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Abstract

Camerer et al. [2004] propose a Cognitive Hierarchy model that characterizes an indi-

vidual as believing her opponents engage in heterogeneous steps of strategic thinking. We

are the first paper, to our knowledge, to directly test this assumption. In one treatment,

subjects play games. Their behavior is then predicted by different participants in a sepa-

rate treatment. A subject often believes in a handful of non-strategic individuals who play

a naive strategy. She also, however, expects there are players who play the best-response

to this strategy as well as types who best respond to these strategic individuals and so on.

We thus find that Cognitive Hierarchy’s beliefs assumptions clearly pass our test.

1 Introduction

Camerer et al. [2004] develop a Cognitive Hierarchy (CH) model of behavior in one-shot games

and use it to characterize non-equilibrium play typically observed in lab experiments.1 CH has

since also been used to estimate behavior in the field.2 Though used to model aggregate data,

CH makes individual-level assumptions. Specifically, it describes a player as a Step k thinker

who best-responds to a belief that others are Step 0 through Step k − 1 thinkers, where Step

0 thinkers play naive strategies.3 To our knowledge, direct evidence that an individual holds

∗We are especially grateful to Alex Brown and Catherine Eckel for their impacts on the design of the
experiment. We thank Isabelle Brocas, Juan Carillo, Gary Charness, Ryan Oprea, Steven Puller, Tim Salmon,
Emmanuel Vespa, Sevgi Yuksel and Georg Weizsäcker for discussions and helpful comments.

1See Camerer [2003] for a behavioral game theory overview.
2For example, Brown et al. [2013] use CH to more accurately predict moviegoer behavior in comparison to

equilibrium. Hortaçu et al. [2017] estimate firms’ levels of strategic sophistication using the CH model and find
that larger firms engage in more sophisticated reasoning compared to smaller firms.

3Stahl and Wilson [1995] also describe an individual as having diverse beliefs over opponents.
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such beliefs is nonexistent in the sense that we are unaware of a study that tests whether an

individual anticipates thinkers of several steps when asked to forecast the play of a population.

Such a test is important, however, if CH is intended to be a descriptive model. In this paper,

we conduct such a test using a lab experiment.

In our Actions treatment, subjects play a series of two-person Number Selection (NS) games

with no feedback. In NS games, players simultaneously select integers, say, between 1 and 14,

inclusive. If a player selects an integer, i, she earns i points.4 Furthermore, a player earns

100 bonus points her number is exactly 3 (in some games, 4) less than her opponent’s number

and earns 35 points if her number equals her opponent’s number.5 We expect a non-strategic

Step 0 thinker to play 14 in this example, since this is the best number to choose if one does

not consider how his payoff is affected by his opponent’s play.6 A Step 1 player, then, who

assumes her opponents are Step 0 types, is incentivized to choose 11. Step 2 players anticipate

Step 1 and Step 0 opponents; thus, depending on the particular distribution of beliefs held

by a Step 2 player, she may have a best-response of 11 or 8. Continuing this procedure, it

can be shown that the predictions from Step k reasoning are confined to S = {14, 11, 8, 5, 2}.
Furthermore, a Step k thinker who anticipates others to play some s ∈ S should also expect

strategies {s′|s′ > s and s′ ∈ S} to be played. This provides us with a clean way to test for

Step k beliefs in our next treatment.

In our Beliefs treatment, each participant states her beliefs regarding the play of a set of

20 Actions subjects in each of the NS games. To state her beliefs for a particular NS game,

a Beliefs participant constructs a 20-box histogram over a horizontal axis that displays each

of the game’s pure strategies. For constructing a given histogram, h, a subject earns p points,

where p is the number of boxes that would be overlapping were we to place h on top of the

histogram of actual behavior by the 20 Actions subjects. This renders our mechanism incentive

compatible: if a Beliefs subject thinks s subjects chose the number n, she is incentivized to

place s boxes above n when constructing her histogram. We also record the order in which

Beliefs participants arrange their boxes in their histograms.7 Despite having no effect on

4In both treatments, earned points are used to pay subjects with binary lotteries (see Roth and Malouf
[1979]), incentivizing a subject to maximize her expected number of points, irrespective of her risk preferences.

5Our NS games are inspired by others from Arad and Rubinstein [2012], Georganas et al. [2015] and Fra-
giadakis et al. [2017].

6An alternative rule-of-thumb for a Step 0 thinker is to select an integer uniformly at random. Either of
these Step 0 specifications give rise to a best-response of guessing 11 in this example, thus, both rules lead Step
1 thinkers to the same number.

7The order in which boxes are arranged does not affect payoffs and the instructions make no mention of
the order in which boxes are arranged. We view this minimally invasive “belief-tracking” procedure as relating
to studies using “eye-tracking” to record where subjects direct their attention (see Wang et al. [2010] as well
as studies where subjects must actively “open” boxes to observe payoffs from certain strategy profiles (see
Costa-Gomes et al. [2001]).
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payoffs, we expect a Beliefs participant to place boxes on lower thinking steps earlier.

We find strong support for Step k beliefs: for 48% of our Beliefs participants, conditional

on anticipating k steps of reasoning, k′ steps of reasoning are also expected for all k′ ≤ k. Illus-

trating this using our previous NS game example, if a Beliefs participant expects sufficiently

many Actions subjects select the number 5, she also believes sufficiently many select 14, 11 and

8. When we consider how a Beliefs participant anticipates the relative frequencies of various

thinking steps (i.e. how many boxes are placed on 14, 11, etc.), we find that histograms are

much better described by normalized Poisson versus Uniform distributions. This resonates

with the Poisson structure that Camerer et al. [2004] impose in their estimations. In terms of

our “belief-tracking” data, we find that beliefs indeed follow stepwise reasoning: when a box

is placed on a certain step of thinking, the subsequent box is likely to be placed on that same

step or one step higher.

The remainder of the paper is organized as follows: Section 2 presents the experiment, Sec-

tion 3 discusses the results, Section 4 mentions some related literature and Section 5 concludes.

2 The Experiment

2.1 Number Selection (NS) Games

We carefully design Number Selection (NS) games for Actions participants to play. Before

describing NS games in detail, we discuss a design challenge to overcome if we seek to cleanly

identify Step k thinking in the Beliefs treatment. Suppose Actions subjects were to play

games where idiosyncratic Step k reasoning would generate a variety of best responses. If

a Beliefs subject thinks Actions participants are idiosyncratic Step k thinkers, she will ex-

pect Actions data to be thinly scattered. This would make it difficult for us to distinguish

such a highly strategic Beliefs participant from another who randomly constructs a histogram

non-strategically. Using a game with a dominant strategy would solve this issue but would

introduce the “opposite” problem since it would merge all Step k ≥ 1 actions, not allowing us

to distinguish a Beliefs participant who only anticipates Step 0 and Step 1 Actions participants

from another who believes Actions subjects engage in additional thinking steps.

