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Abstract

We develop a tractable model of endogenous production networks. Each one of a number of
products can be produced by combining labor and an endogenous subset of the other products as
inputs. Different combinations of inputs generate (prespecified) levels of productivity. Markets are
“contestable” in the sense that production technologies are available to a large number of potential
producers. We establish the existence and uniqueness of an equilibrium with an endogenous pro-
duction network and provide comparative static results on how prices and endogenous technology
choices (and thus the production network) respond to changes in parameters. These results show
that improvements in technology (or reductions in distortions) spread throughout the economy via
input-output linkages and reduce all prices, and under reasonable restrictions on the menu of pro-
duction technologies, also lead to a denser production network. Using a dynamic version of the
model, we show that the endogenous evolution of the production network could be a powerful force
towards sustained economic growth. At the root of this result is the fact that the arrival of a few new
products expands the set of technological possibilities of all existing industries by a large amount
— that is, if there are n products, the arrival of one more new product increases the combinations
of inputs that each existing product can use from 2n−1 to 2n, thus enabling significantly more pro-
nounced cost reductions from the choice of optimal technology combinations. These cost reductions
then spread to other industries that benefit from lower input prices and are further incentivized to
adopt additional inputs.
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1 Introduction

The production of the same goods typically relies on more complex supply chains in more developed

economies. Exxon-Mobil for instance, uses inputs from 65 suppliers from 20 different sectors, in-

cluding major suppliers in software, computer hardware, and electrical components and equipment.

In contrast, the Mexican oil giant PEMEX has 38 suppliers from 13 sectors, and the Venezuelan oil

company Petroleos de Venezuela S.A. has 16 suppliers concentrated in nine sectors. Neither has a

supplier in software, computer hardware or electrical components and equipment.1 These patterns

reflect systematic differences at the sectoral level between the three countries. The oil and gas

extraction industry in the United States receives inputs from 31.6% of the other industries in the

economy, worth 33% of its revenues. The same industry in Mexico receives inputs from 20.2% of

industries, worth 7.7% of its revenues, and in Venezuela, it receives inputs from 27.5% of industries,

worth 11.9% of its revenues.2

The oil and gas industry is not an isolated instance. The input-output matrices of more devel-

oped economies are denser than those of developing countries. Once again comparing the United

States to Mexico and Venezuela, we see that while the average industry in the United States pays

almost 55% of its revenue stream to intermediate input suppliers, the same numbers are 48.2% in

Mexico and 38.9% in Venezuela.

What explains the different structures of input usage across these examples? Do these differences

contribute to the productivity differences across these economies? In this paper, we take a first step

towards answering these questions by developing a tractable framework with endogenous input-

output linkages.3

In our model, each one of n industries decides which subset of the other n−1 industries (products)

to use as input suppliers, and then how much of each one of these inputs to purchase. Each different

input combination leads to a different constant returns to scale production function. What makes

our model tractable is that despite the endogeneity of production technology of each industry, the

equilibrium is competitive. We achieve this by assuming that markets are “contestable” — meaning

that many firms have access to the same menu of technologies. This ensures that in equilibrium, each

industry chooses the cost-minimizing quantities of inputs and sets its price equal to this minimal

1Authors’ calculations from Thomson Reuters Value Chains data on Eikon platform. These data are collected from
corporate disclosures, corporate filings, and news reports and identify customer-supplier relations.

2Authors’ calculations. The data used in this and the next paragraph are: for the United States, from the 2007
detailed input-output tables comprising 375 industries; for Mexico, from the 2008 detailed tables comprising 262
industries; and for Venezuela, from the 1997 tables for 120 industries.

3For models with exogenous input-output linkages see, among others, Long and Plosser (1983), Ciccone (2002),
Gabaix (2011), Jones (2011), Acemoglu, Carvalho, Ozdaglar and Tahbaz-Salehi (2012), Acemoglu, Ozdaglar and
Tahbaz-Salehi (2017), Bartleme and Gorodnichenko (2015), Biglio and La’o (2016), Baqaee (2017), Fadinger, Ghiglino
and Teteryatnikova (2016), Liu (2017), Baqaee and Farhi (2017), and Caliendo, Parro and Tsyvinski (2017). Some
of these papers, such as the last three, allow for non-Cobb-Douglas technologies, and thus allow for the entries of the
input-output matrix to be functions of technology and prices. They do not, however, endogenize which sets of input
combinations will be used by different sectors.
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unit cost, and by the same reasoning, also chooses the cost-minimizing technology.4 This typically

involves trading off the productivity improvements afforded by different combinations of inputs

against the prices of these inputs — in particular, input combinations that yield high productivity

relative to the prices of the inputs being utilized are likely to be adopted.

Our first major results establish the existence and generic uniqueness of a competitive equilib-

rium in this setup. The equilibrium has an intuitive structure, which we exploit to establish several

comparative static results. First, when a product adopts additional inputs, this reduces not just its

price but all prices in the economy (relative to the wage) — because now this product is a more

attractive input to all other industries, enabling them to reduce costs and prices. Second, under a

reasonable restriction on the menu of technologies, we establish that a change in technology that

makes the adoption of additional inputs more productive for one industry, by reducing prices in the

economy, also induces an expansion in the set of input suppliers for all industries. One implica-

tion of this economic force, is that industries whose suppliers are more productive face lower input

prices, and thus tend to have lower prices and become more likely to be used as inputs themselves.

Third, we also show that comparative statics are potentially “discontinuous” — a small change for

a single industry can trigger a chain reaction, leading to major shifts in the production structure

of many industries. Finally, we demonstrate that distortions discouraging the use of certain inputs

by some industries — which may result from taxes or imperfections in contracting institutions —

will tend to reduce both aggregate productivity and the density of the input-output network. These

results are important because we expect the costs and feasibility of setting up and using supplier

relationships to vary across countries depending on their contracting institutions and other societal

characteristics, paving the way to the formation of different production networks as suggested by

our comparison of the oil and gas industry in the United States, Mexico and Venezuela.

We then extend this model to a dynamic setup. While our baseline framework makes essentially

no functional form assumptions, for our dynamic analysis we restrict attention to Cobb-Douglas

production functions with Hicks-neutral productivity terms (as a function of input combinations).

This more tractable special case enables us to investigate the cross-sectional and growth implications

of the economic forces identified in our baseline framework.

In our growth analysis, we assume that a new product arrives at each date. We assume that

consumers have limited utility benefits from the arrival of additional products, so that economic

growth will not result from love-for-variety. Indeed, our first result for the dynamic model establishes

that if the input-output structure evolves exogenously, the growth rate of the economy is (almost

surely) zero. In contrast to this negative benchmark, we show that when firms select the cost-

minimizing combination of inputs, the economy can achieve sustained growth in the long run. This

4Throughout, we use the terms “technology choice”, “set of inputs” and “input combination” interchangeably. We
also use input-output structure (linkages) and production network interchangeably.
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growth, like our comparative static results, originates entirely from equilibrium price changes. In

particular, growth is fueled by the cost reductions resulting from the selection of the most productive

technologies from the new input combinations. Intuitively, with n products in the economy, each

industry has a choice between 2n−1 combinations of inputs. With one more product added to the

mix, the number of feasible input combinations increases to 2n for each one of the n existing products.

The choice of the best technique from this (significantly) expanded set of options leads to nontrivial

cost reductions. Crucially, however, economic growth is not just undergirded by the cost reductions

enjoyed by the product making the choice, but also by the induced cost reductions that this generates

for other industries (as they can now use as input the product that has become cheaper). We show

that if the distribution of log productivity of different combinations has sufficiently thick tails (e.g.,

exponential or Gumbel), this gradually expanded set of options for production techniques engenders

exponential growth.5

Notably, the origins of growth in our economy are different than those emphasized in the previous

literature. First, the nature of growth in our model is connected to but different from the idea of

recombinant growth in Weitzman (1999), as well as the related ideas in Auerswald, Kauffman, Lobo

and Shell (2000) and Ghiglino (2012). In particular, in contrast to the recombinant growth notion,

in our model ideas are not generated by combining, or searching within the set of, all existing ideas;

rather, a small trickle of new products significantly expands the input combinations that existing

products can use, and this then spreads to the rest of the economy by reducing costs for others.

Second, as already hinted at, growth is not driven by the combination of expanded products and

love-for-variety (as would be the case in Romer, 1990, or Grossman and Helpman, 1992). Third, it

is not a consequence of proportionately more products or innovations arriving over time (as is the

case in Romer, 1990, Jones, 1995, Eaton and Kortum, 2001, or Klette and Kortum, 2004). Fourth,

it is not driven by proportional improvements in the productivity of all industries as in quality-

ladder models (as in Aghion and Howitt, 1992, or Grossman and Helpman, 1991). Finally, it is

also not due to thick-tailed productivity draws continuously improving technology and spreading in

the economy via a diffusion process (as in Akcigit, Celik and Greenwood, 2016, Lucas, 2009, Lucas

and Moll, 2014, Perla and Tonetti, 2014). Crucially, even though the distribution of productivity

across different input mixes is thick-tailed in our economy, this by itself does not lead to sustained

growth. It is the junction of the significant increase in the number of options of input combinations

and the endogenous change in the attractiveness of input combinations following changes in prices

that underpin growth.

We further use the tractable special case of our model with Cobb-Douglas production tech-

nologies and Gumbel-distributed log productivity terms to derive three different sets of empirical

5If log productivity has an exponential distribution, then the level of productivity has a Pareto distribution, and
if log productivity has a Gumbel distribution, then the level of productivity has a Frechet distribution.
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predictions from our framework. First, we show that while the distribution of “indegrees” (the

number of suppliers per product) has only limited inequality or asymmetry across sectors, the dis-

tribution of “outdegrees” (the number of customers of each industry) is much more unequal. This

prediction is consistent with the patterns visible in US input-output tables, (e.g., Acemoglu et al.,

2012). Moreover, under an additional assumption on the distribution of sectoral shares, we show

that the distribution of outdegrees in our model is Pareto — a pattern that also matches the styl-

ized facts documented in Acemoglu et al. (2012). Second, we derive an explicit logistic equation

linking the likelihood of an industry being used as a supplier to another industry as a function of its

price. Finally, we show that this version of the model can be structurally estimated. We then carry

out this structural estimation on US data, and using the estimated parameters, we investigate the

implications of marginal distortions and restrictions on sets of input suppliers on the density of the

production network and productivity. Our results suggest that both types of distortions impact the

equilibrium production network, but the quantitative effects of direct restrictions are much larger

than those of marginal distortions and can have sizable effects on aggregate productivity.6

In addition to the papers already mentioned, our work is part of a small literature on endogenous

input-output linkages. Carvalho and Voigtlander (2015) construct a model in which producers search

for new inputs and confront some of the implications of this model with the US input-output tables.

Atalay, Hortacsu, Roberts and Syverson (2011) study the choice of suppliers at the firm level. More

closely related to our paper are the important prior work by Oberfield (2017) and independent

contemporaneous work by Taschereau-Dumouchel (2017). Oberfield constructs an elegant model of

the endogenous evolution of the input-output architecture, but with two notable differences from our

work. First, at a technical level, Oberfield considers a non-competitive model, which contrasts with

our notion of competitive equilibrium. Second and more importantly, but not unrelated to the first,

for tractability reasons Oberfield restricts attention to a situation in which each good can only use a

single supplier, and obtains an economic mechanism similar to ours — a more productive product is

more likely to be used as an input. Nevertheless, Oberfield’s framework does not allow an analysis

of how the technology choice of an industry affects the structure of input-output linkages for the

entire economy, nor does it generate the same type of equilibrium complementarities or sustained

growth as our framework. Taschereau-Dumouchel (2017) studies the formation of a production

network in the context of business cycle dynamics. Focusing on the social planner’s problem, he

investigates whether the formation and the response to shocks of equilibrium networks exacerbate

economic volatility.

The rest of the paper is organized as follows. The next section introduces our basic model.

Equilibrium existence and uniqueness are established in Section 3. Section 4 presents the main

6This exercise is related to Jones (2011), who investigates the implications of taxes/marginal distortions on ag-
gregate productivity in a world with exogenous input-output linkages. Our focus on the changes in the input-output
architecture of the economy and its impact on productivity via this channel is entirely different from Jones’s.
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comparative static results as well as our extended model with distortions. Section 5 presents our

growth model and shows how sustained economic growth can emerge in this setup. Section 6

derives the cross-sectional implications of our model. Section 7 provides structural estimates of

the underlying parameters and performs counterfactual exercises to shed light on the role of various

distortions on the structure of the input-output network. Section 8 concludes, while the Appendices

contain the proofs of the results stated in the text as well as some additional results.

Notation For any pair of m-dimensional vectors α, β ∈ Rm, we write α ≥ β if and only if αi ≥ βi
for every i ∈ {1, ...,m}, and α > β if α ≥ β and there exists at least one i such that αi > βi.

For any two functions f, g : D → Rm, we write f ≥ g if f(x) ≥ g(x) for all x ∈ D. If α ∈ Rn×m

is a matrix, we denote the row vector {αij}mj=1 by αi. Unless specified otherwise, we will use

lowercase variables to denote logarithms of the corresponding uppercase variables. For example if

P = (P1, ..., Pn) ∈ Rn>0 is a vector of prices, then p = (p1, ..., pn) ≡ (logP1, ..., logPn) will denote

the vector of log prices.

2 Model

In this section we introduce our static model and define our notion of equilibrium. We generalize

this model to a dynamic setting in Section 5.

