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Abstract

As ever more technology is deployed to process and transmit financial data, this

could benefit society, by allowing capital to be allocated more efficiently. Recent work

supports this notion. Bai, Philippon, and Savov (2016) document an improvement in

the ability of S&P 500 equity prices to predict firms’ future earnings. We show that

most of this “price informativeness” rise comes from a composition effect. S&P 500

firms are getting older and larger. In contrast, the average public firm’s price in-

formation is deteriorating. Do these facts imply that big data failed to price assets

more efficiently? To answer this question, we formulate a model of data-processing

choices. We find that big data growth, in conjunction with a change in the firm size

distribution, can trigger a concurrent surge in large firm price informativeness and de-

cline in informativeness for small firms. The implication is that ever-growing reams of

data processed by the financial sector might not deliver efficiency benefits, for the vast

majority of firms.
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Does the adoption of financial technology add social value? The answer to this basic

question lies at the heart of many policy and regulatory debates. Recent evidence that

the informativeness of asset prices has been increasing (Bai, Philippon, and Savov, 2016)

suggests that the labor, technology, and human capital growth in the financial sector is

yielding real benefits, in terms of more efficient capital allocation for firms. However, this

rosy headline result of greater price informativeness pertains to firms in the S&P 500. More

accurately, large, old firms are priced, and have always been priced, more efficiently. These

large firms have simply become more prevalent in the S&P 500. For the universe of publicly

traded firms as a whole, price informativeness has, in fact, declined. This paper explores

these competing facts, teases out composition effects from trends, explores the reasons for

the shifts in market efficiency, and concludes that most firms may miss out on the financial

benefits of the big data revolution.

Section 1 start by exploring the question: What is it about S&P 500 firms that explains

why their prices became more informative when other firms’ price informativeness has fallen?

Is current membership in the S&P important? No, we compare the set of all firms that have

been in the S&P 500 at some time, and find that price of firms currently in the S&P 500 have

neither a higher level nor a steeper trend in price informativeness. Is this an industry effect?

No, we find that for industries most represented in the S&P, the firms in those industries that

are not themselves S&P 500 members have witnessed no rise in price information. Perhaps

this is a shift to more high-tech firms, which are harder to price. Yes, but that only explains

a small fraction of the effect. What can explain the divergence is the change in firm size. We

find that the set of firms currently in the S&P 500 are getting larger over time. Since larger

firms have more informative prices, there is a size composition effect. We show that this

shift in firm size can account for most of the rise in the informativeness of S&P 500 prices.

The conclusion one might draw from these facts is that big data has not helped financial

markets to better price assets at all. This is all just a change in the composition of firm size.

That conclusion would raise a few questions. First, why would financial firms pour resources

into data technology, if not to trade in a more informed way? The other puzzle is why is

overall price informativeness declining? The universe of public firms is not shifting toward

smaller firms. How is it possible that despite the deluge of data, some firms’ prices contain
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less information today than they did 30 years ago? Does this imply that the data is useless,

or that rational or behavioral market inefficiencies prevent big data from benefitting most

firms?

To answer these questions, Section 3 uses a simple model to work out the logical con-

sequences of big data growth and large firm growth for data allocation and price informa-

tiveness. We use a portfolio choice model, with multiple, risky assets, where investors may

choose to process data about any or all of those assets. Data comes in the form of binary

strings that encode information about the future value of the risky assets. What investors

are choosing is the length of the binary code, for each asset. Given their encoded data,

investors update beliefs about risk and return and make portfolio investment choices. Asset

prices clear the market for each asset. We find that the divergence in price informativeness is

compatible with optimizing agents and markets that have no friction, other than imperfect

information.

If increasing data processing were the only force at work, the firms’ price informativeness

should rise across the board. A key force is that large firms’ data is particularly valuable

to an investor. If the largest firms grow larger, they become more attractive targets for

data processing and they draw attention away from the relatively less attractive small firms.

This can explain why large firm prices become more informative and small firm prices less

informative.

These findings are consistent with a financial sector that has improved its ability to

process data and use that knowledge to price assets. But, by no means, do they prove that

overall efficiency did, in fact, increase. The facts and model together do allow us to bound

the increase in data productivity. If the growth in data processing is too large, relative to

the increase in the size of large firms, then such a combination of forces would be unable to

explain the decline in price informativeness of small firms. Section 4 concludes that, while

big data may be helping investors to price assets more accurately, the technological gains

are modest, and are failing to help many smaller firms that might well be our future engines

of growth.
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Our Contribution Relative to the Literature Examinations of the effects of big data

are scarce. Empirical work primarily examines whether particular data sources, such as

social media text, predict asset price movements (Ranco, Aleksovski, Caldarelli, Grcar, and

Mozetic, 2015). In contrast, many papers have developed approaches to measuring stock

market informativeness across countries (Edmans, Jayaraman, and Schneemeier, 2016), or

(Durnev, Morck, and Yeung, 2004). The novelty of our approach, compared to these studies

is that we study how price informativeness evolves over time and in the cross-section, because

it reveals changes in financial efficiency.

Explorations of how information production affects real investment (Bond, Edmans, and

Goldstein, 2012; Goldstein, Ozdenoren, and Yuan, 2013; Dow, Goldstein, and Guembel, 2017;

Bond and Eraslan, 2010; Ozdenoren and Yuan, 2008) complement our work by showing how

the financial information trends we document could have real economic effects. Our work

also contributes to the debate on the sources of capital misallocation in the macroeconomy.1

Like David, Hopenhayn, and Venkateswaran (2016), our focus is on the role financial markets

play in informing these real investment choices. We add an explanation for why financial

markets may be providing better guidance over time for some firms, but not for others.

On the theoretical side, the information theory (computer science) based measures we

use to quantify big data flows are similar to those used in work on rational inattention

(Sims, 2003; Maćkowiak and Wiederholt, 2009; Kacperczyk, Nosal, and Stevens, 2015).2

Our model extends Farboodi and Veldkamp (2017) in two ways. First, our information

processing constraint corresponds to computer science measures of data processing, based

on bits. That change allows us to map processing directly to CPU speed. Second, instead

of a single risky asset, we have heterogeneous asset characteristics. This is essential for

our model to speak to the cross-sectional data. It allows us to explain how firm size and

1See e.g., Hsieh and Klenow (2009) or Restuccia and Rogerson (2013) for a survey.
2More broadly, equilibrium models with information choice have been used to explain income inequal-

ity (Kacperczyk, Nosal, and Stevens, 2015), information aversion (Andries and Haddad, 2017), home bias
(Mondria, Wu, and Zhang, 2010; Van Nieuwerburgh and Veldkamp, 2009), mutual fund returns (Pástor and
Stambaugh, 2012; Stambaugh, 2014), among other phenomena. Related microstructure work explores the
frequency of information acquisition and trading (Kyle and Lee, 2017; Dugast and Foucault, 2016; Chordia,
Green, and Kottimukkalur, 2016; Crouzet, Dew-Becker, and Nathanson, 2016). Davila and Parlatore (2016)
share our focus on price information, but do not examine its time trend or cross-sectional differences. Em-
pirical work (Katz, Lustig, and Nielsen, 2017) finds evidence of rational inattention like information frictions
in the cross section of asset prices.
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technology affect data processing and thus price informativeness.

1 Data and Measurement of Price Informativeness

1.1 Data

The data we are using are for the U.S. over the period 1964–2015. Stock prices come

from CRSP (Center for Research in Security Prices). All accounting variables are from

Compustat. We take stock prices as of the end of March and accounting variables as of the

end of the previous fiscal year, typically December. This timing convention ensures that

market participants have access to the accounting variables that we use as controls.

The main equity valuation measure is the log of market capitalization M over total assets

A, log(M/A) and the main cash flow variable is earnings measured as EBIT (earnings before

interest and taxes, denoted EBIT in Compustat). This measure includes current and future

cash flows, and investment by current total assets. All ratio variables are winsorized at the

1%.

Since we are interested in how well prices forecast future earnings, and future earnings

are affected by inflation, we need to consider how to treat inflation. We adjust for inflation

with GDP deflator to ensure that differences in future nominal cash flows do not pollute our

estimation of stock price informativeness.

1.2 Measuring Price Informativeness

While there is a debate in the empirical literature about how to best measure price informa-

tiveness (e.g. Philippon, 2015), the measure suggested by Bai, Philippon and Savov (2016)

is closest to our model’s measure. It captures the extent to which asset prices in year t are

able to predict future cash-flows in year t+ k.

Their informativeness measure is constructed by running cross-sectional regressions of

future earnings on current market prices. Controlling for other observables limits the risk of

confounding public information impounded in prices with markets foresight. For each firm

j, in year t, we estimate k-period ahead informativeness as
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Ej,t+k
Aj,t

= α + βtlog

(
Mj,t

Aj,t

)
+ γXj,t + εi,t, (1)

where Ej,t+k/Aj,t is the cash-flow of firm j in year t + k, scaled by total assets of the firm

in year t; log(Mj,t/Aj,t) is firm market capitalization, scaled by total assets; and Xj,t are

controls for firm j that capture publicly available information. In the main specification, the

controls are current earnings and industry sector (SIC 1) fixed effects. When we estimate

price informativeness at the industry level (SIC3 or SIC2), we need to drop the industry

fixed effect as a control.

The parameter βt measures the extent to which firm market capitalization in year t

can forecast the firm cash-flow in year t + k. To map this coefficient into a proxy of price

informativeness, we follow Bai et al. (2016) and do the following adjustment:

(√
PInfo

)
t

= βt × σt
(
log(M/A)

)
(2)

where σt
(
log(M/A)

)
is the cross-sectional standard deviation of the forecasting variable

log(M/A) in year t. The use of square root gives the measure an economic interpretation as

dollars of future cash flows per dollar of current total assets.