We thus design NS games so that Step k predictions are neither too diluted nor too con-

centrated. They satisfy the following property: a Step k thinker–for any risk attitudes and any

beliefs of how Step 0 through k− 1 types are distributed–should only select actions consistent

with the Level k model from Stahl and Wilson [1994] and Nagel [1995].8 (See Observation 4.)

8This assumes a Level 0 and Step 0 action of choosing the upper bound in our NS games, which we justify
in the ensuing paragraphs.
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The Level k action in a game is calculated by taking the best-response to the Level k − 1

action; Level 0 players are nonstrategic like Step 0 thinkers. This ensures that if a Beliefs

subject thinks that Actions participants are all highly heterogeneous Step k reasoners, she

should only expect Actions subjects to select Level k actions. The Level 0 through 4 actions

in the particular NS games we use are all distinct.9

In a generic NS game, g, a player i and her opponent simultaneously select integers, ni and

n−i, respectively from a common range Rg = {1, 2, . . . , UBg}, where UBg is the game’s upper

bound. Player i earns ni points automatically for selecting ni. If ni is exactly Dg less than

n−i, where Dg is g’s commonly known undercutting distance, then i earns Bg > UBg × Dg

additional points.10 If ni = n−i, then player i earns bg ∈ (UBg − 1, Bg − Dg) additional

points.11 This payoff function is shown in Equation 1.

πgi (ni, n−i) = ni +

Bg if ni = n−i −Dg

bg if ni = n−i
(1)

The Level k model provides clear behavioral predictions in NS games. We assign UBg as

the Level 0 (and Step 0) action,12 giving rise to the Level k actions stated in Observation 1.

Observation 1. In a Number Selection game, g, the Level k strategy is max{UBg − k ×
Dg,mod(UBg, Dg)}, where mod(x, y) is the remainder from x÷ y.

Proof. The Observation states that when undercutting a Level k−1 player is not possible, the

Level k action coincides with the Level k − 1 strategy. Thus, assume that an opponent selects

n−i ≤ Dg (so that undercutting is not possible). Then, bg > UBg − 1 implies πgi (n−i, n−i) =

n−i + bg > n−i + UBg − 1 ≥ UBg = πgi (UBg, n−i). The Observation also states that when

undercutting a Level k− 1 player is possible, the Level k best response is to undercut. Assume

an opponent selects n−i > Dg (so that undercutting is possible). Given that bg < Bg −Dg, we

have πgi (n−i, n−i) = n−i + bg < n−i +Bg −Dg = πgi (n−i −Dg, n−i).

While the Level k predictions in Observation 1 assume an upper bound Level 0, there may

be alternative strategies that naive subjects would implement. For instance, a player with

9While we could have expanded our games such that the Level 0 through k actions in each NS game are all
distinct for some k > 4, we focus on Levels 0 through 4 because prior evidence shows that play at higher levels
drops off rather quickly. For example, Crawford and Costa-Gomes [2006] and Fragiadakis et al. [2016] classify
substantially more Level 1 and Level 2 players in comparison to Level 3.

10The restriction that Bg > UBg ×Dg is needed for Observation 2.
11The restrictions that bg < Bg −Dg and bg > UBg − 1 are needed for Observations 1 and 3.
12Arad and Rubinstein [2012], who have a similar game, also designate the upper bound in their games as

Level 0 since it is the action that maximizes a player’s payoff if he does not form beliefs about his opponent and
acknowledges only that his payoff function grants him n points for selecting n.
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absolutely no understanding of the NS games may play uniformly at random. This Level 0

specification is actually quite common. We design our experiment such that this alternative

Level 0 specification does not alter the Observation 1 predictions for k ≥ 1, minimizing concerns

about the explanatory power of Level k being driven by idiosyncratic Level 0 specifications

(see Hargreaves Heap et al. [2014]).

Observation 2. For each Number Selection game, g, selecting UBg−Dg is the unique action

that maximizes one’s expected points against an opponent who plays uniformly at random.

Proof. Against a uniform random opponent, player i’s points in game g are:

Πg
i (ni) ≡

1

UBg

UBg∑
j=1

πgi (ni, j) = ni +
bg
UBg

+

Bg/UBg if ni ≤ UBg −Dg

0 if ni > UBg −Dg

(2)

From Equation 2, we see that UBg and UBg −Dg are the only local maxima. Given that

Bg > UBg ×Dg, we have Bg/UBg > Dg, which implies that

(UBg −Dg + bg/UBg) +Bg/UBg > (UBg −Dg + bg/UBg) +Dg.

Therefore, Πg
i (UBg − Dg) > Πg

i (UBg), rendering the Level 1 prediction (and hence all Level

k ≥ 1 actions) from Observation 1 unchanged.

In Observation 1, we reason that if a player cannot undercut his opponent, her best response

is to match the other player. This proves Observation 3.

Observation 3. A Number Selection game with undercutting distance Dg has Dg pure strategy

Nash equilibria: {(1, 1), (2, 2), . . . , (Dg, Dg)}.

Before moving to the Results section, we formally define the Step k model used in this

paper, which is similar to those from Stahl and Wilson [1995] and Camerer et al. [2004]. Step

0 and Step 1 players are identical to Level 0 and Level 1 types, respectively. For k > 1, a Step

k thinker anticipates Step 0 through Step 1 players (with any proportions). Observation 4

outlines the behavioral predictions of Step k thinkers in NS games.

Observation 4. Suppose a player i (in a Number Selection game) believes the chance of facing

a Level k action is αk ∈ [0, 1] for all k ≥ 0. If
∑∞

h=0 αh = 1, her best response (given her

beliefs) is some Level k action.

Proof. Suppose player i selects some non-Level k action, ni, in an NS game, g. Her payoff

will be ni since there will be no way of receiving the bg or Bg bonuses. As a result, deviating

to UBg > ni is profitable.
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2.2 Box Arrangement (BA) Tasks

We create Box Arrangement (BA) tasks to elicit beliefs. The objective in a BA task tg that

corresponds to a game g (with finite strategy set S) is to distribute Ng boxes across a horizontal

axis made up of the pure strategies in g. Let h denote the histogram generated, where hs is the

number of boxes that placed on pure strategy s. Let l denote the histogram of actual behavior

by some population of Ng individuals in game g, where ls is the number of times s was chosen.