2.1 Production Technology and Preferences

There is a set N = {1, ..., n} of industries, each producing a single good, denoted by Yi for industry

i. Throughout, we assume that each industry is contestable in the sense that a large number of

firms have access to the same production technology and can enter any sector without any entry

barriers. This will ensure that equilibrium profits are always equal to zero. When this will cause

no confusion, we work with a representative firm for each industry, and use industry i, product i

and firm i (for i ∈ N ) interchangeably.

Firms in industry i have access to a production technology summarized by

Yi = Fi(Li, Xi, Si, Ai(Si)).

Here Li is the amount of labor used by the representative firm in industry i, Si ⊂ ∅∪{1, ..., n}\{i}
denotes the set of (endogenous) suppliers or production technologies used by this industry, Xi =

{Xij}j∈Si is the vector of intermediate goods used by industry i (where clearly Xij = 0 if j /∈ Si),7

and Ai(Si) designates the productivity of the technology induced by the use of inputs in the set

Si (and for now we do not need to specify its dimension). The dependence of the technology of

7Clearly, Li, Xi and Yi as well as consumption Ci are nonnegative for all i, but we leave this restriction implicit
throughout to simplify the notation.
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production on the set of inputs is the crucial feature of our model, and captures the possibility that

by combining a richer set of inputs an industry may achieve a greater level of productivity. Motivated

by this aspect of input choice, we will interchangeably refer to the choice of Si as technology choice

or choice of input suppliers.8

We model the consumer side via a representative household whose preferences are given by

u(C1, ..., Cn). (1)

We also assume that the representative household has one unit of labor endowment, which it supplies

inelastically. Throughout, we choose the wage as the numeraire, setting

W = 1.

Denoting the price of good i by Pi, the budget constraint of the representative household can then

be written as
n∑
i=1

PiCi ≤ 1. (2)

We next impose some fairly natural assumptions on technology and preferences.

Assumption 1 1. For each i ∈ N , Fi(Li, Xi, Si, Ai(Si)) is strictly quasi-concave, exhibits con-

stant returns to scale in (Li, Xi), and is strictly increasing and continuous in Ai(Si), Li and

Xi. Moreover, labor is an essential factor of production in the sense that Fi(0, ·, ·, ·) ≡ 0.

2. u(C1, . . . , Cn) is continuous, strictly increasing and strictly quasi-concave.

Constant returns to scale on the production side is natural. The strict quasi-concavity of the

production function ensures that input demands given technology are uniquely determined, while the

feature that output is increasing in the productivity parameters is simply a normalization, enabling

us to identify “better technology” with greater Ai(Si). Finally, that labor is essential rules out

the extreme possibility that labor can be made redundant by some combination of existing inputs,

ensuring that the output level of each industry will always be finite. The assumptions on the utility

function of the representative household are fairly minimal. Assumption 1 will be imposed in the

next two sections.

2.2 Firm Optimization

The contestable market structure combined with constant returns to scale ensures that in each

industry, technology and input choices will lead to the lowest unit cost of production. We break

8In this section, we simplify the analysis by assuming that any combination of inputs is admissible. In Section 4.4,
we show that all of our results generalize to a setting where only a subset of links is (technologically or institutionally)
feasible. We further discuss this issue in Appendix C, where we generalize the setup so that some input classes are
“essential” for certain sectors (e.g., precision tools need to use at least some metals).
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this decision down into two parts: first, the choice of inputs given the set of technologies/suppliers,

Si, and then the choice of Si. The first step can be represented as the following cost minimization

problem, where the representative firm in industry i ∈ N chooses the vector of intermediate inputs

Xi and labor Li:

Ki(Si, Ai(Si), P ) = min
Xi,Li

Li +
∑
j∈Si

PjXij (3)

subject to Fi(Li, Xi, Si, Ai(Si)) = 1.

The unit cost function Ki(Si, Ai(Si), P ) is explicitly conditioned on the set of inputs, Si, because

this determines which prices matter for costs, and also captures the dependence of the technology of

production and thus the cost function on the set of inputs beyond the productivity shifter Ai(Si). In

addition, because Fi is strictly increasing and continuous in Ai, the unit cost function Ki(Si, Ai, P )

is strictly decreasing and continuous in Ai.

The second step of firm optimization is the choice of set of technologies to minimize this unit

cost function for each i ∈ N :

S∗i ∈ arg min
Si

Ki(Si, Ai(Si), P ). (4)

2.3 Equilibrium

An equilibrium is defined in the usual fashion. In particular, in an economy of size n, an equilibrium

is represented by (P ∗, C∗, S∗, L∗, X∗, Y ∗) such that

1. (Consumer maximization) The vector of consumption C∗ maximizes (1) subject to (2)

given prices P ∗.

2. (Firm maximization) For each i = 1, 2, . . . , n, factor demands L∗i and X∗i are a solution to

(3), and the technology choice S∗i is a solution to (4) given prices P ∗.

3. (Market clearing) For each i = 1, 2, . . . , n,

C∗i +

n∑
j=1

X∗ji = Y ∗i = Fi(L
∗
i , X

∗
i , S

∗
i , A

∗
i (S
∗
i )) and

n∑
j=1

L∗j = 1.

4. (Contestability) For each i = 1, 2, . . . , n,

Ki(S
∗
i , Ai(S

∗
i ), P ∗) = P ∗i . (5)

The first three conditions are standard. The fourth condition follows from the contestability

assumption and imposes that the price for each industry’s product has to be equal to the minimum

unit cost of production.
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Three observations are useful. First, ours is a version of Samuelson’s (1954) “no-substitution

economy” where prices are determined entirely on the production side (without reference to con-

sumer preferences) as condition (5) in the definition of equilibrium makes clear.9 Second, the labor

market clearing condition could have been dropped by Walras’s law, but we wrote it as part of

market clearing for emphasis. Finally, the vector of equilibrium technology choices S also describes

a network — or the equilibrium production network — since it specifies the set of suppliers (tech-

nologies used) for each industry.

2.4 Example: Cobb-Douglas Production Functions with Hicks-Neutral Tech-
nology

The simplest example of production technologies that satisfy part 1 of Assumption 1 is the family

of Cobb-Douglas production functions with Hicks-neutral technology, given by

Fi(Li, Xi, Si, Ai(Si)) =
1

(1−
∑

j∈Si αij)
1−

∑
j∈Si

αij ∏
j∈Si α

αij
ij

Ai(Si)L
1−

∑
j∈Si

αij

i

∏
j∈Si

X
αij
ij

for each i ∈ N , Ai(Si) is a scalar representing Hicks-neutral productivity, and Si indexes the

dependence of the technology on both Ai(Si) and the αij ’s.
10 We show in the Appendix that the

corresponding unit cost function for industry i is

Ki(Si, Ai(Si), Pi) =
1

Ai(Si)

∏
j∈Si

P
αij
j . (6)

This cost function illustrates the tradeoff that the firm faces when it chooses the set Si to minimize

costs — anticipated in the Introduction. There might be sets where
∏
j∈Si P

αij
j is low, but Ai(Si)

is high, and sets where
∏
j∈Si P

αij
j is high, but Ai(Si) is low. The firm will choose a set of suppliers

which balances this tradeoff between high productivity and low prices (or vice versa).

Cobb-Douglas production functions enable us to obtain a closed-form solution for equilibrium

prices. Let us denote logs with lower case; that is, pi ≡ logPi and ai ≡ logAi. We can then

write the log unit cost function as a function of log productivities and log prices ki(Si, ai(Si), p) =

−ai(Si) +
∑

j∈Si αijpj . Since product i’s equilibrium price is equal to its unit cost, equilibrium log

prices will satisfy the system of equations

p∗i =
∑
j∈Si

(αijp
∗
j )− ai. (7)

9Samuelson’s notion of equilibrium is similar to ours, but imposes an additional condition requiring that the level
of consumption of the first good is maximized given the level of consumption of the remaining goods in the economy.
Our analysis in the next section shows that Samuelson’s additional condition is redundant because the equilibrium
price vector is always unique.

10The “entropy”-like denominator is included in this production function as a normalization, in particular to simplify
the unit cost function derived next. Whether this normalization is present or not makes no difference in our static
model. It is also not important in the dynamic model, since it grows at a linear rate as n→∞ and thus its presence
(or absence) does not affect the asymptotic exponential growth rate of the economy.
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Equation (7) admits a closed-form solution for prices. Let α(S) ∈ Rn×n be a matrix with

αij(S) =

{
αij if j ∈ Si
0 otherwise

Then given equilibrium technology choices represented by S∗, log prices satisfy

p∗ = −(I − α(S∗))−1a(S∗)

= −L(S∗)a(S∗), (8)

where a(S∗) = (a1(S∗), . . . , an(S∗))′ is the column vector of equilibrium log productivities, and the

second line defines the Leontief inverse L(S∗) ≡ (I − α(S∗))−1, which will play an important role

whenever we work with the Cobb-Douglas production functions. Equation (8) verifies the above

claim that prices are determined without reference to consumer preferences in the special case of

the Cobb-Douglas family of production functions.

3 Equilibrium Characterization

In this section, we first establish the existence of an equilibrium in our static economy and then

prove that this equilibrium is generically unique. Existence and uniqueness of equilibrium are not

entirely straightforward in this economy, since each industry has a high-dimensional “nonconvex”

technology choice.11 Nevertheless, we can establish both properties using lattice theoretic tools

exploiting the fact that the equilibrium will feature a form of “monotonicity” whereby equilibrium

prices of all industries always decline with the adoption of additional (cost-minimizing) technologies

by any industry.

3.1 Existence of Equilibrium

We start with a lemma that will be useful in proving both existence and uniqueness of equilibrium.

The proof of this lemma, like all other proofs in this paper, is presented in Appendix A.

Lemma 1 Suppose Assumption 1 holds. Then given an exogenous network Si, P
∗ > 0 is an

equilibrium price vector if and only if

P ∗i = Ki(Si, Ai(Si), P
∗) for each i = 1, 2, . . . , n.

The “only if” part of this lemma is a direct implication of the definition of a competitive equilib-

rium, while the “if” part is more substantive and shows that with exogenous networks, any vector

of prices equal to unit costs is part of an equilibrium. An important implication of this lemma,

which is established as part of its proof, is that given an equilibrium vector of prices, P ∗, there is

11This nonconvexity is also the reason why we cannot invoke the standard Second Welfare Theorem.
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a unique vector of sectoral outputs, Y ∗, consumption levels, C∗, intermediate input levels, X∗, and

labor demands, L∗. Using this result, we establish the existence of an equilibrium.

Theorem 1 Suppose Assumption 1 holds. Then an equilibrium (P ∗, C∗, S∗, L∗, X∗, Y ∗) exists.

3.2 Uniqueness of Equilibrium

In this subsection, we establish the uniqueness of equilibrium prices and generic uniqueness of

equilibrium technology choices. In order to establish genericity, we need to specify the exogenous

parameters of the economy. Given the uniqueness of equilibrium prices, it is sufficient to focus on

a subset of the exogenous parameters corresponding to the shifters of the production technology,

{Ai(Si) }ni=1. Let us take each Ai(Si) to be represented by an `-dimensional vector, so that Ai =

(Ai(∅), Ai({1}), ..., Ai({1, ..., n}\{i}))ni=1 is also a vector in R`×2n−1
, and A = (A1, ..., An) is a vector

in Rn×`×2n−1
. We define generic uniqueness in terms of the Lebesgue measure on the parameters

A ∈ Rn×`×2n−1
.

Definition 1 The equilibrium network is generically unique if the set

A = {A : There exist at least two distinct equilibrium networks S∗, S∗∗}

has Lebesgue measure zero in Rn×`×2n−1
.

Theorem 2 Suppose Assumption 1 holds. Then the equilibrium prices P ∗ and quantities C∗, X∗, Y ∗

and L∗ are unique, and the equilibrium network S∗ is generically unique.

We establish as part of the proof of Theorem 1 that the set of equilibrium prices forms a

lattice, which implies that for any two vectors of equilibrium prices, there exists a minimal vector

of equilibrium prices. We then show that this is not possible, establishing uniqueness of equilibrium

prices and thus quantities. Non-uniqueness of the equilibrium network can only arise if two choices of

input combinations give exactly the same unit cost for an industry, which is a non-generic possibility,

establishing the generic uniqueness of the equilibrium network.

4 Comparative Statics

In this section, we present our main comparative statics results. We first establish that when any

industry’s technology improves, all industries’ prices (weakly) decrease. Then we prove that if the

cost function satisfies a (reasonable) single-crossing condition, then an improvement in technology

will make the equilibrium network weakly increase. We then show that this single-crossing con-

dition is satisfied when (1) production functions are supermodular; (2) production functions are

Cobb-Douglas with Hicks-neutral technologies; or (3) they have a constant elasticity of substitution
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(CES) with input-specific productivity terms. We also show that comparative statics can be “dis-

continuous” in this model in the sense that small changes in parameters (or distortions) can lead

to very large modifications in the production network. Finally, we generalize our model to include

distortions and direct restrictions on the formation of links (or adoption of technologies), and derive

additional comparative statics.

We should note at the outset that all of our comparative statics work through two complementary

channels. The first is a direct channel, whereby, say as a result of an increase in Ai(Si) industry

i can reduce its unit cost because it has access to better technology. The second is an indirect

channel, where industry i’s technology improvements are transmitted to other industries via prices.

