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» Correlations are changing, and increase during market downturns.

» Correlation risk negatively affects investor welfare by making
diversification more difficult.

» The estimation of the correlations and factor models are typically
performed using historical data.



Major Goals and Contributions

@ Construct option-implied covariances (COV) without historical data.
® Use options on sectors to infer correlations in and between sectors.
© ldentify and estimate an option-implied linear factor model.

@ Find the risk channel through which implied correlation (IC) predicts
market returns.



Summary of the Major Results

» Correlations and variances (4premiums) vary across economic sectors.

» Implied correlation (IC) between sectors contains enough information
to predict market returns and systematic risk.

» |C predicts not just (RC), but also the lower bound of
non-diversifiable market risk—a?(8).

A high IC predicts a lower cross sectional dispersion of betas — Sy more clustered

around the mean — less diversification benefits.

» Fully option-implied COV from sector data results in factors explaining
more of stock dynamics than historical or hybrid approaches.



Literature Review

From many option-based variables two stand out in predicting market
returns and risk:

» VRP performs best at the quarterly horizon - Bollerslev, Tauchen, and
Zhou (2009)

» |IC works at horizons up to a year - Driessen, Maenhout, and Vilkov (2005)
» Both variance and correlations contribute to the market variance risk.

» Pricing of the Index variance depends on the pricing of the individual
variance and the correlation risk.



Input Correlation Matrix - inferred from option prices

Two alternatives are so far available in the literature:

® Homogenous IC - option-implied - Equicorrelations
Driessen, Maenhout, and Vilkov (2005), Skinzi and Refenes (2005).

® Heterogeneous IC - historical correlations adjusted by a parametric
correlation risk premium - Buss and Vilkov (2012).

NEW: Sector-based implied correlations: heterogenous correlation
matrix built exclusively from options.



Data and Preparation of Variables - Data Availability

» Major Indices: S&P500, S&P100, DJ Industrial Average (DJ30).
» Sector Indices: ETFs for nine economic sectors of the S&P500.

» Individual Level: All constituents

The data on options are available until April 2016.
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Data and Preparation of Variables - Three Databases

» Index composition from Compustat (GVKEY and IID) — merged
with return data and market cap from CRSP (PERMNO).

» Matching CRSP/Compustat with Option Data through historical
CUSIP link provided by Option Metrics.

» Options on SPDR ETFs serve as proxy for nine economic sectors.

» Group stocks corresponding to the composition of the respective
indices and the nine Select Sector SPDR ETFs.

PERMNO is used as the main identified in our merged database.



Option-Implied Variables - Moments

Time horizon: 30,91, 365 days.

» For computing the option-based variables we rely on the Surface
Data from Option Metrics.

» Option-implied variance (¢2) are computed as Simple Variance Swaps
(SMFIV) - Martin (2013).

» SMFIV is the risk-neutral expected quadratic variation of the
underlying (robust to jumps).

» For realized variances we use daily returns (window = time horizon).

» VRP is computed in an ex ante version: SMFIV; — RV;_a¢¢..

How is the Implied Correlation calculated?
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Option-Implied Variables - Implied Correlations

ICs (for each day) are constructed using several methods:

Fully option-implied:
® Equicorrelations - pairwise correlations are equal.

® Sector-based correlations - equal correlations for stocks in the same
sector, and between any two stocks in different sectors.

Hybrid:

© Heterogeneous correlations Buss and Vilkov (2012)

m (1) = pf (1) — a®()(1 - pf(1))
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Option-Implied Variables - Main Identifying Restriction

Main ldentifying Restriction (MIR): The variance of an index is equal
to the variance of the portfolio, which the index represents:

ZZw,wJa(t t)p;(t).

i=1 j=1
N

= w0+ 303 w600,
i=1 i=1 j#i
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Option-Implied Variables - Equicorrelations

Equicorrelations: use p;(t) = p(t) and solve for p(t):

N
of (t) - ;W,-ZU,?(t)

p(t) =
;Zj;éi wiw;joj (t)oj(t)

Y
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For example: Reduced Sector-Based Correlations for the S&P500
» Consider only the nine sector ETFs (as assets).
Hence:

N=9 N=9

3(1) = 3 " wiwo(£)o;(£)(2).

i=1 j=1
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Option-Implied Variables - Block Diagonal COV

Full Sector-Based Correlation Matrix:

@ Estimate the equicorrelations psec using the MIR for each sector.