The points earned in tg are equal to the number of boxes that are overlapping when h and l

are superimposed. Equation 3 gives the payoffs function mathematically.

π(h, l) =

|S|∑
j=1

min{hj , lj} (3)

Thus, if h perfectly coincides with l, Ng points are earned. If h does not coincide with l

whatsoever, 0 points are earned. Suppose a risk neutral individual i has a belief system α for a

NS game, g.13 In other words, she believes the chance a randomly chosen opponent will select

s ∈ Rg is αs ∈ [0, 1]. We thus assume that
∑UBg

h=1 αh = 1. The payoffs in Equation 3 incentivize

boxes to be arranged in a manner that approximates the beliefs system α. We illustrate this

in Figure 1 with an example where Rg = {1, 2} and Ng = 2. An individual can create h, h′

or h′′. Let f ∈ [0, 1] denote the fraction of the population that is believed will select 2. It

can be shown that the expected payoffs of building histograms h, h′ and h′′ (as functions of

f) are π, π′ and π′′, respectively. Furthermore, it can be shown that (i) for f ≤ 1 −
√

2/2,

π(f) ≥ max{π′(f), π′′(f)}. Thus, for sufficiently small f , one is best off by placing both boxes

on 1. Symmetrically, for sufficiently large f , one’s payoff-maximizing histogram involves both

boxes placed on 2; in other words, (ii) π′′(f) ≥ max{π(f), π′(f)} for f ≥
√

2/2. If f takes on

intermediate values, it is optimal to place a box on 1 and a box on 2; it can be shown that

(iii) for f ∈ [1−
√

2/2,
√

2/2], we have π′(f) ≥ max{π(f), π′′(f)}.

h h′ h′′

a AAAAA AAAAA a
a AAAAA a a AAAAA a
1 2 1 2 1 2

π(f) = 2− 2f π′(f) = 1 + 2f − 2f 2 π′′(f) = 2f

Figure 1.—Histograms and Payoff Functions for Rg = {1, 2} and Ng = 2.

13We control for risk attitudes in our experiment, as described in Section 2.3.
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2.3 Treatments and Procedures

Experimental subjects are undergraduates and graduate students, recruited using ORSEE

(Greiner et al. [2004]). Participants interact via a network of computers linked by z-Tree (Fis-

chbacher [2007]) at the Economics Research Laboratory in TAMU’s Department of Economics.

Two 20-subject sessions, each lasting approximately 1 hour, make up the Actions treatment.

The 81 participants in the Beliefs treatment are spread across 5 sessions of 14, 13, 18, 18

and 18 subjects, each taking roughly 2 hours. Average earnings are $28.39 and $54.07 in the

Actions and Beliefs treatments, respectively, including a $5.00 show-up payment.

Subjects in the Actions treatment play the 11 Number Selection games shown in Table 1,

where each game has Bg = 100 and bg = 35. The games we select are determined using a list

of design criteria. First, each game’s lower bound is 1 and upper bounds is no more than 32

due to spatial constraints on subjects’ computer screens. Second, we impose that Dg ∈ {3, 4}
so that the Level k model only captures a fraction of the strategy space. Third, we make it

so that {UBg − k ×Dg} e {1, Dg} = ∅ for all k, which prevents the Nash equilibrium reached

via the Level k model from coinciding with the “lower bound equilibrium” of (1,1) or the

“efficient equilibrium” of (Dg, Dg). Subjects may play “1” as a rule of thumb or as a focal final

result of repeated (but not iteratively performed) undercutting. Participants who are “true”

equilibrium players that do NOT arrive at equilibrium via converged Level k reasoning may be

expected to coordinate on (Dg, Dg), the most efficient equilibrium. Lastly, UBg ≥ 14 ensures

that Levels 0 through 4 are all distinct (though Level 4 may coincide with an equilibrium).

Game Number 1 2 3 4 5 6 7 8 9 10 11
UBg 14 17 20 23 26 29 32 18 19 22 23
Dg 3 4

Table 1.—The 11 Number Selection Games used in the experiment

Actions Participants in a session are paired randomly and anonymously at the beginning of

their session; matchings are fixed for all 11 games. NS games are presented to participants as in

Figure 2. Each subject in the Actions treatment views a NS game from the same perspective:

a subject is addressed as “You” and her opponent is referred to as “The Other Participant”. In

the Beliefs treatment, participants are shown the same 11 NS games from Table 1, presented

as in Figure 2, except that the two players are referred to as “Jack” and “Jill”.14

For a game, g, a Beliefs subject performs a BA task, tg. When performing a BA task,

a subject’s screen initially shows a large, empty, rectangular area that has the game’s range

14Importantly, Beliefs participants are not shown any decisions made by Actions subjects.
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The RANGE is 1 to 14 and the UNDERCUTTING DISTANCE is 3.

You and The Other Participant are to select Numbers from the Range.

You will receive the Number you select IN POINTS and The Other
Participant will receive the Number they select IN POINTS.

You will receive 100 BONUS POINTS if your Number
is exactly 3 less than The Other Participant’s Number.

The Other Participant will receive 100 BONUS POINTS
if their Number is exactly 3 less than your Number.

If You and The Other Participant select the same Numbers,
you will each earn 35 BONUS POINTS.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

I I I I I I I I I I I I I I

Figure 2.—How subjects view Number Selection Games

of numbers, Rg = {1, 2, . . . , UBg}, strung along its lower horizontal edge. A green, upwards-

pointing, arrow button rests underneath each number in Rg. Clicking the green arrow button

under a number n ∈ Rg adds a blue box above n. When one or more blue boxes sit above n,

a red, downwards-pointing, arrow button shows below n’s green arrow button. Clicking n’s

corresponding red arrow button removes the top-most blue box that sits above n. A subject

can click green and red arrow buttons without any restrictions, allowing her to freely build

(and revise) her histogram until she is ready to submit it. Between the game’s range and the

green arrow buttons, a counter tracks how many boxes sit above each number in Rg.

