

David C. Brown University of Arizona Shaun William Davies University of Colorado Boulder

Matthew Ringgenberg University of Utah

January 5, 2018

American Finance Association Annual Meeting

Demand Shocks and Absolute Price Efficiency

- Demand shocks hit assets and move prices
 - Informed traders (Kyle 1985)
 - Noise traders (Shleifer and Summers 1990)

Demand Shocks and Absolute Price Efficiency

- Demand shocks hit assets and move prices
 - Informed traders (Kyle 1985)
 - Noise traders (Shleifer and Summers 1990)
- Sources of demand shocks are often unknown for long periods of time, leading to predictable returns
 - Fire sales (Coval and Stafford 2007)
 - Mutual fund flows (Lou 2012)

Demand Shocks and Absolute Price Efficiency

- Demand shocks hit assets and move prices
 - Informed traders (Kyle 1985)
 - Noise traders (Shleifer and Summers 1990)
- Sources of demand shocks are often unknown for long periods of time, leading to predictable returns
 - Fire sales (Coval and Stafford 2007)
 - Mutual fund flows (Lou 2012)
- Thus, demand shocks often result in absolute price inefficiency

• When identical assets exist, arbitrageurs ensure the law of one price holds

- When identical assets exist, arbitrageurs ensure the law of one price holds
 - For example, ETFs and their underlying securities (NAV)

- When identical assets exist, arbitrageurs ensure the law of one price holds
 - For example, ETFs and their underlying securities (NAV)
- Authorized participants make arbitrage trades to maintain relative price efficiency (Petajisto 2017, Engle and Sarkar 2006)

- When identical assets exist, arbitrageurs ensure the law of one price holds
 - For example, ETFs and their underlying securities (NAV)
- Authorized participants make arbitrage trades to maintain relative price efficiency (Petajisto 2017, Engle and Sarkar 2006)
- Relative price efficiency does not imply absolute price efficiency

Relative demand shocks lead to arbitrage activity

- Relative demand shocks lead to arbitrage activity
- Following arbitrage activity, prices should return to fundamental values
 - Non-fundamental shocks → price reversions
 - Fundamental shocks → price continuation

- Relative demand shocks lead to arbitrage activity
- Following arbitrage activity, prices should return to fundamental values
 - ullet Non-fundamental shocks o price reversions
 - Fundamental shocks → price continuation
- Arbitrage activity is:
 - symptomatic of relative demand shocks

- Relative demand shocks lead to arbitrage activity
- Following arbitrage activity, prices should return to fundamental values
 - ullet Non-fundamental shocks o price reversions
 - Fundamental shocks → price continuation
- Arbitrage activity is:
 - symptomatic of relative demand shocks
 - ② observable

- Relative demand shocks lead to arbitrage activity
- Following arbitrage activity, prices should return to fundamental values
 - ullet Non-fundamental shocks o price reversions
 - Fundamental shocks → price continuation
- Arbitrage activity is:
 - symptomatic of relative demand shocks
 - Observable
- Absolute price efficiency should be quickly restored

- Relative demand shocks lead to arbitrage activity
- Following arbitrage activity, prices should return to fundamental values
 - ullet Non-fundamental shocks o price reversions
 - Fundamental shocks → price continuation
- Arbitrage activity is:
 - symptomatic of relative demand shocks
 - Observable
- Absolute price efficiency should be quickly restored
- Null hypothesis: Monthly arbitrage activity does not predict monthly returns

Overview

• Use ETF creation / redemption mechanism to test whether markets incorporate the information in arbitrage trades

Overview

- Use ETF creation / redemption mechanism to test whether markets incorporate the information in arbitrage trades
- ETFs provide a unique opportunity to identify demand shocks
 - Authorized Participants engage in arbitrage trades to correct mispricing from relative demand shocks
 - Daily share changes provide an observable measure of arbitrage activity

<u>Overview</u>

- Use ETF creation / redemption mechanism to test whether markets incorporate the information in arbitrage trades
- ETFs provide a unique opportunity to identify demand shocks
 - Authorized Participants engage in arbitrage trades to correct mispricing from relative demand shocks
 - Daily share changes provide an observable measure of arbitrage activity

Preview of Results

- Arbitrage activity predicts future asset returns
 - For both the underlying stocks and ETFs themselves

