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1 Introduction

The 2008/09 financial crisis and the Great Recession that followed has led many observers

and academics to interpret the recession as a sharp decline in aggregate demand resulting

from a collapse in confidence. This gave rise to a self-fulfilling shock to expectations.1

This suggests that the way that households and firms form expectations of the future

may therefore be an independent driving force of the business cycle.

The idea that agents’ beliefs may be a source of economic fluctuations has a long his-

tory. Pigou (1929) was among the first to stress that expectations were key in explaining

business cycles, as psychological factors (i.e. undue optimism and pessimism) lead en-

trepreneurs to make errors when forming their expectations about future profits. These

errors generate cycles through rises and falls in investment. These psychological factors

are also very often called “animal spirits”, following Keynes (1936). Although the Real

Business Cycle theory does not incorporate such psychological factors in its explanation

of economic fluctuations, Pigou’s ideas have recently been reintroduced into the theory

of cycles in the context of equilibrium business cycle models, notably by Beaudry and

Portier (2006) or Jaimovich and Rebelo (2009). In these models, although technology

remains the only determinant of output in the long run, news about future fundamentals

can imply a change in expectations, which affects agents’ behaviors in the short run in

anticipation of the fundamental change. However, economic agents receive only noisy

signals about future technology, leading to expectational errors (Lorenzoni (2009)). If

the information subsequently appears to have been wrong, i.e. it was just noise, the

agents readjust their expectations and decisions accordingly. Conversely, if the informa-

tion proves correct, the economy adjusts gradually to the level of activity consistent with

technology. These changes in expectations generate economic fluctuations, both in the

short and the long term.

Blanchard et al. (2013) explore the role of noisy information in cyclical developments

empirically, separating fluctuations that are due to genuine changes in supply (news

shocks) from those due to temporary expectational errors (noise shocks). They show

that identification of those shocks is only possible via the estimation of a full structural

model, such as the one in Barsky and Sims (2012). Since economic agents face a signal

extraction problem when separating news from noise shocks, the econometrician, using

the same data, cannot use structural VARs to recover such shocks. However, although

this point is valid in real time, the econometrician can potentially have access to a richer

1See e.g. ECB (2013),Farmer (2012) and Bacchetta et al. (2012)
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dataset in hindsight.

Based on this idea, this paper shows that a structural VAR model can be used to

identify news and noise shocks. First, while economic agents can observe only current

and past data, the econometrician can also observe “future” data. In other words, by

using the data from the whole sample, the econometrician can have a better estimate of

the technological trends than the economic agents. Second, economic agents only observe

real-time data, while the econometrician also has access to revised data.

Recent papers have also proposed alternative ways to solve the issue put forward by

Blanchard et al. (2013). Forni et al. (2013) use a modification of the structural VAR

method to disentangle real from noise shocks, using future data and future residuals.

However, their methodology is only applicable in economies in which the true state of the

economy can eventually be exactly retrieved. In this paper we show that our methodology

can be used to approximately identify supply and noise shocks in more general models,

such as that of Blanchard et al. (2013), in which the true state of economy can never be

retrieved. Enders et al. (2013) identify noise shocks in a standard VAR model by including

‘nowcast errors’, defined as the difference between actual output growth and growth

estimated contemporaneously by professional forecasters. Here we also use nowcast errors

of output growth to improve the estimates of potential output, but, unlike those authors,

we also use the fact that econometricians have access to the later realizations of the time

series.

We start our analysis by designing a slightly modified version of the model by Blan-

chard et al. (2013) and show how a structural VAR can be used to disentangle news

and noise shocks. The methodology relies on the forecast errors consumers make when

predicting the trend of GDP. These forecast errors are estimated by exploiting the fact

that econometricians have access to ‘future’ and revised data. Applying this method to

US data, we find that identified supply and noise shocks have effects as predicted by

theory. A permanent supply shock has an expansionary effect on the economy, which

builds through time until variables settle at a new, higher value. A noise shock also has

an expansionary effect on the economy, but the impact fades away over time until all

variables settle at their initial value. Nevertheless, noise shocks are as important as per-

manent supply shocks for business cycle fluctuations, explaining 15-20 percent of output

variations at business cycle frequencies. On the other hand, permanent shocks drive the

economy in the long run, but also account for around 20 percent of output variations

at business cycle frequencies. Interestingly, consumption is even more affected by noise

shocks (25-30 percent of variations in consumers’ expenditures at business cycle frequen-
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cies), showing the extent to which false perceptions about the future fundamentals play

a role in consumers’ behaviours. By contrast, interest rates do not seem to be strongly

affected by noise shocks, as central banks may be more immune to animal spirits.

After a presentation of the theoretical model in Section 2, we explain in Section 3 the

problems related to identifying noise shocks in the data with SVAR models. We then

show that, by using future observations and revisions of data, we can circumvent those

problems and still use SVAR models to extract supply and noise shocks. In Section 4,

we present empirical evidence on the effects of supply and noise shocks, by applying our

methodology to US data. Several robustness checks are performed in Section 5 and they

all confirm the main results. We conclude in Section 6.

2 Model

This section presents a simple model, similar to the model proposed by Blanchard et al.

(2013), in which consumers decide their level of consumption based on their expectations

about the economy’s long-run fundamentals. Long-run economic fundamentals are driven

by productivity developments (i.e. technology), which depend on a structural shock

with permanent effects and which builds up gradually. Consumers do not observe the

structural shock but only a noisy signal. This additional source of fluctuations is called

a noise shock (or an “animal spirits” shock). As in Blanchard et al. (2013), consumers

solve a signal extraction problem and decide their level of consumption on the basis of

their expectations about future technology.

2.1 The structure of the model

We assume first that consumption is determined by the following Euler equation:

ct = Et[ct+1|It] (2.1)

where ct is consumption and Et[ct+1|It] is expected consumption in period t+ 1 based on

the information set at time t, denoted It. The supply side of the economy is completely

determined by the demand side, which implies that output, yt, equals consumption:

yt = ct (2.2)
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Output depends on utilization, ut and the level of technology, at, in a linear fashion,

yt = at + ut. Given the level of technology and consumption, utilization adjusts to

produce the demanded level of output. However, in the long-run, output is equal to its

natural level, and utilization is equal to zero, implying:

lim
t→∞

Et[ct+j − at+j] = 0 (2.3)

As is shown in Blanchard et al. (2013), equation (2.3) can be derived from a standard

New-Keynesian model with Calvo pricing, when the frequency of price adjustment goes

to zero. Combining (2.1) and (2.3) gives:

ct = lim
t→∞

Et[at+j|It] (2.4)

which implies that consumption depends on expectations about long-run productivity.

The relevant state of the economy is productivity, at, which follows the process:

at = (1 + ρ)at−1 − ρat−2 + εt (2.5)

where εt ∼ N (0, σ2
ε ) is a technology shock. Given that productivity is modeled as a

process with a stochastic trend, the technology shock εt will have a permanent effect on

productivity.

2.2 Information structure

The crucial difference with a standard DSGE model lies in the information structure.

Consumers do not observe productivity directly, but observe only a noisy signal of pro-

ductivity, st:

st = at + υt (2.6)

where υt ∼ N (0, σ2
υ) is a noise shock. The signal extraction problem can be rewritten as

a state-space model:

• State Equation [
at|t

at−1|t

]
= A

[
at−1|t−1

at−2|t−1

]
+B

[
εt

υt

]
(2.7)
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• Observation Equation

st = C

[
at|t

at−1|t

]
+D

[
εt

υt

]
(2.8)

where at|t = Et[at|It] and the matrices A, B, C and D depend on parameters. We assume

that consumers know the underlying parameters of the economy and the distributions of

shocks, in other words they know the matrices A, B, C and D, and thus they can use a

Kalman filter to form their expectations about the current state of technology.2

Figure 1 shows, for simulated data, the developments in productivity, i.e. potential

output growth, displayed by the smoothed line in the upper panel. Consumers receive a

noisy signal, which is by definition very volatile and form their expectations by solving the

signal extraction problem. Consumers’ expectations about technology are not accurate

as they are affected by the noise shock. The lower panel shows the forecast errors made

by consumers when predicting the state of the economy.