@® Determine the remaining correlations posgiag (t) between stocks in
different sectors using the identifying restriction:

Nsect

oi ()= > > wiwoi(t)oj(t) psece(t)

sect=1 i€sect jEsect

N
+ Z Z wiw;o (t)oj (t) poff—diag (t)-

i=1 j:sect(i)#sect(j)
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Option-Implied Variables - Block Diagonal COV

For one sector the option implied correlation matrix looks as follows:

1 Pmat --- Pmat

Pmat 1 -+« Pmat
Qrcgat = . - . .
Pmat  Pmat - -- 1

For the S&P500 (i.e for the nine sectors), the full sector-based
block-diagonal correlation matrix (at a specific date t) looks as follows:

Q
Qmat Poff —diag -+ Poff—diag

QQ

_ | Poff—diag Qhea
FSB — .

Q
Poff —diag . e Qutl
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The Price of Variance and Correlation Risks

» Heterogeneity in the average IC & CRP among economic indices.

» Within the S&P500 the correlations in the sectors are linked less than
perfectly.
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Table 1: (Some) Sector ICs and CRPs: Summary Statistics

IC CRP = IC-RC

30 91 365 \ 30 91 365
Sector: Materials
Mean 0.520 0.520 0.549 | 0.038 0.041 0.080
p-val 0.000 0.000 0.000 | 0.000 0.000 0.000
Sector: Health Care
Mean 0.415 0.397 0.433 | 0.048 0.035 0.075
p-val 0.000 0.000 0.000 | 0.000 0.007 0.000
Sector: Energy
Mean 0.702 0.715 0.717 | 0.009 0.022 0.024
p-val 0.000 0.000 0.000 | 0.351 0.077 0.164
Sector: Finance
Mean 0.628 0.643 0.680 | 0.078 0.092 0.130
p-val 0.000 0.000 0.000 | 0.000 0.000 0.000
Sector: Utilities
Mean 0.487 0548 0.649 | -0.049 0.016 0.111
p-val 0.000 0.000 0.000 | 0.000 0.131 0.000
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Insample Predictability of Returns via IC

Approach: Predict market returns over 30,91, 365 days by RC, IC, VRP.

Result:

» [Cs extracted from nine S&P500 ETF sectors are sufficient for
predicting market returns.

Hence: Correlation between different sectors matters and not just the
correlation between all stocks.

» |C predicts better than VRP for longer horizons, always significant,
R? from 21% — 33%.
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Table 2: Market Return Predictability: Correlations and VRP

Market ret, 30 days

SP500 Sample (Equicorrelations)

RC  0.030 - - -
0.111 - - -
IC - 0.067 - 0.072
- 0.000 - 0.000
VRP - - 0.210 0.228
- - 0.003  0.001
R? 0.008 0.030 0.023 0.057

SP500 Sample (Reduced Sector Based)

RC  0.049 - - -
0.000 - - -
IC - 0.048 - 0.047
- 0.000 - 0.000
VRP - - 0.205 0.205
- - 0.005 0.004
R? 0.034 0.035 0.024 0.059
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Table 3: Market Return Predictability: Correlations and VRP

Market ret, 365 days
SP500 Sample (Equicorrelations)

RC  0.403 - - -
0.093 - - -
IC - 0.851 - 0.849
- 0.000 - 0.000
VRP - - -0.738 -0.699
- - 0.231 0.186

= 0.064 0.216 0.012 0.227

SP500 Sample (Reduced Sector Based)

RC  0.700 - - -
0.000 - - -
IC - 0.642 - 0.634
- 0.000 - 0.000
VRP - - -1.550 -1.446
- 0.015 0.027

R? 0.307 0.291 0.058 0.342
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Predictability of Risks via IC

Through which channel does IC predict the market risk premium?

Hypothesis: IC predicts diversification (RC) in the economy.

» With increasing horizon the lagged RC works better in predicting RC.

» But: IC beats RC in predicting the cross-sectional dispersion of
market betas - o2(y).

» Stronger effect for longer horizons.

Thus: IC predicts the level of non-diversifiable market risk - higher IC
indicates closer clustering of market betas around the mean.
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Table 4: Risk Predictability: Cross Sectional Dispersion and Realized Correlations

SP500 Sample: 30-day horizon

o*(Bm) | RC
RC -0.512 - 0.510 -
0.000 - 0.000 -
IC - -0.774 - 0.688
- 0.000 - 0.000

R? 0.063 0.108 | 0.261 0.357
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Table 5: Risk Predictability: Cross Sectional Dispersion and Realized Correlations

SP500 Sample: 365-day horizon

o*(Bm) | RC
RC -0.243 - 0.519 -
0.000 - 0.000 -
IC - -0.626 - 0.430
- 0.000 - 0.000

R2 0.047 0224 | 0.295 0.149
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The Linear Factor Model - Motivation and Reasoning

In a linear factor model with K factors the return for asset i follows:

K

lit41 = it + § Bik,t Fi,t41 + €it4+1,
k=1

The COV derived from a factor model is given via:
Yy =BxfB +D.

