The Minimum Wage, Turnover, and the Shape of the Wage Distribution

Pierre Brochu David A. Green Thomas Lemieux James Townsend

January 6 2018

- ▶ In recent years, the minimum policy has played an increasingly important policy role in the low-wage labor market
- ▶ Although the U.S. federal minimum wage is "stalled" at \$7.25, most states now have a higher minimum.
- ▶ "Fight for 15" movement in the U.S. and Canada, with the minimum wage in the process of going up to \$15:
 - ► Alberta (Oct 2018), Ontario (Jan 2019)
 - ▶ California (2022), D.C. (2020), Seattle, San Francisco, NYC, etc.
- ▶ New minimum wage in Germany (2015)

- ▶ These policy innovations and better data have helped spur a new wave of research looking at various minimum wage impacts including
 - ► Employment (of course...) and labor turnover
 - ▶ Firm profitability and stock price
 - Other forms of adjustments to higher labor costs: price pass-through, capital and higher skill labor substitution, technological change, etc.
- ▶ Our focus here is on the wage distribution, and in particular spillover effects above the minimum that can have an important effect on wage inequality

- ▶ There is a sizeable literature examining the impact of minimum wage changes on the wage distribution, mostly for the U.S. and U.K.:
 - U.S.: Grossman(1983), Meyer and Wise(1983), DiNardo, Fortin and Lemieux(1996), Lee(1999), Neumark, Schweitzer and Wascher(2004), Autor, Manning and Smith(2016))
 - U.K.: Manning(2003), Machin, Rahman and Manning(2003), Dickens and Manning (2004a,b), Butcher, Dickens and Manning(2012), Stewart(2012)
- ▶ But no consensus yet on the magnitude of spillover effects
 - ▶ Using variation in the relative value of the federal minimum wage in low- and high-wage labor markets, Lee (1999) finds large spillover effects that help account for most of the growth in wage inequality in the bottom half of the distribution during the 1980s
 - ▶ Using more recent data and variation in state minimum wages, Autor, Manning and Smith (2016) find much smaller spillover effects, and argue this may just reflect measurement error in wages

- ▶ Most of these studies focus on how the minimum wage affects different wage quantiles, and rely on country-level variation in the minimum wage (U.K. and pre-1987 U.S.)
- ▶ We revisit this issue using a difference-in-differences (and triple-differences) strategy that exploits regional variation in the minimum wage
 - ▶ 10 provinces and 20 years of data (1997-2016) for Canada
 - ▶ 30 years of data (1987-2016) for the United States. Fraction of workers under a higher state minimum wage under 5 percent prior to 1987, but above 50 percent in 2016.
- ▶ We use an econometric approach that has the following features:
 - Model probability (of being in small wage bins) instead of wage quantiles
 - 2. Control for possible employment effects that could confound the impact of the minimum wage on the wage distribution
 - 3. Model the effect of the minimum wage as a proportional function of the probability of being affected by the minimum wage (e.g. how "binding" is the minimum wage)

We implement this approach using a proportional hazard model (PHM) as in Donald, Green, and Paarsch (2000)

▶ The hazard rate h(y|x) is closely connected to the density f(y|x):

$$h(y|x) = f(y|x)/(1 - F(y|x))$$
(1)

- ▶ Potential employment effects at or below the minimum wage are controlled for by conditioning on being at or above y (1 F(y|x))
- ▶ Proportionality comes from the usual PHM specification:

$$h(y|x) = exp(x\alpha)h_0(y) \tag{2}$$

Provides a convenient way of modelling the underlying distribution in a flexible way

- ▶ Different effect of x (including the minimum wage) in different segments of the wage distribution
- ► Correct for measurement error by modelling the probability of heaping (concentration at integer values of nominal wages)
- ▶ Use higher segments of the wage distribution as control (and triple-differences)

Triple-differences strategy

- ▶ We also use the Canadian data to connect the effect of the minimum wage on turnover and the wage distribution
- ▶ Labour Force Survey (LFS) is a 6-month panel that asks about job tenure (can identify "joiners")
- ▶ This allows us to look at questions such as:
 - Do spillover effects represent wage growth among job stayers, or the hiring of new (more skilled) workers at wages slightly above the minimum?
 - Does the selective exit of workers just below an upcoming new minimum wage contirbutes in shaping changes in the wage distribution?
- ▶ Results still tentative at this point

Main findings

- ▶ Evidence of spillover effects up to \$2-\$2.5 above the minimum wage in both Canada and the United States
 - ▶ On average, less than 5 percent of men are at or below the minimum wage, but spillover effects reach out to the 10^{th} - 15^{th} percentile of the wage distribution
 - On average, slightly more than 5 percent of women are at or below the minimum wage, and spillover effects reach out to about the 20th percentile of the wage distribution.
- ▶ Introducing dummy variables for integer wage values greatly improves the fit of the model
- ▶ The model captures well the proportional effect of the minimum wage: estimates for men and women similar despite the large minimum wage "byte" for women.
- ▶ Standard difference-in-differences model appears to be mispecified, but estimates with province/state-specific quadratic trends are similar to those with a full set of province/state-year dummies.