Subjects click the arrow buttons to allocate their 20 blue boxes across the strategies in Rg

to express how they believe the 20 participants from a previously run Actions session made

their choices in g. For instance, if a Beliefs participant believes that two Actions subjects

chose 1 ∈ {Rg}, she would place two blue boxes above the number “1”. Figure 3 shows the

example Box Arrangement Task (generated at random) that we gave subjects in the Beliefs

treatment instructions. To explain the incentives in Equation 3, we also provide subjects with

a Dot Arrangement of hypothetical play by 20 Actions subjects. The Dot Arrangement is

printed on standard white paper while the example Box Arrangement from Figure 3 is printed

on a plastic transparency. This allows subjects to overlay the two arrangements to generate an

image that looks like that shown in Figure 4. Subjects are then told that they earn p points for

having p boxes that overlap with dots. While the points earned do not depend on the order in

which boxes are arranged, we record the order in which Beliefs participants arrange the boxes
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that make up their final histograms.

Figure 3.—a histogram for a fictitious Box Arrangement Task

Figure 4.—a fictitious Dot Arrangement overlaid with the histogram from Figure 3

In both treatments, instructions are read out loud and subject comprehension is reinforced

using on-screen understandings tests. A subject cannot proceed past a question until it is

answered correctly.15 The incentivized portion of each treatment is initiated only once all sub-

jects complete the treatment’s understandings test. Subjects receive no feedback whatsoever

between NS games and BA tasks until all experimental decisions have been made.

To mitigate concerns about risk attitudes influencing decision-making, the point payoffs

in each NS game and BA task are converted to money (at the end of the experiment) using

separate and independently run binary lotteries (Roth and Malouf [1979]). If a subject earns

p points in a NS game, the corresponding lottery pays $5 with probability p/150 and $1 with

probability 1−p/150.16 If a subject earns p points in a BA task, she earns $5 with probability

p/20 and $1 otherwise.

15Incorrect answers are met with a prompt asking the subject to try again. If a subject is stuck, she can
quietly ask for individual assistance from the experimenter.

16There are two main reasons for using binary lotteries in NS games. First, doing so gives rise to Observation 2.
Second, a linear exchange rate of points to dollars is problematic for subject payments since a participant may
earn over one hundred times as many points as another in a NS game.
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2.3.1 Relative Performance (RP) Questions

After a Beliefs subject i completes all 11 BA tasks, she performs 11 corresponding Relative

Performance (RP) questions. For the RP question qg corresponding to BA task tg and NS

game g, subject i is shown g as well as the histogram she constructed in tg. Participants are

not shown any histograms that were made by any other Beliefs subjects. Subject i is informed

of the number of subjects in her lab session and is asked to estimate how many participants in

her session she believes earned strictly more points than she did in tg. For qg, subject i earns

$5 for a correct answer and $1 otherwise. The RP questions are intended to estimate subjects’

levels of confidence in the histograms created in the BA tasks.

2.3.2 Bomb Risk (BR) Decisions

After subjects in the Beliefs treatment perform their RP questions, they make a Bomb Risk

(BR) decision (adapted from Crosetto and Filippin [2013]) as a quick measure of their risk

attitudes. The BR decision is very straightforward. There are 100 treasures chests, one of

which contains a bomb. The subject chooses, m, the number of (randomly picked) chests it

would like the computer to open. If the bomb is in an opened chest, the subject earns nothing

(which occurs with a m/100 chance). Otherwise, the bomb-filled chest is not opened and the

subject earns m/10 dollars.

3 Results

3.1 Aggregate Behavior

3.1.1 Actions treatment

Before analyzing data from the Beliefs treatment, we briefly summarize Actions behavior.

Observation 4 states that, for a wide range of beliefs, individuals’ best responses in Number

Selection (NS) games coincide with the Level k actions. We thus expect a substantial propor-

tion of behavior in NS games to fall on Level k actions; our data confirm this (see Result 1

and Table 2).

Value of k 0 1 2 3 4 total
# of choices 60 129 89 28 4 310
% of choices 13.6 29.3 20.2 6.4 0.9 70.4

Table 2.—Level k action frequencies in Actions treatments
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Result 1. In the Actions treatment, 70.4% of decisions coincide with the Level 0 through 4

actions; this high frequency is expected given Observation 4.

3.1.2 Beliefs treatment

Roughly thirty percent of Actions behavior did not overlap with Levels 0 through 4 (Result 1).

This provides a rough estimate on the proportion of non-belief-based decision-making in the

population from which we draw our experimental subjects.17 We thus expect a baseline rate

of roughly thirty percent of Beliefs data to not overlap with Levels 0 through 4. There is

another source of noise in the Beliefs data, however. Suppose that a participant i believes

that opponents guess uniformly at random. If i participates in the Actions treatment, she will

guess Level 1, the most commonly selected Level k strategy in the Actions treatment. In the

Beliefs treatment, however, she will spread out her boxes. Taken altogether, we expect Beliefs

data to be more diluted than Actions behavior. Table 3 and Result 2) confirm this hypothesis.

Value of k 0 1 2 3 4 total
# of choices 2305 2631 1635 884 597 8052
% of choices 12.9 14.8 9.2 5.0 3.4 45.2

Table 3.—Level k action frequencies in Beliefs treatments

Result 2. In the Beliefs treatment, 45.2% of decisions coincide with the Level 0 through 4

actions. (This percentage is higher in the Actions treatment, but this is to be expected.)

3.1.3 Stepwise reasoning is more than an “as if” theory of beliefs

In addition to obtaining Beliefs participants’ choices, we record the order in which they ar-

ranged their boxes in the BA tasks, allowing us to examine how individuals transition between

Level k and k′ actions for k, k′ ∈ {0, 1, 2, 3, 4}. Because the instructions focus on explaining

the payment method for overlapping boxes and the order of the arrangement of boxes is not

incentivized, recording the order is minimally invasive. We consider all 25 (5 × 5) pairs of

transitions, determining whether a box placed in one category predicts where the next box will

be placed.

To do so, we construct several 5×5 transition matrices. The first is the empirical transition

matrix, E, whose (i, j) entry corresponds to the number times two consecutive boxes are placed

first on the Level i−1 strategy and then on the Level j−1 action. The second is an analogously

17It is possible that some of the non-Level k choices in the Actions treatment are best responses to alternative
beliefs. Similarly, some of the Level k choices may arise by chance.
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defined random matrix, R, that assumes Beliefs participants arrange their boxes in random

orders (but still produce the same final empirical histograms). The third is the normalized

transition matrix, N , where N = E −R.18

In Table 4 shows the matrix N . Below element N(i, j) we report the p-values of a one-

tailed binomial distribution test of the null hypothesis that N(i, j) = 0 given the final empirical

distribution. Cells are colored if N(i, j) > 0 and has p < 0.01. First, we note that the diagonal

cells (in blue) are all positive and significant, indicating that a box placed in a category is

likely to be preceded by a box in that same category (Result 3).