If industry i’s price is lower, its customers will face lower unit costs, and then their customers will

have lower unit costs as well, and so on. Furthermore, because the choice of network is endogenous,

when industry i’s price decreases, other industries are more likely to adopt it as a supplier, decreasing

their own costs, which makes the customer industries themselves more likely to be adopted as

suppliers.

4.1 Comparative Statics for Prices

We first show that any improvement in technologies — in the sense of a shift in the vector of

technologies from A to A′ ≥ A — leads to lower prices for all products. Its logic and proof follow

those of Theorem 1.

Theorem 3 Suppose Assumption 1 holds. Consider a shift in technology from A to A′ ≥ A, and

let P ∗ and P ∗∗ be the respective equilibrium price vectors. Then P ∗∗ ≤ P ∗.

Intuitively, an improvement in technology reduces the costs and thus the prices of affected

industries. But since the outputs of these industries are used as inputs for the production of other

goods in the economy, the prices of all goods tend to decline as a result. Notably, no further

assumptions are necessary for this result.

4.2 Comparative Statics for Technology Choices

In contrast to prices, the comparative statics for technology choices (equilibrium network) need

additional assumptions. This is for two reasons. First, to encourage (or not to discourage) the

adoption of an additional product j as an input for industry i, we need the “marginal return to

adopting j” to increase, but an improvement in the technology for industry i (A′ ≥ A as in Theorem

3) does not ensure this. Second, we need to rule out the possibility that the reduction in prices

following from the adoption of an additional input by an industry discourages the adoption of

additional inputs. The next two definitions introduce the conditions we need to ensure these two

features.
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The first one defines a positive technology shock, embedding the notion that the shifting technolo-

gies not only improve the level of productivity of different input combinations but also the marginal

return from adopting additional input combinations. It also imposes a quasi-submodularity condi-

tion, which implies that additional inputs do not directly reduce the productivity from the adoption

of yet further inputs. We define these last requirement directly using the unit cost function —

rather than the production functions — for convenience.

Definition 2 (Positive Technology Shock) A change from A to A′ is a positive technology

shock if

1. (higher level) A′ ≥ A;

2. (quasi-submodularity) for each i ∈ N , and for all P , Ki(Si, Ai(Si), P ) is quasi-submodular

in (Si, Ai(Si)).
12

The quasi-submodularity condition implies that when A increases to A′, there are higher

marginal returns to adopting a larger set of technologies, as we show in the next lemma.

Lemma 2 Suppose that for each i ∈ N , Ki(Si, Ai(Si), P ) is quasi-supermodular in (Si, Ai(Si)).

Then for each i ∈ N , and for all P and for all Si ⊂ S′i, we have

Ki(S
′
i, Ai(S

′
i), P )−Ki(Si, Ai(Si), P ) ≤ 0 =⇒ Ki(S

′
i, A
′
i(S
′
i), P )−Ki(Si, A

′
i(Si), P ) ≤ 0.

Quasi-submodularity ensures that, holding prices constant, an improvement in technology from

A to A′ encourages the adoption of a larger set of inputs. But as highlighted in Theorem 3, an

improvement in technology also leads to lower prices. The next definition introduces the requirement

that the return to additional technology adoption does not diminish as prices decline. This is a

reasonable, but by no means automatic, restriction (since lower prices mean the cost of buying inputs

associated with the new technology is also lower), and we will see that some common production

functions satisfy it.

Definition 3 (Technology-Price Single-Crossing Condition) For each i ∈ N ,

Ki(Si, Ai(Si), P ) satisfies the technology-price single-crossing condition in the sense that for

all equilibrium prices P ′ ≤ P and Si ⊂ S′i, we have

Ki(S
′
i, Ai(S

′
i), P )−Ki(Si, Ai(Si), P ) ≤ 0 =⇒ Ki(S

′
i, Ai(S

′
i), P

′)−Ki(Si, Ai(Si), P
′) ≤ 0.

12Or more explicitly, for every Si, Ti, Ai, P we have Ki(Si, Ai(Si), P ) ≤ Ki(Si ∩ Ti, Ai(Si ∩ Ti), P ) =⇒ Ki(Si ∪
Ti, Ai(Si ∪ Ti), P ) ≤ Ki(Ti, Ai(Ti), P ) and Ki(Si, Ai(Si), P ) < Ki(Si ∩ Ti, Ai(Si ∩ Ti), P ) =⇒ Ki(Si ∪ Ti, Ai(Si ∪
Ti), P ) < Ki(Ti, Ai(Ti), P ).
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Note that in contrast to the quasi-submodularity condition, this single-crossing condition is a

joint restriction on how the unit cost function changes when both the set of inputs and prices change.

The next theorem is our main comparative static result and shows that under the technology-

price single crossing condition, a positive technology shock encourages technology adoption by all

industries.

Theorem 4 Suppose Assumption 1 and the technology-price single-crossing condition hold. Then

a positive technology shock (weakly) increases the equilibrium network from S∗ to S∗∗.

Intuitively, a positive technology shock is defined in such a way that it creates direct incentives

for technology adoption — for the adoption of additional inputs. This implies that, all else equal,

a number of “affected” industries will tend to increase the set of suppliers they use. But this then

creates a series of indirect effects, because the use of better technology will reduce their prices. The

technology-price single-crossing condition implies that facing lower prices, other industries will also

be induced to (weakly) expand their sets of suppliers.

The technology-price single-crossing condition is not always satisfied as we show in Example 1

below. Nevertheless, it is satisfied for a number of important families of production technologies.

The next proposition shows that when production functions are supermodular, then this condition

is satisfied.

Proposition 1 Suppose Fi(Li, Xi, Ai(Si), Si) is supermodular in all its arguments. Then the unit

cost function Ki(Si, Ai(Si), P ) satisfies the technology-price single-crossing condition.

Even more important in many applications, especially in the presence of input-output linkages,

as the family of Cobb-Douglas production functions. The next proposition shows that Cobb-Douglas

production functions with Hicks-neutral technology also satisfy the technology-price single crossing

condition.

Proposition 2 Suppose Fi(Li, Xi, Ai(Si), Si) is in the Hicks-neutral Cobb-Douglas family. Then

the unit cost function Ki(Si, Ai(Si), P ) satisfies the technology-price single-crossing condition.

The previous two propositions established the technology-price single-crossing condition when

the productivity of an industry, and thus its unit cost function, depends on Si, the set of inputs

it uses. Our next example is more restrictive in this regard in that we consider “input-specific”

productivities, meaning that each input has a specific productivity (for the sector in question)

which applies regardless of which other inputs are being used. We then show that when production

functions are CES with input-specific productivities, the single-crossing property is again satisfied.

13



Proposition 3 Suppose Fi(Li, Xi, Ai(Si), Si) is a CES function with input-specific productivities,

i.e.,

(
∑
j∈Si

αij(AijXij)
σ−1
σ + (1−

∑
j∈Si

αij)L
σ−1
σ

i )
σ
σ−1

with σ 6= 1. Then the unit cost function Ki(Si, Ai(Si), P ) satisfies the technology-price single-

crossing condition.

The next example illustrates that the technology-price single-crossing condition is far from vac-

uous, and might fail even under the quasi-submodularity condition.

Example 1 (Quasi-submodularity does not imply the technology-price single-crossing

condition) Consider an economy with three industries. The production function in each industry

is a Cobb-Douglas production function, but crucially technology does not take a Hicks-neutral form,

and the input shares of an industry depend on the set of inputs used. Namely,

Yi =
1

(1−
∑

j∈Si αij(Si))
1−

∑
j∈Si

α(Si)ij ∏
j∈Si αij(Si)

αij(Si)
Ai(Si)L

1−
∑
j∈Si

αij(Si)

i

∏
j∈Si

X
αij(Si)
ij ,

where the conditioning of αij’s on the set of inputs, Si, emphasizes the difference from the family

of Cobb-Douglas production functions with Hicks-neutral technology. Suppose also that industries

1 and 2 use only labor as input and have production functions Y1 = e−εL1 and Y2 = eεL2, where

ε > 0, so that in equilibrium their prices satisfy p1 = −a1 = ε and p2 = −a2 = −ε, where we have

also defined ai (for i = 1, 2) as the log productivities of these two industries. Industry 3, on the

other hand, can choose any one of ∅, {1}, {2} or {1, 2} as its set of inputs, with the following input

shares

α31(S) =


0 if 1 6∈ S3

2
3 if S3 = {1}
1
3 if S3 = {1, 2}

and α32(S) =


0 if 3 6∈ S3

2
3 if S3 = {2}
1
3 if S3 = {1, 2}.

The log productivity for industry 3 is given by a3(∅) = a3({1}) = a3({2}) = 0, and a3({1, 2}) = ε.

Quasi-submodularity then requires that for all equilibrium prices (p1, p2),

2

3
p2 ≤ 0 =⇒ −ε+

1

3
p1 +

1

3
p2 ≤

2

3
p1

2

3
p1 ≤ 0 =⇒ −ε+

1

3
p1 +

1

3
p2 ≤

2

3
p2

(and also with strict inequalities). It is straightforward to verify that these conditions hold. In

particular, because a1 = −ε < 0 and a2 = ε > 0, we have p1 = ε > 0 and p2 = −ε < 0, and

thus the first condition is always satisfied as −ε + 1
3p2 ≤ 1

3p1, while the second condition is also

always satisfied because we never have p1 ≤ 0. Hence, the unit cost function for industry 3 is

quasi-submodular.

14



We next show that it does not satisfy the technology-price single-crossing property. First note

that given the equilibrium prices characterized so far, it is cost-minimizing for industry 3 to choose

S3 = {1, 2}, since its log unit cost with S3 = ∅ is 0, with S3 = {1}, it is 2
3ε, with S3 = {2}, it is

−2
3ε, and with S3 = {1, 2}, it takes its lowest value, −ε. Next consider a change in the technology

of industry 2 so that a2 increases to a′2 = 3ε. This can be verified to be a positive technology shock,

since we still have p1 > 0 and p2 < 0, and thus the quasi-submodularity condition continues to be

satisfied. But following this change, the log unit cost for industry 3 from choosing S3 = {2} declines

to −2ε, while the log unit cost from S3 = {1, 2} declines only to −ε+ 1
3ε−ε = −5

3ε > −2ε. Therefore,

following this positive technology shock industry 3 chooses a smaller set of input suppliers, switching

from {1, 2} to {2}.

4.3 Discontinuous Effects

In this subsection, we show by means of an example that comparative statics are potentially “dis-

continuous” in that a small change in technologies can lead to a very large reconfiguration of the

input-output network. Our example, in particular, shows how following an arbitrarily small increase

in one industry’s productivity, the equilibrium network can shift from an empty to a complete net-

work. Though, to some degree, this result reflects the discreteness of the choices over the set of

suppliers in our model, it is also a consequence of the interdependent nature of technology adoption

decisions: the adoption of a productive technology reduces an industry’s unit cost of production

and makes it more attractive as an input supplier to other industries.

Example 2 (Discontinuous effects) Consider an economy with n industries. Each industry

has a Hicks-neutral Cobb-Douglas production function. Given a log price vector p, each industry i

chooses a set of suppliers Si which minimizes the log unit cost function ki(Si, ai(Si), p) = −ai(Si) +∑
j∈Si αijpj. The economy’s initial log productivity function is ai(∅) = 0 and ai(Si) = −ε for

all i and all Si 6= ∅, where ε > 0 can be taken to be arbitrarily small. With this configuration

of productivities, the unique equilibrium network is empty, i.e., (S1, ..., Sn) = (∅, ...,∅), and the

equilibrium log price vector is p = 0.

Consider next an exogenous increase in the productivity of industry 1 such that its new log pro-

ductivity vectored shifts to a′1({1, ..., n}\{1}) = κε, and a′1(S1) = a1(S1) for all S1 6= {1, ..., n}\{1},
while there is no change for other industries, i.e., a′i(Si) = ai(Si) for all i 6= 1 and all Si. We take

κ > maxi
1
αi1

. The following tattonement process converges to a new equilibrium, represented by

network S′ and log prices p′.

In round 0 of the tattonement process, we take the initial price vector p = 0 as given and allow

each industry to minimize costs using their new technology a′. Therefore, in this round, all industries

except industry 1 will choose Si = ∅, while industry 1 sets S1 = {1, ..., n}\{1} and achieves log unit

15
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(a) Initial network
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(b) Network immediately after shock to industry 1’s
productivity
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(c) Network after all industries choose industry 1 as
a supplier
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(d) Network after the new equilibrium is reached

Figure 1: Evolution of the input-output network in Example 2 after a shock to industry 1’s pro-
ductivity. Immediately after the shock, industry 1 will adopt all other industries as suppliers. This
leads to a drop in industry 1’s price. This drop in price is large enough that all other industries
adopt industry 1 as a supplier. This leads to a cascade effect of declining prices, until all industries
adopt each other as suppliers.
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cost of minS1 k(S1, a
′
1(S1), p) = −a1(S1) = −κε. Consequently, at the end of round 0, the network

is S0 = ({1, ..., n} − {1},∅, ...,∅) and the log price vector is p0 = (−κε, 0, ..., 0).

In round 1, we now impose the log price vector of p0, which resulted from round 0. Now industry

1 still chooses S1 = {1, ..., n}\{1}. All other industries will choose industry 1 as a supplier if

ε− αi1κε < 0, or equivalently if κ > 1
αi1

. Since we have assumed that κ > maxi
1
αi1

, this condition

is satisfied for all industries, and at the end of round 1, we have S1 = ({1, ..., n}\{1}, {1}, ..., {1})
and a log price vector of p1 such that p1

i < 0 for all i.