Roadmap

- ▶ Quick overview of the predicted effect of the minimum wage on the shape of the wage distribution for different models (competitive, monoposony, search)
- ▶ Econometric approach
- Wage data and minimum wages in Canada and the United States.
- ▶ Empirical results

Economic Models: Simple Competitive

Economic Models: Simple Competitive

Economic Models: Simple Competitive

- ▶ Truncation of underlying skill distribution
- Re-scaling of above-minimum density gives "illusion" of spillover effects
- ▶ Hazard rates above minimum would show no effect

Economic Models: Competitive with Substitution (Teulings)

Economic Models: Competitive with Substitution (Teulings)

- ▶ Truncation of underlying skill distribution
- ► Spillovers:
 - 1. Truncation Spillover: Re-scaling related to truncation
 - 2. Shape Spillover: Change in shape due to skill price changes
- ▶ Hazard rates increase relative to base until about \$15 then no effect

Economic Models: Frictional, Butcher et al(2012)

Economic Models: Frictional, Butcher et al(2012)

- ▶ Heterogeneous firms, homogeneous workers.
- ▶ Firms face own inelastic labour supply and pay a wage below productivity
- ► Firms with productivity below m stop hiring. Those with productivity above m but below a* (where would pay m) all pay m ⇒ spike
- ▶ Firms paying above m, pay the same wage but employ more workers in proportion to numbers not taken up by m firms
- ▶ As in simple competitive model, only truncation spillover but here it corresponds to people moving up. i.e., no effect on hazard above minimum wage but also no effect on employment rate.
- ▶ With worker heterogeneity, would see a positive effect on hazard just above m, declining as move further up, combined with no employment effect.

Estimator

Donald, Green and Paarsch(2000), Green and Paarsch(1996)

► Write wage density as:

$$f(y|x) = h(y|x)S(y|x)$$
(3)

- We directly estimate h(y|x), the conditional hazard
- ▶ Divide wage range into bins indexed by p

$$\int_{u_{p-1}}^{y_p} exp(x\alpha_p)h_0(u)du = exp(x\alpha_p)\gamma_p \tag{4}$$

- ▶ where:
 - $\blacktriangleright h_0(u)$ is baseline hazard
 - ▶ proportional hazard model with effect of x vector constant within a segment

Estimator

- ▶ We use 164 wage bins (10 cents wide from \$3 up to \$20)
- ▶ Top-code data at \$20 (right censoring)
- ▶ Restrict α_p 's to be the same in 5"covariate segments"
- ▶ Allows for:
 - 1. Considerable flexibility in covariate effects
 - 2. Proportional effect of the minimum wage
 - 3. Integrates back to consistent estimates of CDF and density
 - 4. Control for changes in the shape of the distribution due to truncation at the low-end of the distribution (possible minimum wage employment effects)

Estimator: Minimum Wage Effects

- ▶ Create a dummy variable that equals 1 in wage bin that contains minimum wage and 0 otherwise
- ▶ Minimum wage variables is equivalent of a time varying covariate (e.g. UI benefits exhaustion)
- ▶ Also create a set of related dummies corresponding to: 50 cents or more below the minimum wage (m); 30 to 50 cents below m; 10 to 30 cents below m; 10 to 30 cents above; 30 cents to 50 cents above m; 50 cents to 1\$ above m; additional 50 cents segments up to \$2 or \$5 above m depending on specifications
- Now, $h = exp(D_{mp}\beta)exp(x\alpha_{s(p)})\gamma_p$
- where D_{mp} is vector of minimum wage related dummy variables in wage bin p

Estimator: Identification

- ➤ Triple-differences estimator: Include a complete set of province/state-year effects
- ▶ Assume minimum wage does not affect hazard at a point "high enough" in the distribution (\$2 in graphical example, but testable in practice)
- ▶ Get identification, in part, by sliding down the distribution: with m_0 = 8 and m_1 =9, difference in hazard between \$10.5 and \$11 identifies the "\$1.5 to \$2" effect. Then use that to get baseline between \$10 and \$10.5, ...
- ▶ Stewart(2012): some concerns about using higher percentiles as controls. We allow for flexible differences across percentiles by year and province/state.