1.3 Aggregate Trends in Price Informativeness

We first establish the empirical puzzle that motivates our analysis. Price informativeness

increases over time for firms in the S&P 500 (Bai, Philippon, and Savov (2016)’s headline

result), but it decreases when we look at all the other publicly listed nonfinancial firms,

excluding S&P 500 firms. Figure 1 illustrates the contrast between the increase in infor-

mativeness for S&P 500 firms (left figure) and the decrease in price informativeness for all

non-S&P 500 firms (right figure). We observe a similar decline if we look at the universe of

listed firms (including both S&P 500 and non-S&P 500 firms).

Similar plots in the Appendix reveal that the trends are nearly identical for 3-year and

5-year horizons. Therefore we proceed by looking only at 5-year price informativeness.

Table 1 quantifies these trends and demonstrates the statistical significance of the differ-

ence between the S&P 500 and all-public-firm samples. Both trends are economically large.
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Figure 1: Price Informativeness is Rising for S&P 500 Firms but Falling for All
other Public Firms. Results from the cross-sectional forecasting regression (eqn 1): Ei,t+k/Ai,t =
α+βtlog(Mi,t/Ai,t) + γXi,t + εi,t, where M is market cap, A is total asset, E is earnings before interest and
taxes(EBIT ) and X are a set of controls that captures information publicly available. We run a separate
regression for each year t = 1964, ..., 2010 and horizon k = 5. Price informativeness is βt × σt(log(M/A)),
where σt(log(M/A) is the cross-sectional standard deviation of log(M/A) in year t. Above each plot is a
linear trend normalized to zero and one at the beginning and end of the sample (plotted in dashed lines).
The left figure contains S&P 500 nonfinancial firms from 1964 to 2008, while the right figure contains all
publicly listed nonfinancial firms excluding S&P 500 firms during the same period.

For the S&P 500 sample, the mean of price informativeness is 0.041 and its time-series

standard deviation is 0.01 Between 1962 and 2010, price informativeness rose 70% relative

to its mean, or 2.1 standard deviations. For non-S&P 500 firms, the average level of price

informativeness is 0.028 with a time-series standard deviation of 0.012. So the fall in price

informativeness is 100% relative to the mean and 2.5 times the standard deviation.3

2 Where Is Information Flowing?

The divergent aggregate informativeness trends offer a puzzling and mixed message about

whether the financial sector is becoming more efficient or not. To understand what is going

on and why, this section cuts the sample of firms in different ways, to understand which

prices are becoming more informative and which less, or if this is a composition effect.

3For the S&P 500 sample, the interquartile range in price informativeness is 0.0162. The rise in price
informativeness is about two times this interquartile distance. For non-S&P 500 firms, the interquartile
range is 0.011. The fall in price informativeness is more than twice this interquartile distance.
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Table 1: Price Informativeness Trends over Time

Dep. Var 100× Price Informativeness

Sample S&P 500 All Listed Firms

Horizon k=3 k=5 k=3 k=5

(1) (2) (3) (4)

Time Trend 1.76*** 2.38*** -3.11*** -2.96***
(0.33) (0.41) (0.49) (0.52)

Observations 45 45 45 45

This table presents time series regressions of price informativeness by horizon. Price informativeness is
calculated as in Eq. 2 using estimates from the cross-sectional forecasting regression 1. For this table, we
regress the time series of price informativeness at a given horizon k = 3, 5 years on a linear time trend
normalized to zero and one at the beginning and end of the sample. Newey - West standard errors, with five
lags are in parentheses. *** denotes significance at the 1% level.

2.1 The Role of Firm Size

One possible explanation is that firms in the S&P 500 are, on average, getting larger, relative

to other firms. Could differences in firm size explain the different trends in informativeness?

Perhaps big data enabled us to improve analysis of large firms more than small ones? This

hypothesis holds more promise. There are systematic differences in the level and trend of

informativeness between small and large firms. But, this does not explain all of the difference

between S&P 500 and non-S&P 500 firms.

We compute price informativeness into ten size bins in the following way: For the whole

sample period, we compute bins based on firm size (market value deflated in 2009 dollars).4

Bins are defined such that they contain roughly the same number of observations to avoid

having biased estimates coming from large differences in sample size. Then we run separate

cross-sectional regressions of price informativeness. Each regression takes the same form as

(1), but with an additional y subscript for each size bin:

Ei,y,t+k
Ai,y,t

= α + βt,ylog

(
Mi,y,t

Ai,y,t

)
+ γXi,y,t + εi,y,t (3)

4This is the size variable that has been shown to matter in the context of CEO compensation for instance
(e.g. Gabaix and Landier, 2008).
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where Ei,y,t+k/Ai,y,t is the cash-flow of firm i belonging to size-bin y in year t + k scaled by

total asset of the firm in year t.5

Figure 2: Large Firms Have More Informative Prices. Price informativeness is the ability to
forecast future earnings (Eq 2). We run a separate regression for each year t = 1962, ..., 2010, horizon k = 5
and bin interval [1/10), ...[10/10] partitioned by 1/10 deciles. Firms are split by size. Price informativeness
is the average value of βt,y × σy,tlog(M/A), where σy,tlog(M/A) is the cross-sectional standard deviation of
log(M/A) in year t and size interval y. Future earnings are measure here at 5-year horizons. The sample
contains publicly listed nonfinancial firms from 1962 to 2010.

Figure 2 shows that larger firms have more informative prices. The effect is large. Moving

from the first decile to the last decile of size implies an 17-fold increase in price informative-

ness.

It is possible that this result is driven by shifts of firms within decile bins. To make

5Adding year fixed effects to the cross-sectional specification does not change the result.
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sure that the bin construction is not responsible for our results, we also estimate a similar

regression using firm size as a continuous variable, over the whole sample. To see how the

predictive power of firm stock price varies with firm size, we estimate

Ei,t+k
Ai,t

= α + βlog

(
Mi,t

Ai,t

)
×Mi,t + γ1log

(
Mi,t

Ai,t

)
+ γ2Mi,t + γ3Xi,t + εi,t.

The interaction between log(Mi,t/Ai,t) and Mi,t tells us how the ability of log(Mi,t/Ai,t)

to predict firm i’s future cash-flow, varies with its size. Because we demean firm size, the

interaction term can be interpreted as the marginal effect of firm size.6 Table 2 reports the

results when we cluster standard errors by industry and year. In Column (1), we find that

log(Mi,t/Ai,t) is positive and significant at the 1% level. This clearly supports the idea that

equity valuations forecast earnings. We also find that the interaction between log(Mi,t/Ai,t)

and firm size is significant and positive. In other words, equity prices for large firms are better

forecasters of those firms’ earnings. In terms of magnitude, the largest decile of firms has

more than twice the correlation between log(Mi,t/Ai,t) and future earnings, of the smallest

decile of firms. Columns (2) and (3) confirm that the result is robust to year and industry

fixed effects. Finally, Column (4) interacts all the variables with a time trend. The finding

that this time interaction is positive and significant implies that the gap between large firms’

and small firms’ price informativeness has been growing over time.

Taken together, these results teach us that the increase in price information for S&P 500

firms may arise because of a change in the size composition of the S&P 500 . Given that large

firms have more informative prices, a change in the composition of the S&P 500 toward larger

firms can explain why the S&P 500 is becoming more informative, even if the informativeness

of the largest firms is not rising. We explore this possible composition effect next.7

Is this a composition effect? Perhaps financial markets are not getting better at pricing

larger firms over time, or any kind of firm in particular. It’s simply that small firms have

always been hard to price accurately and the composition of the S&P 500 changed so that

6In this case log(Mi,t/Ai,t) measures the effect for the median firm of demean size zero.
7Note that what we call a size effect could also be an age effect. Since the effect of size and age are

similar and the attributes are highly correlated across firms, the two effects are hard to distinguish. We have
replicated the same exercise with age, instead of size and obtained similar results.
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Table 2: Large Firms Have More Informative Prices

Dep. Var Earningt+5

(1) (2) (3) (4)

Size × log(M/A) 0.004*** 0.003*** 0.003*** -0.224***
(5.41) (5.32) (5.36) (-2.97)

Size × log(M/A) × Time Trend 0.224***
(3.00)

Size 0.000 0.000 0.001 -0.334***
(0.04) (0.14) (1.08) (-3.36)

log(M/A) 0.013*** 0.013*** 0.015*** 2.769***
(2.61) (2.72) (3.12) (5.90)

Obs. 97778 97778 97778 97778
Sector FE – Yes Yes Yes
Year FE – – Yes Yes

This table presents a cross-sectional regression of price informativeness as calculated as in Eq. 1. Earning of
firm i in t+ 5 (measured by EBIT) is regressed on the natural logarithm of firm market capitalization scaled
by total assets: log(M/A)). Size is defined as the deflated firm market value in $K. We control for earnings
in t and include progressively year and industry fixed effects. Standard errors are clustered by industry and
year. *** denotes significance at the 1% level.

there are fewer small firms in the index. In other words, S&P 500 price efficiency is rising

because the average S&P 500 firm is getting larger. For this composition effect to explain

the decline in overall price efficiency for all firms, it would have to be that the average

non-S&P 500 firm is getting smaller.

Figure 3 supports the first hypothesis that S&P 500 firms are getting larger. But it does

not support the second hypothesis that non-S&P 500 firms are getting smaller.