In round 2 of the tattonement process, we take the log price vector to be p1, all of whose elements

are negative. This ensures that for each industry i, the cost-minimizing set of suppliers is now

Si = {1, ..., n}\{i}, leading to a vector of log prices of p2 ≤ p1 < 0.

In round t ≥ 3, the network of technologies has converged, i.e., S′ = S3 = S2, and only prices

are updated with

pti = −ai(S′i) +
∑
j∈S′i

αijp
t−1
j .

This process converges to p′. Thus in this example, the small change in productivity shifts the

equilibrium technology choices from the empty to the complete network.

4.4 The Economy with Distortions

As noted in the Introduction, various taxes and difficulties of writing and enforcing contracts with

suppliers make setting up and utilizing supplier relations more expensive in some environments.

We next study the implications of two types of distortions on equilibrium prices and input-output

networks. The first are sector-specific “marginal distortions,” which result from taxes or per-unit

contracting costs, and are denoted by τj ≥ 0. These distortions imply that industry j’s goods will

be sold (to households and other industries) at the price Pj(1 + τj). Though, as we will see next,

these higher prices will also discourage the use of a broad set of input suppliers, their main impact

is on marginal decisions. The second type of distortions we introduce are direct restrictions on

the set of suppliers, which might also result from costs of enforcing contracts or from difficulties of

setting up complex supply chains.13 In particular, we define the set R = {(i, j)|j cannot be in Si},
which specifies the set of restricted links. Clearly, a set R′ ⊃ R represents greater restrictions on

input-output linkages than R. The definition of equilibrium can be generalized in a straightforward

manner to this setting with distortions.

The following theorem generalizes our results so far to this economy with distortions and char-

acterizes the comparative statics with respect to marginal distortions and direct restrictions. Since

its proof is very similar to the results presented so far, it is omitted.

13Though we could also model these costs as fixed costs of setting up links, we opt for the simpler formulation
because the characterization of equilibrium becomes less tractable in the presence of such fixed costs.
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Theorem 5 Suppose that Assumption 1 holds and let τ = {τj}nj=1 denote the vector of marginal

distortions and let R denote the set of restricted links. Then an equilibrium with distortions ex-

ists and the equilibrium price vector, P (τ,R), is unique and the equilibrium network, S(τ,R), is

generically unique. Moreover, for any τ ′ ≥ τ and R′ ⊃ R, the equilibrium price vectors satisfy

P (τ ′, R′) ≥ P (τ,R).

As a corollary of Theorem 4, we can show that an increase in either or both types of distortions

will lead to a smaller equilibrium network when the technology-price single-crossing condition is

satisfied (proof also omitted).

Proposition 4 Suppose that Assumption 1 and the technology-price single-crossing condition hold.

Consider a change in distortions from τ to τ ′ ≥ τ and from R to R′ ⊃ R. Then equilibrium networks

S(τ,R) and S(τ ′, R′) satisfy S(τ,R) ⊃ S(τ ′, R′), and

Ki(Si(τ,R), Ai(Si(τ,R)), P (τ,R)) ≤ Ki(Si(τ
′, R′), Ai(Si(τ

′, R′)), P (τ ′, R′))

for all i ∈ N .

The most substantive implication of Theorem 5 and Proposition 4 is that both marginal distor-

tions, which affect the cost of industry i using industry j’s good as input, and direct restrictions on

the set of input-output links lead to a smaller equilibrium input-output network.14 Consider first

the effects of marginal distortions. These increase (all) prices, and as a consequence, reduce the

profitability of using additional inputs. In addition, such distortions increase unit costs and thus re-

duce productivity.15 Turning next to direct restrictions, it is useful to note that S(τ,R) ⊃ S(τ ′, R′)

does not simply reflect the removal of newly-restricted links, but a general reduction in the set of

input-output relationships. This is because of indirect effects: once industry i is precluded from

using inputs from industry j, its unit cost will increase and it will become less likely to be used as

an input by other industries.

In Section 7, we investigate the quantitative implications of these two types of distortions for

the equilibrium input-output network and GDP. In preparation for that analysis, it is also useful

to note that when production functions belong to the Cobb-Douglas family, we can explicitly solve

for equilibrium prices in the economy with distortions as p∗i =
∑
j∈Si

(αij(p
∗
j + log(1 + τj)))− ai, and

then equation (8) becomes

p∗ = −L(S∗)a(S∗) + L(S∗)α(S∗) log(1 + τ),

14We also note that one important example where the technology-price single-crossing condition is automatically
satisfied in the presence of marginal distortions is provided by the CES technologies considered in Proposition 3,
because marginal distortions are equivalent to input-specific productivities.

15The same example presented in the previous subsection can be used to illustrate that small distortions can have
significant effects on the equilibrium network and productivity.
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where τ denotes the vector of marginal distortions and L(S∗) is the equilibrium Leontief inverse

matrix, which depends both on marginal distortions and direct restrictions as characterized in

Proposition 4.

5 Growth with Endogenous Production Networks

We now extend our baseline model to a dynamic framework, and show how our approach isolates

a new economic force with the potential to generate sustained economic growth. For this purpose,

we focus on the special case of our baseline model with Hicks-neutral Cobb-Douglas functions. The

key economic force towards growth can be understood as follows: If there are t products in the

economy, then each industry i has access to t − 1 possible suppliers, and 2t−1 ways of combining

these suppliers. Selecting the most beneficial combination to achieve a high Ai(Si) and/or low prices

for inputs j ∈ Si will enable the costs of this product to decline and thus its output to increase.16

In our dynamic extension of the model, one new industry arrives each period, and all firms

have the option of updating their technology by combining the new industry’s product with any

other subset of products. We ensure that growth is not driven due to expanding product variety

by imposing that new products have limited benefits to consumers. But they may have significant

benefits in the production process of existing products due to a selection effect — the selection effect

allows each industry to choose significantly more productive technologies from the exponentially

greater number of options made possible by the arrival of one product.

Our key result in this section shows that this selection effect can generate sustained growth and

is in fact essential for growth. If industries are assigned supplier networks exogenously, then the

asymptotic growth rate of the economy is (almost surely) zero. In contrast, when industries can

select their suppliers, sustained growth is possible. This result also clarifies the new conceptual

insight of our model: we can think of the process of economic growth as comprising two modeling

blocks: a block determining the arrival of new products or techniques (which we take as exogenous),

and a block determining how these products and techniques are combined. While most economic

growth models focus on the first block and seek to generate an exponential rate of arrival of new

goods and techniques, ours focuses on the second block. In our model, the arrival of new goods is

minimal — one good arrives each period. However, even with this minimal arrival rate, we obtain

exponential growth from the fact that firms can adopt arbitrary sets of suppliers, and that each

combination of intermediate goods generates a different productivity summarized by Ai(Si).

16As already noted in footnote 8, Appendix C generalizes our setup to allow for the possibility that not all input
combinations are feasible and some input classes are essential. We show there that this generalization does not affect
the analysis of economic growth with endogenous production networks.
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5.1 Model

There are countably infinite time periods indexed by t ∈ {1, 2, 3, ...}. At each time t, a new product

arrives. Products are indexed by the time at which they arrive, so that the product arriving at time

t is referred to as product t. Unless it is clear from context, we will index all endogenous variables

with time, for example writing Pi(t) for the equilibrium price of commodity i at time t. Analogously,

we will denote the values of Li, Yi, Xij , Ci, and Si at time t by Li(t), Yi(t), Xij(t), Ci(t), and Si(t).

The equilibrium wage rate at each t is set as the numeraire, i.e.,

W (t) = 1 for all t.

Firms At time t, each industry i ∈ {1, ..., t} has access to a collection of production technologies

indexed by the set of suppliers Si(t) ⊂ ∅ ∪ {1, ..., t}\{i}. The collection of production technologies

that firm i has at time t is Cobb-Douglas,

Ai(Si(t))

(1−
∑

j∈Si(t) αij)
1−

∑
j∈Si(t)

αij ∏
j∈Si(t) α

αij
ij

Li(t)
1−

∑
j∈Si(t)

αij
∏

j∈Si(t)

(Xij(t))
αij .

As in our baseline model, adopting (or dropping) new suppliers is costless. This implies that at each

point in time, regardless of the way that the households trade off current and future consumption,

firms will adopt the cost-minimizing combination of inputs.

Preferences The economy is still inhabited by a representative household, whose time-t prefer-

ences we now specialize to the following logarithmic form,

u(C1(t), ..., Ct(t), β) = β1 log(C1(t)) + ...+ βt log(Ct(t)), (9)

where the vector β satisfies
∑∞

t=1 βt = 1 and βt ≥ 0 for all t. Crucially, this implies that limt→∞ βt =

0. This last feature highlights the reason why we have adopted logarithmic preferences — to

construct a measure of GDP/utility, and to emphasize that direct utility gains from the addition

of new products are minimal. Intuitively, this feature can be justified as follows: we can imagine

that the representative household’s core necessities are met by goods introduced relatively early in

the development process (e.g., hot food, clothing and entertainment), and new goods introduced

later (such as microwave ovens, automated textile technologies and streaming) could be useful for

more efficiently meeting these necessities, but will not directly increase consumer utility by a large

amount. The overall utility of the representative household is given by a discounted sum of its

time-t preferences.

In what follows, we will focus on this special case of the economy studied so far, summarized in

the next assumption, which strengthens Assumption 1.
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Assumption 1′ Production functions are in the Hicks-neutral Cobb-Douglas family and preferences

are logarithmic with
∑∞

t=1 βt = 1 and βt ≥ 0 for all t.

Logarithmic preferences imply that the indirect utility function of the representative household

at time t is

V (P (t)) =
t∑
i=1

βi log
βi
Pi(t)

=
t∑
i=1

βi log βi −
t∑
i=1

βi logPi(t).

This indirect utility function also shows that asymptotically the utility of the representative

household, or equivalently log (real) GDP, is inversely proportional to the log price index of the

economy,17

π(t) = β(t)′p(t).

Using the fact that the production functions are Cobb-Douglas, equation (8) implies p(t) =

−L(S(t))a(S(t)), where a(S(t)) = (a1(S1(t)), ..., an(Sn(t)))′ is the vector of log productivity terms,

and L(S(t)) is the Leontief inverse matrix when the input-output network is given by S(t). Com-

bining the above equations, we get a concise expression for the log price index,

π(t) = −β(t)′L(t)a(S(t)).

Since log GDP is proportional to −π(t) = β(t)′L(S(t))a(S(t)), we define the asymptotic GDP

growth rate as:18

g∗ = lim
t→∞

(
−π(t)

t

)
.

These expressions also emphasize that equilibrium GDP and growth depend both on the direct

effects of productivity as captured by the a(S(t)) matrix and the indirect effects working through

the equilibrium Leontief inverse, L(S(t)).

We can also anticipate that similar expressions apply in the presence of distortions. In particular,

in this case the log price index is given as

π(t) = β(t)′(p(t) + log(1 + τ))

= −β(t)′L(t)(a(S(t))) + β(t)′L(t)α(t) log(1 + τ) + β′ log(1 + τ)

= −β(t)′L(t)(a(S(t))− log(1 + τ)),

where the last equality is a consequence of the fact that L(t) = L(t)α(t) + I. This Leontief in-

verse depends both on marginal distortions, τ , and on direct restrictions on input-output linkages

introduced in Section 4.4.
17Because household income is normalized to 1 by our choice of numeraire, log real GDP is equal to the indirect

utility function. This utility function contains two terms. The first one,
∑t
i=1 βi log βi, asymptotes to constant as

t → ∞ in view of the fact that limt→∞ βt = 0, and thus asymptotically, log GDP is given by a constant plus the
negative of this log price index.

18An alternative, perhaps more conventional, definition would have been limt→∞ (−∆π(t)). When this limit exists,
then it is straightforward to see that g∗ = limt→∞ (−∆π(t)). However, this limit may fail to exist, even though g∗ is
well defined (e.g., because −∆π(t) fluctuates between high and low values even asymptotically). Our definition thus
avoids these inessential complications.

21



5.2 Lack of Growth With Exogenous Networks

We first establish that when the set of suppliers for each product is taken as “exogenous,” sustained

growth is not possible, even though new goods are arriving at each period as specified above. By the

set of suppliers being exogenous we mean that each industry is given the option of using a specific

new technology (set of suppliers) at each date, and decides between its current technology and this

new option. We will show that, under two relatively mild assumptions stated next, the growth rate

of this economy with exogenous networks will be almost surely equal to zero.

Assumption 2 The log productivity terms ai(Si) are drawn i.i.d. from a distribution Φ. There

exists a constant D > 0 such that, if Z1, ..., Zn are drawn i.i.d. from Φ, then limn→∞
maxi∈{1,...,n} Zi

log2 n
=

D almost surely.

Assumption 3 1. There exists θ < 1 such that
∑∞

j=1 αij ≤ θ for all i ∈ N.

2. Furthermore, for every ε > 0, there exists a constant T such that for all i ∈ N,
∑∞

j=T αij ≤ ε.

Assumption 2 rules out log productivity distributions that have either too thin or too thick tails.

We show in Appendix B that the Gumbel and exponential distributions satisfy Assumption 2. In

contrast, finite and normal distributions do not satisfy this assumption because their tails decrease

at a faster than exponential rate. When log productivity follows a Pareto or Frechet distribution,

this assumption is not satisfied either, this time because their tails decrease at a slower rate than

exponential.