L0 L1 L2 L3 L4

L0
1010.9 171.4 -145.5 -106.6 -50.9
(0.000) (0.000) (0.000) (0.000) (0.000)

L1
-70.6 1032.8 97.5 -108.5 -54.2

(0.000) (0.000) (0.000) (0.000) (0.000)

L2
-109.3 -124.3 490.1 130.5 -30.9
(0.000) (0.000) (0.000) (0.000) (0.000)

L3
-75.8 -99.3 -21.5 170.7 86.5

(0.000) (0.000) (0.005) (0.000) (0.000)

L4
-43.2 -56.3 -27.2 6.7 64.4

(0.000) (0.000) (0.000) (0.089) (0.000)

Table 4.—Level k action frequencies in Actions treatments

Result 3. For all nine categories, if a box is placed in a category, C, the following box is likely

to be placed in C. (See the blue cells in Table 4.)

If Step k thinking is more than an “as if” representation of behavior, we would expect

individuals to express Level k beliefs before they express Level k + 1 beliefs. The yellow cells

in Table 4 show that transitions where a Level k + 1 box is placed immediately after a Level

k are significant for k ∈ {0, 1, 2, 3} (Result 4).

Result 4. For k ∈ {0, 1, 2, 3}, if a box is placed on a Level k action, the following box is likely

to be placed on the Level k + 1 action. (See the yellow cells in Table 4.)

18A subject is allowed to add and remove boxes without any restrictions. When we record the order in which
boxes are placed, we only consider the 20 boxes that make up the histogram that is finally submitted.
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3.2 Individual Analysis

3.2.1 Classification of Beliefs participants as Step k thinkers

We begin investigating Step k thinking in the Beliefs treatment by determining the Level

k action(s) for k ∈ {0, 1, 2, 3, 4} that a Beliefs subject anticipates being played by Actions

participants. For a subject, i, we compute a vector, vi = (v1i , . . . , v
9
i ), where (i) v2k+1

i is the

total number of boxes that i places on the Level k action and for k ∈ {0, 1, 2, 3, 4} and (ii) v2ki

is the total number of boxes that i places between 19 the Level k− 1 and Level k action and for

k ∈ {1, 2, 3, 4}. For a participant to forecast a Level k action, we first require that she place

significantly more boxes on the Level k strategy in comparison to a subject playing uniformly

at random (Condition 1).

Condition 1. A necessary condition for identifying a Beliefs subject i as believing Actions

participants play the Level k action (for any k ∈ {0, 1, 2, 3, 4}) is v2k+1
i ≥ 16.20

We then require that Level k actions are forecasted sufficiently more than numbers in

their vicinities.21 Specifically, we create a weighted vector, wi = (w1
i , . . . , w

9
i ), where w2k+1

i =

v2k+1
i /11 for k ∈ {0, 1, 2, 3, 4} and w2k

i = v2ki /26 for k ∈ {1, 2, 3, 4}. These normalizations

account for the fact that while there are only 11 strategies across the 11 games corresponding

to a particular Level k action (for k ∈ {0, 1, 2, 3, 4}), there are 26 strategies across the 11 games

between the Level k − 1 and Level k actions (for k ∈ {1, 2, 3, 4}).22

Condition 2. A necessary condition for documenting a Beliefs subject i as believing Actions

participants play the Level k action is

• w1
i ≥ 2w2

i if k = 0,

• w2k+1
i ≥ w2k

i + w
2(k+1)
i if k ∈ {1, 2, 3}, and

• w9
i ≥ 2w8

i if k = 4.23

19For instance, in NS game 1, where D1 = 3 and UB1 = 14, the Level 0 and Level 1 actions are 14 and 11,
respectively; thus, the numbers between the Level 0 and Level 1 actions are 13 and 12.

20The threshold of 16 is reached via simulations. We generate 10,000 artificial Beliefs subjects who allocate
their boxes uniformly at random and find that 95% of subjects place fewer than 16 total boxes in total across
the upper bounds of the 11 games.

21Consider, for instance, a subject who places 2 boxes on each of the 10 largest numbers in each NS game. It
is not clear that this subject is a Step k thinker, yet he will have 22 boxes on the Level 0, 1 and 2 actions and
hence meet Condition 1 for these three strategies.

22Dg = 3 for g ≤ 7 and Dg = 4 for g > 7. Since there are 2 and 3 numbers between the Level k− 1 and Level
k actions for k ∈ {1, 2, 3, 4} in games with Dg = 3 and Dg = 4, respectively, this yields 7× 2 + 4× 3 = 26 total
numbers across all histograms.

23We do not require that the mass placed on Level 4 is greater than the sum of (i) the mass placed between
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Definition 1 states that if a subject’s stated beliefs meet Conditions 1 and 2 for a Level k

strategy, then she believes that strategy is played by Actions participants. For example, for

subject i to believe in the Level 3 action, it is necessary that i place b ≥ 16 boxes on the Level

3 action (totaled over all her histograms) and that b/11 ≥ s/26, where s is the number of

boxes placed between the Level 2 and Level 3 actions and between the Level 3 and Level 4

actions (totaled over all her histograms).

Definition 1. For any k ∈ {0, 1, 2, 3, 4}, a Beliefs participant i believes Actions participants

play the Level k strategy if Conditions 1 and 2 are met for that Level k strategy.

Using Definition 1, we can check whether Beliefs participants build histograms that are

consistent with the predictions of the CH model. In other words, we can define Step k thinking

(Definition 2) and check for Beliefs participants who employ it (Result 5).

Definition 2. A Beliefs participant is a Step k thinker, for some k ∈ {1, 2, 3, 4, 5}, if she

believes Actions participants play the Level k′ strategies (according to Definition 1) for all

k′ ∈ {0, . . . , k − 1} and there is no larger k ∈ {2, 3, 4, 5} satisfying this property.

Result 5. We classify 40.7% of Beliefs participants as Step k thinkers for k ∈ {2, 3, 4, 5},
supporting the assumptions in Stahl and Wilson [1995] and Camerer et al. [2004].

