# Social Discounting and Intergenerational Pareto

Tangren Feng and Shaowei Ke

ASSA

January 2018

### Which Social Discount Rate Should We Use?

Many economic decisions are dynamic and affect multiple individuals

- Corporate/household long-term investments
- Durable public good investments
- Intertemporal tax transfers
- Environmental projects

These decisions depend on one number, the social discount rate

- ▶ The society's trade-off between current benefit and future benefit
- ▶ No consensus on which social discount rate should be used

### The Stern Review

- "...if we don't act, the overall costs and risks of climate change will be equivalent to losing at least 5% of global GDP each year, now and forever."
  - The Stern Review on the Economics of Climate Change

- "...(the Stern Review) depends decisively on the assumption of a near-zero time discount rate..."
  - William Nordhaus

- "...(using discount rates ranging from 3-5%) is ethically indefensible."
  - Lord Nicholas Stern

## Questions

1. In what sense is a social discount rate reasonable?

2. What are the reasonable social discount rates?

# Social Discounting Depends on Individual Discounting

Social discounting should be more patient than individual discounting (Caplin & Leahy 2004, Farhi & Werning 2007)

- Pure time-preference discounting, rather than consumption discounting
- Social discounting should take into account how future generations value their consumption
- Future generations value future more than the current generation value future
- ► Thus, social discounting also values future more than the current generation does
- However, these theories only have one individual (representative agent)

## A Negative Result

Common in these situations...

- A benevolent planner chooses for multiple generations
- Uncertainty about payoffs

Widely used assumptions in economics:

- 1. Planner has an exponential discounting expected utility function
- 2. Some Pareto property

Gollier & Zeckhauser (2005), Zuber (2011), Jackson & Yariv (2014, 2015): even when individuals also discounts exponentially

 $1+2 \Rightarrow \mathsf{Dictatorship}$ 



# **Preferences**

# Model Setup

▶  $2 < T \le +\infty$  generations/periods

 $ightharpoonup N < \infty$  individuals in each generation who live for one period

- ▶ One risky public consumption  $p_t \in \Delta(X)$  in each period t
- ▶ Consumption sequence:  $\mathbf{p} = (p_1, \dots, p_T) \in \Delta(X)^T$

### Individual Preferences

- ▶ Generation-t individual i's preference over  $\mathbf{p}$ 's:  $\succsim_{i,t}$
- ► Generation-*t* individual *i*'s discounting utility function:

$$U_{i,t}(\mathbf{p}) = \sum_{\tau=t}^{T} \delta_i(\tau - t) u_i(p_{\tau})$$

- ▶ Discount function  $\delta_i(\cdot)$ :  $\delta_i(0) = 1$ ,  $\delta_i > 0$ ; if  $T = +\infty$ ,  $\delta_i \in \ell^1$
- ▶ Instantaneous (expected) utility function  $u_i : \Delta(X) \to \mathbb{R}$
- 1.  $U_{i,t}$  only depends on current and future consumption
  - lacktriangle can be relaxed when  $\delta_i$ 's are exponential
- 2. The offspring inherits the parent's  $\delta_i$ 
  - ▶ They rank  $\mathbf{p}$ 's differently  $(\delta_i(\cdot))$  is shifted forward)
  - can be relaxed
- 3. Instantaneous utility does not depend on time
  - can be relaxed

### The Planner's Preference

As in the negative results, we first focus on exponential discounting

- ▶ In each period t, the planner's preference over  $\mathbf{p}$ 's:  $\succsim_t$
- ▶ In each period *t*, the planner's utility function:

$$U_t(\mathbf{p}) = \sum_{\tau=t}^T \delta^{\tau-t} u(p_\tau)$$

- ▶ Social discount factor  $\delta > 0$ ;  $0 < \delta < 1$  if  $T = +\infty$
- ▶ Instantaneous utility function  $u: \Delta(X) \to \mathbb{R}$
- 1.  $U_t$  only depends on current and future consumption
- 2. The discount factor and instantaneous utility do not depend on time
- 3. Normalization of expected utility functions: for some  $x_*$  and  $x^*$ ,  $u_i(x_*) = u(x_*) = 0$  and  $u_i(x^*) = u(x^*) = 1$

