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Where | start from ...

That economic decisions are made without certain knowledge of the
consequences is pretty self-evident.

Kenneth J. Arrow



Roadmap

1. What do | mean by ‘complex’ risks?
2. How to derive theoretical predictions?

3. How does the theory hold up against the experimental data?



My Terminology: Simple vs. Complex Risks

» The aim is to study the effects of complexity on the trading and pricing of
consumption risk in a well-defined environment.

> | therefore rely on the following distinction:

Simple risks:  Agents possess perfect information about the underlying
objective probabilities.

Complex risks: Agents only have access to imperfect information about
the underlying objective probabilities.

> In the context of complex risks, the quality of agents’ information depends
on the cognitive resources at their disposal.



AN EXAMPLE



Trading Complex Risks: An Example

What is the probability 7 of receiving a dividend X equal to 1507

dS; = 10%S; dt + 32%S; dW;
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Trading Complex Risks: An Example (cont'd)

What is the probability 7 of receiving a dividend X equal to 1507

dS; = 10%S; dt + 32%S; dW;
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THEORY IN A NUTSHELL
(INTUITION!)



Trading Simple Risks (Benchmark)

Agent i's expected utility from consumption depends on 7, u;, and o;.
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Trading Simple Risks (Benchmark)

Agent i's expected utility from consumption depends on 7, pu;, and o;.

Q

A |
! ]
! T =

dominated 5

(pid,o ) € %
! <4
! i

@ ________ ..

g K
¥ 32 dominated
>
LE bt
1
' 1
: v

=
ke



Equilibrium for Simple Risks (Benchmark)

In the absence of aggregate risk (if 3 @) market completeness implies:
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Trading Complex Risks

If risks are complex, ambiguity-averse agents are more reluctant to bear them.
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Trading Complex Risks

If risks are complex, agents likely have different beliefs.
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Equilibrium for Complex Risks

If risks are complex, market outcomes are a function of agents’ beliefs.
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Equilibrium for Complex Risks

If agents are ambiguity-averse, efficient risk sharing prevails under complexity.

Q E[X]




RESULTS ON A FIRST GLANCE



The Beauty of Aggregation (for Q=2and 7 = /2, ie., E[X] = T75)
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AGGREGATE MARKET OUTCOMES



Simple vs. Complex Risks

Supply for E[X] =175 . Supply for E[X] =50
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Simple vs. Complex Risks (cont'd): Wilcoxon Signed-Rank Test

Supply for E[X] =175
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Bootstrapped Equilibrium Distribution (resampling size: 10k)
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Relative Variability of Market-clearing Prices

| propose the following measure to assess markets’ information aggregation efficiency:

Var(Pr)

Std(P*)-Ratio = _
(P)Ratio =\ | Var Py + B21X])
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INDIVIDUAL BEHAVIOR



Inconclusive Results

0.8 -

Avg (AQ;i(Ei[X]))

Avg({Q = QL)

Simple

Complex

Simple

Complex

DA



Reconciling Individual and Aggregate Behavior

v

What about complexity induced errors/noise in decision making?

\{

More severe bounds on rationality than in Biais et al. (2017)?

v

Random choices in the spirit of McKelvey and Palfrey (1995, 98)'s quantal
response model:

Y (B[U(Q41P)))
PAQIP) = 5 5 B0 QP

v

Implications:
1. P = E;[X]: distribution of Qs symmetric around @

2. P < E;[X]: Distribution of Qs asymmetric around @ and decreasing above
(below) @ for sellers (buyers)

3. P > E;[X]: Distribution of Qs asymmetric around @ and decreasing below
(above) Q for sellers (buyers)



Reconciling Individual and Aggregate Behavior (cont'd)

v

What about complexity induced errors/noise in decision making?