The first part of Assumption 3 imposes that the matrix norm ‖α(S(t))‖∞ = maxi
∑

j |αij(S(t))|
is uniformly bounded for all t, and implies that ‖L(S(t))‖∞ ≤

∑∞
`=0 ‖α`(S(t))‖∞ ≤ 1

1−θ . This

bound is a dynamic analogue of our requirement in Assumption 1 that labor is an essential factor

of production. Without this assumption, the share of labor in each industry could asymptote to

zero.19 The second part states that goods invented relatively early on are not just more important

for consumption (as imposed in Assumption 1′), but they also make up the more important inputs

in the sense that the sum of the shares of inputs arriving after some time T are uniformly bounded.

This property will be used only in the proof of Theorem 7, and will enable us to show that the upper

and lower bounds we establish for the rate of growth of the economy with endogenous production

networks are the same.

The next theorem shows that under Assumption 2 and without the endogenous choice of pro-

duction network, the expansion of the set of goods in this economy cannot generate sustained

growth.

19In fact, Theorem 6 can be established when both of these assumptions are relaxed further. However, since these
assumptions are useful for our next result, Theorem 7, we simplify the exposition by imposing them at this point.

22



Theorem 6 Suppose that Assumptions 1′, 2 and 3 hold. At each time t ≥ 1, a set of suppliers

SOi (t) ⊂ {1, . . . , t}\{i} for each i ∈ N is selected uniformly at random. Then each industry i chooses

between its existing set of suppliers, S∗i (t− 1), and SOi (t). Then g∗ = 0 almost surely.

Intuitively, there are only limited utility gains from the introduction of new consumption goods

(because limt→∞ βt = 0 as noted above). Thus sustained growth can result only if new products

significantly improve the productivity of existing goods. But under Assumption 2, this cannot

happen when new goods are introduced into the supply chain in a random manner. This result,

however, does not preclude the possibility of sustained growth when firms select which inputs to

introduce into their production process as we see next.

5.3 Growth With Endogenous Networks

The main result of this section is that, in contrast to the negative result of the previous subsection,

sustained economic growth will result when firms can select their set of suppliers. Our negative

result showed that growth with exogenous networks occurred only on a set of measure zero. We

now prove that the economy with endogenous networks almost surely has a positive long-run growth

rate.

Theorem 7 Suppose that Assumptions 1′, 2 and 3 hold, and let D > 0 be as defined in Assumption

2. Each industry chooses its set of suppliers S∗i (t) ⊂ {1, . . . , t}\{i}. Then for each i ∈ N , the

equilibrium log price vector p∗(t) satisfies,

lim
t→∞
− p∗i (t)

t
∑t

j=1 Lij
= D > 0 almost surely,

and thus

g∗ = D

∞∑
i,j=1

βiLij > 0 almost surely.

Therefore, in stark contrast to Theorem 6, when firms can choose their input suppliers in an

unrestricted fashion, the economy (almost surely) achieves sustained growth. The selection effect

— the fact that out of the many new input combination options presented to them, each industry

chooses the cost-minimizing combination of inputs — is at the root of this sustained growth result.20

This result also illustrates the direct and indirect effects that the arrival of new technologies

has on prices. The direct effect is that as each industry i faces an expanded set of possible input

combinations, its costs and thus equilibrium price decline. The indirect effect comes from the fact

that, as each industry i’s prices decline, industries that use this industry’s output as input will also

20Of course, if the exogenous draws of the input-output network sequence in Theorem 6 happened to coincide with
the endogenously chosen sequence of the input-output network in Theorem 7, the exogenous network economy would
also generate sustained growth, but clearly this event has probability zero.
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benefit because their costs will decrease. In particular, recall that −p∗i (t) =
∑t

j=1 Lij(S)aj(Sj).

We can measure the direct effect by counterfactually setting the prices of all intermediate inputs

for industry i to Pj(t) = 1 (for j 6= i) so that the cost reductions of industries that adopt new

technologies do not benefit their customers. In this case, we would have that the log price of all

intermediate inputs is zero, and the unit cost of producing good i becomes −p∗i (t) = ai(Si). Industry

i would then choose Si to maximize ai(Si) and consumers would face the price pi = −maxSi ai(Si).

The log GDP level would then be
∑t

i=1 βi maxS′i ai(S
′
i), just capturing the direct effect. The indirect

effect is the difference between this quantity and the actual log GDP level, 1
t

∑t
i,j=1 βiLij(S)aj(Sj),

which includes the indirect effects working through the Leontief inverse matrix L(S).

The next three corollaries clarify the economic forces that generate sustained growth in our

model. Because their proofs are minor variations on the proof of Theorem 7, the proofs of Corollaries

1 and 2 are straightforward and will be omitted.

The first corollary shows that it is sufficient for a subset of industries to be able to choose their

suppliers in an unconstrained manner.

Corollary 1 Suppose that there exists a finite, nonempty set S of industries for which Assumptions

1′, 2 and 3 hold and that can choose their sets of suppliers S∗i (t) ⊂ ∅∪{1, . . . , t}\{i}. The remaining

industries can not choose their suppliers. Then

g∗ = D
∞∑

i,j=1

βiLij > 0 almost surely.

This corollary thus shows that sustained (exponential) growth does not require the conditions

of Theorem 7 for all industries. Though the growth rate in this corollary has exactly the same

form of that in Theorem 7, it will be generally quite different (smaller than) that rate, because the

equilibrium Leontief inverse, L, will be different (in fact, element-wise smaller).

A restrictive feature of Theorem 7 is that Assumption 2 requires maxi∈{1,...,n}Xi to scale exactly

with log2 n. The next corollary shows that if this is not exactly the case, sustained growth still

emerges provided that there is more than one new product arriving at each date.

Corollary 2 Suppose that Assumptions 1′, and 3 hold and that each industry chooses its set of sup-

pliers S∗i (t) ⊂ {1, . . . , t}\{i}. In addition, instead of Assumption 2, we have that for any X1, ..., Xn

that are drawn i.i.d. from Φ, limn→∞
maxi∈{1,...,n}Xi

(log2 n)η = D almost surely, where η < 1. Suppose also

that at date t, there are t
1−η
η

η new products (so that the total number of products at time t is t
1
η ).

Then

g∗ = D
∞∑

i,j=1

βiLij > 0 almost surely.

Finally, the next corollary derives the asymptotic growth rate for an economy with distortions.

We will use this result in our counterfactual analysis in Section 7.
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Corollary 3 Suppose that Assumptions 1′, 2 and 3 hold, each industry chooses its set of suppliers

S∗i (t) ⊂ {1, . . . , t}\{i}, there are marginal distortions represented by the vector τ , and each link

(i, j) is assigned to the set of restricted links R independently at random with probability ρ. Then

g∗ = (1− ρ)D

∞∑
i,j=1

βiLij > 0 almost surely.

We reiterate that, though the growth rate in all three corollaries has an identical or at the very

least, a very similar expression to that in Theorem 7, the Leontief inverse matrix, L, will be in

general different, leading to a different equilibrium growth rate.

6 Cross-Sectional Implications

In this section, we draw the cross-sectional implications of our model of endogenous production

network. Our focus will be on a static economy with large n, which will enable us to draw on

some of the results developed in the context of our study of economic growth in the previous

section.21 Throughout this section we impose Assumption 1′, ensuring that all production functions

are Cobb-Douglas and preferences are logarithmic, and also strengthen Assumption 2 so that log

productivity terms are distributed according to a Gumbel distribution. Under these assumptions,

we first establish a closed-form characterization of the probability of industry j to be adopted as

a supplier to industry i. We then prove the main result of this section, showing that under a

stronger version of Assumption 3 on the shape of the αij parameters, the distribution of indegrees is

concentrated (thus exhibiting limited inequality), while the distribution of outdegrees is much more

unequal. In other words, industries are similar in terms of how many inputs they use, but they

are very different in terms of how many other industries they supply. This contrast is in line with

the patterns visible from the US input-output tables (e.g., Acemoglu et al., 2012). Finally, under

an additional assumption on αij ’s, we show that the distribution of outdegrees has an approximate

power law distribution (a Pareto tail), which implies a high degree of inequality in the propensity

of some industries to be used as suppliers to others, again similar to what Acemoglu et al. (2012)

document for the US economy.

6.1 Closed-form Expressions for Edge Probabilities

In the rest of this section, we work under the following strengthening of Assumption 2.

Assumption 2′ The log productivity terms ai(Si) = logAi(Si) are drawn i.i.d. from a Gumbel

distribution with cdf Φ(x;σ) = e−e
−x/σ

.

21Our cross-sectional results can also be developed in the context of a growing economy as in the previous section.
We focus on the static economy for simplicity.
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This assumption enables us to compute a closed-form, logistic expression for the probability

that an edge (i, j) is present in the production network.

Lemma 3 Suppose Assumptions 1′ and 2′ hold. Then:

1. Conditional on the price vector P , the probability of industry j choosing Si as its set of

suppliers is

Pr(Si|P ) =
e
−

∑
j∈Si

αij
σ
pj∑

S′i
e
−

∑
j∈S′

i

αij
σ
pj

=

∏
j∈Si P

−
αij
σ

j

Zi
.

2. Conditional on the price vector P , the probability that industry j is a supplier to industry i is

Pr(j ∈ Si|P ) =
P
−
αij
σ

j

1 + P
−
αij
σ

j

.

Lemma 3 also yields a simple logistic equation for the expected outdegree — or number of

customers — of industry j: ∑
i∈N

Pr(j ∈ Si|P ) =
∑
i∈N

P
−
αij
σ

j

1 + P
−
αij
σ

j

, (10)

which we will use in the rest of the paper. Finally, we remark that if the economy faces a vector

of distortions τ , then the formula for the probability of industry i choosing industry j as a supplier

becomes

Pr(j ∈ Si|P ) =
(Pj(1 + τ))−

αij
σ

1 + (Pj(1 + τ))−
αij
σ

.

6.2 The Distribution of Indegrees and Outdegrees in Large Networks

We now proceed to characterize the indegree and outdegree of large networks. Let {E(n)}∞n=1 be

a sequence of economies where E(n) has n industries, and let S(n) be the equilibrium network in

economy E(n). Let Ii(n) = 1
n

∑n
j=1 αij(S(n)) be the (normalized) indegree of industry i in economy

E(n) (meaning that it is normalized by the number of industries in the economy, n), and let I(n) =

{Ii(n)}ni=1 be the sequence of (normalized) indegrees. Analogously, let Oj(n) = 1
n

∑n
i=1 αij(S(n)) be

the (normalized) outdegree of industry j and let O(n) = {Oj(n)}nj=1 be the sequence of (normalized)

outdegrees.22 Both I(n) and O(n) are random variables over Rn, where randomness comes from

the fact that {ai(Si)}i,Si is a sequence of random variables. Furthermore, for every i ∈ N , we have

Ii(n),O(n) ≤ 1, so I(n) and O(n) can be interpreted as elements of `∞ (with Ii(n) = Oi(n) = 0

for all i > n).

22To simplify the terminology, we refer to I(n) and O(n) as sequences of indegrees and outdegrees, rather than
normalized indegrees and normalized outdegrees. Clearly, indegrees and outdegrees can be obtained by multiplying
I(n) and O(n) by n.
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The main result in this section, established in Theorem 8, is that the distribution of indegrees

I(n) converges uniformly to the sequence (0, 0, 0, ...) ∈ `∞ almost surely, while the limsup and

liminf of the sequence O(n) of outdegrees converge to non-degenerate distributions over `∞, which

together imply that O(n) cannot converge to a non-degenerate distribution. To prove convergence

in the first part of the theorem, we introduce the following strengthening of Assumption 3.

Assumption 3′ Suppose that Assumption 3 holds. In addition, for every industry j, the limit

limn→∞
1
n

∑n
i=1 αij of average exogenous outdegrees always exists.

In what follows, we use the notation αj = limn→∞
1
n

∑n
i=1 αij and α = {αj}j∈N.

Theorem 8 Suppose Assumptions 1′, 2′, and 3′ hold. Then:

1. I(n) converges uniformly and almost surely to a degenerate distribution at 0 ∈ `∞.

2. O = lim supn→∞O(n) is a non-degenerate distribution satisfying O ≤ α.

3. O = lim infn→∞O(n) is a non-degenerate distribution satisfying O ≥ α
2 .

Theorem 8 shows that the distribution of outdegrees will be much more unequal than the

distribution of indegrees. This is consistent with the properties of the US input-output tables, for

example, as documented in Acemoglu et al. (2012). In fact, Acemoglu et al. (2012) show that the

distribution of outdegrees can be approximated by a power law distribution (or put differently, it has

Pareto tails). The next result is a direct corollary of this theorem and shows that if the distribution of

αij ’s can be approximated by a power law distribution, then so can the distribution of outdegrees.

For this result, we utilize a simplified version of the definition of power law distribution used in

Acemoglu et al. (2012).

Corollary 4 Suppose in addition that αij’s have a power law distribution in the sense that αj’s in

Assumption 3′ satisfy αj = Bj−δh(j), where δ > 1, h(j) is a function satisfying limx→∞ h(x)xν =∞
and limx→∞ h(x)x−ν = 0 for all ν > 0, and B > 0 is such that

∑n
j=1 αj < 1. Then Oj has a power

law distribution. In particular,

Bj−δh(j)

2
≤ Oj ≤ Oj ≤ Bj−δh(j).