# Intergenerational Pareto

## A Variant of the Negative Result

▶ In a dynamic setting, there are different ways to define Pareto

The planner is current-generation Pareto if for each t,

 $\mathbf{p} \succsim_{i,t} \mathbf{q}$  for all i implies  $\mathbf{p} \succsim_t \mathbf{q}$ ,

and  $\mathbf{p} \succ_{i,t} \mathbf{q}$  for all i implies  $\mathbf{p} \succ_t \mathbf{q}$ .

▶ An generation-t individual i has an exponential discounting utility (EDU) function if

$$U_{i,t}(\mathbf{p}) = \sum_{\tau=t}^{T} \delta_i^{\tau-t} u_i(p_{\tau})$$

# A Variant of the Negative Result

Proposition Suppose each generation-t individual i has an EDU function with  $(\delta_i, u_i)$ . For a generic N-tuple of discount factors  $(\delta_i)_{i \in N}$ , the planner is current-generation Pareto if and only if for each t, there exists a unique i such that  $U_t = U_{i,t}$ .

#### Sketch of the proof:

- Example: N=2 and  $u_1=u_2=u$
- lacksquare Harsanyi 1955: Pareto  $\Leftrightarrow$  Utilitarian, i.e.,  $U=\omega U_1+(1-\omega)U_2$

## Intergenerational Pareto



## Intergenerational Pareto

The planner is intergenerationally Pareto if for each  $t \in T$ ,

 $\mathbf{p} \succsim_{i,s} \mathbf{q}$  for all i and all  $s \ge t$  implies  $\mathbf{p} \succsim_t \mathbf{q}$ , and  $\mathbf{p} \succ_{i,s} \mathbf{q}$  for all i and all  $s \ge t$  implies  $\mathbf{p} \succ_t \mathbf{q}$ .

- ▶ The planner can disagree with a selfish current generation
- ► The planner ignores past generations whose utility can no longer be changed

Intergenerational Pareto allows the planner to make rather discretionary decisions?

# Intergenerational Pareto and Utilitarianism

Lemma Suppose  $U_{i,t}(\mathbf{p}) = \sum_{\tau=t}^T \delta_{i,t}(\tau-t)u_i(p_\tau,\tau)$ , and  $U_t(\mathbf{p}) = \sum_{\tau=t}^T \delta_t(\tau-t)u_t(p_\tau,\tau)$ . Suppose  $T<+\infty$ . The planner is intergenerationally Pareto if and only if for each t, there exists a finite sequence of nonnegative numbers  $(\omega_t(i,s))_{i\in N,s\geq t}$  such that  $\sum_{i=1}^N \sum_{s=t}^T \omega_{i,t}(s)>0$  and

$$U_t = \sum_{i=1}^N \sum_{s=t}^T \omega_{i,t}(s) U_{i,s}.$$

# Social Discounting

and Individual Long-Run Discounting:

The Benchmark Case

# Strongly Non-Dictatorial

The planner is strongly non-dictatorial if for each t,

$$U_t(\mathbf{p}) = f_t(U_{1,t}(\mathbf{p}), \dots, U_{1,T}(\mathbf{p}), U_{2,t}(\mathbf{p}), \dots, U_{2,T}(\mathbf{p}), \dots, U_{N,T}(\mathbf{p}))$$

for some strictly increasing function  $f_t$ .