Triple-differences strategy

Minimum Wages

- ▶ Span period 1997-2016
- ▶ 157 nominal changes in this period
 - Many of these changes are small (median of 3.8 percent, mean of 4.3 percent)
 - ▶ 47 changes are 5 percent or more, the largest is 18 percent
- ► Focus on adult minimum wage
- ▶ Minimum wage in force on 15th of each month
- ▶ Deflated using CPI (2002 = 100)

Canadian Wage Data

Labour Force Survey, monthly

- ▶ Approximately 50,000 households per month
- ► Consistent job tenure question since 1976:
 - "When did ... start working for his current employer?"
- ▶ Focus on wage and salary workers aged 15 to 59
- Pool data at the quarterly level from January 1997 to December 2016
- Main sample: hourly wage workers who do not receive tips or commissions

Canadian Wage Data

Labour Force Survey

- ▶ Respondents are in sample for 6 consecutive months
- ▶ Wages are only "fresh" in entry month to sample or after a job change, but month-in-sample is not identified in the public use files
- ▶ Focus on the effect of the minimum wage 6 months after a change to deal with this problem (add interactions between minimum wage dummies and the minimum wage having increased less than 6 months ago)
- ▶ Month-in-sample available in the master files (not used in this draft), so we can use the incoming sample each month.

Canadian Data: covariates

- Year and province dummies, quarter dummies, province-specific quadratic trends, and full set of province-year dummies in some models (triple-differences)
- ▶ Education dummies: high school drop outs; high school graduates; post-secondary diploma or certificate; university degree.
- ▶ Age group dummies: 15-19; 20-24; 25-34; 35-54; and 55-59.
- ▶ Dummy for integer dollar value in the wage bin (special dummies at \$10 in some specifications).
- ▶ Run everything separately by gender.
- ▶ Get number with wages in each cell defined by: wage bins, province, quarter, age group, and education group. i.e., not estimating the models at the individual level
- Estimate as a GLM on the grouped data. Maximum likelihood approach because many cells have zeros.

U.S. Data

- ▶ MORG CPS from 1987 to 2016
- ▶ Unallocated wages only
- ▶ Minimum wage is either the federal minimum or the state minimum wage (when higher)
- ▶ Specifications are otherwise similar to those for Canada.
- ▶ Some of the models are estimated at the state-quarter level (instead of state-quarter-age-education) to reduce the computational burden, but this has very little impact on the results.

Minimum wages in the United States

Table 1a: Estimated minimum wage effects for women, LFS public use files 1997-2016

			<u> </u>	<u> </u>				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Minimum wage effects:								
More than 50¢ below	-2.123 (0.413)	-1.702 (0.283)	-1.711 (0.317)	-1.590 (0.405)	-1.713 (0.373)	-1.717 (0.345)	-1.601 (0.278)	-1.717 (0.376)
30¢ to 50¢ below	-1.133	-0.824	-0.832	-0.590	-0.918	-0.971	-0.864	-0.922
	(0.341)	(0.233)	(0.256)	(0.371)	(0.465)	(0.427)	(0.372)	(0.467)
10¢ to 30¢ below	-0.442	-0.164	-0.173	-0.192	-0.761	-0.823	-0.719	-0.765
	(0.235)	(0.118)	(0.137)	(0.164)	(0.171)	(0.126)	(0.069)	(0.174)
At minimum wage	1.697	1.966	1.959	1.837	1.849	1.816	1.917	1.846
	(0.238)	(0.129)	(0.144)	(0.304)	(0.350)	(0.287)	(0.215)	(0.352)
10¢ to 30¢ above	0.539	0.799	0.793	0.790	0.776	0.689	0.787	0.773
	(0.260)	(0.147)	(0.167)	(0.200)	(0.221)	(0.181)	(0.124)	(0.225)
30¢ to 50¢ above	0.200	0.429	0.425	0.599	0.616	0.550	0.643	0.613
	(0.165)	(0.106)	(0.103)	(0.126)	(0.133)	(0.149)	(0.144)	(0.136)
50¢ to \$1 above	0.125	0.316	0.312	0.393	0.364	0.294	0.379	0.361
	(0.117)	(0.074)	(0.073)	(0.075)	(0.079)	(0.078)	(0.089)	(0.082)
\$1 to \$1.50 above	0.107	0.256	0.255	0.215	0.195	0.138	0.213	0.193
	(0.078)	(0.025)	(0.026)	(0.026)	(0.031)	(0.073)	(0.114)	(0.033)
\$1.50 to \$2.00 above	-0.055	0.047	0.049	0.203	0.233	0.196	0.257	0.233
	(0.113)	(0.130)	(0.126)	(0.057)	(0.076)	(0.096)	(0.119)	(0.076)
\$2.00 to \$2.50 above							0.064	
							(0.062)	
\$2.50 to \$3.00 above							-0.008	
							(0.035)	
Integer wage in bin				1.816	1.818	1.824	1.824	1.818
				(0.029)	(0.029)	(0.029)	(0.029)	(0.029)
Log pseudolikelihood (/1000)	-370900	-368615	-368398	-249299	-247923	-246243	-246228	-247867
Province trends	no	yes						
Segments w/ prov-year dummies			1	1	1	1	1	1&2
Interaction w/ first 6 months	no	no	no	no	yes	yes	yes	yes
Prov-wage & year-wage effects	no	no	no	no	no	yes	yes	no