Figure 1: Simulated technology, signal and consumer’s expectations (upper panel) and
forecast error (lower panel)
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The black line represents the underlying technology process, which agents do not observe. The agents observe a signal
(blue line) and via a Kalman filter, they form their expectations about technology (red line). The difference between their
expectations and the true state of technology - forecast error - is represented in the graph below with the green line.

2Note that we are assuming that consumers do not observe utilization, otherwise agents could differ-
entiate between technology shock and noise shock by observing utilization. Utilization is anyway difficult
to observe at the macroeconomic level, even though proxies for utilization of labour can be found (e.g.
hours worked). Moreover, we could also remove this assumption by introducing a transitory technological
shock, as in Blanchard et al. (2013). By ignoring this extension, we aimed at keeping the presentation
of the signal-extraction problem as simple as possible.
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2.3 Model solution

Once we obtain the agent’s expectations about the state of technology, by standard

Kalman filtering, the solution of the model is straightforward. From Equation (2.4) and

(2.5) we can derive the solution of consumption in terms of the agent’s expectations about

the state of technology:

ct =
1

1− ρ
(
at|t − ρat−1|t

)
(2.9)

where we have used the same notation as in the setup of the Kalman filter, at|t = Et[at|It]
and at−1|t = Et[at−1|It]. The other variables are a linear function of technology:

yt = ct (2.10)

ut = at − yt (2.11)

Following a supply (or technology) shock, εt, in the absence of noise shocks, the signal,

st, is equal to at (see Equation (2.6)). Consumers underpredict the actual technological

improvement in the short term, leading to a negative forecast error. Over time, as the

signal confirms the increase in productivity, the expectations converge gradually to the

new state of the economy and the forecast error fades away. Consumption improves faster

in anticipation of the long-term effects of the supply shock.

Conversely, a noise shock is characterized by a one-off change in the signal and no

change in productivity. In the short term, consumers believe that the positive signal could

potentially be related to a change in technology and their expectations about the state

of the economy are positive. Over time, they realize that the signal was just noise and

the expectations gradually adjust to the initial state. As a result, the consumers’ forecast

error is positive in the short term and returns gradually to zero over time. This short-

term optimism also leads consumption to be positively affected by the noise shock, as the

shock has been unduly interpreted as a supply shock. Over time, when the information

becomes more accurate, they realize their forecast error and readjust their consumption

expenditures.

It is worth noting that, as in Lorenzoni (2009), the only source of exogenous un-

certainty is the productivity process at and noise shocks have the features of aggregate

demand shocks. As with productivity shocks, noise shocks are unobservable because

they are related to a noisy signal of productivity. As a result, only these two shocks can

lead to forecast errors in the same period about the current state of technology. In a

more complex model, we could therefore assume that all other sources of disturbances
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are observable and do not lead to such forecast errors. Moreover, the general idea devel-

oped here can easily be carried over in more complex models with capital accumulation,

nominal rigidities or habit persistence. For instance, Blanchard et al. (2013) show that

such results are robust when they embed the same productivity process and information

structure in a small-scale DSGE model, including investment and capital accumulation,

nominal rigidities and a monetary policy rule.

3 From the model to a structural VAR

In this section, we focus on the way to identify and estimate supply and noise shocks.

Since consumers only receive a noisy signal about the shocks, it is not possible to re-

cover supply and noise shocks from actual data on ct and st. First, we show that a VAR

representation of the model faces an issue of non-invertibility and non-fundamentalness.

Second, as the issue is mainly related to the fact that the information set used by con-

sumers is not accurate enough to recover the shocks, we show that having a superior

information set can help solve the problem. Third, we show how a structural VAR ap-

proach can be used in this context.

3.1 Singularity of VAR models

Let us consider running a VAR with consumption, ct, and the signal, st, to obtain the

structural shocks. From Equation (2.9) we know that consumption is a linear function of

expectations about the current and past states of the economy:

ct = f (Et[at|It]) (3.1)

As the expectations about the current and past states are formed by a Kalman filtering

approach, which is a linear filter, we also know that these expectations are a linear

function of current and past signals:

Et[at|It] = g(st, st−1, ...) (3.2)

Equations (3.1) and (3.2) imply that consumption is a linear function of current and

past signals:

ct = f(g(st, st−1, ...)) (3.3)
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Combining Equations (2.5) and (2.6), we can rewrite the signal process as st = (1 +

ρ)at−1−ρat−2 + εt+υt. We can notice that both shocks - supply and noise shocks - affect

the signal. Moreover, both shocks affect the signal in the same way, or more formally:

∂st
∂εt

=
∂st
∂υt

(3.4)

For the same size shock, the signal will increase by the same amount to both shocks. As

consumption is a linear function of the signal, consumption also responds in the same

way to both shocks:
∂ct
∂εt

=
∂ct
∂υt

(3.5)

In other words, on impact consumers respond in the same way to supply and noise shocks,

as they only observe the increase in the signal and are not able to differentiate between

the two shocks.

This implies that running a VAR model with consumption and the signal results in a

singular system. Moreover, if we extended our model with additional observables, such

as stock prices, consumer sentiment or growth forecasts, this would not help to identify

the shocks. In particular, so long as those observables are a linear function of the signal,

we will have that:
∂xt
∂εt

=
∂xt
∂υt

(3.6)

To show the problems related to the use of a VAR model in such a case, we perform

the following exercise: we use simulated data to estimate a non-singular VAR model with

consumption and the signal by adding a measurement error to the signal.3 Supply and

noise shocks are identified by theoretically consistent long-run restrictions: the technology

shock is identified as a shock with permanent effects on consumption and the noise shock

is a shock with only transitory effects.

The impulse responses of consumption to those shocks are plotted in Figure 2, which

shows that such an approach is not able to correctly identify the two shocks. While the

first shock is permanent, it does not build up slowly, as with our theory-based technology

shock, but jumps on impact. Similarly, we expect that the identified transitory shock

would be a mixture of the measurement error and the theoretical noise shock. Figure 2

shows that, unlike the permanent supply shock, consumption does not respond at all to

the identified transitory shock.

3The measurement error is assumed to be a white noise process with N (0, 0.0001σ2
υ).
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Figure 2: IRF of consumption to a supply and noise shocks
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The graph presents the estimated impulse responses of consumption to a supply (above) and a noise (below) shock. The
black lines are theoretical responses. The blue line is point estimate and the red lines are 90% error bands.

The above principles do not hold for the reaction of consumption in later periods. In

other words, we have that:

∂st+j
∂εt

6= ∂st+j
∂υt

∀ j = 1, 2, ... → ∂ct+j
∂εt

6= ∂ct+j
∂υt

∀ j = 1, 2, ... (3.7)

As consumers begin to differentiate between the two shocks, via the Kalman filter, the

response of consumption differs in the periods following the shocks.

3.2 Consumers vs. Econometricians

The preceding discussion shows that to identify shocks we have to use a superior infor-

mation set than that available to consumers. To start with an extreme situation, let us

assume that the econometrician has access to time series of technology and can infer the

consumers’ forecast error:

ηt = Et[at|It]− at (3.8)

Technology responds differently to the two shocks:

1 =
∂at
∂εt
6= ∂at
∂υt

= 0 (3.9)
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and since the forecast error is a linear function of technology and the signal, it responds

differently to the two shocks:
∂ηt
∂εt
6= ∂ηt
∂υt

(3.10)

This fact is implicitly used in Enders et al. (2013) and Forni et al. (2013) to justify the

identification of noise shocks. In the former paper, the authors use the assumption that

forecast errors are observable at the end of the period and therefore the econometrician

has access to forecast errors that can be directly included in a VAR. Similarly, Forni

et al. (2013) assume that potential output is revealed after one period and therefore the

econometrician can retrieve forecast errors. Had we assumed that the econometrician has

access to forecast errors, for example by observing utilization, we would also be able to

exactly identify the shocks.