How much of the trend can changing size composition explain? The change in

composition of S&P 500 firms to larger firms clearly favors an increase in price informative-

ness. But does the compositional change explain the entire trend? To determine this, we

proceeded in three steps. First, we define size deciles from all firm-years in our sample and

compute the average price informativeness in each decile as in Figure 2. Second, for each

year, we compute the share of S&P 500 firms and the share of all firms that are in each
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Figure 3: S&P 500 Firms Became Larger. Non-S&P 500 Firms Grew Less. We
compare the average size of firms that are in S&P 500 and firms there are in S&P 500 over time. Firm size
is defined as firm’s total asset. The sample contains publicly listed nonfinancial firms from 1960 to 2010.

decile.8 Third, to get a size-predicted price informativeness trend, we multiply the share of

each size decile by the average informativeness of firms in that decile to get the trend in price

informativeness that changing size alone would explain. Formally, we compute the following

equation:

ˆbeta
size

t =
∑

y∈[1,...,10]

βy × ShareF irmsy,t

where βy is estimated in the cross-section over all firms belonging to size decile y (Equa-

tion 3) and ShareF irmsy,t correspond to the fraction of firms in year t that belongs to size

decile y. The value of each βy is displayed in Figure 2.

Figure 4 compares the measured price informativeness series (measured as in Figure 1,

dark-blue line) and the size-predicted price informativeness ( ˆbeta
tech

t , light-blue line). Of

8Confirming the results in Section 2.1, we observe an increase in the fraction of S&P 500 firms in the top
size decile. During the period, the fraction of S&P 500 firms in the top size decile grew from roughly 40%
to almost 100%, while this fraction for the entire firm sample remained stable.
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course, the measured price informativeness series fluctuates more. However, the trends of

the actual and size-predicted series are pretty well aligned. This fact suggests that most of

the increase in price informativeness in the S&P 500 can be explained by the change in firm

size composition. Firms in S&P 500 getting are larger and the price informativeness of large

firms is higher.

We do the same exercise for the whole sample. Since full-sample firms are not getting

smaller, the predicted evolution of price informativeness for the whole sample (yellow dashed-

line) does not explain the decline in measured informativeness (orange dotted-line).

Figure 4: Predicted Evolution of PI based on Size: S&P 500 and Whole Sample.
This figure shows the evolution of predicted and actual price informativeness for S&P 500 firms and the
whole sample. For firms in the S&P 500 , we show in the dark-blue line the coefficient βt estimated from
the cross-sectional forecasting regression defined in eqn 1. The orange dotted-line reports the same result
when βt,5 is estimated for every listed firms (instead of restricting to S&P 500 ). The light-blue line and

yellow dashed-line plot the evolution of the predicted ˆbeta
size

t computed in eqn 2.1. ˆbeta
size

t is the weighted
sum of βy, where y corresponds to a size-decile (eqn 3) and weights correspond to the fraction of firms in the

same size-decile in a given year. The light-blue line plots the evolution of ˆbeta
size

t when we use as weights
the fraction of firms in the S&P 500 . The yellow dashed-line plots the same weighted average, except with
weights that are the fraction of firms in the whole sample, at date t. Future earnings are measured here at
5-year horizons. The sample contains publicly listed nonfinancial firms from 19642 to 2010.

In sum, the result that S&P 500 price informativeness is rising, can be mostly explained

by an increase in firm size, because larger firms are easier to price. While a compositional

shift to larger firms can explain the upward trend of S&P 500 price informativeness, there is

no downward trend in size to explain the fall in informativeness of the non-S&P 500 firms.
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This leaves open the question of why small, non-S&P 500 firms face less informed investors,

in a world when data has become so much more abundant.

2.2 The Role of High Tech

Part of the story of the decrease in price informativeness of the whole sample of firms is

that the share of high-tech firms has increased over time and these high-tech firms are

hard to price. At the same time, the S&P 500 has also become more tech-heavy. But

the price information for these large tech firms is not more scarce relative to their non-tech

counterparts. The data reveals that the combination of being small and high-tech depresses

price information.

Figure 5: Price informativeness for decile of R&D Intensity: S&P 500 vs Whole
Sample. Price informativeness is the ability to forecast future earnings (Eq 2). We run a separate
regression for each year t = 1962, ..., 2010, horizon k = 5 and bin interval [1/10), ...[10/10] partitioned by
1/10 deciles. Firms are split by R&D intensity measured as the firm average R&D spending scaled by
its assets. Price informativeness is the average value of βt,y × σy,tlog(M/A), where σy,tlog(M/A) is the
cross-sectional standard deviation of log(M/A) in year t and R&D intensity interval y. Future earnings are
measure here at 5-year horizons. The sample contains publicly listed nonfinancial firms from 1962 to 2010.

Figure 5 shows the average price informativeness for firms in the S&P 500 (orange bars)

and firms in the whole sample (blue bars) by decile of R&D intensity (R&D spending scaled
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by total asset). We estimate price informativeness by decile in the following way. First,

we sort all observations in the full sample into decile of R&D intensity over the whole

period, such that each decile has an equal number of observations. We then estimate price

informativeness for each bin using the same method before. Second, for S&P 500 firms, we

select out only the S&P 500 firms in each bins, such that we keep the same thresholds of

R&D intensity for S&P 500 firms and for the whole sample. We then re-estimate the price

informativeness of each bin on this sub-sample.

Figure 5 reveals two striking features. First, price informativeness of firms in the whole

sample strongly declines with R&D intensity for firms above the 5th-decile. Second, this

pattern disappears if we look at S&P 500 firms (the orange bars). In this case, the price

information of the highest tech decile in the S&P 500 differs little from other S&P 500 firms

and if anything, is slightly higher at the end of the R&D intensity distribution. Therefore,

while high tech firms in the full sample have much less future earnings information impounded

in their prices, this is not the case for S&P 500 firms.

Figure 6: Share of High-Tech Firms based on Decile of R&D Intensity: S&P 500
vs Whole Sample. We compare the average research intensity of firms that were ever in S&P 500
and firms there were never in S&P 500 over time. Research intensity is defined as a firm’s R& D annual
expenditures, divided by the firm’s total assets. The sample contains publicly listed nonfinancial firms from
1960 to 2010.

Next, we calculate the fraction of firms in each tech decile, at each date. Figure 6 plots

the share of firms in the whole sample that are in the top decile and the share of S&P 500
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firms in that same top decile, at each date.

In both groups, the fraction of firms investing more in R&D is increasing steadily. The

share of high-tech has grown slightly more rapidly in the full sample than in the S&P 500

sample. Until the early 80’s, the high-tech shares for S&P 500 and non-S&P 500 firms

track either other closely. Then, in the mid-80’s trends diverge. The share of high-tech

firms increases more in the whole sample, essentially driven by a rapid entry rate of tech

firms (extensive margin), rather than an increase in R&D effort by incumbents (Begenau and

Palazzo, 2017). Then, in the early 2000’s, the share of tech firms in the S&P 500 increases

and the shares converge again. In the last decade, tech shares diverge, with more entry

of smaller tech firms in the whole sample. But for both samples, this trend toward more

research or more tech suggests that firms, on average, should be getting harder to value.

To quantify how much this technology composition change can explain of the price infor-

mativeness trends, we do the same type of prediction exercise as we did in the last section,

for size. At each date, we multiply the share of whole sample firms in each tech decile by

the average price informativeness for that decile βy and add them together. That gives us

ˆbeta
tech

t , which is the degree of price informativeness that the tech composition alone would

explain. Then, we do the same for only the S&P 500 firms. We calculate tech-predicted

informativeness by multiplying the share of the S&P 500 that each tech bin comprises at

each date, by the average informativeness of the S&P 500 firms that tech decile. Formally,

tech-predicted informativeness ˆbeta
tech

t , is:

ˆbeta
tech

t =
∑

y∈[1,...,10]

βy × ShareF irmsy,t.

The βy is the average price informativeness, for all firms belonging to R&D intensity decile

y, R&D deciles are estimated using the whole panel of observations. The βy coefficients are

reported in Figure 5. ShareF irmsy,t is the fraction of firms in year t that belongs to R&D

intensity decile y.
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Figure 7: Predicted PI based on High-Tech: S&P 500 and Whole Sample. This
figure shows the evolution of predicted and actual price informativeness for S&P 500 firms and the whole
sample. For firms in the S&P 500 , we show in the dark-blue line the coefficient βt estimated from the
cross-sectional forecasting regression defined in eqn 1. The orange dotted-line reports the same result when
βt,5 is estimated for every listed firms (instead of restricting to S&P 500 ). The light-blue line and yellow

dashed-line plot the evolution of the predicted ˆbeta
tech

t computed in eqn 2.1. ˆbeta
tech

t is the weighted sum
of βy, where y corresponds to a tech-decile and weights correspond to the fraction of firms in the same

tech-decile in a given year. The light-blue line plot the evolution of ˆbeta
tech

t use the fraction of S&P 500
firms in each tech bin, at each date t, as weights; the yellow dashed-line uses the fraction of whole sample
firms in each tech bin as weights. Future earnings are measured here at 5-year horizons. The sample contains
publicly listed nonfinancial firms from 1962 to 2010.

2.3 Ruling Out Potential Explanations

Are stock prices more informative for less volatile firms? Perhaps a change in the

composition of high- and low-volatility firms can explain the divergence in S&P 500 and

non-S&P 500 price informativeness. To examine this hypothesis, we define firm volatility

as the standard deviation of its earnings (measured by EBIT) scaled by firm total assets.

Then, we sort the whole panel of data into deciles of cash-flow volatility. We find that the

correlation between size bins and volatility bins is indeed negative. In other words, larger

firms tend to be less volatile. However, the correlation is very small. For instance, a firm in

the largest decile of firm size has a two percentage point higher probability of being in the

first (lowest) decile of volatility.

Another way to gauge the importance of volatility is to compute price informativeness

for each of the ten volatility bins, as we did for size bins. As before, we run separate
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cross-sectional regression as in Eq. 3 for each volatility bin. Figure 8 shows no difference

in price informativeness across cash-flow volatility bins, with the exception of the highest

decile, which displays a slightly lower level of price informativeness. This force is nowhere

near strong enough to explain the large divergence in S&P 500 and non-S&P 500 price

informativeness.