\4

More severe bounds on rationality than in Biais et al. (2017)?

v

Random choices in the spirit of McKelvey and Palfrey (1995, 98)'s quantal
response model:

e (BU(QIP)
PAQIP) = & G B0 (Qnl P

v

Hypotheses:
1. p; likely to depend on complexity: Ez vs. ﬁl

2. 4 (x) > gl(x) and ¥,/ (z) > yll(x)



Reconciling Individual and Aggregate Behavior: Sellers

QE[X). ElX| =175 QE(X). E[X]=50
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From Unconditional to Conditional Individual Behavior

Avg(1{Q = Q}il)
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What do we learn?

» Consistent with decision theory under ambiguity, subjects’ demand and
supply curves are less price sensitive for complex relative to simple risks.

> In the presence of complex risks, equilibrium prices are more sensitive
whereas risk allocations are less sensitive to subjects’ incorrect beliefs.

> Markets' effectiveness in aggregating beliefs about complex risks is
determined by the trade-off between reduced price sensitivity and
reinforced bounded rationality.



APPENDIX



Solution to Complexity Treatment

» Now, what is the probability of receiving a dividend equal to 1507

We start with the SDE of the GBM

v

dS; = 10%S: dt + 32%S; dW.

v

Applying 1t6 to f :=In(S:), we get

2
So = exp { (10% - 32;% > + 32% (W, — Wl)} .

» Hence,

2%\ 1
P(Ss > 1.05) = P<W2 - Wi < (111(105) 0%+ 2 ;% ) 32% >

~0

v

Given the distribution of W2 — W1 (known), we find P(S2 > 1.05) = 1.



Expected Utility Theory: Individual Behavior and Aggregate Risk

Agent i's expected utility from consumption is given by

E[Ui(Ci(w))] = Ui (ui +4/ 1;7701_) +(1-mUi (Mz‘ 4/ 17T7r‘7i> ,

where p1; = 7Ci(u) + (1 — 7)Cy(d) and 02 = n(1 — ) (Ci(u) — Ci(d))>.

No Aggregate Risk

If there is no aggregate risk, i.e., there exists a tradeable quantity @ at which
every seller and buyer is perfectly hedged, i.e., 0; =0 Vi € I, then:

For any family of concave utility functions (U;)ic1, seller i's supply and buyer
J's demand curve have the unique intersection point (E[X|,Q) V{i,j} C I.



Overview of Experiment

Session 1 (#16) Session 2 (#18) Session 3 (#16)
Round ke Type Pricing K Type Pricing K Type Pricing
1 1 C (P) MC 1 C (P) MC 1 C (P) MC
2 high C (P) random high C (P) random high C (P) random
3 low  C(P) MC low  C(P) MC low  C(P) MC
4 1/2 C MC 1/3 C random 1/3 C MC
5 1/3 C MC 1/2 C random 1/3 C random
6 1/2 C random 1/3 C MC 1/2 C MC
7 1/3 C random 1/2 C MC 1/2 C random
8 1/2 R MC 1/2 R random 1/2 R MC
9 1/3 R random 1/3 R MC 1/3 R random
10 ambig A MC ambig A random ambig A MC
Session 4 (#16) Session 5 (#16) Session 6 (#16)
Round K Type Pricing K Type Pricing K Type Pricing
1 1/2 R (P) MC 1/2 R (P) MC 1/2 R (P) MC
2 9/10 R (P) random 9/10 R (P) random 9/10 R (P) random
3 1/2 R MC 1/2 R random 1/2 R MC
4 1/3 R random 1/3 R MC 1/3 R random
5 high  C(P) MC high  C(P) MC high  C(P) MC
6 1/2 C MC 1/3 C random 1/3 C MC
7 1/3 C MC 1/2 C random 1/3 C random
8 1/2 C random 1/3 C MC 1/2 C MC
9 1/3 C random 1/2 C MC 1/2 C random
10 ambig A MC ambig A random ambig A MC




Price-taking Behavior under Complex Risks?
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Price-taking Behavior (cont'd): Wilcoxon Signed-Rank Test
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