However, in reality, the econometrician cannot observe the true technology and the

related forecast errors. In a less extreme situation, we can assume that the econometrician

does not have access to perfect information about the state of the economy, but can have

access to superior information than the agents.

How well can the econometrician approximate the forecast error by using a superior

information set, Iet ? We can define the forecast errors and the econometrician’s estimate

of the forecast errors as:

ηt = Et[at|It]− at → η̂t = Et[at|It]− Et[at|Iet ] (3.11)

In the extreme case described above, when the econometrician has perfect information,

Et[at|Iet ] = at, and the econometrician would be able to exactly recover the forecast

error, η̂t = ηt. Note that, in the opposite extreme, if the econometrician has the same

information set as the agents, their estimate of the forecast error is 0.

With a more plausible situation, there are two ways in which the econometrician can

use superior information to achieve a more precise estimate of the state of economy, i.e.

achieve var(Et[at|Iet ]− at) < var(Et[at|It]− at):

• Using more accurate signals: var[υt|Iet ] < var[υt|It]

• Using future observations: It ⊂ Iet
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3.2.1 Using more accurate signals

In the real world, consumers and firms have to base their decisions on real-time data. As

shown for instance by Diebold and Rudebusch (1991), forecast errors tend to be larger

when using real-time data compared with those based on revised data.

It can be shown that:

lim
σ2
υ→0

E[Et[at|Iet ]− at] = 0 (3.12)

which implies that in the limit, when the signal becomes perfectly informative, we can

exactly recover the state and the forecast error, ηt. We can also show that:

σ2
υ < σ2∗

υ → var[ηt|σ2
υ] < var[ηt|σ2∗

υ ] (3.13)

which implies that more informative signals help to decrease the forecast error and the

more precise the signal, the greater the decrease in the forecast error.

In order to see how more accurate signals help to estimate the forecast error, we run

a simulation where consumers have a signal with the baseline variance, σ2
υ, while the

econometrician can use a signal with smaller variance to predict the state. The estimate

of the forecast error is then constructed as η̂t = Et[at|It]−Et[at|Iet ], where the difference in

consumers’ and the econometrician’s information sets, It and Iet , relates to the difference

in the variance of the signal.

Table 1 shows how the estimated forecast error evolves according to the quality of the

signal. When the signal becomes less noisy, the correlation between the estimated and

the true forecast errors increase rapidly when the variance of the noise is reduced.4

Table 1: Correlation between estimated and true forecast errors

σ2
υ 0.75σ2

υ 0.5σ2
υ 0.25σ2

υ 0σ2
υ

corr(ηt, η̂t) 0 0.88 0.93 0.94 1

4How much the reduction in the variance of the noise shocks contributes to the better estimate of the
forecast error depends on the correlation between the improvements in the signal and the noise shock.
When newly defined noise shocks with lower variance can be written as υ∗t = aυt, implying that the
correlation between improvement in the signal and the noise shocks is perfect, the improvement in the
signal contributes the most to the better estimate of the forecast error. In this subsection we assumed
correlation between the improvements in the signal and noise shocks is perfect. See also footnote 6.
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3.2.2 Using future observations

The econometrician can also potentially observe a larger dataset, including ‘future’ data.

By contrast, consumers cannot observe ‘future’ realizations. If we define Ie.jt = {st+j,
st+j−1, st+j−2, ...}, we can show:5

var[Et[at|Ie.(j+h)
t ]− at] < var[Et[at|Ie.jt ]− at] ∀ h = 1, 2, ... (3.14)

which implies that having access to future signals helps to decrease the forecast error and

the more leads are available, the greater the decrease.

In general, future data does not perfectly reveal the true state of technology and there-

fore the true forecast error, ηt. The gain one obtains by using future observations depends

on the variance of the signal - the lower is the variance of the signal, the greater is the

improvement in estimation accuracy that we can obtain by including future observations.

We perform another simulation allowing the econometrician to observe different num-

ber of leads of the signal. The forecast error is then estimated as:

η̂t = Et[at|It]− Et[at|Ie.jt ] (3.15)

Table 2 shows how close to the actual forecast errors the estimated forecast error can

become when we increase the number of leads. With four leads, the correlation between

the estimated and the true forecast errors increases to 0.72.

Table 2: Correlation between estimated and true forecast errors

0 leads 1 lead 2 leads 3 leads 4 leads

corr(ηt, η̂t) 0 0.44 0.58 0.67 0.72

It is important to note that it is this improvement in the estimate of at that allows

the econometrician to estimate the forecast error. In fact, from the definition of η̂t, we

see that the econometrician’s estimate of the forecast error is equal to their correction,

relative to the agents, of the estimate the true state. Thus, we can decompose η̂t into a

component due to the use of revised data, which we denote by λ̂t, and a component due

to the use of future data, denoted by κ̂t. All the possible differences can be summarized

in the following table:

5See Simon (2006), page 271.
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Table 3: Forecast error estimation

Kalman Filter Kalman Smoother

Real time data Consumers’ expectation κ̂t
Revised data λ̂t Econometrician’s estimate (η̂t )

Using simulated data, Figure 3 shows the estimate of the forecast error using future

signals, and its difference with the true forecast error. As shown in the lower panel,

the estimated forecast error matches the patterns of the actual forecast error and the

correlation between the two is relatively high (0.8). Similarly, Figure 4 shows the same

graphs for an estimate of the forecast error using a less noisy signal. The correlation

between the true forecast error and the estimated one is again high (0.8). Finally, Figure

5 shows the estimate of the forecast error that combines the previous two estimates. The

correlation between this final estimate of the forecast error and the true one is very high

(0.93), which supports our strategy.

Figure 3: An estimate of forecast errors due to the use of future signals - κ̂t
(simulated data)
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corr(κ̂t, ηt) = 0.8

The black line represents the true technology. The red line represents the expectations that are obtained via Kalman filter
with the structure of HP filter. The blue line represents the expectations that are obtained via Kalman smoother with the
structure of HP filter. The green line represents the difference between the two series of expectations, which is a proxy for
the forecast error estimated due to the usage of future values. The black line are the true forecast errors.
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Figure 4: An estimate of forecast errors due to the use of less noisy signals - λ̂t
(simulated data)
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The black line represents the true technology. The red line represents the expectations that are obtained via Kalman
filter with the structure of HP filter using the real-time data. The blue line represents the expectations that are obtained
via Kalman filter with the structure of HP filter using the revised data (less noisy signal). The green line represents the
difference between the two series of expectations, which is a proxy for the forecast error estimated due to the usage of
revised data. The black line are the true forecast errors.

15



Figure 5: A final estimate of forecast error - η̂t
(simulated data)
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True forecast error

corr(η̂t, ηt) = 0.93

The black line represents the true technology. The red line represents the expectations that are obtained via Kalman filter
with the structure of HP filter using the real-time data. The blue line represents the expectations that are obtained via
Kalman smoother with the structure of HP filter using the revised data (less noisy signal). The green line represents the
difference between the two series of expectations, which is a proxy for the forecast error estimated due to the usage of
revised data. The black line are the true forecast errors.

3.3 Approximation with a VAR model

We have seen above that we can approximate the forecast error, η̂t, by using more precise

data and future values of the signal. We have also shown that if we had access to the

series of forecast errors, ηt, we could use a SVAR model to obtain the series of noise and

supply shocks. Can we still use a SVAR model if we replace the original forecast errors

by approximated forecast errors?