Figure 8: Price Informativeness across Cash-Flow Volatility Bins. Price informativeness
is the ability to forecast future earnings (Eq 2). We run a separate regression for each year t = 1962, ..., 2010,
horizon k = 5 and bin interval [1/10), ...[10/10] partitioned by 1/10 deciles. Firms are split by cash-flow
volatility measured as the standard deviation of EBIT scaled by total asset. Price informativeness is the av-
erage value of βt,y×σy,tlog(M/A), where σy,tlog(M/A) is the cross-sectional standard deviation of log(M/A)
in year t and volatility interval y. Future earnings are measure here at 5-year horizons. The sample contains
publicly listed nonfinancial firms from 1962 to 2010.

Is information flowing to S&P 500 industries? One plausible explanation is that the

market is getting better at pricing some types of firms. Perhaps health care or online firms

were hard to price initially as they are more intensive in research and development, or some

changes in industry-specific regulation made S&P 500 firms easier to price. These features

are all highly correlated with a firm’s industry. So, we begin by asking if the growth or

decline in price informativeness is determined by an industry effect.
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There are 253 different SIC3 codes in Compustat and 173 in S&P 500. The median

number of firms per industry is 12, but the distribution is very skewed. Looking at the

industries with strictly more than the median number of firms, we end up with only 24

distinct industries. We call these 24 industries SPindustries. Then, we restrict our sample

only to firms in these 24 SPindustries. Within this restricted sample, we compare price

informativeness trends of firms that appear in the S&P 500, at some point (542 firms) with

those in the same industries, that do not (7,768 firms).

Non-S&P 500 firms in S&P 500 industries do not experience a rise in price informa-

tiveness. From 1962 to 2010, price informativeness for these firms falls from 0.03 to 0.01.

S&P 500 firms in these same industries do experience the improvement in price efficiency.

Over the same period, their trend price informativeness rises from 0.07 to 0.11.

If we do the same exercise with every industry represented in the S&P, instead of just the

24 most represented industries, we get similar results. This difference in price informativeness

does not appear to be driven by differences in industries. This evidence suggests that the

increase in price information for S&P 500 firms does not result from S&P 500 firms being

in more informative industries.

Is information flowing specifically to firms currently in the S&P 500? No, this

does not seem to be a result about firms currently in the S&P 500 having greater price

informativeness or a different trend. Instead, the rise in price informativeness seems to affect

the type of firm that would be in the S&P 500. We show this result in two ways and then

continue to investigate the question of what firm characteristics determine rising or declining

price informativeness.

To look at the question of whether there is something specific to firms in the S&P 500,

we perform two different tests. First, we look at firms, which at some point will be part of

the S&P 500, and compare their price informativeness trend, (a) during the period where

they are in the S&P 500; and (b) during the period where they are not. Second, we look

at firms that share similar characteristics to S&P 500 firms but will never be part of the

S&P 500 and compare their price informativeness trend to firms in the S&P 500 with the

same characteristics.
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For the first exercise, we estimate two separate regressions of Equation 1 for the period

of the firm life when it is in the S&P 500 and when it is not. Figure 9 shows that, among the

sample of firms that are in the S&P 500 at some point in their life, the trend in price infor-

mativeness is similar for firms currently in and out of the S&P 500. In levels, informativeness

is actually higher when a firm is not in the S&P 500, than when they are in.

Figure 9: Price Informativeness Trend While in and out of S&P 500 is Similar.
The sample for both lines contains publicly listed nonfinancial firms that have been in the S&P 500 at some
time between 1962 and 2010. The grey line (bottom) is the firms currently in the S&P 500 , at the date
listed on the x-axis. The red line (top) is firms not currency in the S&P 500 . The black and red dashed
lines are linear trends that fit the grey and red time trends, respectively. Price informativeness is obtained
separately for each group by running the forecasting regression (eqn 1) for horizon k = 5 and calculating
the product of the forecasting coefficient and the cross-sectional standard deviation of market prices in year
t using eqn 2.

For the second exercise, we want to investigate whether firms with similar characteristics

have similar changes in their stock price informativeness. We proceed in two steps. First,

for the universe of listed firms every year, we estimate the probability of being part of the

S&P 500. To do so, we construct a dummy variable ˜SP500i,t, which takes the value of one

if firm i is in the S&P 500 at time t and zero otherwise. Then, we estimate α, δ, φ and γ in

the following equation:

˜SP500i,t = αi + δt + φtlog(M/A) + γtlog(Asset) + εi,t (4)

We then use the estimates of α, δ, φ and γ to construct predicted probabilities of being in
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the S&P 500. We denote this probability as ̂SP500i,t.

Second, we partition the sample into firms similar to S&P 500 firms and firms actually

in the S&P 500 and compute price informativeness for each subsample using Equation 2.

The median score of ̂SP500i,t for firms in the S&P 500 is around 0.6. Therefore, we restrict

the sample to all firms higher than this threshold. This leaves us with 3,105 distinct firms,

among which 60% will be indeed at some point in their life in the S&P 500 and 40% that will

not. We call firms not in the S&P 500 but with a ̂SP500i,t ≥ 0.6 firms similar to S&P 500

firms.

We find that firms that will never be in the S&P 500 but are relatively close in terms of

market capitalization and size exhibit a nearly identical rise in price informativeness to the

S&P 500 firms. While the level of price informativeness is somewhat different, we learn that

there is something about the type of firm in the S&P 500, the size or book-to-market, that

draws in more analysis over time. For some reason, firms with similar characteristics that

will never be S&P 500 firms have lower informativeness levels, but a similar informativeness

growth rate.

Do the informativeness trends reflect changes in institutional ownership? The

idea that price informativeness rises when more institutional owners hold the asset is appeal-

ing, and supported by our data. However, the time trends in institutional ownership of S&P

500, relative to non-S&P 500 firms are not consistent with the changes price informativeness

we observe. Institutional owners are better at pricing assets. But they don’t explain the

trends we see.

For sure, assets that institutions hold in abundance have prices that better predict future

earnings. In our data set, the 500 firms with the highest level of institutional ownership have

a price informativeness measure that is roughly three times that of the rest of the sample

(0.04 vs. 0.01). However, when we estimate the effect of institutional ownership and control

for it, we still find that S&P 500 price informativeness increases, while the rest of the sample

declines.

In summary, our analysis has uncovered the following trends: Price informativeness rose

for the large firms in the S&P 500. For the rest of the sample, price informativeness declined.
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Informativeness rose even more for high-tech, S&P 500 firms and fell more for small, high-

tech firms. But this difference in tech intensity explains only a small amount of the price

informativeness divergence. This is primarily a firm size effect.

The question of whether these facts are consistent with efficient use of data is really

a question about what rational agents, who choose data allocations, should or should not

choose to process data about. To answer these questions, it is useful to set up a model.

The model explains what makes a firm’s data valuable and predicts how the decisions to

acquire and process data should change over time, as large firms grow and data becomes

more abundant. Therefore, the next section sets up, solves and explores the properties of a

model of data choice and portfolio choice.

3 A Model to Interpret Patterns In Price Information

The data reveal two opposing trends: an increase in the informativeness of S&P 500 firms,

that appears to be driven by a composition effect, and a decline in the informativeness of

small firms, especially small high-tech firms. Given the growth in computing speed, data

availability, and human resources devoted to the financial sector, it is puzzling that many

firms are priced less accurately today than such firms were in the past. Why wouldn’t rising

data processing ability lift all price informativeness? Furthermore, why does the trend to

more high-tech firms affect large and small firms differently?

We explore a simple explanation for these facts: Investors are rationally allocating their

data processing ability, in the face of growing data processing technology and changing firm

characteristics. We use a model of data allocation and portfolio choice to show that this

explanation is consistent with our stylized facts. The key insight we get from this model is

that the growth in large firm size can draw data analysis away from small firms.

To explore data allocation and its effect on prices, we need an equilibrium model with

multiple assets and agents who choose how much data to process about each asset. If we

assumed, exogenously, that information processing is directed at particular assets, it would

not explain why some prices are becoming more efficient and others are not. Instead, we

adapt the framework of Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016) to predict
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where data should flow. After adding a big data specific constraint and growing large firms,

the model teaches us about how a profit maximizing investor should use data processing and

invest, and how this should affect the information contained in equilibrium prices.

Assets The model features 1 riskless and n risky assets. The price of the riskless asset

is normalized to 1 and it pays off r at the end of each period. One share of a risky asset

is a claim to the random payout d̃jt at the end of the period. For simplicity, we assume

that these asset payoffs are independent: d̃jt ∼ iidN(µ,Σ). The riskless asset pays a known

amount 1 + r at the end of the period.

There are n risky assets, one for each of the firms in the economy. Each share of a

risky asset j is a claim to the payoff d̃jt. Each risky asset has a stochastic supply given

by x̄j + x̄jt, where noise x̄jt is normally distributed, with mean zero, variance σx, and no

correlation with other noises: the vector of x̄jt’s is x̄t ∼ N (0, σxI). As in most noisy

rational expectations equilibrium model, the supply is random to prevent the price from

fully revealing the information of informed investors. This randomness might be interpreted

as investors in the market trading for hedging reasons that are unrelated to information, as

in Manzano and Vives (2010).

Portfolio Choice Problem Each period, a new continuum of atomless investors is born.

Each investor is endowed with initial wealth, W0.9 They have mean-variance preferences

over ex-post wealth, with a risk-aversion coefficient ρ. Let Ei and Vi denote investor i’s

expectations and variances conditioned on all interim information, which includes prices and

signals. Thus, investor i chooses how many shares of each asset to hold, qit to maximize

interim expected utility, Ûit:

Ûit = ρE[Wit|Iit]−
ρ2

2
V [Wit|Iit] (5)

subject to the budget constraint:

Wit = rW0 + qit(d̃t − ptr), (6)

9Since there are no wealth effects in the preferences, the assumption of identical initial wealth is without
loss of generality. The only consequential part of the assumption is that initial wealth is known.
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where qit and pt are n× 1 vectors of prices and quantities of each asset held by investor i.