Table 1b: Estimated minimum wage effects for men, LFS public use files 1997-2016

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Minimum wage effects:								
More than 50¢ below	-1.755 (0.440)	-1.426 (0.295)	-1.473 (0.300)	-1.323 (0.417)	-1.369 (0.389)	-1.295 (0.361)	-1.335 (0.284)	-1.378 (0.392)
30¢ to 50¢ below	-0.753	-0.523	-0.562	-0.265	-0.360	-0.317	-0.356	-0.367
	(0.380)	(0.270)	(0.272)	(0.427)	(0.519)	(0.494)	(0.415)	(0.522)
10¢ to 30¢ below	-0.145	0.060	0.023	-0.021	-0.481	-0.452	-0.491	-0.488
	(0.245)	(0.121)	(0.130)	(0.155)	(0.159)	(0.127)	(0.078)	(0.161)
At minimum wage	1.845	2.046	2.012	1.898	1.945	1.996	1.957	1.938
	(0.232)	(0.120)	(0.128)	(0.308)	(0.368)	(0.322)	(0.217)	(0.370)
10¢ to 30¢ above	0.557	0.753	0.722	0.718	0.713	0.710	0.672	0.706
	(0.212)	(0.096)	(0.102)	(0.145)	(0.154)	(0.138)	(0.133)	(0.157)
30¢ to 50¢ above	0.247	0.424	0.397	0.614	0.657	0.674	0.637	0.651
	(0.157)	(0.103)	(0.110)	(0.137)	(0.142)	(0.147)	(0.153)	(0.144)
50¢ to \$1 above	0.155	0.305	0.283	0.384	0.389	0.398	0.363	0.384
	(0.112)	(0.080)	(0.085)	(0.078)	(0.079)	(0.076)	(0.103)	(0.081)
\$1 to \$1.50 above	0.122	0.243	0.228	0.178	0.182	0.189	0.156	0.178
	(0.086)	(0.035)	(0.039)	(0.040)	(0.045)	(0.075)	(0.133)	(0.046)
\$1.50 to \$2.00 above	-0.101	-0.014	-0.021	0.172	0.229	0.240	0.209	0.227
	(0.127)	(0.144)	(0.145)	(0.067)	(0.084)	(0.101)	(0.138)	(0.084)
\$2.00 to \$2.50 above							-0.025	
							(0.080)	
\$2.50 to \$3.00 above							-0.066	
							(0.043)	
Integer wage in bin				2.081	2.084	2.089	2.088	2.084
				(0.041)	(0.041)	(0.041)	(0.041)	(0.041)
Log pseudolikelihood (/1000)	-375599	-373603	-373360	-236036	-235391	-234173	-234161	-235317
Province trends	no	yes						
Segments w/ prov-year dummies			1	1	1	1	1	1&2
Interaction w/ first 6 months	no	no	no	no	yes	yes	yes	yes
Prov-wage & year-wage effects	no	no	no	no	no	yes	yes	no