To answer this question, we estimate a SVAR model that includes consumption and

instead of the true forecast error, as in Section 2, we use estimates of the forecast errors,

η̂t. The estimates of forecast errors are obtained by using both future observations and

more precise signals.6

The identification of the shocks is obtained by sign restrictions. From theory, we know

that the forecast error responds negatively to the supply shock and positively to the noise

6 The use of future observations may cause the VAR with forecast errors to be singular. However,
when the improvements in the signal are not perfectly correlated with the noise shocks itself, i.e. the
newly defined noise shocks with lower variance cannot be written as υ∗t = aυt, the problem of singularity
does not appear. The detailed explanation can be found in Appendix A. In the following exercises we
assume that the correlation between the improvements in the signal and the noise shocks is zero.
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shock, while consumption responds positively to both. This implies that we can use the

following sign restrictions to identify supply and noise shocks:

Supply shock Noise shock

Consumption + +
Forecast error (η̂t) - +

In the following example, we use a 50 percent less noisy signal and four leads of the

signal to produce the econometrician’s estimate of the forecast error, η̂t .

Figure 6 compares the theoretical and the estimated impulse responses to a supply

shock (first row) and a noise shock (second row). The shape and size of the two forecast

errors are very similar to the theoretical ones, implying that our sign restriction strategy is

now able to distinguish between a supply and a noise shock. The response of consumption

to these shocks is also similar to what the theoretical model predicts: after a supply shock,

consumption increases gradually and is permanently affected by the shock; after a noise

shock, consumption increases only in the short term and returns gradually to the baseline

state after a few periods. Figure 7 shows the results of the same exercise by comparing

estimated (first row) and theoretical (second row) forecast error variance decompositions

(FEVD). The contributions of supply and noise shocks to the forecast error variance are

very similar when comparing the estimated and the theoretical decompositions. Noise

shocks explain most of the variance of consumption and forecast error in the short-run,

while supply shocks mainly explain the variance of consumption in the long-run.
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Figure 6: Estimated IRF by using estimated forecast errors
(simulated data)
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The graph presents the estimated impulse responses of consumption (right) and the forecast error (left) to the supply
(above) and the noise (below) shock. The estimated forecast errors are obtained by using 4 leads of the signal and 50
percent less noisy signal. The black lines are theoretical responses. The blue line is point estimate and the red lines are
90% error bands.
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Figure 7: Simulated data: Estimated FEVD (above) and theoretical FEVD (below)
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The first row presents the estimated forecast error variance decomposition (FEVD) of consumption (right) and the forecast
error (left). The second row presents the theoretical forecast error variance decomposition (FEVD) of consumption (right)
and the forecast error (left). The blue area corresponds to the median contribution of the supply and the green area
corresponds to the median contribution of the noise shock. The estimated forecast errors are obtained by using 4 leads of
the signal and 50 percent less noisy signal.

3.4 Comparison with Forni et al. (2013)

In this subsection we show that the methodology proposed in Forni et al. (2013) cannot be

applied to a general signal extraction model as used in this paper and in Blanchard et al.

(2013). Moreover, we show that our approach can easily accommodate their methodology.
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The two crucial equations of the model in Forni et al. (2013) are:

at = at−1 + εt−1 (3.16)

st = at + υt (3.17)

where at is the observable technology, st is a signal about technology, εt is the supply

shock and υt is the noise shock. The signal extraction problem comes from the fact that

the supply shock has delayed effects on technology ∆at = εt−1. Importantly, contrary

to the general model used in this paper, this framework implies that a VAR including

the current observable technology and the signal is not singular. This is easy to see as
∂st
∂εt

=
∂st
∂υt

, but
∂at
∂εt
6= ∂at
∂υt

and therefore the problem of singularity of the VAR that was

discussed in Section 3.1 does not appear in this case.

It is also straightforward to understand why our methodology can be applied to the

model described by (3.16) and (3.17). Indeed, using one lead of technology enables to

exactly recover the supply shock, ∆at+1 = εt. This implies that the estimated forecast

error is equal to the true forecast error, η̂t = ηt, and the shocks can be exactly recovered.

4 Empirical evidence on US data

Given the positive results of the simulations above, we use our methodology to estimate

the effects of supply and noise shocks in the US. We first explain how we construct the

real-world counterpart of the forecast error. Second, we present the VAR model we use to

identify supply and noise shocks. The empirical analysis is performed with two different

VAR systems. First we use a small-scale VAR that includes only the forecast error and

consumption and corresponds to the one used in the theoretical section. We show that

results are consistent with the predictions of our theoretical model and we show that

these results are robust to a different identification strategy.

In the next subsection we extend the VAR with additional variables. The main reasons

to extend the VAR is that many shocks other than “animal spirits” can be compatible

with a small set of restrictions used in the small-scale VAR. The bigger system allows

us to isolate noise shocks from demand shocks and also allows us to study the effects of

noise shocks on other variables, like stock prices, interest rates and inflation.
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4.1 Constructing forecast errors

The forecast errors are constructed by taking the difference between a real-time estimate

of potential GDP and the actual/official estimate provided by the CBO. To compute our

estimate of real-time potential GDP, we use the real-time estimate and projections of the

output gap available in the Greenbook (see https://www.philadelphiafed.org/research-

and-data/real-time-center/greenbook-data) and add it to the real-time level of GDP.

‘Standard’ real-time data - the first estimates of GDP available in period t from statistical

offices - is normally available only after at least one quarter. In order to be consistent

with the model, we have to construct the measure of real GDP in period t that was

available exactly in period t. To this end, we use GDP forecasts for the current period

from the Survey of Professional Forecasters.

The real time data for real GDP, yrtt , is constructed as:

yrtt = y∗t−1 (1 + ∆ŷt) (4.1)

where y∗t−1 is the first estimate of real GDP in period t−1 as provided by the statistical

office and ∆ŷt is the forecast for quarterly real GDP growth rate in period t as produced

by the Survey of Professional Forecasters.

The calculation of real-time GDP is further complicated by the fact that we are

interested in the GDP level, but a consistent series for the GDP level is not available

from the SPF. Namely, the level forecasts from SPF are affected by changes in national

accounts - for example changes in base years - and it is therefore hard to reconstruct a

consistent measure of the real-time level of GDP. To circumvent this problem, we use

a consistent revised series and use the growth rates based on the first vintages of the

data to move to real-time GDP levels in period t − 1. Specifically, the first estimate of

real GDP in period t− 1 as provided by the statistical office, y∗t−1, is constructed in the

following way: y∗t−1 = yt−5

(
1 + ∆4y∗t−1

)
where yt−5 is the revised GDP data in period

t − 5 (based on the last available vintage in Q2 2012) and ∆4y∗t−1 is the yearly growth

rate of real GDP between t − 5 and t − 1 calculated from the first available vintage for

period t− 1, which is the one available in period t.7

7With this approximation we do not take into account the revisions that happen after the 5-quarters,
as our approximation assumes y∗t−5 = yt−5. Our measure can therefore underestimate the error due to
the use of real time data, however, the revisions after five quarters are not substantial and therefore
we opt for this approximation. We could also ‘went further’ into the history by assuming for example,
y∗t−9 = yt−9. However, in that case we would loose additional one year of data, while the gain is not
large as revisions after 5-quarters are not large.
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4.2 Small-scale VAR

We start our empirical analyis with a small-scale VAR that includes the estimated forecast

error about the growth rate of potential output and real consumption. The estimated

forecast errors are those defined in the previous subsection. The estimation period is

from Q3 1977 to Q4 2011. The system is estimated in the level of forecast error and the

log of consumption with 8 lags.

4.2.1 Identification

The identification of supply and noise shocks can be achieved in two ways. Firstly, we can

impose sign restrictions that are based on the different response of the forecast error to the

supply and noise shocks. The second way is to rather use the behavior of consumption - we

know that noise shocks should lead to transitory response of consumption, while supply

shocks should affect consumption permanently. Therefore, we can identify the supply

and noise shocks by imposing long-run restrictions la Blanchard and Quah (1989).

We start by identifying the two shocks by sign restrictions. From the theoretical

model we know that:

• The forecast error is positive for positive noise shocks (i.e. consumers are too

optimistic).

• The forecast error is negative for positive supply shocks (i.e. consumers are too

pessimistic).