Value of k 1 2 3 4 5 total

# of participants 6 15 12 3 3 39

% of subjects 7.4 18.5 14.8 3.7 3.7 48.1

Table 5.—Classification of types in Beliefs treatments

To see Step k thinking more strikingly, we plot Step k thinkers’ wi vectors. Figure 5 does

this for the three Step 5 thinkers and three Step 4 players classified in Table 5. Notice that

a panel has nine categories on the horizontal axis, representing the nine coordinates of wi. In

a panel constructed by a subject, i, the black bars denote the actions anticipated by i. For

example, subject 1 is a Step 5 player, and hence, Level 0 (L0) through Level 4 (L4) are black.

Bars on Level k actions that are not anticipated are in gray, such as the L4 bar in subject 5’s

panel. White bars represent the mass between Level k actions.

Examining the panels in Figure 5, we see that the black bars meet Condition 1: each black

bar exceeds 16/11 ≈ 1.45. (We see that the gray bars do not meet this condition.) We can

Level 3 and 4 and (ii) the mass placed between Level 4 and 5 because, in some games, there are different numbers
of pure strategies in the regions described by (i) and (ii). For example, in the first NS game, the actions 3 and
4 form the region described by (i) while the number 1 is the only action in the region described by (ii).

14



Figure 5.—The three Step 5 thinkers (top) and three Step 4 players (bottom) classified in
the Beliefs treatment.

also readily see that Condition 2 is met based on how disproportionately taller the black bars

are than the white bars. Figure 6 plots the wi vectors for a Step 3, 2 and 1 thinker.

Figure 6.—Plots of a Step 3 thinker, a Step 2 player and a participant classified as Step 1.

3.2.2 How do Step k thinkers anticipate the relative frequencies of lower types?

To estimate data sets using CH, Camerer et al. [2004] find the value of τ such that f(k) =

e−ττk/k! best approximates the proportion of Step k thinkers in the population. This Poisson

specification leads to a simple expression of relative proportions of Step k thinkers: f(k +

1)/f(k) = τ/(k+1). Camerer et al. [2004] model a Step k thinker as having these same relative

beliefs over Step 0 through Step k − 1 players. With this assumption, we could estimate a τ

for each Beliefs participant. This, however, would require us to make assumptions about a

Beliefs subject’s beliefs over not only the actions of Actions subjects (which we obtain), but

also over the beliefs held by Actions participants (which we do not obtain). Inferring beliefs

over beliefs is difficult. For example, consider a Beliefs participant predicting play in Game
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Number 1 (whose Level k actions are 14, 11, 8, 5 and 2). If her histogram consists of ten boxes

on 14 and ten on 11, we do not know if she solely anticipates Level 0 and Level 1 players or if

she also envisions some Step 2 thinkers who play 11 as a best response to their beliefs.24

Accordingly, we restrict our analysis to what we observe: Beliefs participants’ predictions

of the play by Actions subjects. We adapt the Poisson specification from Camerer et al. [2004]

to our environment and check whether Beliefs subjects expect the various thinking steps in

the Actions treatment to be distributed according to normalized Poisson distributions. To

approximate the histogram of a Step k subject i with a normalized Poisson distribution, we

find the λ̂i that minimizes the Euclidean distance between her empirical relative beliefs over

adjacent thinking steps and the corresponding ratios given by the Poisson specification. This

Poisson Distance (PD) is given in Equation 4, where vi = (v1i , . . . , v
k
i ) and vti is the total

number of boxes placed on Level t− 1 actions across all Box Arrangement tasks.

λ̂i = argminλiP
D(vi, λi), where PD(vi, λi) =

√√√√k−1∑
t=1

(
vt+1
i

vti
− λi

t

)2

(4)

Once we calculate λ̂i for a subject, we would like to get a sense of how well it approximates

her stated beliefs. To do so, we normalize the vector vi to wi = vi/(
∑k

t=1 v
t
i) and define a

vector fi = (f1i , . . . , f
k
i ) where f ti = e−λ̂i λ̂i

t−1
/(t− 1)! for t = 1, . . . , k. We then normalize fi

to gi = fi/(
∑k

t=1 f
t
i ) and compute the mean-squared error of between wi and gi. This is given

by the Poisson Error (PE) in Equation 5.

PE(wi, λ̂i) =

k∑
t=1

(wti − gti)2 (5)

As a point of reference, we compute an analogous Uniform Error (UE) in Equation 6.

UE(wi, λ̂i) =
k∑
t=1

(wti − w̄i)2 where w̄i =

∑k
t′=1w

t′
i

k
(6)

Table 6 lists the values of PE(wi, λ̂i) and UE(wi, λ̂i) for the 18 participants classified as

Step k thinkers for k ≥ 3. Subjects are ordered as their values of [PE(wi, λ̂i)]/[P
E(wi, λ̂i) +

UE(wi, λ̂i)] increase. This ratio is less than 1/2 for all but the last two subjects in the table,

meaning that PE(wi, λ̂i) < UE(wi, λ̂i) for all but these last two participants (Result 6).

Result 6. Of the 18 Step k thinkers having k ≥ 3, 16 are better described by the Poisson model

24In fact, a Step 2 player who expects Step 0 and 1 players to occur with frequencies α and 1−α have a best
response of 11 if α ≥ 62/165 ≈ .38.
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Subject i λi PE(wi, λ̂i) UE(wi, λ̂i)
(

PE(wi,λ̂i)

PE(wi,λ̂i)+UE(wi,λ̂i)

(
Step k

49 1.2604 0.0000 0.0106 0.0026 3
67 0.9816 0.0002 0.0319 0.0057 3
37 1.02066 0.0003 0.0213 0.0121 3
6 1.1298 0.0004 0.0223 0.0188 3
65 1.5146 0.0016 0.0266 0.0558 4
20 2.1097 0.0011 0.0178 0.0606 5
8 1.1838 0.0013 0.0075 0.1479 3
51 0.8733 0.0161 0.0916 0.1489 3
56 1.7852 0.0028 0.0153 0.1556 4
75 1.3277 0.0085 0.0373 0.1866 3
43 1.5109 0.0014 0.0059 0.1939 3
38 1.7383 0.0036 0.0137 0.2094 3
68 1.8376 0.0140 0.0376 0.2709 3
14 1.6452 0.0069 0.0175 0.2837 4
73 1.5230 0.0284 0.0617 0.3157 3
29 2.4775 0.0621 0.0737 0.4573 3
45 1.7412 0.0148 0.0086 0.6333 5
12 1.7892 0.0235 0.0023 0.9096 5

Table 6.—Poisson and Uniform Errors for Step 3, 4 and 5 participants

in comparison to a Uniform specification.

We visually display the relative success of the Poisson specification by plotting the wi and

gi vectors along with w̄i vectors for the 18 Step k thinkers having k ≥ 3 in Figure 7. In the

plots, wi, gi and w̄i are labelled A for Actual, P for Poisson and U for Uniform, respectively.

