 0.000 0.000 0.000 0.351 0.077 0.164
Sector: Finance
Mean 0.628 0.643 0.680 0.078 0.092 0.130
p-val 0.000 0.000 0.000 0.000 0.000 0.000
Sector: Utilities
Mean 0.487 0.548 0.649 -0.049 0.016 0.111
p-val 0.000 0.000 0.000 0.000 0.131 0.000
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Insample Predictability of Returns via IC

Approach: Predict market returns over 30, 91, 365 days by RC, IC, VRP.

Result:

I ICs extracted from nine S&P500 ETF sectors are sufficient for
predicting market returns.

Hence: Correlation between different sectors matters and not just the
correlation between all stocks.

I IC predicts better than VRP for longer horizons, always significant,
R2 from 21%− 33%.
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Table 2: Market Return Predictability: Correlations and VRP

Market ret, 30 days
SP500 Sample (Equicorrelations)
RC 0.030 - - -

0.111 - - -
IC - 0.067 - 0.072

- 0.000 - 0.000
VRP - - 0.210 0.228

- - 0.003 0.001
R2 0.008 0.030 0.023 0.057

SP500 Sample (Reduced Sector Based)

RC 0.049 - - -
0.000 - - -

IC - 0.048 - 0.047
- 0.000 - 0.000

VRP - - 0.205 0.205
- - 0.005 0.004

R2 0.034 0.035 0.024 0.059
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Table 3: Market Return Predictability: Correlations and VRP

Market ret, 365 days
SP500 Sample (Equicorrelations)
RC 0.403 - - -

0.093 - - -
IC - 0.851 - 0.849

- 0.000 - 0.000
VRP - - -0.738 -0.699

- - 0.231 0.186
R2 0.064 0.216 0.012 0.227

SP500 Sample (Reduced Sector Based)
RC 0.700 - - -

0.000 - - -
IC - 0.642 - 0.634

- 0.000 - 0.000
VRP - - -1.550 -1.446

- - 0.015 0.027
R2 0.307 0.291 0.058 0.342
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Predictability of Risks via IC

Through which channel does IC predict the market risk premium?

Hypothesis: IC predicts diversification (RC) in the economy.

I With increasing horizon the lagged RC works better in predicting RC.

I But: IC beats RC in predicting the cross-sectional dispersion of
market betas - σ2(βM).

I Stronger effect for longer horizons.

Thus: IC predicts the level of non-diversifiable market risk - higher IC
indicates closer clustering of market betas around the mean.

22 / 34



Table 4: Risk Predictability: Cross Sectional Dispersion and Realized Correlations

SP500 Sample: 30-day horizon

σ2(βM) RC

RC -0.512 - 0.510 -
0.000 - 0.000 -

IC - -0.774 - 0.688
- 0.000 - 0.000

R2 0.063 0.108 0.261 0.357
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Table 5: Risk Predictability: Cross Sectional Dispersion and Realized Correlations

SP500 Sample: 365-day horizon

σ2(βM) RC

RC -0.243 - 0.519 -
0.000 - 0.000 -

IC - -0.626 - 0.430
- 0.000 - 0.000

R2 0.047 0.224 0.295 0.149
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The Linear Factor Model - Motivation and Reasoning

In a linear factor model with K factors the return for asset i follows:

ri ,t+1 = µi ,t +
K∑

k=1

βik,tFk,t+1 + εi ,t+1,

The COV derived from a factor model is given via:

Σ = BΣFB
′

+ D.

I B is the N ×K matrix of K factor betas for N stocks, ΣF is the COV
of factors, D is the diagonal matrix of residual variances.
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Factor Identification via Principal Component Analysis

But we are confronted with the inverse problem:

Task: Find the factor betas and factor variances from the COV.

Solution: Apply PCA to extract statistical factors at the end of a month.

Findings:

I The first factor is highly correlated with the market returns (> 85%).

I Option-implied information improves factor explanatory power.

I Fully implied sector-based correlations produce the best factors.
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Implied Factors and Factor Exposures - S&P500

Approach:

I At the end of each month construct three COVs (ΣP ,ΣQ
BV ,Σ

Q
FSB)

I Extract the five leading principal components (eigenvectors) and
normalize each to obtain factor weights.

I Calculate the daily factor return for each factor for the next month.