We also know that consumption will increase after following both shocks. Hence, the

sign restrictions that we use to separate the noise from supply shock are the following:

Table 4: Imposed sign restrictions

Forecast error Consumption

Supply shock - +
Noise shock + +

To cross-check whether results are robust to alternative identification strategy, we also

use long-run restrictions proposed in Blanchard and Quah (1989). In particular, the noise

shock is identified by imposing that it has transitory effects on consumption, while the

supply shock are shock that has permanent effect on consumption. In a small-scale VAR

with only consumption and the forecast error, we identify the permanent and transitory
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shocks to consumption using the following restrictions on the matrix of long-run effects,

Ξ:

Ξ =

[
∗ 0

∗ ∗

]
(4.2)

implying the second shock does not have permanent effect on consumption and there-

fore can be considered as a noise shock in our setup.

4.2.2 Empirical results - sign and long-run restrictions

Figure 8 shows the impulse responses of consumption and the forecast error to a noise

shock, using the sign restriction methodology described above. The estimation algorithm

is described in Appendix B. The impacts are positive and significant in the short run

(up to 10-15 quarters). Once the consumer realises that the shock is not related to an

improvement in productivity, the forecast error returns to 0 and the impact on consump-

tion becomes non-significant. Figure 9 shows the impulse responses of the same variables

following a supply shock. As expected, the impact on the forecast error is negative in

the short run, while the impact on consumption is limited. Over time, as the consumer

realises that the shock is a permanent supply shock, the forecast error returns to 0 and

consumption improves permanantly.

To cross-check these results with the identification strategy based on long-run re-

strictions, we perform again the same IRFs (see Figures 10 and 11). The responses are

qualitatively similar to those obtained with the sign restriction approach. In particular,

without imposing the sign restrictions, we again find that a positive permanent supply

shock implies negative forecast errors in the short term, while a positive transitory noise

shock increases the forecast error, being in this case positive.
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Figure 8: Small-scale VAR - IRFs to a noise shock (sign restrictions)
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The graph presents the impulse responses to a noise shock of the estimated forecast error and consumption.The blue line
is the point estimate and the red lines are 90% error bands.

Figure 9: Smal-scale VAR - IRFs to a supply shock (sign restrictions)
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The graph presents the impulse responses to a supply shock of the estimated forecast error and consumption. The blue
line is the point estimate and the red lines are 90% error bands.
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Figure 10: Smal-scale VAR - IRFs to a noise shock (long-run restrictions)
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The graph presents the impulse responses to a noise shock of the estimated forecast error and consumption.The blue line
is the point estimate and the red lines are 90% error bands.

Figure 11: Small scale-VAR - IRFs to a supply shock (long-run restrictions)
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The graph presents the impulse responses to a supply shock of the estimated forecast error and consumption. The blue
line is the point estimate and the red lines are 90% error bands.
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4.3 Large-scale VAR

The smal-scale VAR used in the previous section has served as a test of the theory on the

data, but might not have empirical appeal. The drawback of small-scale VARs is that

they use little information in the data and, with a two-variable VAR, we assume that only

two structural shocks drive the data. Therefore, in this section we enrich the VAR model

by including additional variables and add additional identifying restrictions that mainly

rely on the above theory. The extended setup allows us to identify possible additional

sources of shocks and see the impact of noise shocks on additional variables, such as stock

prices or consumer sentiment. The extended VAR model includes the following variables:

• Estimated Forecast Errors (FE)

• GDP (Y)

• Private Consumption (C)

• Stock prices (S&P500 - SP)

• Fed funds rate (IR)

• CPI inflation (INF)

• Consumer Sentiment (SENT)

The estimation period is still from Q3 1977 to Q4 2011. The system is estimated in

log-levels with four lags, except for inflation rate and interest rate that enter in level.

The results are robust to changes to differences and using a different number of lags.

4.3.1 Identification

The main identification assumption to separate the noise and the permanent supply

shocks is similar to the section above - we use sign restrictions on the forecast error and

consumption to separate the two shocks. Moreover, a larger VAR allows us to distinguish,

among the transitory shocks, those that are related with “animal spirits” from those that

are related to more standard shocks, in particular aggregate demand shocks.

In the theoretical model, the agents cannot distinguish between noise and supply

shocks. This implies that in the first period the responses of variables to a supply or

a noise shock should be identical. This allows us, with some additional restrictions

commonly used in the literature, to use sign restrictions to separate supply and noise

shocks from standard demand shocks. We can use this insight to separately identify a

standard demand shock with additional restrictions on inflation and interest rates. Exact

restrictions can be seen in Table 5:
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Table 5: Imposed sign restrictions

FE Y C SP IR INF SENT

Supply shock - + + + - - +
Noise shock + + + + - - +
Demand shock + + + + + + +

The identification strategy in the empirical model assumes the permanent supply

shock and the noise shock are both perceived as shocks from the supply side. Therefore

it is assumed that all three shocks lead to an increase in output, consumption, stock

prices and sentiment. To identify demand shocks, we follow the literature and postulate

that demand shocks lead to an increase in inflation and interest rates (see for instance

Peersman and Straub, 2009). By contrast, we assume that noise shocks and supply shocks

lead to a decrease in inflation and interest rates, given they are perceived as shocks to

technology.8 Demand shocks are treated as transitory shocks and therefore we assume

that estimated forecast error increases after the demand shock.9 In accordance with

theory, sign restrictions are imposed only in the first period. Robustness checks with

respect to identification assumptions are performed in Section 5.

4.4 Empirical results

We now present the estimated impulse response functions, forecast error variance decom-

positions and extracted shocks of our large-scale VAR model.

Figure 12 shows the IRFs following a 1-standard deviation positive noise shock. In

this case, the forecast error is positive and increases up to the 5th quarter after the shock.

As expected by the theoretical model, the impact on output and consumption is positive

and long lasting, remaining significantly above the baseline after 20 to 25 quarters. Equity

prices and sentiment are also affected positively but, after 5 quarters, the effects are no

8We postulate that supply shocks lead to a decline in interest rates in line with sticky-price models
la Ireland (2002), although in the literature this restrictions is not generally imposed. In the robusteness
section below, we show that our results are robust to lifting this restriction.

9In case the forecast errors correspond to the theory counterpart, they should be un-correlated with
other observable shocks. This is an unlikely case in our implementation of the filter-smoother procedure
as output is the only observable and therefore we can expect that estimated forecast errors are correlated
with other observable shocks. We have also performed an exercise where the third shock is identified
with the zero restriction on the estimated forecast errors, but this shock was found to have almost no
effect on business cycle fluctuations. This is additional empirical evidence that estimated forecast errors
are correlated with other observable shocks. Results are available on request from authors.
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longer significant. Inflation and interest rates slightly decline on impact.

Figure 13 shows impulse response functions (IRFs) following a 1 standard deviation

positive supply shock. Although we only impose sign restrictions in the short term, the

technology shock implies permanent effects on macroeconomic variables, as expected from

theory. Indeed, output and consumption are permanently higher. As also expected from

the theoretical model, the forecast error is significantly negative for 10 quarters, before

returning towards the baseline. Inflation and interest rates decline on impact but are not

permanently affected. Interestingly, the increase in equity prices and consumer sentiment

following the supply shock is rather long lasting.

Figure 14 shows the IRFs of a demand shock. As imposed by the identification

procedure, the forecast errors are positive in the short term. The impacts on the various

variables are short lived, all of them coming back to baseline levels after 5-10 quarters

following the shock.

The forecast error variance decomposition (FEVD), presented in Figure 15, shows

that the noise shock explains 15-20 percent of the business cycle fluctuations in the short

term. As expected from the theory, the impact of the supply shock on the business cycle

builds up gradually. It also explains up to 20 percent of output variations at business

cycle frequencies and almost 40 percent of the fluctuations in the long term, when the

noise shock contribution is much smaller. It is worth noting that the noise shock explains

a large share of fluctuations in consumption in the short term showing the impact of

forecast errors made by consumers on their expenditure behavious. Conversely, interest

rates are less sensitive to noise shocks compared with demand shocks, as central banks

take more time to react to supply shocks in general and may be more immune to errors

made through animal spirits.