- Negative results: The only way for a time-consistent planner to be current-generation Pareto is dictatorship
- Non-dictatorial: The planner cares about more than one individual

# Individual Average and Relative Discounting

 $ightharpoonup \delta_i(\cdot)$  is defined on  $\mathbb{N}$ ; T may vary

Average discounting:  $\sqrt[\tau]{\delta_i(\tau)}$  Relative discounting:  $\frac{\delta_i(\tau+1)}{\delta_i(\tau)}$ 

A1: 
$$\lim_{\tau \to \infty} \sqrt[\tau]{\delta_i(\tau)}$$
 exists A2:  $\frac{\delta_i(\tau+1)}{\delta_i(\tau)}$  is bounded

A3: 
$$\frac{\delta_i(\tau+1)}{\delta_i(\tau)}$$
 is increasing

▶ A2 and A3 ⇒ 
$$\lim_{\tau \to \infty} \frac{\delta_i(\tau+1)}{\delta_i(\tau)}$$
 exists ⇒  $\lim_{\tau \to \infty} \sqrt[\tau]{\delta_i(\tau)} = \lim_{\tau \to \infty} \frac{\delta_i(\tau+1)}{\delta_i(\tau)}$ 

## Benchmark Case

The benchmark case assumes that  $T<+\infty$  and  $u_i=u$ 

The main results will highlight how individual instantaneous utility affects the range of "reasonable" social discount rates

### Benchmark Case

Theorem Suppose  $T < +\infty$ , and each generation-t individual i's discounting utility function satisfies A1, A2, and  $u_i = u$ . Then,

- 1. if  $\delta > \min_i \max_{\tau \in \{0,\dots,T-1\}} \frac{\delta_i(\tau+1)}{\delta_i(\tau)}$ , the planner is intergenerationally Pareto and strongly non-dictatorial;
- 2. For each  $\delta < \min_i \lim_{\tau \to \infty} \sqrt[\tau]{\delta_i(\tau)}$ , there exists some  $T^* > 0$  such that if  $T \geq T^*$ , the planner is not intergenerationally Pareto.
- ► The first part fixes the negative result, and can be used to check whether a planner satisfies intergenerational Pareto
- ▶ The second part: if  $\delta$  is too low, there exist  $\mathbf{p}$  and  $\mathbf{q}$  such that all individuals from all generations prefer  $\mathbf{p}$  to  $\mathbf{q}$ , but the planner disagrees
- In many examples, the two cutoffs are identical

# Individual Long-Run Discounting

In both examples, two cutoffs coincide

A1: 
$$\lim_{\tau \to \infty} \sqrt[\tau]{\delta_i(\tau)}$$
 exists A2:  $\frac{\delta_i(\tau+1)}{\delta_i(\tau)}$  is bounded

A3 (present bias):  $\frac{\delta_i(\tau+1)}{\delta_i(\tau)}$  is increasing

▶ A2 and A3 
$$\Rightarrow \lim_{\tau \to \infty} \frac{\delta_i(\tau+1)}{\delta_i(\tau)} = \lim_{\tau \to \infty} \sqrt[\tau]{\delta_i(\tau)}$$

Define

$$\delta_i^* := \lim_{ au o \infty} rac{\delta_i( au + 1)}{\delta_i( au)} = \lim_{ au o \infty} \sqrt[ au]{\delta_i( au)}$$

as individual i's long-run discount factor

## Individual Long-Run Discounting

Corollary Suppose  $T < +\infty$  and each generation-t individual i's discounting utility function satisfies A2, A3, and  $u_i = u$ . Then,

- 1. if  $\delta > \min_i \delta_i^*$ , the planner is intergenerationally Pareto and strongly non-dictatorial;
- 2. For each  $\delta < \min_i \delta_i^*$ , there exists some  $T^* > 0$  such that if  $T \geq T^*$ , the planner is not intergenerationally Pareto.
- Social discounting literature: social discouning should be more patient than individual discounting, but which individual and what individual discount factor?
- Benchmark case: the individual with the least patient long-run discount factor
- ► However, this does not contribute much to the debate on social discounting, because  $\min_i \delta_i^*$  can be quite low



# Social Discounting and Individual

Instantaneous Utility Functions

## Instantaneous Utility Functions

 $(u_i)_{i\in N}$  is said to be linearly independent if there are no constants  $(\alpha_i)_{i\in N}$  such that they are not all zero and  $\sum_i \alpha_i u_i(p) = 0$  for all  $p\in \Delta(X)$ .