Overview

- Use ETF creation / redemption mechanism to test whether markets incorporate the information in arbitrage trades
- ETFs provide a unique opportunity to identify demand shocks
 - Authorized Participants engage in arbitrage trades to correct mispricing from relative demand shocks
 - Daily share changes provide an observable measure of arbitrage activity

Preview of Results

- Arbitrage activity predicts future asset returns
 - For both the underlying stocks and ETFs themselves
- Arbitrage activity is associated with return reversals

Overview

- Use ETF creation / redemption mechanism to test whether markets incorporate the information in arbitrage trades
- ETFs provide a unique opportunity to identify demand shocks
 - Authorized Participants engage in arbitrage trades to correct mispricing from relative demand shocks
 - Daily share changes provide an observable measure of arbitrage activity

Preview of Results

- Arbitrage activity predicts future asset returns
 - For both the underlying stocks and ETFs themselves
- Arbitrage activity is associated with return reversals
- ETF investors collectively mistime the market

ETF Sample

• Monthly data for 2,196 ETFs spanning 2007 to 2016

ETF Sample

• Monthly data for 2,196 ETFs spanning 2007 to 2016

ETF Sample

Monthly data for 2,196 ETFs spanning 2007 to 2016

ETFs "mature" once creation/redemption activity exceeds 50% of days

• Sort ETFs into deciles based on net creations/redemptions over past month

- Sort ETFs into deciles based on net creations/redemptions over past month
- Analyze differences in portfolio returns between high redemption (Decile 1) and high creation (Decile 10) ETFs

- Sort ETFs into deciles based on net creations/redemptions over past month
- Analyze differences in portfolio returns between high redemption (Decile 1) and high creation (Decile 10) ETFs
- Regress monthly ETF returns on factors (raw returns, 3-factor, 4-factor and 5-factor models)

- Sort ETFs into deciles based on net creations/redemptions over past month
- Analyze differences in portfolio returns between high redemption (Decile 1) and high creation (Decile 10) ETFs
- Regress monthly ETF returns on factors (raw returns, 3-factor, 4-factor and 5-factor models)
 - Consistent results using NAV returns

- Sort ETFs into deciles based on net creations/redemptions over past month
- Analyze differences in portfolio returns between high redemption (Decile 1) and high creation (Decile 10) ETFs
- Regress monthly ETF returns on factors (raw returns, 3-factor, 4-factor and 5-factor models)
 - Consistent results using NAV returns
 - Consistent results for stock-level returns using aggregated ETF creations and redemptions

ETF Arbitrage Negatively Predicts Returns

Equal-weighted \rightarrow 26.7% annualized raw return

Value-weighted \rightarrow 15.4% annualized raw return

Return reversion suggests relative demand shocks are non-fundamental, consistent with Ben-David, Franzoni, Moussawi (Forthcoming JF)

Similar results using factor-based alphas or NAVs

Predictability Stronger in High-Activity ETFs

Predictability Stronger in High-Activity ETFs

More arbitrage activity is associated with more return predictability

Results Concentrated in Levered and Broad-Market ETFs

Results Concentrated in Levered and Broad-Market ETFs

Levered ETFs show the strongest predictability

Results Concentrated in Levered and Broad-Market ETFs

Broad market ETFs, not niche ETFs, drive our results

- Our results suggest ETF investors collectively mistime market
 - ullet ETF creations o lower future ETF performance
 - ullet ETF redemptions o higher future ETF performance

- Our results suggest ETF investors collectively mistime market
 - ullet ETF creations o lower future ETF performance
 - ullet ETF redemptions o higher future ETF performance
 - Implication: investors consistently overpay to gain ETF exposure

- Our results suggest ETF investors collectively mistime market
 - ullet ETF creations o lower future ETF performance
 - ullet ETF redemptions o higher future ETF performance
 - Implication: investors consistently overpay to gain ETF exposure
- Individual cost depends on frequency of trade

- Our results suggest ETF investors collectively mistime market
 - ullet ETF creations o lower future ETF performance
 - ullet ETF redemptions o higher future ETF performance
 - Implication: investors consistently overpay to gain ETF exposure
- Individual cost depends on frequency of trade
- We consider a representative investor who re-balances according to creations/redemptions

• Standard time-series analysis assumes fixed quantities of shares

- Standard time-series analysis assumes fixed quantities of shares
- ETF time-series analysis must account for creations and redemptions