Data Processing Choice Investors can acquire information about asset payoffs d̃t by

processing digital data. Digital data is coded in binary code. Investors face a constraint

B̄t on the total length of the binary code they can process. This constraint represents the

frontier information technology in period t. One {0, 1} digit encodes 1 bit of information.10

Thus units of binary code length are bits.

All data processing is subject to error. The most common model of processing error is

the parallel Gaussian channel.11 For a Gaussian channel, the number of bits required to

transmit a message is related to the signal-to-noise ratio of the channel. Clearer signals can

be transmitted through the channel, but they require more bits. The relationship between

bits and signal precision for a Gaussian channel is bits = 1/2log(1 + signal-to-noise) (Cover

and Thomas (1991), theorem 10.1.1). The signal-to-noise is the ratio of posterior precision

to prior precision.

Investors choose how to allocate their capacity among n risky assets. Let bit be a vector

whose jth entry, bit(j) > 0, is the number of bits processed by agent i at time t about d̃jt.

Let ηbit represent the realized string of zeros and ones that investor i observes. The data

processing constraint is then

N∑
j=1

bit(j) ≤ B̄t where bit(j) ≥ 0 ∀i, j, t. (7)

Information sets and equilibrium The information set the investor has when he makes

investment decisions is It = {It−1, η
b
it, pt}. The ex-ante information set includes the entire

sequence of data processing capacity: I0 ⊃ {B̄t}∞t=0.

An equilibrium is a sequence of bit string lengths choices, {bit} and portfolio choices {qit}

by investors such that

10A byte is 8 bits, which allows for 256 possible sequences of zeros and ones, enough for one byte to describe
an alpha-numeric character or common keyboard symbol. Megabytes are 106 bytes. If your computer can
store 1GB in its RAM, that is 109 bytes, or a binary code of length 8× 109.

11As Cover and Thomas (1991) explain, “The additive noise in such channels may be due to a variety
of causes. However, by the central limit theorem, the cumulative effect of a large number of small random
effects will be approximately normal, so the Gaussian assumption is valid in a large number of situations.”
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1. Investors choose bit string lengths bit ≥ 0 to maximize E[Ûit|I+
t−1], where Ûit is defined

in (5), taking the choices of other agents as given. This choice is subject to (7).

2. Investors choose their risky asset investment qit to maximize E[U(cit)|ηfit, pt], taking

asset prices and others’ actions as given, subject to the budget constraint (6).

3. At each date t, the vector of equilibrium prices pt equates aggregate demand (left side)

with supply (right) to clear the market:

∫
i

qijtdi = x̄jt + xjt, (8)

3.1 Solving the Model

We solve the model in four steps. We sketch each step here and relegate details to the

appendix for the interested reader. Because units of signal precision are easier to work with

than bits, we define Kijt to be the precision of the signal ηijt inferred from the data processed

by investor i about firm j at time t. Let Kit be the diagonal matrix with Kijt on its jth

diagonal and ηit be the vector of all signals observed by i. Finally, let K̄t ≡
∫
i
Kitdi be the

matrix of the average investors’ signal precision.

Step 1: Bayesian updating. There are three types of information that are aggregated

in time-2 posteriors beliefs: prior beliefs, price information, and (private) signals from data

processing. We begin with price information. We conjecture and later verify that a transfor-

mation of prices pt generates an unbiased signal about the risk factor payoffs, ηpt = d̃t + εpt,

where εp ∼ N(0,Σp), for some diagonal variance matrix Σp.

Next, we construct a single signal that encapsulates the information conveyed in bit

strings. Recall that in a Gaussian channel with prior information precision Σ−1, the number

of bits required to transmit a signal with a given precisionKit is bits = 1/2·log(1+ΣKit). The

data contains the true value of d̃t. But data processing is imperfect and introduces Gaussian

noise. Processed fundamental data is observed as ηfit = d̃t + ε̃fit, where the channel (data

processing) noise is a normal, random variable: ε̃fit ∼ N(0, K−1
it ). Substituting this mapping

into (7) yields a new data processing constraint in terms of signal precisions Kit ≥ 0:
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N∑
j=1

log(1 + ΣKijt) ≤ 2B̄t. (9)

Finally, Bayes’ law tells us how to combine price signals, data signals and prior beliefs.

The resulting posterior beliefs about z are normally distributed with variance var[d̃t|Iit] =

(Σ−1 + Σ−1
p +Kit)

−1 and mean

E[d̃t|Iit] = var[d̃t|Iit](Σ−1µ+Kitηit + Σ−1
p ηpt). (10)

Step 2: Solve for the optimal portfolios, given information sets and issuance.

Substituting the budget constraint (6) into the objective function (5) and taking the first-

order condition with respect to qit reveals that optimal holdings are increasing in the in-

vestor’s risk tolerance, precision of beliefs, and expected return:

qit =
1

ρ
var[d̃t|Iit]−1(E[d̃t|Iit]− ptr). (11)

Step 3: Clear the asset market. Substitute each agent j’s optimal portfolio (11) into

the market-clearing condition (8). Collecting terms and simplifying reveals that the vector

of equilibrium asset prices are linear in payoff risk shocks and in supply shocks:

ptrt = At + Ctd̃t +Dtx̃t (12)

where d̃t is the vector of expected dividends and x̃t is the vector of asset supply shocks at

time t. Coefficients At, Ct, and Dt are in the Appendix.

Step 4: Solve for data processing choices. The information choice objective comes

from substituting in the optimal portfolio choice and equilibrium price rule, and then taking

the ex-ante expectation over the signals and price that are not yet observed at the start of

the period. This yields an objective that is linear in signal precisions:

max
Ki1t,...,Kint≥0

n∑
j=1

Λ(K̄jt, x̄j)Kijt + constant (13)
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where Λ(K̄jt, x̄j) =
¯̂
Σj[1 + (ρ2/τx + K̄jt)

¯̂
Σj] + ρ2x̄2

j
¯̂
Σ2
j , (14)

and
¯̂
Σ−1
j =

∫
Σ̂−1
ti (j, j)di is the average precision of posterior beliefs about asset j. Its inverse,

average variance
¯̂
Σj is decreasing in K̄jt. The appendix shows two important properties. The

first is strategic substitutability in data choices: ∂Λ(K̄jt, x̄j)/∂K̄jt < 0. The second is returns

to asset scale in data processing: ∂Λ(K̄jt, x̄j)/∂x̄j > 0.

Maximizing a weighted sum (13) subject to a concave constraint (9) yields a corner

solution. The investor optimally processes data about only one asset. Which asset to learn

about depends on which has the highest marginal utility Λ(K̄jt, x̄j). If there is a unique

asset j∗ = argmaxjΛ(K̄jt, x̄j)j, then the solution is to set Ki,j∗,t = Σ−1(eB̄t−1) and Kilt = 0,

∀l 6= j∗. But when capacity B̄t is high enough, there will exist more than one asset j that

is learned about. Let Mt ≡
{
K̄jt > 0

}n
j=1

be the set of assets learned about. Then an

equilibrium is a set of average precisions for each asset j,
{
K̄jt

}n
j=1

such that

Λ(K̄jt, x̄j) = Λ̄ ∀j ∈Mt (15)

In this equilibrium, investors are indifferent about which single asset j ∈M to learn about.

But the aggregate allocation of data processing is unique (Kacperczyk, Van Nieuwerburgh,

and Veldkamp, 2016).

3.2 Understanding Trends in Price Informativeness

We start by setting up the puzzle that motivates the paper. If faster computers can process

ever more data over time, why haven’t all firms prices benefited from the increase in price

informativeness? We show that, although investors prefer to learn about large firms, more

data does not make them want to learn less about small firms. Instead, all firms should

experience an increase in price informativeness. Thus an increase in the efficiency of the

financial sector in processing data is not a complete explanation for the trends in the data.

The second set of results offers a solution. It shows that if large firms grow larger, as they

do in our data, this trend alone can explain the composition effect driving up S&P 500 price

informativeness, as well as a decline in the informativeness of smaller assets’ prices. What we

learn from this is that our empirical findings do not imply ineffectual, inefficient or irrational
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use of technology. Because large firms are growing, modest growth in data technology can

be reconciled with the deterioration of small firms’ price information.

Big Data Alone Should Increase Informativeness of All Prices If investors par-

ticularly like processing data about large firms, then perhaps when they have more data

processing ability, they direct it towards these large firms. That turns out not to be the

case. The next result shows why growth in data processing alone cannot explain the facts

about price informativeness.

In many cases, after all data processing capacity is allocated, there will be multiple risks

with identical Λ(K̄jt, x̄j) weights. That is because the marginal utility of signal precision, Λi,

is decreasing in the average information precision K̄i. In this case, investors are indifferent

about which risk to learn about. When financial data processing efficiency B̄t rises, more

bits are allocated to all the assets in this indifference class.

Lemma 1 Technological progress: Intensive Margin. As B̄t grows, the average in-

vestor learns weakly more about every asset j,
∫
Kij(t+1)di ≥

∫
Kijtdi, with strict inequality

for all assets that are learned about:
∫
Kij(t+1)di >

∫
Kijtdi ∀j : Kijt > 0 for some j.

Figure 10: Equilibrium Allocation of Data Processing. Shaded area represents aggregate
allocation of data processing. Moving from left to right represents an increase in data processing capacity.
More processed data lowers the marginal utility of additional data processing. That causes data on other
assets to be processed.

This type of equilibrium is called a “waterfilling” solution (Cover and Thomas, 1991).