Figure 16 shows the series of extracted shocks, with supply shocks in the upper panel

and noise shocks in the lower panel. The patterns between these two shocks are very

different. A few interesting observations are worth pointing out. First, the supply shock

declines just before recessions and increases during the recessions, which could be inter-

preted as a Schumpeterian creative-destruction mechanism driving the recovery phase.

Second, the noise shock was very positive during the dot-com bubble in the early 2000s

and went down when optimism about future technologies was affected by the 2001 ter-

rorist attacks, the Enron scandal and the stock market decline in 2001-02. Third, noise

shocks tend to remain negative for a prolonged period of time after a recession, underlin-

ing the role of excess pessimism as a dampening factor in the recovery phases. Similarly,

noise shocks were very negative during the global financial crisis in 2009.
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Figure 12: Large-scale VAR - IRFs to a noise shock (extended identification)
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The graph presents the impulse responses to a noise shock of the estimated forecast error, output, consumption, investment
(first row), stock prices, sentiment, interest rates and inflation (second row).The blue line is the point estimate and the red
lines are 90% error bands.

Figure 13: Large-scale VAR - IRFs to a supply shock (extended identification)
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The graph presents the impulse responses to a supply shock of the estimated forecast error, output, consumption, investment
(first row), stock prices, sentiment, interest rates and inflation (second row). The blue line is the point estimate and the
red lines are 90% error bands.
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Figure 14: Large-scale VAR - IRFs to a transitory demand shock (extended identification)
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The graph presents the impulse responses to a transitory demand shock of the estimated forecast error, output, consumption,
investment (first row), stock prices, sentiment, interest rates and inflation (second row). The blue line is the point estimate
and the red lines are 90% error bands.

Figure 15: Large-scale VAR - FEVD (extended identification)
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The graph presents the forecast error decomposition of estimated forecast error, output, consumption (first row), investment,
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Figure 16: Large-scale VAR - extracted shocks (smoothed)
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The graph presents the extracted supply (blue line above), noise shocks (red line in the middle) and demand shocks (green
line below). The series of shocks are smoothed with moving average filter with 5-period window. The gray areas correspond
to NBER-defined recessions.

5 Robustness checks

To confirm the robustness of our results we perform two additional exercises. First,

instead of constructing the forecast error from real time data from Greenbook and revised

data from CBO, we estimate forecast errors by using a similar filter to the one used

in theoretical section. Secondly, we check whether our results are driven by a specific

identification strategy.

5.1 Alternative Forecast Error

Because we estimate forecast errors, we do not rely on data availability on potential GDP

and can therefore extend the sample to 1970Q1-2012Q2. We drop 4 observations at both

ends of the sample to account for the bias in the estimation of the forecast error at the

beginning and at the end of the sample.
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5.1.1 Estimating the forecast error

Instead of using the real-time data from the Greenbook and the revised data from the

CBO, we use an alternative way to estimate the forecast errors by relying on the filter

detailed in the theoretical part.

The relevant state variable in the model is technology. However, although it would be

possible to exactly map the model to the empirical applications by assuming technology

as the relevant state, we opt for using the growth rate of the potential GDP as the relevant

state.

The main reason behind this choice is that real-time data for productivity does not

exist, except in the case of output per hour worked in the business sector, which is anyway

only available since 1998.10 Moreover, in our opinion, firms and consumers focus more on

trend GDP rather than technological trend when making economic decisions. As GDP is

the best available indicator of economic activity, trend GDP is also the usual measure of

potential output monetary policy authorities typically use when setting monetary policy

(Gavin 2012).

To estimate the potential GDP we use unobserved component model similar to the

one in theoretical section above. The model is:

1. State Equation[
τt|t

τt−1|t

]
=

[
1 + ρ −ρ

1 0

][
τt−1|t−1

τt−2|t−1

]
+

[
1 0

0 0

][
εt

0

]
(5.1)

2. Observation Equation

yt =
[

1 0
] [ τt|t

τt−1|t

]
+
[

0 1
] [ 0

ηt

]
(5.2)

where εt ∼ N (0, σ2
ε ) and ηt ∼ N (0, σ2

η). In this model yt is real GDP, τt is its trend

component, εt is its cyclical component and ηt is a white noise sequence. Normalizing

the variance of the noise component to one, σ2
η = 1, we can write the signal-to-noise

ratio as ζ =
σ2
η

σ2
ε
. To calibrate the two parameters of the filter, ρ and ζ, we minimize the

distance between the state estimate of the potential output using (5.1) with the estimate

10See https://www.philadelphiafed.org/research-and-data/real-time-center/real-time-data/data-
files/OPH/
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of the potential output by Congressional Budget Office (CBO). The minimization results

in setting ρ = 1.04 and ζ = 2808.

Once we have parameterized the state space system we can estimate the forecast error

in the same fashion as explained in Section 3.2. The correspondence between the model

and the empirical application can be summarized as follows:

• Use of future data - Consumers only use past data and determine trend GDP

with a Kalman filter, which is a one-sided filter. The econometrician also can use

‘future’ data when filtering the GDP series with a Kalman smoother, which is a

two-sided filter.11

• Better signal - Consumers can only use real-time data. The econometrician,

having access to revised data, uses more accurate information about the state in a

given period.

The estimates of the forecast errors can then be decomposed as in Table 3. Figures 17

and 18 show the estimated forecast errors coming respectively from the use of future data

and the improvement in the signal. Figure 19 shows the final estimated forecast error.

We can see the forecast error is pro-cyclical: it is positive and increases in the expansion

phase, peaks at the start of a recession (as defined by the NBER) and then falls, reaching

a minimum around two years after the end of the recession phase. A positive, rising

error can then be interpreted as an increase in consumers’ optimism up to the end of the

expansion phase. The error becomes negative during the recession and stays negative

as long as consumers remain pessimistic about the economy, thus underpredicting the

actual state of the economy.12

11We have also experimented with a Kalman filter that includes 4 forward leads of data instead of
using a Kalman smoother. The results were not much affected by this.

12The forecast error can be further decomposed into the component due to the use of future signals
and the one due to the use of less noisy signals. We have not included the graphs here, but are available
on request form the authors.
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Figure 17: An estimate of forecast error due to the use of future signals - κ̂t
(US data)
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The red line represents the trend GDP that is obtained via a Kalman filter with the structure of a HP filter. The blue
line represents the trend GDP that is obtained via a Kalman smoother with the structure of a HP filter. The green line
represents the difference between the two estimated trends, which is a proxy for the forecast error estimated due to the use
of future values.
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Figure 18: An estimate of forecast error due to the use of less noisy signals - λ̂t
(US data)
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The red line represents the trend GDP that is obtained via a Kalman filter with the structure of a HP filter using real-time
data. The blue line represents the trend GDP that is obtained via a Kalman filter with the structure of a HP filter using
revised data. The green line represents the difference between the two estimated trends, which is a proxy for the forecast
error estimated due to the use of more precise signals.
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Figure 19: A final estimate of forecast error - η̂t
(US data)
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The red line represents the trend GDP that is obtained via a Kalman filter with the structure of a HP filter using real-time
data. The blue line represents the trend GDP that is obtained via a Kalman smoother with the structure of a HP filter
using revised data. The green line represents the difference between the two estimated trends, which is a proxy for the
forecast error.

5.1.2 Results - estimated forecast error

Figures 20, 21 and 22 show the impulse responses of noise, supply and demand shocks.

Overall, the results found before are confirmed by this alternative approach. In the case

of the noise shock, the impact on the forecast error is also positive as expected, but more

persistent than with the approach based on available data. By contrast, the impacts on

output and consumption are significant only for 5-10 quarters. The other variables react

broadly similarly to the base case. Also, the impuse responses corresponding to supply

and demand shocks are very similar to those shown previously, confirming the robustness

of the results found earlier. The FEVD is also similar (see Figures 23), the only notable

difference is the larger contribution of the noise shock to changes in the forecast errors.