In other words, this corollary shows that if αij ’s have a power law distribution, then the distri-

bution of (normalized) outdegrees is sandwiched between two power law distributions and thus has

a power law distribution as well.
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7 Identification and Estimation

In this section, we first show that under Assumptions 1′, 2′ and 3′, the structural parameters of

our model can be identified from observed input-output linkages. We then develop an algorithm

for estimating these parameters, and apply it to the US input-output tables. Finally, using the

estimates of the structural parameters and estimates of the extent of distortions in the use of inputs

in some selected countries, we attempt to gauge the extent to which our model generates sizable

differences in the density of input-output linkages across countries and what the implications of

these induced differences in input-output architecture are for GDP.

7.1 Identification

Under Assumptions 1′, 2′, and 3′, the parameters of our economy are given by the exogenous

input-output matrix {αij}i,j∈N, the household preference vector {βj}j∈N, and the variance σ of the

productivity distribution. However, for input-output linkages that are not formed, the relevant αij

is unobserved, and thus has to be treated as a latent variable. Nevertheless, under Assumption

3′, we will show that as n → ∞, the vector of average exogenous outdegrees {αj}j∈N (where

αj = limn→∞
1
n

∑n
i=1 αij) is identified when we observe prices, consumption shares, GDP growth

and the structure of the realized input-output network.

To develop this point more formally, we next define our notion of identification.

Definition 4 Suppose that Assumptions 1′, 2′, and 3′ hold, and let {E(n)}∞n=1 be a sequence of

economies, where E(n) denotes an economy with n industries. Then a parameter vector ζ (where in

our case ζ ∈ {α = {αj}j∈N, {βj}j∈N,σ} if there exist an estimator ζ̂(E(n)) such that

plimn→∞ζ̂(E(n)) = ζ.

The next theorem shows that when prices, consumption shares, the growth rate and the realized

equilibrium network are observed, our key parameters are identified.

Theorem 9 Suppose that Assumptions 1′, 2′, and 3′ hold and prices, consumption shares, the

growth rate, and the realized equilibrium network are observed. Then the parameters α, β, and σ

are identified.

The proof of the theorem also establishes that the following are consistent estimators:

1. β̂ = (csi)
n
i=1, where csi denotes the consumption share of industry i;

2. σ̂ = − π(n)
n log 2

∑n
i,j=1 βiLij

, where π(n) = β′p(n) and Lij denotes the ij-th element of the realized

Leontief inverse matrix;
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3.

α̂j = arg min
z≥0

1

n

n∑
i=1

(
αij(S(n))− zPj(n)

Pj(n)−
z
σ

1 + Pj(n)−
z
σ

)2

.

7.2 Estimates from the US Input-Output Data

In this subsection, we estimate the parameters of our model using the US input-output data for

2007. We use the detailed commodity-by-commodity tables from the Bureau of Economic Analysis.

We follow Acemoglu et al. (2012) and exclude sectors related to government and housing. This

leaves us with input-output linkages between 377 industries. We then apply the estimators described

in the previous subsection to these data. Once we have estimated the average exogenous outdegree

α̂j and σ̂, we use the formulae23

P̂j = e−nσ̂ log(2)
∑n
i=1 Lij and α̂j(S(n)) = α̂j ·

P̂
−
α̂j
σ̂

j

1 + P̂
−
α̂j
σ̂

j

to predict values for endogenous average outdegrees (meaning the average outdegree of industry j

in the observed production network S(n) where some of the other industries will not have chosen

industry j as a supplier).

Figure 2 presents the estimated and actual distributions of average endogenous outdegrees, i.e.,

α̂j(S(n)) and αj(S(n)) = 1
n

∑n
i=1 αij(S(n)). The two distributions are very similar: the overall aver-

age of outdegrees in the estimated and actual distributions ( 1
n

∑n
j=1 α̂j(S(n)) and 1

n

∑n
j=1 αj(S(n)))

are the same, 0.0014, while the sum of outdegrees in both the estimated and actual data is approx-

imately 0.55. A Kolmogorov-Smirnov test fails to reject the null hypothesis that the distributions

of estimated and actual outdegrees are the same with a p-value of 0.105.

7.3 Counterfactual Analysis

In this subsection, we investigate how reasonable-sized distortions and restrictions on input-output

linkages impact the endogenous production network and the implications of this change in input-

output linkages on GDP. For this purpose, we use data on sectoral taxes and input-output linkages

from the OECD, which are available at the level of 34 industries and for 63 countries. For marginal

distortions, we consider four specifications. We start with a marginal distortion rate of τ = 1.4% on

all industries, which is the average sectoral tax rate we observe across developing countries in the

OECD data (compared to 0.26% in the United States).24 We then experiment with a specifiation in

23The formula for P̂j follows from Theorem 7, as described more explicitly at the end of this subsection.
24We use the IMF’s World Economic Outlook (IMF 2015) to categorize countries into three groups: More Developed

Countries (MDC), Graduated Developing Countries (GDC) and Less Developed Countries (LDC). We refer to the
countries in the Less Developed Countries group as developing countries. In the OECD data, these are Argentina,
Bulgaria, Brazil, Cambodia, Chile, China, Colombia, Costa Rica, Croatia, Hungary, India, Indonesia, Malaysia,
Mexico, Philippines, Poland, Russia, Saudi Arabia, South Africa, Thailand, Tunisia, Turkey and Vietnam.
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Figure 2: Distribution of estimated and actual average outdegrees. Estimates are computed from
the 377 × 377 USA detailed input-output matrix provided by the BEA, with sectors related to
government and housing removed. The red bars represent the actual sectoral average outdegrees
(from US Input-Output Detail Level data from 2007) and the blue bars represent the estimated
sectoral average outdegrees. The overall average outdegree (the average of observed αij ’s) both
in the data and in our estimates is 0.0014, and the average of sectoral outdegrees (the average of
observed

∑
i αij ’s) is 0.545 in the BEA data and 0.546 in our estimates. A Kolmogorov-Smirnov

test fails to reject the null hypothesis that the distributions of estimated and actual outdegrees are
the same with a p-value of 0.105.
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which marginal distortions across industries are distributed normally with mean 1.4% and standard

deviation 1.6%, which is the average standard deviation of sectoral tax rates across developing

countries in the OECD data. We also experimented with a marginal distortion rate of τ = 10%

to illustrate the implications of much higher marginal distortions (with or without the normal

distribution of sectoral distortions around this value).

We then use the OECD input-output data in order to estimate the probability with which a

given input-output link in the United States may be directly missing (due to institutional or other

restrictions) in developing countries. The procedure for this estimation is described in Appendix

D, and leads to an estimate of ρ ' 11% for the average developing country and ρ ' 23% for de-

veloping countries excluding formerly communist nations.25 Similar to our counterfactual exercises

for marginal distortions, we use these mean estimates assuming either no variation across sectors

or a normal distribution for the probability that a link that is present in the US input-output is

missing with a standard deviation of 89.5%, which is the average standard deviation of the observed

probabilities across developing economies in our sample.

We compute counterfactual input-output matrices and GDP levels using, separately, the above-

described marginal distortions and direct restrictions. The algorithm for computing these counter-

factuals (described below) relies on equilibrium log productivity terms, the ai(S
∗)’s, and log prices,

the p∗i ’s, neither of which are directly observed in the BEA data. Nevertheless, we can use Theorem

7 and Corollary 3 to obtain the asymptotic values of these variables (to which they converge almost

surely as n grows large). In particular, from Theorem 7 we have

lim
n→∞

−p
∗
i (n)

n
= D

n∑
j=1

Lij almost surely,

and in the proof of this theorem in Appendix A, we also establish

lim
n→∞

ai(S
∗(n))

n
= D almost surely.

Under Assumption 2′, we have that D = σ log 2. Thus, an estimate σ̂ for the parameter σ will

yield an estimate D̂ = σ̂ log 2 which we can use to predict log prices as p̂∗i (n) = −nD̂
∑n

j=1 Lij
and log productivities as âi(S

∗(n)) = nD̂. In the presence of distortions, from Corollary 3 the

corresponding predicted values are p̂∗i (n) = −(1−ρ)nD̂
∑n

j=1 Lij and âi(S
∗(n)) = (1−ρ)nD̂, where

ρ is the probability that there is a direct restriction preventing a link (i, j) to be formed.

Using these formulae for productivity and prices we use the following algorithm for computing

counterfactual input-output networks and GDP levels.

25This last sample (excluding Bulgaria, Cambodia, China, Croatia, Hungary, Poland, Russia and Vietnam) is
relevant because formerly communist economies tend to have very dense input-output networks as a legacy of central
planning, which often mandated inter-industry trade.
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1. Start with a marginal distortion vector (τi)
n
i=1, a probability of links being assigned to R (the

set of restricted links) ρ ∈ [0, 1], the US input-output network SUS , the input-output matrix

α(SUS), and the Leontief matrix L(SUS).

2. Initialize α = α(SUS).

3. For every link (i, j) such that αij(SUS) > 0, set αij =

{
αij(SUS) with probability 1− ρ
0 with probability ρ

.

Initialize L = (I − α)−1.

4. Initialize Pj = e−σ log 2n
∑
k Ljk+

∑
k Ljhαhk log(1+τk).

5. For any remaining edges (i, j) in the network, let Pr0
i,j =

P
−
αij
σ

j

1+(Pj)
−
αij
σ

. Repeat the following

procedure until the estimate of log GDP, ŷ, converges:

• Compute the conditional probability
Prij
Pr0ij

that edge (i, j) is observed in the economy

with distortions, given that it is observed in the economy without distortions, where

Prij =
(Pj(1+τj))

−
αij
σ

1+(Pj(1+τj))
−
αij
σ

. Note that when τ ≥ 0, we have that 0 ≤ Prij
Pr0ij
≤ 1.

• Create a matrix αtemp such that αtempij =

αij with probability
Prij
Pr0ij

0 with probability 1− Prij
Pr0ij

.

• Create an endogenous Leontief matrix Ltemp = (I − αtemp)−1.

• Update log prices as p̂j = −(1− ρ)σ log 2n
∑

k L
temp
jk +

∑
k L

temp
jh αtemphk log(1 + τk).

• Estimate log GDP as ŷ = β′(p̂+ log(1 + τ)).

A variation of this algorithm, which we use in Table 2 below, allows different removal probabilities

ρij for each link (i, j). In this case, we cannot use Corollary 3 to derive an asymptotic formula for log

prices, but we can approximate them as p̂j ' −(1−ρj)σ log 2n
∑

k L
temp
jk +

∑
k L

temp
jh αhk log(1+ τk),

where ρj = 1
n

∑n
i=1 ρij .

In Table 1, we show the implications of marginal distortions. The first column gives the implied

counterfactual decline in GDP in our model for the indicated specification of distortions. With

moderate distortions, the effect is small, ranging between 2.7% and 3.3%. When we consider the

higher average value τµ = 10%, we see a larger decline of approximately 18.5%. The next columns

investigate whether these declines come from the direct effects of marginal distortions or the implied

changes in the input-output structure of the economy. The second column considers the implied

decline in GDP if we keep the input-output network unchanged and only consider the direct effects of

marginal distortions. The implied reductions in GDP are very similar to those reported in column

1. Column 3 considers the converse exercise, where we let the input-output structure adjust to

marginal distortions, but then compute the counterfactual GDP without taking into account the
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direct effects of these marginal distortions. Unsurprisingly in view of the results in column 2, the

implied declines are now very small. The fourth column, finally, shows why this is the case. The

probability that any given input-output link is dropped because of the marginal distortions is very

very small, less than 0.1% in all cases. These exercises therefore show that marginal distortions have

moderate effects on GDP (and productivity), and very small effects on the equilibrium input-output

linkages at our estimated parameter values.26

Table 2 then turns to an investigation of the implications of direct regulations on the produc-

tion network modeled as the removal of some of the existing links in the US input-output data.

We now estimate fairly large effects on GDP. The implied declines in GDP are over 80% in all

cases. These large declines reflect moderate declines in the entries of the Leontief inverse matrix,

since counterfactual GDP in this case is exp(β′L(S)a(S)− β′L(SUS)a(SUS)). These numbers sug-

gest that the potential productivity implications of changes in the input-output architecture of an

economy resulting from direct restrictions could be much larger than those resulting from marginal

distortions.27

8 Conclusion

There are marked differences across countries in how production is organized. Richer and more pro-

ductive countries appear to have denser production networks — where each disaggregated industry

uses the output of several other industries as inputs. We develop a tractable model of endogenous

production networks to provide a conceptual framework for understanding these patterns and how

differences in distortions or technologies can translate into variation in production networks.

In our model, each product can be produced by combining labor and an endogenous subset of

the other products as inputs. Different combinations of inputs generate different constant returns

to scale production functions with (prespecified) levels of productivity. What makes our framework

tractable is our assumption that markets are “contestable”. This means, in particular, that produc-

tion technologies are available to a large number of potential producers (this avoids the interesting

but challenging issues that would be associated with differential market power of firms that make

investments in different types of technologies and issues of bilateral monopoly between suppliers

and customers of inputs).

Using this setup, we establish the existence and uniqueness of an equilibrium with an endogenous

26Specifically, the counterfactual decline in GDP without a change in the input-output network is computed as
exp(β′L(SUS)(a(SUS) + log(1 + τ)) − β′L(SUS)a(SUS)), while the expression for the counterfactual decline in GDP
resulting from the change in the input-output network without taking the direct impact of marginal distortions into
account is exp(β′L(S)a(S) − β′L(SUS)a(SUS)). In our calculations, we use the asymptotic approximation ai(S) '
ai(SUS) ' nσ log 2. Similarly, with probability ρ for direct restrictions, we use the asymptotic approximations
ai(S) ' (1− ρ)nσ log 2 and ai(SUS) ' nσ log 2.