Table 2: Estimates effects of the minimum wage by job tenure, LFS public use files 1997-2016

		men		en
	Tenure<=1 yr Tenure>1 yr		Tenure<=1 yr	Tenure>1 yr
	(1)	(2)	(3)	(4)
Minimum wage effects:				
More than 50¢ below	-1.835 (0.416)	-1.565 (0.304)	-1.464 (0.442)	-1.101 (0.284)
30¢ to 50¢ below	-0.871	-1.012	-0.213	-0.404
	(0.533)	(0.343)	(0.601)	(0.381)
10¢ to 30¢ below	-0.804	-0.846	-0.473	-0.465
	(0.174)	(0.118)	(0.133)	(0.128)
At minimum wage	2.125	1.517	2.203	1.744
	(0.326)	(0.291)	(0.360)	(0.315)
10¢ to 30¢ above	0.862	0.531	0.778	0.610
	(0.226)	(0.179)	(0.159)	(0.127)
30¢ to 50¢ above	0.710	0.445	0.763	0.598
	(0.215)	(0.116)	(0.169)	(0.137)
50¢ to \$1 above	0.404	0.224	0.453	0.353
	(0.122)	(0.059)	(0.080)	(0.077)
\$1 to \$1.50 above	0.214	0.094	0.208	0.172
	(0.113)	(0.049)	(0.083)	(0.066)
\$1.50 to \$2.00 above	0.264	0.164	0.284	0.216
	(0.122)	(0.078)	(0.102)	(0.098)

Table 3: Estimates effects of the minimum wage in the United States

	Women				Men				
	1987-2002 2003-201		1987-2002		1987-2002 2003-2016		1987-2002		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Minimum wage effects:									
More than 50¢ below	-0.880 (0.170)	-0.913 (0.088)	-0.800 (0.075)	-1.021 (0.046)	-0.823 (0.131)	-0.626 (0.060)	-0.678 (0.048)	-0.917 (0.054)	
30¢ to 50¢ below	-0.976	-0.665	-0.708	-0.939	-0.920	-0.334	-0.541	-0.787	
	(0.197)	(0.114)	(0.122)	(0.091)	(0.193)	(0.097)	(0.100)	(0.078)	
10¢ to 30¢ below	-0.822	-0.526	-0.551	-0.769	-0.756	-0.369	-0.480	-0.704	
	(0.127)	(0.102)	(0.082)	(0.068)	(0.136)	(0.070)	(0.060)	(0.055)	
At minimum wage	2.113	1.983	2.164	1.995	2.232	2.146	2.278	2.098	
	(0.194)	(0.145)	(0.144)	(0.112)	(0.200)	(0.154)	(0.143)	(0.114)	
10¢ to 30¢ above	0.679	0.770	0.814	0.685	0.690	0.854	0.833	0.692	
	(0.095)	(0.071)	(0.057)	(0.039)	(0.075)	(0.057)	(0.034)	(0.040)	
30¢ to 50¢ above	0.478	0.353	0.501	0.406	0.546	0.412	0.539	0.431	
	(0.097)	(0.112)	(0.088)	(0.065)	(0.106)	(0.108)	(0.084)	(0.062)	
50¢ to \$1 above	0.177	0.290	0.275	0.207	0.138	0.313	0.254	0.175	
	(0.042)	(0.067)	(0.051)	(0.035)	(0.048)	(0.063)	(0.047)	(0.034)	
\$1 to \$1.50 above	0.212	0.026	0.118	0.096	0.173	0.043	0.094	0.059	
	(0.019)	(0.055)	(0.036)	(0.025)	(0.020)	(0.067)	(0.042)	(0.029)	
\$1.50 to \$2.00 above	0.113	0.044	0.068	0.052	0.102	0.024	0.045	0.020	
	(0.017)	(0.031)	(0.020)	(0.015)	(0.024)	(0.044)	(0.029)	(0.021)	
State-year dummies (seg. 1)	yes	yes	yes	no	yes	yes	yes	no	
Covariates	no	no	no	yes	no	no	no	yes	

Conclusions

- ▶ Evidence of spillover effects up to \$2-\$2.5 above the minimum wage in both Canada and the United States
 - On average, less than 5 percent of men are at or below the minimum wage, but spillover effects reach out to the 10th-15th percentile of the wage distribution
 - On average, slightly more than 5 percent of women are at or below the minimum wage, and spillover effects reach out to about the 20th percentile of the wage distribution.
- ▶ Introducing dummy variables for integer wage values greatly improves the fit of the model
- ▶ The model captures well the proportional effect of the minimum wage: estimates for men and women similar despite the large minimum wage "byte" for women.
- ▶ Standard difference-in-differences model appears to be mispecified, but estimates with province/state-specific quadratic trends are similar to those with a full set of province/state-year dummies.