Figure 10 illustrates how the equilibrium allocation maintains indifference (equal marginal

utility) between all assets being learned about. The equilibrium uniquely pins down which

risk factors are being learned about in equilibrium, and how much is learned about them, but
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not which investor learns about which risk factor. Waterfilling arises in other information

choice problems, such as Kacperczyk, Nosal, and Stevens (2015).

Lemma 2 Extensive Margin: With more bits, more assets are learned about. If

x̄i is sufficiently large ∀i, the set of assets learned about Mt does not contain all assets, and

B̄t+1 − B̄t is sufficiently large, then the set of assets Mt+1 learned about in t + 1 is larger

than the set Mt.

A key force is strategic substitutability in information acquisition, an effect first noted

by Grossman and Stiglitz (1980). The more other investors learn about a risk, the more

informative prices are and the less valuable it is for other investors to learn about the same

risk. If one risk has the highest marginal utility for signal precision, but capacity is high,

then many investors will learn about that risk, causing its marginal utility to fall and equalize

with the next most valuable risk. With more capacity, the highest two Λ(K̄jt, x̄j)’s will be

driven down until they equal the next highest Λ, and so forth. But when K increases, the

marginal utilities of all risks must remain equated. Since learning about any risk reduces

its marginal utility, all risks must have weakly more learning about them so that all their

marginal utilites remain equal and the economy stays at an optimum.

When large firms get larger, the informativeness of small firm prices falls. The

growth in data processing is not the only trend that has changed information processing

incentives. At the same time, there has been a change in firm size. It’s the growth of large

firms that can explain why the informativeness of small firms has not grown. For now, we

hold B̄t fixed and only consider the change in firm size. After we have explored each force

separately, we consider their combined effect.

The following result shows that if an asset grows larger, investors process more data

about it, on average. But for other assets whose size does not grow, the amount of data

processed falls.

Lemma 3 When Big Firms Grow, Small Firm Data Analysis Declines. For Kt

and x̄j sufficiently high, an increase in the size of firm j increases the amount learned about j
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and reduces the amount learned about all other assets: ∂K̄jt/∂x̄j > 0 and ∂Ki/∂x̄j ≤ 0 ∀i 6=

j.

The marginal value of signal precision K̄jt is Λ(K̄jt, x̄j), from (14). Recall that ∂Λ(K̄jt, x̄j)/∂x̄j =

ρ2 ¯̂
Σ2
j > 0. So, larger assets are always more valuable targets for data processing. Next con-

sider the equilibrium data allocation. Equation 14 implies that more capacity is allocated

to the larger asset in equilibrium as well.

The fall in data processed about other firms is the consequence of more data about j

and a fixed budget for bits of data. If more bits are processed about j, less bits must be

processed for some other asset. That decline in bits processed is equally spread across other

assets so as to equate the marginal utility of bit processing for all.

Fundamentally, this preference for more data about larger assets comes from the fact

that information has increasing returns to scale. A larger asset will be a larger fraction of an

average investor’s portfolio. One could use all data to learn about a small fraction of one’s

portfolio value. But that is not as valuable as using data processing to reduce uncertainty

about an asset that represents a large fraction of one’s portfolio risk and a large fraction of

potential profit. The same bit of data can evaluate 1 share or 1000 shares equally well. That

makes data that can be applied to many units of asset value – data on large firms – more

valuable.

Social welfare. Underlying the paper is the presumption that higher price informativeness

is valuable. While there are many mechanisms that justify that link, one might question

whether the improvement in some funds’ information can compensate for others’ decline.

In Appendix C, we explore a model where entrepreneurs’ exert more effort in firms whose

prices reflect more accurate valuation information. In such a world, investors learn too much

about large firms, relative to what a planner would choose. But the extent of the social

cost depends on how future computing evolves. The gap between individual incentives and

the social optimum will be influenced by how much integrated computing creates efficiency

returns to scale in information processing.
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3.3 Numerical Example

To provide a visual representation of our results, we consider a two-firm numerical example.

We explore the effects of an exogenous increase in data processing and large firm size.

For parameters, risk aversion is ρ = 4; the inverse variance of the dividend payoff is

Σ−1 = 1; the inverse variance of asset supply shock is τx = 3. To think about firm size

effects, we need a large firm that grows, relative to a small firm. x̄1 and x̄2 both start at 1.

But barx1, the large firm grows by 0.1 each period. The small firm size stays constant. The

total data processing capacity grows at a constant rate each period, starting at Kt = 8 and

ending at Kt = 16. We did a handful of robustness checks by varying parameters within an

order of magnitude and found qualitatively similar results.

Figure 11 shows that when both data processing and large firm size grow, the model

can explain the divergence in S&P 500 (large firm) and non-S&P 500 (small firm) price

informativeness. Of course, this does not prove that the model is correct or that every

parameterization of the model can explain this result. In this example, the key is that data

processing growth is slow enough that the amount of data processing about the small firm

declines. When data processing about small firms declines, the informativeness of small firm

prices declines as well. Thus, this numerical example demonstrates the possibility that this

model can speak to the rise in price informativeness of S&P 500 firms and the decline of

price informativeness among non-S&P 500 firms, observed in the data.

Figure 11: Optimal Data Choices Can Explain Informativeness Divergence. The
figure plots the weight on dividend innovations from the price equation, Ct in eq. (12), from a 2-asset model
where ρ = 4, Σ−1 = 1, τx = 3, x̄1 starts at 4, x̄2 starts at 1, and both grow by 0.1 each period. Kt increases
linearly from 8 to 16.
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Information Choices about High-Tech Firms Since the effect of high-tech firms was

not central to explaining the main fact of the paper – the divergence in price informativeness

– we did not incorporate it in the model. However, in results available on request, we model

high-tech firms as firms with higher payoff uncertainty. We find that for large high-tech

firms, size dominates the data choice, and informativeness rises. But for small, high-tech

firms, not only does the small size cause these firms’ data to be crowded out, but the effect

for high-tech firms is even larger than for low-tech ones. Although the quantitative effect of

high-tech in the aggregate informativeness trend was small, it is there, and the same model

could explain why.

Of course, none of this proves that these are the forces responsible for this trend. This

model is only meant to show that the decline in informativeness for small firms need not

imply irrationality or financial frictions. The model does offer one coherent way to think

through the kinds of forces that might be at work for optimizing agents to produce the price

information trends we document.

4 Conclusion

Technology and new ways to use data are transforming financial markets. How might this

affect asset prices? Since new technology is primarily information technology, we look for ev-

idence that the information content of prices is changing. It appears that big data technology

has uneven effects on large and small firms.

Our data reveal that price informativeness is trending upward, but only for large firms.

For others, there is a stagnation, or even slight decline. Thus, the rise in price informa-

tiveness of S&P 500 firms appears to be driven by a composition effect, as the firms in the

S&P 500 become larger. These larger firms have more informative financial prices. But the

informativeness of a firm of a given size has not increased perceptibly.

To understand these facts, we use a model to explore the logical consequences of two

long-run trends. One trend is an increase in the efficiency of data processing over time.

That is important to consider because when people talk about the financial sector becoming

more efficient, often that is associated with greater information efficiency, suggesting the
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more information is being discovered, processed and aggregated. The second trend is the

well-documented fact that large firms are growing larger. The trend holds also for the

publicly-listed firms in our sample. Our model clarifies why such large firms’ data is more

valuable to process. As they grow larger, investors’ optimal allocation of data processing

shifts towards these growing firms. As more data is processed and used by investors to trade,

the price informativeness of such firms rises. The combination of the two forces can explain

the joint evolution of large and small firm price informativeness.

What we learn is that technology does not have a uniform effect on all firms. Like with

any technological change, there are winners and losers. Our paper helps explain who wins,

who loses, and why.
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A Appendix

B Model Solution Details

Price Coefficients: Equating supply and demand from (11), we get∫
1

ρ
Σ̂−1
t

(
E[d̃t|Iit]− ptr

)
= x̄+ xt (16)

where Σ̂−1
t ≡ V ar[d̃t|Iit]. If we then substitute in the conditional expectation from (10), and use

the definition of the price signal ηp = B−1
t (ptr −At), we obtain

pr = Σ̂t

[
Σ−1µ+

∫
Kitηitdi+ Σ−1

p B−1
t (pt −At)− ρ(x̄+ xt)

]
(17)

Notice the price p on the left and right side of the equation. The term on the right is from the fact

that agents use price as a signal. Next, we collect terms in p. We also use the fact that since signals

are unbiased, irrespective of precision,
∫
Kitηitdi = K̄td̃t. The resulting equation is (12), where

At = Σ̂t(Σ
−1µ− ρx̄) (18)

Ct = I − Σ̂tΣ
−1 (19)

Dt = −Σ̂t(ρI +
1

ρσ2
x

K̄t) (20)

where K̄t ≡
∫
Kitdi Price information is the signal about the payoff vector d̃t contained in

prices. The transformation of the price vector pt that yields an unbiased signal about d̃t is

ηp ≡ B−1
t (ptr − At). The signal noise in prices is εp = C−1

t Dtx. Since we assume x ∼ N(0, σxI),

the price noise is distributed εp ∼ N(0,Σp), where Σp ≡ σxC
−1
t DtD

′
tC
−1′

t . Substituting in the

coefficients Ct and Dt shows that the signal precision of prices is Σ−1
p = K̄tK̄t/(ρ

2σx) is a diagonal

matrix. The jth diagonal element of K̄t is the average capacity allocated to each asset j at date t.

Computing ex-ante expected utility: Substitute optimal risky asset holdings from equation (11)

into the first-period objective function to get: U1j = rW0+1
2E1

[
(E[d̃t|Iit]− ptr)Σ̂−1

t (E[d̃t|Iit]− ptr)
]
.