27It is also interesting to note that the implied declines in GDP from the implied probabilities of missing input-
output links are in the ballpark of the observed gap between the average developing country in our sample (both with
and without the formerly-communist nations) and the United States, which is about 72%.
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Table 1: Counterfactual Analysis With Marginal Distortions

Distribution of Counterfactual GDP Probability that an edge
Marginal Distortions τ in US network is missing

(1) (2) (3) (4)
Mean Standard Deviation Model Constant IO Matrix Constant Taxes

1.4% 0 -2.7% -2.7% -0% < 0.01%
1.4% 1.6% -3.3% -3.3% -0% < 0.01%
10% 0 -18.4% -17.5% -1.1% < 0.01%
10% 1.6% -18.5% -17.5% -1.3% < 0.01%

Note: This table reports the results of a counterfactual exercise where we impose a marginal distortion
1 + τi on prices so that if a firm’s unit cost is given by Pi, the price of its product is Pi(1 + τi). Im-
posing this marginal distortion has two effects on GDP: a direct effect from the fact that input prices are
higher, and an indirect effect by changing the input-output matrix. The marginal distortions τi are assumed
to be drawn from a truncated normal distribution with location and scale parameters µ and σ. The ta-
ble rows correspond to different levels of µ and σ. Column (1) reports the counterfactual GDP decline,
exp(β′L(S∗)(a(S∗) − log(1 + τ)) − β′L(SUS)a(SUS)). Column (2) reports the counterfactual GDP decline,
exp(β′L(S∗)a(S∗)− β′L(SUS)a(SUS)), capturing only the indirect effect from the change in L. Column (3)
reports the counterfactual GDP decline, exp(β′L(SUS)(a(S∗)− log(1 + τ))− β′LUSa(SUS)), capturing only
the direct effect of imposing marginal distortions, while fixing the input-output matrix to be the observed
BEA input-output matrix for the US. Column (4) provides the probabilities that an edge present in the US
input-output network is missing with the indicated distortions.

Table 2: Counterfactual Analysis With Direct Restrictions

Distribution of Restriction Probability ρ Counterfactual GDP

Mean Standard Deviation

10.9% 0 -80.5%
10.9% 89.5 % -89.5%
23.8% 0 -95.8%
23.8% 89.5% -95.8%

Note: This table reports the results of a counterfactual exercise where edges are removed from the observed
US input output graph with some probability ρ, which is drawn from a truncated normal distribution with
parameters µ and σ. The table rows correspond to different levels of µ and σ. The drop in counterfactual
GDP is given by exp(β′La(S∗)− β′L(SUS)a(SUS)).
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production network. We then use our framework to clarify several new economic trade-offs and

comparative statics that arise in the context of endogenous production networks. Namely:

• when a product adopts additional inputs to minimize its costs, this not only reduces its price,

but (weakly) reduces all prices in the economy. This “complementarity” is a consequence of

the fact that with the new technology, this product has now become cheaper and thus a more

attractive input to all others, enabling them to reduce costs and prices as well;

• under a reasonable assumption that ensures that lower prices do not discourage technology

adoption, a change in technology that makes the adoption of additional inputs more produc-

tive for one industry expands technology sets for all industries. This second dimension of

complementarity is a new feature of environments with endogenous production networks;

• the technology comparative statics mentioned in the previous bullet point are potentially

“discontinuous” in the sense that a small change for a single industry can trigger a chain

reaction, leading to major shifts in the production structure of many industries;

• both marginal distortions (e.g., taxes) that increase the prices of certain inputs and direct

restrictions on input-output links increase equilibrium prices, decrease the density of the pro-

duction network, and reduce GDP. The full effects of these distortions extend beyond the

affected sectors because those that experience higher marginal distortions or are restricted

from using valuable inputs become more expensive themselves and are thus less likely to be

used by others, spreading the effects of distortions throughout the production network of the

economy.

The second part of the paper uses a dynamic version of our framework to study the growth

implications of the endogenous evolution of the production network. Our main result from this

analysis is that the endogenous selection of input suppliers and the indirect effects that this creates

on the equilibrium structure of the production network emerge as powerful forces towards sustained

economic growth. The origin of sustained growth in our model is related to, but different, from

Weitzman’s idea of recombinant growth. When a new product arrives, it becomes a potential input

for all existing products, and significantly expands the number of input combinations (production

techniques) available to other industries. Namely, when there are n products, the arrival of one more

new product increases the combinations of inputs that each existing product can use from 2n−1 to

2n, thus enabling nontrivial cost reductions from the choice of optimal technology combinations. A

first impetus for growth comes from this expanded set of techniques to which firms have access, and

this part of our mechanism is related to Weitzman (1998), even if formulated differently from his —

in Weitzman’s approach, ideas can be recombined without limit, whereas here there is an explicit

focus on the new combinations of inputs that are made possible by the addition of one more product
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into the set of possible inputs. Growth in our economy is not driven by this first impetus alone,

however. It is undergirded by the fact that the adoption of a new production technique reduces the

price of the relevant product, encouraging other industries to adopt this product as an additional

input and change their production techniques. To highlight the role of these new elements, we

document that growth in our model does not follow if firms do not make endogenous choices of

input suppliers, that there is no contribution to growth from expanding product variety (because

we impose that the value of new products in consumption is essentially zero), and that there are

sizable indirect effects on growth coming from the cost reduction benefits to other industries.

The third part of the paper derives the empirical implications of our framework and makes a first

attempt at confronting them with data. We first derive a closed-form expression for the likelihood of

a sector being adopted as an input supplier to another sector. Second, we establish that under fairly

mild assumptions, outdegrees (how often a sector is being used as a supplier to other industries)

are much more unequally distributed than indegrees (how many inputs a sector is using). This

prediction is consistent with the patterns of input-output linkages in the US economy. Finally, we

show how the underlying parameters of our model can be estimated structurally, and carry out

such an estimation using the disaggregated US input-output tables. We then use these estimates to

gauge the implications of reasonably-sized distortions on the density of the input-output network

and aggregate productivity.

We view our paper as a first step in the analysis of endogenous formation of production networks.

As mentioned above, our analysis was greatly simplified by the “contestability” assumption. Though

this was a very useful starting point, it precludes a systematic investigation of endogenous production

networks at finer levels of disaggregation — e.g., at the firm level rather than at the level of

disaggregated industries — where contestability would make less sense. Relaxing this assumption

would enable an analysis of relationship-specific investments taking place at the same time as the

choice of input suppliers, significantly enriching the theoretical framework and its empirical reach.

Second, we illustrated the empirical applications of this framework only briefly. A more in-depth

structural exercise estimating the parameters regulating the endogenous evolution of production

networks and counterfactual analysis based on these parameters are obvious fruitful directions for

future research. Beyond firm-level datasets with information on flows of intermediate goods, detailed

bilateral international trade flows would be another empirical domain where a similar approach could

be developed. Finally, the linkages between the evolution of the production network and long-run

economic growth are another promising area that calls for more work. Introducing endogenous

innovation and entry and exit of firms into this framework is a challenging but a necessary step to

obtain a more satisfactory picture of the co-determination of the production network and endogenous

technology choices, and their impact on growth.
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Appendix A: Omitted Proofs From the Text

Proof of Lemma 1. First, suppose that P ∗ is a vector of equilibrium prices. Then P ∗i =

Ki(Si, Ai, P
∗) follows from the second condition of the definition of equilibrium (firm optimization).

To prove the other direction, suppose that P ∗i = Ki(Si, Ai, P
∗). We show that P supports an

equilibrium. Let X∗i and L∗i be the optimal solutions to the firm’s cost minimization problem (3)

given P ∗

Let C∗ be the consumer’s optimal choice of good i when facing the vector of prices P ∗. Note

that the assumption that P ∗i > 0 ensures X∗i and C∗i are finite.

For given P ∗, let xij denote the units of good j used for producing one unit of good i, which

depends on P ∗, but due to constant returns to scale, is independent of Yi. Similarly let li be the unit

labor requirement of good i. These quantities are uniquely determined by the strict quasi-concavity

of the production function imposed in Assumption 1. Then X∗ij = xijY
∗
i and L∗i = liY

∗
i . Then

market clearing implies

C∗j +

n∑
i=1

xijY
∗
i = Y ∗j .

Multiplying this equation by P ∗j ,

P ∗j C
∗
j +

n∑
i=1

P ∗j xij

P ∗i
P ∗i Y

∗
i = P ∗j Y

∗
j ,

or

Ĉ∗j +

n∑
i=1

P ∗j xij

P ∗i
Ŷ ∗i = Ŷ ∗j ,

where “ˆ” denotes a nominal variable. Denoting the matrix of
P ∗j xij
P ∗i

’s by X, this nominal version of

the market clearing condition can be expressed as (I−X ′)Ŷ ∗ = Ĉ∗. This is a system of n equations

in n unknowns, the nominal sectoral outputs, Ŷ1, ..., Ŷn. As long as det(I −X ′) 6= 0, this system of

equation admits a unique solution Ŷ ∗1 , ..., Ŷ
∗
n . Since we are taking the vector of prices P ∗ as given,

this solution translates into a unique vector of sectoral outputs Y ∗1 , ..., Y
∗
n . Clearly, det(I −X ′) 6= 0

if and only if 1 is not an eigenvalue of X
′
. From the fourth condition of the definition of equilibrium,

P ∗i = Ki(Si, Ai, P
∗), which can be equivalently written as

∑n
i=1 P

∗
j xij + li = P ∗i . Because labor is

an essential factor of production (cfr. Assumption 1), the elements of X
′

are between 0 and 1 and

strictly less than 1. But then the Perron-Frobenius theorem implies that X
′

has a positive largest

eigenvalue that is strictly less than 1, and sectoral outputs, and thus consumption and intermediate

input levels, are uniquely determined. Moreover, L∗i = liY
∗
i is also uniquely determined for each i.

This completes the proof that P ∗ > 0 can support an equilibrium if P ∗i = Ki(Si, Ai, P
∗).

Proof of Theorem 1. Let κ(P ) = (minS1 K1(S1, A1(S1), P ), ...,minSn Kn(Sn, An(Sn), P )). We
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first show that κ has a fixed point, and then show that this corresponds to an equilibrium. To do

this, we prove the following lemma as an intermediate step.

Lemma A1 Let L = {P ≥ 0 : Pi = minSi Ki(Si, Ai(Si), P )}. Then L is a non-empty com-

plete lattice with respect to the operations P ∧ Q = (min(P1, Q1), ...,min(Pn, Qn)), P ∨ Q =

(max(P1, Q1), ...,max(Pn, Qn)).

Proof of Lemma A1. Let O = {(x1, ..., xn) : xi ≥ 0}, and then by definition κ : O→ O. We will

first show that there is a subset Õ ⊂ O which is a complete lattice with respect to ∧ and ∨, and

then establish that that κ(P ) is increasing in P and maps Õ to Õ. The result that L is a complete

lattice follows from these two steps.

To establish the first step, note that for any i, we can produce good i using only labor and

incur a cost Pi = Ki(∅, Ai(∅), {Pj}j∈∅) that does not depend on the price vector P . Thus, we

have κ(P ) ≤ (P1, ..., Pn) for all price vectors P . Since labor is essential in production, we have

Ki(Si, Ai(Si), 0) > 0 for every set Si. Define Pi = κi(0) = minSi Ki(Si, Ai(Si), 0). Since Ki is

increasing in price, we have κ(P ) ≥ κ(0) = (P1, ..., Pn) for every price vector P . Then Õ =

×ni=1[Pi, Pi] is a complete lattice, and κ maps Õ to Õ.

The second step is immediate from the definition of κ(P ). If P ′ ≤ P , then for any i

and Si, we have Ki(Si, Ai(Si), P
′) ≤ Ki(Si, Ai(Si), P ). Taking minima on both sides, we get

minSi Ki(Si, Ai(Si), P ) ≤ minSi Ki(Si, Ai(Si), P
′), so κ(P ′) ≤ κ(P ). We conclude from Tarski’s

fixed point theorem that L is a non-empty complete lattice.

Since L is a non-empty complete lattice, κ has a fixed point, and in fact, a smallest fixed

point. Take this smallest fixed point, which simultaneously satisfies P ∗i = Ki(S
∗
i , Ai(S

∗
i ), P ∗) and

S∗i ∈ arg minSi Ki(Si, Ai(Si), P
∗). That is, given P ∗, technology choice S∗i is optimal, and given

S∗, firms minimize costs. Then with the same argument as in Lemma 1, there exist equilibrium

quantities X∗, L∗ and C∗, and P ∗ is minimal by construction, and thus (P ∗, C∗, S∗, L∗, X∗, Y ∗) is

an equilibrium.

Proof of Theorem 2. Let P ∗ be the minimal element of lattice L defined in the proof of Theorem

1, which is of course an equilibrium price vector. If P ∗∗ is another equilibrium price vector, it must

be contained in L and therefore satisfy P ∗∗ > P ∗. We now derive a contradiction to P ∗∗ > P ∗.

First, note that for each i ∈ N , the unit cost function Ki(Si, Ai(Si), P ) is concave in

prices given Si. Since the minimum of a collection of concave functions is concave, κi(P ) =

minSi Ki(Si, Ai(Si), P ) is also concave.