Subjects are ordered in Figure 7 as they are listed in Table 6.

3.2.3 Analyzing unclassified participants

In addition to our 39 Classified (C) participants, we have 42 Unclassified (U) subjects in the

Beliefs treatment. Given that we find a non-negligible number of U participants, we would

like to devote some attention to understanding their behavior. We begin by asking whether

they anticipate deterministic types that we do not understand with existing models. Several

findings suggest that this is unlikely. If we partition the columns built in the Box Arrangement

(BA) tasks by height, we find that the taller a column is, the more likely it is built on a Level

k action. This is shown in Figure 8. The x-axis indicates column height; the y-axis shows

the percentage of columns (of that height) that are constructed on a Level k action. In other

words, the blue dot corresponding to 8 along the x-axis has a height of just over 80%, meaning

17



Figure 7.—Plots of wi, gi and w̄i, labelled A for Actual, P for Poisson and U for Uniform,
respectively. The plots are for the 18 Step k thinkers having k ≥ 3.
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that roughly 80% of the columns that are exactly 8 boxes tall are built on Level k actions.

Notice that each dot with an x-value of 10 or greater has y-value Level k frequency of 100%

(Result 7). It thus appears unlikely that U participants are anticipating deterministic types

that our existing models fail to capture.

Result 7. If a column from a histogram in the Beliefs treatment consists of 10 or more boxes,

that column rests on top of a Level k strategy.
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We obtain similar results when we consider behavior in the Actions treatment. Figure 9

organizes Actions behavior according to how many participants play the same strategy in a

given NS game (x-axis). Empirically, we find that there are at most 16 subjects (out of 40)

who select the same action in an NS game, g. The y-axis in Figure 9 shows the percentage of

strategies that are constructed on Level k actions. The blue dot corresponding to 4 along the

x-axis has a height of just over 80%, meaning that, when considering strategies that are played

in a certain game by exactly 4 subjects, just over 80% of such strategies are Level k actions.

Each dot with an x-value of 5 or greater has a y-value Level k frequency of 100% (Result 8).

This suggests that Beliefs participants are not “missing” any types when they express their

beliefs.

Result 8. If 5 or more Actions treatment participants select a given action in a Number

Selection Game, g, then that action is a Level k strategy.

Another reason we expect U types do not believe in unknown deterministic types is that,

on average, they distribute their boxes more in BA tasks compared to C subjects. For each
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Beliefs subject i, we compute si, the sum the squared heights of each column built.25 The si

values of C participants are greater than those for U subjects (Result 9).

Result 9. The mean sum of squared column heights for C and U participants are 875 and

444, respectively. This difference is highly significant using a two-sided t-test (p < 0.0001).

Despite the aforementioned results, it may be the case that U participants anticipate de-

terministic behavior, yet, may not express it because they are less confident in their beliefs

and more risk averse in comparison to C subjects. We thus consider the responses by U and C

participants in the Relative Performance (RP) questions and Bomb Risk (BR) decision. For a

Beliefs subject i, we define her confidence level as the average fraction of subjects in i’s session

believed to have performed weakly worse than i in the BA tasks. (This is computed using the

responses to the RP questions.) Thus, if i believes that, in each BA task, she has weakly more

overlapping boxes than all others in her session, her confidence level is 1. If she believes that

all others have strictly more overlapping boxes than does she in each BA task, her average

confidence level is 0. We do not find any evidence that C participants are more confident in

their constructed histograms in comparison to U subjects (Result 10).

Result 10. The average confidence levels of C and U participants are .700 and .667, respec-

tively. This difference is insignificant using a two-sided t-test (p = 0.2112).

In both treatments, subjects’ points are converted to monetary payoffs using binary lotteries

(Roth and Malouf [1979]). This decision was to incentivize participants to maximize their

expected number of points irrespective of their risk preferences. Binary lotteries do not always

work in practice (see Selten et al. [1999]), but they seem to have served their purpose in our

study. In the BR decision, if we consider the average number of “treasure chests” opened

by a Beliefs participant, we find that U subjects do not open significantly fewer chests than

C participants. In other words, U subjects are not significantly more risk averse than C

participants (Result 11).26

Result 11. The average numbers of boxes opened by C and U participants in the BR decisions

are 49 and 46, respectively. This difference is insignificant using a two-sided t-test (p = 0.4206).

25Using this measure has its advantages over “simpler” alternative statistics. For instance, if we were to
simply count the number of columns subjects construct or the average height of each constructed column, we
would not be able to differentiate between a participant who always places 19 boxes on one action and 1 on
another from a subject who always places 10 boxes on each of two actions.

26More generally, we see that the binary lotteries used in the BA tasks seem to have effectively neutralized
risk attitudes among all Beliefs participants. An OLS regression of the sum the squared heights of each column
built on the number of treasure chests opened in the BR yields a positive slope coefficient with p-value of 0.544.
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Given the findings up to this point, the next question to address is whether U subjects are

creating flatter histograms than C participants because they (i) believe Actions participants

are noisy or (ii) are noisy themselves. If (ii) is a more accurate explanation, it seems reasonable

to expect U participants to be less confident in their choices compared to C subjects (who we

know are not noisy). We know, however, from Result 10, that U subjects are no less confident

in their histograms than C participants. It thus seems that (i) is more plausible than (ii). In

fact, simply looking at the histograms made by U subjects suggests more evidence supporting

(i): it appears that U subjects arrange their boxes more towards the upper bounds of NS

games in comparison to random allocations.

To investigate this more rigorously, we compute the following “front-load factor” fhi for

subject i’s histogram h. Specifically, if h corresponds to a game with upper bound UB, then

fhi = sumUB
j=1hj where hj is the total number of boxes placed across actions UB−j+1 through

UB in h. Thus, if h has all 20 boxes on the upper bound, fhi = 20 × UB. If h has 19 boxes

on UB and 1 box on UB − 1, then fhi = 19 + 20 × (UB − 1). The smallest fhi can be is

if h has all 20 boxes placed on its lower bound, leaving fhi = 20. For Beliefs participant i,

we average her front-load factors over all 11 BA tasks to compute her “front-load statistic”,

Fi = (fh1i + · · ·+ fh11i )/11. We find that U participants front-load their histograms more than

would random subjects (Result 12). Furthermore, C subjects front-load their histograms more

than U participants (Result 13).