36



Figure 20: Large-scale VAR - IRFs to a noise shock (estimated forecast errors)
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The graph presents the impulse responses to a noise shock of the estimated forecast error, output, consumption, investment
(first row), stock prices, sentiment, interest rates and inflation (second row).The blue line is the point estimate and the red
lines are 90% error bands.

Figure 21: Large-scale VAR - IRFs to a supply shock (estimated forecast errors)

5 10 15 20 25 30 35 40

-0.04

-0.02

0

0.02
Forc. E.

5 10 15 20 25 30 35 40
0

0.05

0.1
Y

5 10 15 20 25 30 35 40
0

0.05

0.1

C

5 10 15 20 25 30 35 40
0

0.2

0.4

0.6 SP

5 10 15 20 25 30 35 40

0

0.1

0.2

0.3

0.4 SENT

5 10 15 20 25 30 35 40

-4

-2

0

2
IR

5 10 15 20 25 30 35 40

-2.5

-2

-1.5

-1

-0.5

0

INF

The graph presents the impulse responses to a supply shock of the estimated forecast error, output, consumption, investment
(first row), stock prices, sentiment, interest rates and inflation (second row). The blue line is the point estimate and the
red lines are 90% error bands.
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Figure 22: Large-scale VAR - IRFs to a transitory demand shock (estimated forecast
errors)
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The graph presents the impulse responses to a transitory demand shock of the estimated forecast error, output, consumption,
investment (first row), stock prices, sentiment, interest rates and inflation (second row). The blue line is the point estimate
and the red lines are 90% error bands.

Figure 23: Large-scale VAR - FEVD (estimated forecast errors)
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The graph presents the forecast error decomposition of estimated forecast error, output, consumption (first row), investment,
stock prices, sentiment (second row), interest rates and inflation (third row). The blue area corresponds to the median
contribution of supply shocks, the green area to the median contribution of noise shocks, the red area to the median
contribution of transitory demand shocks and the yellow area to the contribution of all other non-identified shocks.
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5.2 Alternative identification strategies - minimal restrictions

In the baseline identification scheme, we have used some redundant restrictions that were

not needed to separate noise, supply and demand shocks. In this subsection we only use a

minimal set of restrictions that are needed to identify all three shocks. Exact restrictions

that we use are in Table 6:

Table 6: Imposed sign restrictions

FE Y C SP IR INF SENT

Supply shock - + -
Noise shock + + -
Demand shock + + +

Figures 24, 25 and 26 show the IRFs to the permanent, noise and demand shocks

in this new system. The main conclusion is that the responses are relatively similar to

those obtained with the baseline restrictions. As it can be seen from the FEVD shown

in Figure 27, the main difference is that the share of fluctuations explained by the three

shocks falls, but noise shocks nevertheless still explain a relatively high share of output

fluctuations. The main conclusions derived earlier therefore are not too dependent on

additional restrictions used in the baseline.
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Figure 24: Large-scale VAR - IRFs to a noise shock (extended identification - minimal
restrictions)
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The graph presents the impulse responses to a noise shock of the estimated forecast error, output, consumption, investment
(first row), stock prices, sentiment, interest rates and inflation (second row). The blue line is the point estimate and the
red lines are 90% error bands.

Figure 25: US data - IRFs to a supply shock (extended identification - minimal restric-
tions)
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The graph presents the impulse responses to a supply shock of the estimated forecast error, output, consumption, investment
(first row), stock prices, sentiment, interest rates and inflation (second row). The blue line is the point estimate and the
red lines are 90% error bands.
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Figure 26: US data - IRFs to a transitory demand shock (extended identification - mini-
mal restrictions)
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The graph presents the impulse responses to a transitory demand shock of the estimated forecast error, output, consumption,
investment (first row), stock prices, sentiment, interest rates and inflation (second row). The blue line is the point estimate
and the red lines are 90% error bands.
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Figure 27: US data - FEVD (extended identification - minimal restrictions)
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The graph presents the forecast error decomposition of estimated forecast error, output, consumption (first row), investment,
stock prices, sentiment (second row), interest rates and inflation (third row). The blue area corresponds to the median
contribution of supply shocks, the green area to the median contribution of noise shocks, the red area to the median
contribution of transitory demand shocks and the yellow area to the contribution of all other non-identified shocks.

5.3 Comparison with the current literature

Our results correspond to a large extent with those found in the related literature. In

particular, most papers that study the effects of noise versus supply shocks find that

noise shocks could be interpreted as demand shocks and contribute to a large extent to

economic fluctuations at the business cycle frequency. Noise shocks are therefore more

important in explaining business cycles compared to permanent or technology shocks.

Blanchard et al. (2013) estimate a structural model and find that noise shocks account

for more than 50% of short-run volatility of consumption, while permanent technology

shocks play a smaller role, having almost no effect on quarterly volatility and explaining

less than 30% at a 4-quarter horizon. Similar to this paper, they find spells of positive

permanent shocks in the first half of 1980s and second half of 1990s. They estimate a

structural model, thus putting structure on the data that can have important effects on

the final results. By contrast, we opted for a more parsimonious SVAR model, which

suggests why the smoothed series of noise shocks are more informative in our case -

we obtain a clearer pattern of positive noise shocks before recessions and negative noise
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shocks at the start and during recessions. Nevertheless, they also find a succession of

negative noise shocks around the recession in the early 1990s, and a spell of positive noise

shocks before the 2001 recession.13

Results in Forni et al. (2013) are similar to those found in our paper. The responses of

output and consumption have similar shapes. In the case of the noise shock, the responses

are hump-shaped with a relatively small, although significant, impact effect; they reach

a maximum after about two years, then decline towards zero after about five years. As

predicted by the model, noise shocks spur a wave of private consumption and investment

which vanishes once economic agents realize that the signal was just noise. They find

that the responses to real shocks are permanent, although real shocks sometimes do not

have significantly permanent effects as in our paper.

Enders et al. (2013) use a similar empirical strategy to our paper, but they construct

forecast errors only by exploring the fact that real-time data is less precise than revised

data. Nevertheless, they also find that nowcast errors react as predicted by theory, as we

found in the exercise in Section 4.2.2. Given that they only use the difference between

real-time and revised data to improve the estimates of the state, the distinction between

productivity shocks as permanent and optimism shocks as transitory is not as evident as

in this and other studies.

Barsky and Sims (2012) found the most contrasting results compared to this and

other papers in the literature. They find that “animal spirits” effects are very weak

and thus account for essentially none of the relationship between confidence and future

consumption or income. The reason for such contrasting results is mostly related to

the different methodologies - they estimate a structural model by matching theoretical

impulse responses with empirical impulse responses. As discussed above, estimating a

structural model imposes a structure on the data that may have important effects on

the empirical results. While they find noise shocks to be unimportant, they find that

permanent shocks are important drivers of business cycles, especially at longer horizons.

Finally, Angeletos et al. (2014) provides a model with only two sources of volatility:

the usual technology shock and a confidence shock that drives the agents’ beliefs about

the state of the economy. The confidence shock therefore has a similar interpretation

to our noise shock. Interestingly, although they use a different model, they also find

that confidence shocks can account for about half of GDP volatility at business-cycle

frequencies and that their effects look similar to a standard demand shock.

13They do not find similar patterns before the 2007 recession, as they only use data until 2008.
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6 Conclusion

This paper has presented a model in which consumers receive noisy signals about future

economic fundamentals. In this model, business cycle fluctuations can be driven both by

news shocks (supply or technology shocks) and noise shocks (“animal spirits” shocks).

We have shown that standard structural VAR models cannot be applied in principle to

this model to identify the two types of shocks, as the VAR model faces invertibility issues.

In other words, if consumers cannot distinguish between the two shocks, the econome-

trician also faces the same problem. However, by considering that the econometrician

can potentially have a richer and more accurate information set, we have shown that a

standard SVAR model can recover both supply and noise shocks. Richer information sets

relate to the fact that the econometrician has access to revised data (while consumers

take decisions with real-time data) and can include “future” data when estimating the

state of the economy (while consumers take decisions with past and current data only).