» B isthe N x K matrix of K factor betas for N stocks, ~f is the COV
of factors, D is the diagonal matrix of residual variances.
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Factor Identification via Principal Component Analysis

But we are confronted with the inverse problem:
Task: Find the factor betas and factor variances from the COV.
Solution: Apply PCA to extract statistical factors at the end of a month.

Findings:
» The first factor is highly correlated with the market returns (> 85%).

» Option-implied information improves factor explanatory power.

» Fully implied sector-based correlations produce the best factors.
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Implied Factors and Factor Exposures - S&P500

Approach:

» At the end of each month construct three COVs (ZP,ZgV, Z,(_E)SB)

» Extract the five leading principal components (eigenvectors) and
normalize each to obtain factor weights.

» Calculate the daily factor return for each factor for the next month.

» Regress each stock returns on the set of factor returns - daily return
frequency for each date (EoM) (reported are the mean coefficients).

» Do this exercise for two set of factors - unrotated and rotated.
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Implied Factors and Factor Exposures - S&P500

Table 6: One Factor Models: Individual Stocks

Factors  Bmke R?

Economic factors

mkt 0.997 0.208 - - - -
30-day 91-day 365-day

Factors  Bpci R?2 Bpci R2 Bpct R2

Covariance matrix: ¥*
PC1 0.844 0.231 0.844 0.230 0.849 0.235
Covariance matrix: ng

PC1 0.883 0.232 0.883 0.232 0.907 0.237
Covariance matrix: Z,QSB
PC1 0.878 0.247 0.875 0.247 0.910 0.260

= R? for FSB Model is higher than for others.
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Implied Factors and Factor Exposures - S&P500

Table 7: 3 Factor Models: Individual Stocks

Factors Bkt R?
Economic factors
mkt + smb + hml 1.068 0.236 - - - -

30-day 91-day 365-day
Factors Bpc1 R?®  Bpc R>  Bpci  R?
Covariance matrix: ¥.©
PC1-3 0.827 0.279 0.828 0.279 0.838 0.284
Covariance matrix: ng
PC1-3 0.884 0.277 0.885 0.279 0.905 0.286
Covariance matrix: Z,?SB
PC1-3 0.875 0.287 0.870 0.288 0.917 0.305

= R? for FSB Model is higher than for others.
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PCA - Factor Rotation - S&P500

Approach: Least Squares Rotation (of A) to a Partially Specified
Target Matrix (W x B)

» For every month t search the Rotation Matrix - A such that the 5
extracted factors A are rotated towards the target B.

» The Rotation Matrix A = A(T’)~1, where T is a Transformation
Matrix s.th diag(T'T) = I

» W is specified such that wj; = 1 if b; € B is specified.
» Obtain A(A) by solving the optimization problem:
mina |[|[W A — W x B||?

In our case:
» A consists of the 5 extracted factors, the first column of B are the
S&P500 market weights, the other 4 columns are 0.

» After rotation the first factor is correlated with the market by > 93%
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Implied Factors and Factor Exposures - S&P500

Table 8: One Factor Models: Individual Stocks

Factors  Bimke R?2

Economic factors

mkt 0.997 0.208 - - - -
30-day 91-day 365-day

Factors  Bpc: R?  Bpci R%  Bpci R?
Covariance matrix: ¥*

PC1 0.933 0.238 0.933 0.238 0.933 0.238
Covariance matrix: ¥,
PC1 0.941 0.238 0943 0.238 0.951 0.238
Covariance matrix: Z,(_-QSB
PC1 0.939 0260 0.936 0.261 0.942 0.261

= ~ 5% higher R? than with just the market.
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Conclusion

» Correlation between sectors matters—not just between assets.

» IC based on nine sectors efficiently predicts market returns and risks.
» High IC = lower dispersion in By = less diversification benefits.

» Economic sectors bear different variance and correlation risks.

» Option-implied Variables explain returns better than historical ones.
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Thank you!

lschoenleber@fs.de

33/34



References

Bollerslev, T., G. Tauchen, and H. Zhou, 2009, “Expected Stock Returns and Variance
Risk Premia,” Review of Financial Studies, 22(11), 4463-4492.

Buss, A., and G. Vilkov, 2012, “Measuring Equity Risk with Option-implied
Correlations,” Review of Financial Studies, 25(10), 3113-3140.

Driessen, J., P. Maenhout, and G. Vilkov, 2005, “Option-Implied Correlations and the
Price of Correlation Risk,” Working paper, INSEAD.

Martin, I., 2013, “Simple Variance Swaps,” NBER Working Paper 16884.

Skinzi, V. D., and A.-P. N. Refenes, 2005, “Implied Correlation Index: A New Measure
of Diversification,” Journal of Futures Markets, 25(2), 171-197.

34 /34



	Motivation and Contributions
	Literature Review
	Data
	Option-Implied Variables
	Insample Predictability 
	Risk Predictability 
	Option-Implied Factor Model
	Conclusion