- Standard time-series analysis assumes fixed quantities of shares
- ETF time-series analysis must account for creations and redemptions
- We generate share-growth-adjusted (i.e. asset-weighted) returns to account for total capital invested in ETFs

- Standard time-series analysis assumes fixed quantities of shares
- ETF time-series analysis must account for creations and redemptions
- We generate share-growth-adjusted (i.e. asset-weighted) returns to account for total capital invested in ETFs
- Effective fees capture difference between actual and asset-weighted returns

- Standard time-series analysis assumes fixed quantities of shares
- ETF time-series analysis must account for creations and redemptions
- We generate share-growth-adjusted (i.e. asset-weighted) returns to account for total capital invested in ETFs
- Effective fees capture difference between actual and asset-weighted returns
- We randomize ETF flows using block-bootstrap Monte Carlo methods to:
 - Generate test statistics (p-values based on 1,000,000 simulations)
 - Control for growth of ETF industry over time

Effective Fees Are More Negative Than Positive

Effective Fees Are More Negative Than Positive

Equal-weighted \rightarrow 12% < 0.05 p-value threshold

Effective Fees Are More Negative Than Positive

Value-weighted \rightarrow 26% < 0.05 p-value threshold

- SPY (largest ETF, replicates S&P500):
 - Actual annual return (2007–2016): 6.89%

- SPY (largest ETF, replicates S&P500):
 - Actual annual return (2007–2016): 6.89%
 - Average simulated share-growth-adjusted annual return: 6.92%

- SPY (largest ETF, replicates S&P500):
 - Actual annual return (2007–2016): 6.89%
 - Average simulated share-growth-adjusted annual return: 6.92%
 - Realized share-growth-adjusted annual return: 5.44%

- SPY (largest ETF, replicates S&P500):
 - Actual annual return (2007-2016): 6.89%
 - Average simulated share-growth-adjusted annual return: 6.92%
 - Realized share-growth-adjusted annual return: 5.44%
 - Annualized Effective Fee: 1.48%

- SPY (largest ETF, replicates S&P500):
 - Actual annual return (2007–2016): 6.89%
 - Average simulated share-growth-adjusted annual return: 6.92%
 - Realized share-growth-adjusted annual return: 5.44%
 - Annualized Effective Fee: 1.48%
- Total ETF AUM (Aggregated)
 - Annualized effective fee (2007–2016): 0.33%

- SPY (largest ETF, replicates S&P500):
 - Actual annual return (2007-2016): 6.89%
 - Average simulated share-growth-adjusted annual return: 6.92%
 - Realized share-growth-adjusted annual return: 5.44%
 - Annualized Effective Fee: 1.48%
- Total ETF AUM (Aggregated)
 - Annualized effective fee (2007–2016): 0.33%
 - Annualized effective fee (2007–2011): 0.55%

- SPY (largest ETF, replicates S&P500):
 - Actual annual return (2007-2016): 6.89%
 - Average simulated share-growth-adjusted annual return: 6.92%
 - Realized share-growth-adjusted annual return: 5.44%
 - Annualized Effective Fee: 1.48%
- Total ETF AUM (Aggregated)
 - Annualized effective fee (2007–2016): 0.33%
 - Annualized effective fee (2007–2011): 0.55%
 - Annualized effective fee (2012–2016): 0.07%

- SPY (largest ETF, replicates S&P500):
 - Actual annual return (2007-2016): 6.89%
 - Average simulated share-growth-adjusted annual return: 6.92%
 - Realized share-growth-adjusted annual return: 5.44%
 - Annualized Effective Fee: 1.48%
- Total ETF AUM (Aggregated)
 - Annualized effective fee (2007–2016): 0.33%
 - Annualized effective fee (2007–2011): 0.55%
 - Annualized effective fee (2012–2016): 0.07%
 - 0.07% on \$2.3 trillion AUM \rightarrow **\$1.6 billion** of underperformance in 2016

Take Aways

ETF arbitrage activity negatively predicts future returns

Take Aways

- ETF arbitrage activity negatively predicts future returns
- ② Observable, non-fundamental demand shocks are not quickly offset by market participants

Take Aways

- ETF arbitrage activity negatively predicts future returns
- Observable, non-fundamental demand shocks are not quickly offset by market participants
- Information conveyed by arbitrage trades is not fully incorporated into prices