Note that the expected excess return (E[d̃t|Iit]− ptr) depends on signals and prices, both of which

are unknown at time 1. Because asset prices are linear functions of normally distributed shocks,

E[d̃t|Iit] − ptr, is normally distributed as well. Thus, (E[d̃t|Iit] − ptr)Σ̂
−1
t (E[d̃t|Iit] − ptr) is a

non-central χ2-distributed variable. Computing its mean yields:

U1j = rW0 +
1

2
trace(Σ̂−1

t V1[E[d̃t|Iit]− ptr]) +
1

2
E1[E[d̃t|Iit]− ptr]′Σ̂−1

t E1[E[d̃t|Iit]− ptr]. (21)
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Note that in expected utility (21), the choice variables Kijt enter only through the posterior

variance Σ̂t and through V1[E[d̃t|Iit] − ptr] = V1[d̃t − ptr] − Σ̂t. Since there is a continuum of

investors, and since V1[d̃t−ptr] and E1[E[d̃t|Iit]−ptr] depend only on parameters and on aggregate

information choices, each investor takes them as given.

Since Σ̂−1
t and V1[E[d̃t|Iit]− ptr] are both diagonal matrices and E1[E[d̃t|Iit]− ptr] is a vector,

the last two terms of (21) are weighted sums of the diagonal elements of Σ̂−1
t . Thus, (21) can be

rewritten as Ui = rW0 +
∑

j ΛjΣ̂
−1
t (j, j)−n/2, for positive coefficients Λj . Since rW0 is a constant

and Σ̂−1
t (j, j) = Σ−1(j, j) + Σ−1

p (j, j) +Kij , the information choice problem is (13). From now on,

we will use the subindex j to refer to the (j, j) element of a matrix, so Σ−1(j, j) = Σ−1
j .

B.1 Proofs

Proof of Lemma 1. From step 4 of the model solution, we know that when there is a unique

maximum Λlt the optimal information choice is Kilt = Kt = Σ−1(exp B̄t − 1) if Λlt = maxj Λjt,

and Kijt = 0, otherwise. If multiple risks achieve the same maximum Λl then all attention will be

allocated amongst those risks, but each investor would learn about one single risk.

First, we show that value of learning about asset j falls as the aggregate capacity devoted

to studying it increases: ∂Λ(K̄jt, x̄j)/∂K̄jt < 0. This is the same strategic substitutability in

information as in Grossman and Stiglitz (1980). The solution for Λj is given by (14). It is clearly

increasing in K̄jt directly. But there is also an indirect negative effect through
¯̂
Σj . Recall that

by Bayes’ Law, the average posterior precision is
¯̂
Σ−1
j = Σ−1

j + Σ−1
pj + K̄jt and we know that

σ−1
pj = K̄2

jt/(ρ
2σx). Thus,

∂
¯̂
Σj

∂K̄jt
< 0. To sign the net effect, it is helpful to rewrite Λj as

Λj =
¯̂
Σ2
j

[
¯̂
Σ−1
j + ρ2(1/τx + x̄2

j ) + K̄jt

]
Substituting in

¯̂
Σ−1
j = Σ−1

j + K̄2
jt/(ρ

2σx) + K̄jt, we get

Λj =
Σ−1
j + K̄2

jt/(ρ
2σx) + ρ2(1/τx + 2x̄2

j ) + 2K̄jt

(Σ−1
j + Σ−1

pj + K̄jt)2

Finally, the partial derivative with respect to K̄jt is

∂Λj
∂K̄jt

=
(2K̄2

jt/(ρ
2σx) + 2)

¯̂
Σj − (

¯̂
Σj + ρ2(1/τx + 2x̄2

j ) + K̄jt)2(2K̄2
jt/(ρ

2σx) + 1)

¯̂
Σ3
j

=
−K̄2

jt/(ρ
2σx)

¯̂
Σj − 2(ρ2(1/τx + 2x̄2

j ) + K̄jt)(2K̄
2
jt/(ρ

2σx) + 1)

¯̂
Σ3
j

< 0

Since the numerator is all terms that can only be negative and the denominator is a sum of

precisions, that can only be positive, the sign is negative. This proves that Λj is decreasing in K̄jt.
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Now, in addition to
∂Λj
∂K̄jt

< 0, we know that all capacity must be used, since we are maximizing

a linear objective subject to a concave constraint. Then for some asset attention has to increase,

which implies that the new maximum Λ is going to be lower, so by the definition of equilibrium

attention on all the assets that are learned about must increase as well. Specifically, lets consider

two cases:

Case 1: Mt =Mt+1: no new assets are added to the set of learned assetsM. Then allocation

of attention in all the assets that are learned about must increase, because if attention to one of

those assets decrease or stays the same, his Λ is going to be higher than the Λ of the assets for

which attention increased, which would contradicts the definition of equilibrium.

Case 2: Mt ⊂ Mt+1: At least one new asset (lets call it l) is added to the set of assets that

are learned about M. Then the new maximum Λ is lower than before, because Λ(K̄l,t+1, xl) <

Λ(0, xl) < max Λt. Then, attention in all the assets that were learned about in t increases, because

if not their Λ would be higher than the λl of the new asset in M, which again contradicts the

definition of equilibrium.

Proof of Lemma 2.

To show: If x̄i is sufficiently large ∀i, the set of assets learned about Mt does not contain all

assets, and B̄t+1 − B̄t is sufficiently large, then the set of assets Mt+1 learned about in t + 1 is

larger than the set Mt.

Suppose not. Then, there would be a unique maximum set Λj , ∀jεMt that is non-increasing, no

matter how large B̄t+1 is. Since there is a unique maximum, the equilibrium solution dictates that

all information capacity is used to study this set of risks. Thus the average precision of information,

K̄jt ≡
∫
Kijtdi becomes arbitrarily large ∀jεMt.

However, the value of learning about asset j falls as the aggregate capacity devoted to studying

it increases: ∂Λj/∂K̄jt < 0. Furthermore, as the supply of the risk factor x̄j becomes large,

∂Λj/∂K̄jt becomes an arbitrarily large negative number. Thus, for a sufficiently large x̄j , there

exists a K such that if K̄jt = K, then Λj < Λj′ for some other risk j′. But then, Λi is not a unique

maximum in the set of {Λl}Nl=1, which is a contradiction. Thus the set of assets learned about

Mt+1 must grow.

Proof of Lemma 3. As in the previous lemma, we know that when there is a unique maximum

Λlt the optimal information choice is Kilt = K = Σ−1(exp B̄t − 1) if Λlt = maxj Λjt, and Kjlt = 0,

otherwise. If multiple risks achieve the same maximum Λl then all attention will be allocated

amongst those risks, but each investor would learn about one single risk. Therefore, there are three

cases to consider.
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Case 1: Λlt is the unique maximum Λjt. Holding attention allocations constant, a marginal

increase in x̄l will cause Λlt to increase:

dΛ(K̄jt, x̄j)/x̄l|K̄jt=constant = ρ2 ¯̂
Σ2
j > 0.

The marginal increase in x̄l will not affect Λl′t for l′ 6= l. It follows that after the increase in x̄l,

Λlt will still be the unique maximum Λjt. Therefore, in the new equilibrium, attention allocation

is unchanged.

Case 2: Prior to the increase in x̄l, multiple risks, including risk l, attain the maximum Λjt, with

Mt denoting the set of such risks. If x̄l marginally increases and we held attention allocations fixed,

then Λlt would be the unique maximum Λjt. If Λlt is the unique maximum, then more investors

have to learn about risk l, K̄lt increases, which implies fewer investors learn about any other risk

l ∈ Mt \ l, K̄l′t decreases. However, lemma B.1 shows that an increase in K̄lt would decrease Λlt.

Recall that K̄lt = Kilt for all investors who learn about asset l. This effect works to partially offset

the initial increase in Λlt as fewer investors will have an incentive to learn about l. In the rest of

the proof, we construct the new equilibrium attention allocation, following an initial increase Λlt

and show that even though the attention reallocation works to reduce Λlt, the net effect is a larger

K̄lt.

This solution to this type of convex problem is referred to as a “waterfilling” solution in the

information theory literature (See textbook by Cover and Thomas (1991)). To construct a new

equilibrium, we reallocate attention from risk l′ ∈M\ l to risk l (increasing the number of investors

who learn about l and as a result K̄lt, decreasing the number of investors who learn about l′ and

as a result K̄l′t). This decreases Λlt and increases Λl′t. We continue to reallocate attention from

all risks l′ ∈ M \ l to risk l in such a way that Λl′t = Λl′′t for all l′, l′′ ∈ M \ l is maintained. We

do this until either (i) all attention has been allocated to risk l or (ii) Λlt = Λl′t for all l′ ∈ M \ l.
Note that in the new equilibrium Λlt will be larger than before and the new equilibrium K̄lt will

be larger than before, while K̄l′t, l
′ ∈M \ l will be smaller than before.

Case 3: Prior to the increase in x̄l, Λlt < Λl′t for some l′ 6= l. Because Λlt is a continuous

function of x̄l, a marginal increase in x̄l, will only change Λlt marginally. Because Λlt is discretely

less than Λl′t, the ranking of the Λit’s will not change and the new equilibrium will maintain the

same attention allocation.

In cases one and three K̄lt does not change in response to a marginal increase in x̄l. In case

two K̄lt is strictly increasing in x̄l. Therefore, K̄lt is weakly increasing in x̄l.
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Proof of Lemma 4. Differentiating (19) a second time,

∂2Cjt
∂K2

j

= −
2ρ2Σj

(
3K2

j τ
2
xj + ρ2τxj(3Kj − Σj) + ρ4

)
(
K2
j τxj + ρ2(Kj + Σj)

)3

So as long as Kj ≥ Σj
3 , the numerator is positive and thus the second derivative is negative, which

completes the proof. �

C What Data Should Society Be Processing?