• Generically,  $(u_i)_{i \in N}$  is linearly independent

## Instantaneous Utility Functions

Theorem Suppose  $T<+\infty$ , each generation-t individual i's discounting utility function satisfies A2 and A3, and  $(u_i)_{i\in N}$  is linearly independent. Let the planner's u be any strict convex combination of  $(u_i)_{i\in N}$ . Then,

- 1. For each  $\delta > \max_i \delta_i^*$ , the planner is intergenerationally Pareto and strongly non-dictatorial;
- 2. For each  $\delta < \max_i \delta_i^*$ , there exists some  $T^* > 0$  such that if  $T \geq T^*$ , the planner is not intergenerationally Pareto.

#### Remarks

- ▶ If A1 and A2 are assumed, rather than A2 and A3, we again have two cutoffs defined analogously
- ▶ The benchmark case is not robust: a small perturbation of  $u_i = u$  moves the cutoff from  $\min_i \delta_i^*$  to  $\max_i \delta_i^*$
- ▶ The choice of  $\delta$  is independent of the choice of u
- ▶ This result provides support for the use of near-zero discount rate
- ▶ Robustness: (i) T can be  $+\infty$ ; (ii) the offspring does not have to inherit the parent's preference parameters; (iii) intergenerational Pareto can be strengthened...

## Sketch of the Proof: Part 2

► Consider a special case where individuals have exponential discounting. In period 1,

$$U = \sum_{s=1}^{T} \sum_{i=1}^{N} \omega(i, s) U_{i,s}$$
$$\sum_{\tau=1}^{T} \delta^{\tau-1} u(p_{\tau}) = \sum_{s=1}^{T} \sum_{i=1}^{N} \omega(i, s) \sum_{\tau=s}^{T} \delta_{i}^{\tau-s} u_{i}(p_{\tau})$$

- ▶ There is a unique way to write u as a convex combination of  $u_i$ 's:  $\sum_i \lambda_i u_i = u$
- ▶ First period:  $u = \sum_i \omega(i,1)u_i \Rightarrow \lambda_i = \omega(i,1)$
- Second period:  $\delta u = \sum_i \omega(i,1) \delta_i u_i + \sum_i \omega(i,2) u_i \Rightarrow \lambda_i \delta = \omega(i,1) \delta_i + \omega(i,2)$
- $\omega(i,1)\delta = \omega(i,1)\delta_i + \omega(i,2)$

## Gradual Transition of the Cutoff

- An individual's instantaneous utility function describes his risk attitude
- $(u^{\theta})_{\theta=1}^{\Theta}$  is a linearly independent  $\Theta$ -tuple of instantaneous utility functions— $\Theta$  generic types of risk attitude

• 
$$\Theta = 1$$
:  $u_i = u$ ;  $\Theta = N$ :  $(u_i)_{i \in N}$  is linearly independent

Define

$$\delta_{\mathsf{maxmin}}^* := \max_{\theta} \min_{k \in \{i \in N: u_i = u^{\theta}\}} \delta_k^*.$$



### Gradual Transition of the Cutoff

Theorem Suppose  $T<+\infty$  and each generation-t individual i's discounting utility function has an instantaneous utility function  $u_i\in\{u^\theta\}_{\theta=1}^{\Theta}$  for some linearly independent  $\Theta$ -tuple of instantaneous utility functions  $(u^\theta)_{\theta=1}^{\Theta}$  such that  $\{u_i\}_{i\in N}=\{u^\theta\}_{\theta=1}^{\Theta}$ , and has a discount function  $\delta_i$  that satisfies A2 and A3. Let the planner's u be an arbitrary strict convex combination of  $(u_i)_{i\in N}$ . Then,

- 1. if  $\delta > \delta^*_{\text{maxmin}}$ , the planner is are intergenerationally Pareto and strongly non-dictatorial;
- 2. for each  $\delta < \! \delta_{\mathsf{maxmin}}^*$ , there exists some  $T^* > 0$  such that if  $T \geq T^*$ , the planner is not intergenerationally Pareto.