In the empirical exercise, we have shown that the identified shocks have macroeco-

nomic impacts that are in line with theoretical predictions. We have also shown that

noise shocks explain a significant share of business cycle fluctuations in the short term,

while supply shocks explain most of output variations in the long term. We have also

shown that technology shocks turn negative a few years before recessions, while noise

shocks are very positive at the cycle peaks and remain negative for some time during re-

covery phases. The recovery from recessions is mostly led by technology shocks, following

Schumpeterian creative-destructive dynamics. These results are robust to the size of the

VAR model and to the identification scheme. Finally, we have shown that consumption

is even more affected by noise shocks than output at business cycle frequencies, showing

the extent to which false perceptions about the future fundamentals play a role in con-

sumers’ behaviours. By contrast, interest rates do not seem to be strongly affected by

noise shocks, as central banks may be more immune to animal spirits.
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A Appendix - Singularity of VAR with leads

To see the problem related to the singularity of VAR models when the future values of

signals are used, we define an estimate of the state by a Kalman filter as:

x̂tt = x̂tt−1 +K
(
st − Ax̂tt−1

)
= (1−KA)x̂tt−1 +Kst

(A.1)

where x̂tt is a state estimate in period t using signals up to period t - an estimate derived

with a standard Kalman filter. K is the Kalman gain and st is the signal in period t.

Similarly, the state estimate in period t using signals up to period t + 1 can be written

as:
x̂t+1
t = x̂t+1

t−1 +K0
(
st − A0x̂t+1

t−1

)
+K1

(
st+1 − A1x̂t+1

t−1

)
= (1−K0A0 −K1A1)x̂t+1

t−1 +K0st +K1st+1

(A.2)

where x̂t+1
t is a state estimate in period t using signals up to period t + 1. K0 is the

Kalman gain related to the signal in period t and K1 is the Kalman gain related to the

signal in period t+ 1.

Consider now that the state estimate, x̂tt follows an autoregressive process:14

x̂tt = β1x̂
t
t−1 + ut (A.3)

where ut is the error term. Comparing equation (A.1) with equation (A.3), we can see

that st and ut span the same linear space.

Shifting by one period and rearranging equations (A.1) and (A.2) we have:

x̂tt−1 − (1−KA)x̂tt−2 = Kst−1

x̂t+1
t−1 − (1−K0A0 −K1A1)x̂t+1

t−2 = K0st−1 +K1st
(A.4)

where the first row follows from equation (A.1) and the second row from equation (A.2).

From equation (A.4), we can see that st can be expressed as a linear combination of x̂tt−1,

x̂tt−2, x̂t+1
t−1 and x̂t+1

t−2. As st and ut span the same linear space, ut can also be expressed as

a linear combination of the latter four variables, which implies a regression of the form:

x̂tt = β1x̂
t
t−1 + β2x̂

t
t−2 + β3x̂

t+1
t−1 + β4x̂

t+1
t−2 + ut (A.5)

14The results in this section are presented only for auto-regressions with the state estimate. However,
the forecast error, ηt, and consumption, ct, are a linear function of the state estimate x̂it and therefore
results also hold for auto-regressions with the forecast error and consumption.
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is characterized by a perfect linear relation between the independent and dependent

variables, and the corresponding VAR is therefore singular. A similar reasoning applies

also to regressions involving state estimates x̂t+2
t , x̂t+3

t ,... that are constructed by using

more leads of the signal. The only difference is that the more leads of the signal are

used to construct state estimates, the more lags are needed to achieve a perfect linear

correlation.

The improvements in the signal - lower variance of noise shocks - can reduce the

problem of singularity. Whenever improvements in the signals are perfectly correlated

with the noise shocks itself - newly defined noise shocks with lower variance can be written

as υ∗t = aυt, where υ∗t are noise shocks with lower variance, a is a constant and υt are

old shocks - the reduced variance of the signals does not alter the singularity problem.

Namely, st can still be expressed as a (different) linear combination of x̂tt−1, x̂tt−2, x̂t+1
t−1

and x̂t+1
t−2.

On the other hand, when correlation is not perfect - noise shocks with lower variance

cannot be written as υ∗t = aυt - the singularity problem does not appear. To see this, we

can write equation (A.4) as:

x̂tt−1 − (1−KA)x̂tt−2 = Kst−1

x̂t+1
t−1 − (1−K0A0 −K1A1)x̂t+1

t−2 = K0s∗t−1 +K1s∗t
(A.6)

where we use the fact that we have access to a different signal in the future, s∗t 6= st

(second row). The new signal cannot be written as s∗t = cst, where c is some constant.

Therefore, it is not possible to form a perfect linear relation between st and x̂tt−1, x̂tt−2,

x̂t+1
t−1 and x̂t+1

t−2.

B Appendix - Estimation algorithm

The estimation procedure is based on a modified version of the sign restriction approach

presented in Uhlig (2005). The modification is that we restrict responses of most variables

only by non-negativity constraints - in the spirit of sign restrictions approach proposed

in Canova and Nicoló (2002).

The estimation procedure consists of three steps. In the first step, we estimate the

reduced form VAR model. In the second step, we identify the structural shocks and

take into account identification uncertainty. The third step serves to take into account

estimation uncertainty. The steps are:
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1. Estimate reduced-form VAR: Given the number of chosen lags, p̂, V AR(p̂) is es-

timated assuming a non-informative Normal-Wishart prior, see Uhlig (2005) for

details. A draw from posterior gives as an estimate of autoregressive coefficients

and the variance-covariance of reduced form errors, Σ̂u.

2. Identification restrictions: The non-structural impulse responses function, C(L), is

related to the structural impulse responses function as B(L) = A0C(L) and reduced

form errors, ut, are related to structural errors as ut = A−10 Bεt. Impact matrix,

S = A−10 B, must satisfy:
Σu = SS′ (B.1)

The first estimate of impact matrix, Ŝ, is obtained by a Cholesky decomposition

of the variance-covariance matrix of reduced form errors, Ŝ = chol(Σ̂u). The full

set of permissible impact matrices can be construct as, S∗ = ŜQ, where Q is an

orthonormal matrix such that, QQ′ = I.

Define bi,j(k) to be a response of variable i to shock j in period k that follows from

the structural lag-polynomial B(L)B. Define the function f on the real line per

f(x) = x if x ≥ 0 and f(x) = 100x if x ≤ 0. Let sj be the standard error of variable j.

Let JS,+ be the index set of variables for which identification restricts response to be

positive and let JS,− be the index set of variables for which identification restricts

response to be negative. Define the penalty function as:

Ψ(S) =

I∑
i

∑
j∈JS,+

P∑
k=0

f

(
−bi,j(k)

sj

)
+

I∑
i

∑
j∈JS,−

P∑
k=0

f

(
−bi,j(k)

sj

)
(B.2)

where P is the horizon over which restrictions should hold and I is a set of variables

over which we impose identifying restrictions. Let CS,+ be the index set of variables

for which identification restricts response to be non-negative and let CS,− be the

index set of variables for which identification restricts response to be non-positive.

Define the non-negativity constraints vector as c(S) = [
bi,j(k)
sj

1
, ...,

bi,j(k)
sj

P
]. To identify

the model, we solve the following minimization problem:

S = argmin
S

Ψ(S)

subject to c(S) ≥ 0

SS′ = Σu

(B.3)

In the current paper only restrictions on forecast error enter the penalty function,

while sign restrictions on other variables are applied only as non-negativity con-

straints. In this way we achieved that most of the forecast variance of forecast
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error is explained by the two identified shocks, while at the same time achieving

that identification is not too restrictive - our methodology restricts only the sign of

responses and does not maximize the magnitude - in relation to responses of other

variables.

3. Distribution We repeat steps 1-2 1000 times. The IRF’s point estimates and the

related confidence bands are constructed by retaining the relevant percentiles of a

distribution of retained IRFs. The same procedure is used to construct FEVD’s

point estimates and the related confidence bands.
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