To our framework, we add real spillovers that can speak to social efficiency. Our stylized model

of the real economy is designed to show one possible reason why financial price informativeness

might have economic consequences. In this case, commonly-used compensation contracts that tie

wages to firm equity prices (e.g., options packages) also tie price informativeness to optimal effort.

Since investors are infinitesimal and take prices as given, they do not internalize the effect of their

information and portfolio choices on manager’s decision through price informativeness.

Firm Manager’s Problem At each date t, each firm manager solves a one-period problem.

The key friction is that the manager’s effort choice is unobserved by investors. The manager exerts

costly effort only because he is compensated with equity, whose value is responsive to his effort.

Because asset price informativeness governs the responsiveness of price to effort, it also determines

the efficiency of the manager’s effort choice.12

The profit of each firm j, d̃jt, depends on the firm manager’s effort, which we call labor ljt.

Specifically, the payoff of each share of the firm is d̃jt = g(ljt) + ỹjt, where g(l) = lφ, φ ≤ 1 is

increasing and concave and the noise ỹjt ∼ N(0, τ−1
0 ) is i.i.d. and unknown at t. Because effort

is unobserved, the manager’s pay wjt is tied to the equity price pjt of the firm: wjt = w̄j + pjt.

However, effort is costly. We normalize the units of effort so that a unit of effort corresponds to

a unit of utility cost. Insider trading laws prevent the manager from participating in the equity

market. Thus, each period, the manager chooses ljt to maximize

Um(ljt) = w̄j + pjt − ljt (22)

Each period, the firm j pays out all its profits d̃jt as dividends to its shareholders. We let d̃t

denote the vector whose jth entry is d̃jt.

Both the planner and the investor care more about large firms. The investor values data about

large firms more, all else equal, because a large firm, by definition, makes up a larger fraction of

12Of course, this friction reflects the fact that the wage is not an unconstrained optimal contract. The
optimal compensation for the manager is to pay him for effort directly or make him hold all equity in the
firm. We do not model the reasons why this contract is not feasible because it would distract from our main
point.
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the value of an average investor’s portfolio. The social planner values data about large firms more

because the output of each firm E[d̃jt]− ljt is scaled by firm size x̄j . In both cases, there are returns

to scale in information.

However, investors can rebalance their portfolio to hold more and more of the asset they learn

about, whereas the social planner takes the set of firms in the economy as given. This makes returns

to scale stronger for investors than for the social planner. Thus, investors prefer to process more

data about large firms than what the social planner would prefer. Note that the fact that there

are economic externalities is by construction. The result that the social planner favors more data

processing about small firms is not.

C.1 A Planner’s Problem with Parallel Investor Processing

The planner maximizes the total output by choosing the allocation of investor information acqui-

sition capacity, taking manager optimal effort decision and investor optimal portfolio decision as

given.13 Formally, the planner chooses aggregate signal precisions K1 and K2 to maximize

max
{K̄jt}

∑
j

x̄j

(
E[d̃jt]− ljt

)
(23)

s.t. Cjt = Γ(K̄jt) ∀ j and (24)∑
j

K̄jt = Kt (25)

Note that the constraint on processing power for the planner is linear in signal precision. This

is different that the constraint facing the individual investor. It represents the idea of parallel

computing and a continuum of investors. The computing of different investors is done indepen-

dently. If each investor can process a total of bI bits, which results in a signal of precision kI , then

producing a signal with double that precision requires two investors, each processing bI bits, each

producing a conditionally independent signal of precision kI . Bayes law tells us that if we combine

two conditionally independent, normal signals, each with precision kI , the total precision of the

optimally combined signals is 2kI . So, double the precision requires double the resources, implying

a linear constraint on signal precision.

The first order condition of this problem with respect to K̄jt is

x̄jΓ
−2(K̄jt)Γ

′(K̄jt)
(
(g′)−1

)′
(K̄jt)

(
g′(K̄jt)− 1

)
= µ (26)

where µ is the Lagrange multiplier, or shadow cost, of one additional unit of aggregate signal

precision.

13Assume investors have sufficient wealth that their marginal utility is vanishingly small and drops out of
planner objective.
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In general, equilibrium outcomes and constrained efficient allocation are different. We can see

this from the fact that the solutions to equations 15 and 26 do not coincide. But why are individual

and social choices different and what are the economics behind this difference?

If we substitute E[d̃jt] = g(ljt) = lφjt and then use the labor first-order condition (p′(l) = 1) to

substitute for l, we get a simplified planner problem:

max
{K̄jt}

∑
j

x̄j

((
φΓ(K̄jt)

) φ
1−φ −

(
φΓ(K̄jt)

) 1
1−φ
)

s.t.
∑
j

K̄jt = K

Merging the first order condition of the planner with respect to any two assets j, j′ we get

(
1− 1/Γ(K̄jt)

)
Γ(K̄jt)

φ
1−φΓ′(K̄jt)(

1− 1/Γ(K̄j′t)
)

Γ(K̄j′t)
φ

1−φΓ′(K̄j′t)
=
x̄j′

x̄j
(27)

Let F represent the marginal social value of an additional unit of data precision, per share of

the asset,

F (K̄jt) =
(
1− Γ−1(K̄jt)

)
Γ(K̄jt)

φ
1−φΓ′(K̄jt).

Then with two assets, we can express the social optimum simply as F (K̄2t)/F (K̄1t) = x̄1/x̄2.

C.2 Why the Social Optimum Involves Less Data on Large Firms

For the investor, the potential profits from learning more and more precise information are un-

bounded. But for a social planner, the gains to information from added efficiency are bounded.

From differentiating (19), we learn that
∂Cjt
∂K̄jt

> 0 and limK̄jt→∞Cjt = 1. Thus, an infinite amount

of data can only possibly make price informativeness equal to 1 at most. This offers finite social

welfare gains.

Lemma 4 The improvement in price informativeness from additional data processing

exhibits diminishing returns. If Kt is sufficiently large, then ∂2Cjt/∂K̄
2
jt < 0.

To ensure that the second order condition of the planner problem is satisfied, it must be that

F ′(K) < 0, which holds when K is sufficiently large. Inspecting the objective function of the

planner, it is easy to verify that the planner allocates more capacity to the larger asset, proportional

to its marginal social value, its supply x̄i. This observation is also verified in equation 27 using the

second order condition. The difference is governed by concavity of the production function.

The fact that the result rests on a sufficiently high level of data processing explains why this

phenomenon of informative large firm prices has grown over time. When K was small, the social
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planner valued large firm data more than the investor. As K grew larger, the stronger increasing

returns to data in large firms for investors kicked in, and large firm prices became more informative.

Let {K̄sp
jt }j and {K̄eq

jt }j denote the solution to the constrained planner and equilibrium. With

two assets, the following two equations fully characterize the two solutions when both assets are

learned about14

x̄1F (K̄sp
1t )− x̄2F (Kt − K̄sp

1t ) = 0

Λ(K̄eq
1t , x̄1)− Λ(Kt − K̄eq

1t , x̄2) = 0

where Λ is defined in (14).

It is straightforward to verify that ∀ (Σ−1, τx,
x̄1
x̄2
, φ); 1 < x̄1

x̄2
< xmax, 0 < φ < 1, if ρ > ρ̄ then

K̄eq
1t > K̄sp

1t and K̄eq
2t < K̄sp

2t . In other words, in equilibrium investors learn too much about the

larger firm and the smaller firm remains under unexplored.

Why does equilibrium feature a misallocation of resources away from the smaller risk toward

the larger risk? Although it is true that both the constraint social planner and individual investors

care about the larger asset more, the investor preferences are more extreme since information has

increasing return to scale at the individual level, but only constant return to scale at the aggregate

level.

C.3 What if Investors’ Computing Could be Integrated?

The reason that the social planner’s problem features a linear constraint is that each investor in

the economy produces a conditionally independent signal. They process data independently. When

different processors work simultaneously, but independently on a problem, that is called parallel

computing. For a given investor, the constraint on computing is not linear because optimal data

processing is not parallel. A single processor can accomplish more than two processors, each with

half the power, because its processing is integrated. With integrated computing, twice as many

bits can transmit more than double the precision of signal.

This raises the question, what if economy-wide computing became integrated? Instead of each

investor processing their data in parallel, what if all computing were done on a common processor?

This idea of futuristic cloud computing both is a speculation about future technology, but also a

way of breaking down the difference between the social planner and decentralized problem into the

technological differences between integrated and parallel computing, and the payoff externalities

internalized by the planner. This formulation of the problem gives the planner and the individual

the same computing constraints and focuses only on the payoff externalities.

14Note that in both equilibrium and planner problem it might be that only one asset is learned about,
when x̄1 >> x̄2. Consider only the set of parameters that this does not happen.
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max
{K̄jt}

∑
j

x̄j

((
φΓ(K̄jt)

) φ
1−φ −

(
φΓ(K̄jt)

) 1
1−φ
)

s.t.
∑
j

ln(1 + ΣK̄jt) = B̄t

and, of course K̄jt ≥ 0. The first order condition of the planner is the same as before, except that

the Lagrange multiplier is multiplied by the derivative of ln(1 + ΣK̄jt), which is Σ/(1 + ΣK̄jt) or

alternatively (Σ + K̄jt)
−1. Working through the same steps as before for the two assets, we can

express the social optimum simply as

F (K̄2t)(Σ
−1 + K̄2t)

F (K̄1t)(Σ−1 + K̄1t)
=
x̄1

x̄2
. (28)

Notice that this solution is as if the marginal social value of data is more increasing, or less

decreasing than before. In other words, integrated computing created more increasing returns to

processing the same type of data at the aggregate level.

Does this mean that the social planner has increasing returns and will only want to process

data on large firms? Probably not. It depends on the parameter values. But this does suggest that

a future shift to more integrated computing methods would make more concentrated computing

more desirable and bring the social optimum and decentralized equilibrium closer.
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