I Regress each stock returns on the set of factor returns - daily return
frequency for each date (EoM) (reported are the mean coefficients).

I Do this exercise for two set of factors - unrotated and rotated.
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Implied Factors and Factor Exposures - S&P500

Table 6: One Factor Models: Individual Stocks

Factors βmkt R2

Economic factors
mkt 0.997 0.208 - - - -

30-day 91-day 365-day
Factors βPC1 R2 βPC1 R2 βPC1 R2

Covariance matrix: ΣP

PC1 0.844 0.231 0.844 0.230 0.849 0.235

Covariance matrix: ΣQ
BV

PC1 0.883 0.232 0.883 0.232 0.907 0.237

Covariance matrix: ΣQ
FSB

PC1 0.878 0.247 0.875 0.247 0.910 0.260

⇒ R2 for FSB Model is higher than for others.
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Implied Factors and Factor Exposures - S&P500

Table 7: 3 Factor Models: Individual Stocks

Factors βmkt R2

Economic factors
mkt + smb + hml 1.068 0.236 - - - -

30-day 91-day 365-day
Factors βPC1 R2 βPC1 R2 βPC1 R2

Covariance matrix: ΣP

PC1-3 0.827 0.279 0.828 0.279 0.838 0.284

Covariance matrix: ΣQ
BV

PC1-3 0.884 0.277 0.885 0.279 0.905 0.286

Covariance matrix: ΣQ
FSB

PC1-3 0.875 0.287 0.870 0.288 0.917 0.305

⇒ R2 for FSB Model is higher than for others.
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PCA - Factor Rotation - S&P500

Approach: Least Squares Rotation (of A) to a Partially Specified
Target Matrix (W ∗ B)

I For every month t search the Rotation Matrix - Λ such that the 5
extracted factors A are rotated towards the target B.

I The Rotation Matrix Λ = A(T ′)−1, where T is a Transformation
Matrix s.th diag(T ′T ) = I

I W is specified such that wij = 1 if bij ∈ B is specified.

I Obtain Λ(A) by solving the optimization problem:

minΛ ||W ∗ Λ−W ∗ B||2

In our case:

I A consists of the 5 extracted factors, the first column of B are the
S&P500 market weights, the other 4 columns are 0.

I After rotation the first factor is correlated with the market by > 93%
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Implied Rotated Factors and Factor Exposures - S&P500

Table 8: One Factor Models: Individual Stocks

Factors βmkt R2

Economic factors
mkt 0.997 0.208 - - - -

30-day 91-day 365-day
Factors βPC1 R2 βPC1 R2 βPC1 R2

Covariance matrix: ΣP

PC1 0.933 0.238 0.933 0.238 0.933 0.238

Covariance matrix: ΣQ
BV

PC1 0.941 0.238 0.943 0.238 0.951 0.238

Covariance matrix: ΣQ
FSB

PC1 0.939 0.260 0.936 0.261 0.942 0.261

⇒ ≈ 5% higher R2 than with just the market.
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Conclusion

I Correlation between sectors matters—not just between assets.

I IC based on nine sectors efficiently predicts market returns and risks.

I High IC ⇒ lower dispersion in βM ⇒ less diversification benefits.

I Economic sectors bear different variance and correlation risks.

I Option-implied Variables explain returns better than historical ones.
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Thank you!

lschoenleber@fs.de

33 / 34



References

Bollerslev, T., G. Tauchen, and H. Zhou, 2009, “Expected Stock Returns and Variance
Risk Premia,” Review of Financial Studies, 22(11), 4463–4492.

Buss, A., and G. Vilkov, 2012, “Measuring Equity Risk with Option-implied
Correlations,” Review of Financial Studies, 25(10), 3113–3140.

Driessen, J., P. Maenhout, and G. Vilkov, 2005, “Option-Implied Correlations and the
Price of Correlation Risk,” Working paper, INSEAD.

Martin, I., 2013, “Simple Variance Swaps,” NBER Working Paper 16884.

Skinzi, V. D., and A.-P. N. Refenes, 2005, “Implied Correlation Index: A New Measure
of Diversification,” Journal of Futures Markets, 25(2), 171–197.

34 / 34


	Motivation and Contributions
	Literature Review
	Data
	Option-Implied Variables
	Insample Predictability 
	Risk Predictability 
	Option-Implied Factor Model
	Conclusion