Result 12. The mean front-load statistic for U participants is 254 which is significantly differ-

ent than 221 (p = 0.0126), the expected front-load statistic reached via random box allocation.

Result 13. The average front-load statistics for C and U participants are 323 and 254, re-

spectively. This difference is significant using a two-sided t-test (p < 0.0001).

4 Related Literature

The Number Selection (NS) games are inspired by a variety of existing games. They most

closely resemble the Generalized Centipede (GC) games from Fragiadakis et al. [2017]. In

GC games, players select integers from (possibly different) guessing ranges. As with our NS

games, guessing x guarantees a player earns at least x. In addition, there are bonuses that

can be attained for undercutting as well as matching one’s opponent. The GC games are less

constrained than ours. We impose more restrictions on ours for parsimony, ease of explanation

to experimental subjects and to facilitate our analysis.
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The GC games were preceded by the 11-20 Money Request (MR) game studied in Arad

and Rubinstein [2012]. In the two-person MR game, each player simultaneously selects an

integer between 11 and 20 (inclusive). Guessing x earns a player x, unless x is exactly 1 less

than the opponent’s guess, in which case the player earns x + 20. The Level 0 prediction is

20, the upper bound. Then, Level 1 is 19, Level 2 is 18 etc. The MR game has inspired others

as well. For instance, Georganas et al. [2015] and Goeree et al. [2013] and Alaoui and Penta

[2016] study games that are very similar to the 11-20, game, except for some changes in the

payoff structures.

While we design our NS games, a more prominent feature of our design is our method for

belief elicitation. A variety of scoring rules exist for eliciting beliefs; see Selten [1998] for an

overview. The Quadratic Scoring Rule (QSR), for instance, is quite common.27 As an example

of QSR, consider a game with three pure strategies, a, b and c. When an individual reports

A, B and C for the likelihoods that her opponent will play a, b and c, respectively, her payoffs

are computed as P − (A − 1{s = a})2 − (B − 1{s = b})2 − (C − 1{s = c})2, where P > 0 is

a prize and 1{s = x} is an indicator function that equals 1 if and only if s = x and equals 0

otherwise. It can be shown that a risk neutral agent is incentivized to truthfully express her

beliefs to this mechanism.

Though QSR has been widely implemented,28 data suggests it may have some shortcomings

in practice. For example, Palfrey and Wang [2009] find that QSR elicits more extreme beliefs

than an alternative (logarithmic) scoring rule that is also incentive compatible. Interestingly,

Huck and Weizsäcker [2002] find beliefs to be biased towards 50-50. Armantier and Treich

[2013] highlight some additional drawbacks of incentive compatible scoring rules, namely, that

stakes, incentives and hedging opportunities can substantially distort reported probabilities.

We believe there are two features of QSR that may pose some difficulty for real-world

participants. First, it does not seem to convey its incentive properties transparently. We

believe the design of our Box Arrangement tasks clearly do by making the incentives more

visual via overlapping histograms. After the design of our experiment, we discovered that

Carpenter et al. [2013] also use histograms to elicit beliefs, perhaps because they held similar

concerns regarding a subject’s understanding of the belief-elicitation mechanism.

Second, QSR asks a subject to think about how likely it is for a single individual to take

various actions, akin to asking an individual for the probability that it will rain today. We

27The quadratic scoring rule was first studied by Brier [1950] and Good [1952].
28Costa-Gomes and Weizsäcker [2008] use it to investigate whether a subject’s actions in a normal form game

is a best response to her stated beliefs of how others will play that game. Dufwenberg and Gneezy [2000] elicit
beliefs in a Lost Wallet game to investigate how beliefs affect trust dilemmas. Dominitz and Hung [2009] explore
how beliefs are updated as new pieces of information are publicly announced. See Palfrey and Wang [2009] for
a discussion of additional papers that have used QSR.
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believe an easier question would be: “how many days this week do you expect it will rain?”

This is why we ask subjects to predict how many others choose different strategies as oppose to

matching an individual with another and asking her for the likelihood that her opponent will

choose different actions. Huck and Weizsäcker [2002] also ask subjects to forecast quantities of

other participants. In addition to the potential difficulty in formulating a probabilistic belief

over a single occurrence (i.e., whether it will rain today), we think that asking an individual

to predict the behavior of a single participant may trigger one to think extremely. In other

words, if asked for the beliefs of whether an opponent will select pure strategy x or y, one may

simply report the action that she believes her opponent is more likely to choose, which can

explain the prior instances where QSR has recorded extreme responses.

5 Conclusion

This paper contributes to the behavioral game theory literature by testing whether the Cog-

nitive Hierarchy (CH) model developed by Camerer et al. [2004] is more than simply an “as

if” theory of behavior. CH describes an individual as believing her opponents engage in het-

erogeneous steps of strategic thinking. To test for such beliefs, we first have subjects in one

treatment play a series of games. Their behavior is then predicted by separate participants

(in a different treatment). As a participant builds a histogram to express her beliefs, she first

anticipates a number of non-strategic individuals who play a naive strategy. Then, she believes

that there are players who play the best-response to this strategy, followed by players who best

respond to these strategic individuals and so on. Furthermore, we find that the shape of such

beliefs resonates with Camerer et al. [2004] who use Poisson CH specifications to estimate ag-

gregate data: we find that normalized Poisson distributions do better than Uniform supports

in modeling how an individual expects various thinking steps to occur.

Our data show that CH cleanly passes the test of its beliefs assumptions, which may shed

some light on a few existing puzzles in behavioral game theory. First, even in games whose

most commonly selected actions are Level k strategies, a substantial portion of behavior is

often unexplained by Level k; such behavior may, however, be rationalized by a Step k thinker

best responding to some distribution of lower step thinkers. Second, the classification of an

individual as a Level k player in a certain type of game has limited predictability as far as

their behavior in other types of games.29 A Step 2 thinker who believes α ∈ (0, 1) and 1 − α
of the population are Step 0 and Step 1 thinkers, respectively, may have a best response that

29See Georganas et al. [2015]. Similar results are found in Fragiadakis et al. [2017].

23



coincides with the Level 1 strategy in certain games but with the Level 2 strategy in others.30

Lastly, our relatively “clean” results from our Beliefs treatment provide a proof-of-concept

that our belief-elicitation method is not only theoretically appealing, but also practically

successful. We hope future researchers interested in recording beliefs seriously consider our

method; we expect this would help them to similarly obtain minimally noisy responses.

30Furthermore, she may adjust her beliefs of α depending on her perception of games’ degrees of complexity.
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