Then, let λ ∈ (0, 1) be such that λP ∗∗ ≤ P ∗, with at least some r ∈ N such that λP ∗∗r = P ∗r .
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We have

κr(P
∗)− P ∗r ≥ κr(λP

∗∗)− λP ∗∗r
≥ (1− λ)κr(0) + λκr(P

∗∗)− λP ∗∗r
≥ (1− λ)κr(0)

> 0,

where the first line follows because κr is nondecreasing, λP ∗∗ ≤ P ∗, and λP ∗∗r = P ∗r . The second line

follows from the concavity of κr. The third line simply uses the fact that P ∗∗ is a fixed point, i.e.,

κr(P
∗∗) = P ∗∗r . Finally, the last inequality follows because labor is essential by Assumption 1, which

implies κr(0) > 0. But this contradicts the hypothesis that P ∗ is a fixed point. This contradiction

establishes the uniqueness of equilibrium prices, and then the uniqueness of equilibrium allocations

follows from Lemma 1.28

To prove that the equilibrium network is generically unique, let S∗ 6= S∗∗ be two arbitrary

networks and let A(S, S∗∗) = {A : S∗ and S∗∗ are both equilibrium networks}. Note that we can

write A as the countable union ∪S∗,S∗∗A(S∗, S∗∗). Thus, if we prove that A(S∗, S∗∗) has measure

zero, then we can conclude that A has measure zero. Define

∆i(S
∗, S∗∗, A) = Ki(S

∗
i , Ai(S

∗
i ), P ∗)−Ki(S

∗∗
i , Ai(S

∗∗
i ), P ∗),

and note that for all parameters A ∈ A(S∗, S∗∗) and each i ∈ {1, ..., n}, we have ∆i(S
∗, S∗∗, A) = 0.

Because S∗ 6= S∗∗, there is at least one industry i such that S∗i 6= S∗∗i . Recall also that

the cost function Ki(Si, Ai(Si), P ) is continuous and strictly decreasing in Ai(Si) ∈ R`. Let

Ai,−S∗i = {Ai(Si)}Si 6=S∗i be the vector of all technology terms for sets different than S∗i and let

Ai,−1(S∗i ) = {Ai,2(S∗i ), ..., Ai,`(S
∗
i )} be the vector of all components of Ai(S

∗
i ) except for the first

component Ai,1(S∗i ). If we keep Ai,−S∗i and Ai,−1(S∗i ) constant, then ∆i(S
∗
i , S

∗∗
i , A) is a continuous

and strictly decreasing function of one real variable Ai,1(S∗i ). This implies that, for any fixed

Ai,−S∗i , Ai,−1(S∗i ), there exists a unique value of Ai,1(S∗i ) that satisfies ∆i(S
∗
i , S

∗∗
i , A) = 0. Hence,

A(S∗, S∗∗) = {A : ∆i(S
∗
i , S

∗∗
i , A) = 0 for each i} has measure zero in Rn×`×2n−1

, which implies that

the equilibrium network is generically unique.

Proof of Lemma 2. Let i ∈ N , and let S′i ⊃ Si, A
′
i ≥ Ai. Let X = (Si, A

′
i),Y = (S′i, Ai)

and use the product lattice ordering so that X ∨ Y = (S′i, A
′
i),X ∧ Y = (Si, Ai). Suppose that

Ki(S
′
i, Ai(S

′
i), P ) −Ki(Si, Ai(Si), P ) ≤ 0. In our lattice notation, this can be written as Ki(Y) ≤

Ki(X ∧ Y). The quasi-submodularity of Ki implies that Ki(X ∨ Y) ≤ Ki(X ) which is the same as

writing Ki(S
′
i, A
′
i(S
′
i), P )−Ki(Si, A

′
i(Si), P ) ≤ 0. Thus, we conclude that

Ki(S
′
i, Ai(S

′
i), P )−Ki(Si, Ai(Si), P ) ≤ 0 =⇒ Ki(S

′
i, A
′
i(S
′
i), P )−Ki(Si, A

′
i(Si), P ) ≤ 0.

28This part of the proof builds on Kennan’s (2001) proof of uniqueness of fixed point for a concave function.
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Proof of Theorem 3. Let P 0 = P ∗ and S0 = S∗ be the initial vector of equilib-

rium prices and equilibrium network. Note that P 0 satisfies the fixed-point conditions P 0
i =

minSi Ki(Si, A(Si), P
0) for all i. Suppose that Ai(·) increases to A′i(·), and define P 1 so that

P 1
i = minSi Ki(Si, A

′
i(Si), P

0). SinceKi is decreasing in Ai, we have P 1
i = minSi Ki(Si, A

′
i(Si), P

0) ≤
minSi Ki(Si, Ai(Si), P

0) = P 0
i , establishing that P 1 ≤ P 0.

As in the proof of Theorem 1, define κ(P ) = minSi Ki(Si, A
′
i(Si), P ). The equilibrium

price P ∗∗ under the new productivity function A′i is the minimal fixed point of κ. For

t ≥ 1, define P t = κ(P t−1) and note that, since κ is increasing in P and P 1 ≤ P 0, we have

limt→∞ P
t ≤ P 1 ≤ P 0 = P ∗. Furthermore, since κ is continuous, limt→∞ P

t is a fixed point of κ.

Since P ∗∗ is the minimal fixed point, we must have P ∗∗ ≤ limt→∞ P
t ≤ P 0 = P ∗.

Proof of Theorem 4. Let S0 = S∗ be the initial equilibrium network. Note that S0 satisfies the

fixed-point conditions S0
i = arg minSi Ki(Si, A(Si), P

∗) for all i. Suppose that the shift from Ai(·)
to A′i(·) is a positive shock, and define S1 such that S1

i ∈ arg minSi Ki(Si, A
′
i(Si), P

∗). Using the

definition of positive technology shock, we can apply Theorem 4 in Milgrom and Shannon (1994)

to infer that S0
i ⊂ S1

i .

As in the proof of Theorem 1, define κ(P ) = minSi Ki(Si, A
′
i(Si), P ). Let P 0 = P ∗ and define

P t = κ(P t−1) for t ≥ 1. From the proof of Theorem 3, we know that P t is a decreasing sequence with

P ∗∗ ≤ limt→∞ P
t ≤ P ∗. Since P ∗∗ ≤ P ∗, we apply once more Theorem 4 of Milgrom and Shannon

(1994) to obtain S∗∗i = arg minSi Ki(Si, A
′
i(Si), P

∗∗) ⊃ arg minSi Ki(Si, A
′
i(Si), P

∗) = S1
i ⊃ S0

i = S∗i .

We conclude that S∗ ⊂ S∗∗.

Proof of Proposition 1. Because Fi(Li, Xi, Ai(Si), Si) is supermodular, the profit func-

tion Πi(Li, Xi, Ai(Si), Si, P ) = Fi(Li, Xi, Ai(Si), Si) −
∑

j∈Si PiXij − Li is supermodular in

Li, Xi, Ai(Si), Si and −P . Topkis (1998) shows that the function

Π̃i(Si, Ai(Si), P ) = max
Xi,Li

Πi(Li, Xi, Ai(Si), Si, P )

is supermodular in Ai(Si), Si,−P . Thus, Π̃i will satisfy the single-crossing condition

Π̃i(S
′
i, Ai(S

′
i), P ) ≥ Π̃i(Si, Ai(Si), P ) =⇒ Π̃i(S

′
i, Ai(S

′
i), P

′) ≥ Π̃i(Si, Ai(Si), P
′). Let Qi(P )

be the demand for good i when the prices are P , and write Π̃i(Si, Ai(Si), P ) = Qi(P )(Pi −
Ki(Si, Ai(Si), P )). The cost function satisfies the single-crossing condition with the following argu-

ment:

Ki(S
′
i, Ai(S

′
i), P ) ≤ Ki(Si, Ai(Si), P ) ⇐⇒

Qi(P )(Pi −Ki(S
′
i, Ai(S

′
i), P )) ≥ Qi(P )(Pi −Ki(Si, Ai(Si), P )).
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But the last inequality implies

Qi(P
′)(P ′i −Ki(S

′
i, Ai(S

′
i), P

′)) ≥ Qi(P ′)(P ′i −Ki(Si, Ai(Si), P
′)) ⇐⇒

Ki(S
′
i, Ai(S

′
i), P

′) ≤ Ki(Si, Ai(Si), P
′),

which is the desired result.

Proof of Proposition 2. Since the price single-crossing condition is preserved by monotonic

transformation, it suffices to show that it is satisfied by the log unit cost function. To show that

the log unit cost function satisfies the single-crossing conditions, let Si ⊂ S′i and p′ ≤ p and note

that

ki(S
′
i, ai, p)− ki(Si, ai, p) ≤ 0 ⇐⇒∑

j∈S′i

αijpj −
∑
j∈Si

αijpj − ai(S′i) + ai(Si) ≤ 0 ⇐⇒

∑
j∈S′i−Si

αijpj − ai(S′i) + ai(Si) ≤ 0 =⇒

∑
j∈S′i−Si

αijp
′
j − ai(S′i) + ai(Si) ≤ 0 ⇐⇒

∑
j∈S′i

αijp
′
j −

∑
j∈Si

αijp
′
j − ai(S′i) + ai(Si) ≤ 0 ⇐⇒

ki(S
′
i, ai, p

′)− ki(Si, ai, p′) ≤ 0.

Proof of Proposition 3. In this case, the technology function Ai maps a set Si to a vector

(Aij)j∈Si . Write the CES cost function for firm i as

Ki(Si, Ai, P ) = ((1−
∑
j∈Si

αij)
σ +

∑
j∈Si

ασij(
Pj
Aij

)1−σ)
1

1−σ .

Since the single-crossing condition is preserved by monotone transformations, it suffices to con-

sider a monotone transformation of Ki. We split the analysis into two cases:

Case 1: σ < 1

In this case, we can raise the cost function to the power 1 − σ to obtain (Ki(Si, Ai, P ))1−σ =

(1−
∑

j∈Si αij)
σ +

∑
j∈Si α

σ
ij(

Pj
Aij

)1−σ. Since 1− σ > 0, minimizing Ki is equivalent to minimizing

(Ki(Si, Ai, P ))1−σ. We will show that (Ki(Si, Ai, P ))1−σ satisfies the single-crossing condition. Let
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Si ⊂ S′i and P ′ ≤ P . We can derive the chain of implications

(Ki(S
′
i, Ai(S

′
i), P ))1−σ − (Ki(Si, Ai(Si), P ))1−σ ≤ 0 =⇒

((1−
∑
j∈S′i

αij)
σ − (1−

∑
j∈Si

αij)
σ) +

∑
j∈S′i−Si

ασij(
Pj
Aij

)1−σ ≤ 0 =⇒

((1−
∑
j∈S′i

αij)
σ − (1−

∑
j∈Si

αij)
σ) +

∑
j∈S′i−Si

ασij(
P ′j
Aij

)1−σ ≤ 0 =⇒

(Ki(S
′
i, Ai(S

′
i), P

′))1−σ − (Ki(Si, Ai(Si), P
′))1−σ ≤ 0.

so the single-crossing condition is satisfied.

Case 2: σ > 1

In this case, we can raise the cost function to the power 1 − σ to obtain (Ki(Si, Ai, P ))1−σ =

(1 −
∑

j∈Si αij)
σ +

∑
j∈Si α

σ
ij(

Pj
Aij

)1−σ. Since 1 − σ < 0, minimizing Ki is equivalent to maximiz-

ing (Ki(Si, Ai, P ))1−σ. We need to show that (Ki(Si, Ai, P ))1−σ satisfies a reverse single-crossing

condition. For all Si ⊂ S′i and P ′ ≤ P (Ki(S
′
i, Ai(S

′
i), P ))1−σ − (Ki(Si, Ai(Si), P ))1−σ ≥ 0 =⇒

(Ki(S
′
i, Ai(S

′
i), P

′))1−σ − (Ki(Si, Ai(S
′
i), P

′))1−σ ≥ 0.

Let Si ⊂ S′i and P ′ ≤ P . Since (
Pj
Aij

)1−σ ≤ (
P ′j
Aij

)1−σ, we obtain the chain of implications

(Ki(S
′
i, Ai(S

′
i), P ))1−σ − (Ki(Si, Ai(Si), P ))1−σ ≥ 0 =⇒

((1−
∑
j∈S′i

αij)
σ − (1−

∑
j∈Si

αij)
σ) +

∑
j∈S′i−Si

ασij(
Pj
Aij

)1−σ ≥ 0 =⇒

((1−
∑
j∈S′i

αij)
σ − (1−

∑
j∈Si

αij)
σ) +

∑
j∈S′i−Si

ασij(
P ′j
Aij

)1−σ ≥ 0 =⇒

(Ki(S
′
i, Ai(S

′
i), P

′))1−σ − (Ki(Si, Ai(Si), P
′))1−σ ≤ 0.

so the single-crossing condition is satisfied.

Proof of Theorem 6. Let SOi (t) be the input combination available to industry i at time t. Let

S∗i (t) be the set that minimizes industry i’s unit cost when it chooses between S∗i (t− 1) and SOi (t).

Clearly,

ai(S
∗
i (t)) ≤ max

j∈{1,...,t}
max

τ∈{1,...,t}
aj(S

O
j (τ)).

Therefore, denoting the equilibrium log productivity sequence by a(S∗(t)), we have

−π(t)

t
=

1

t
β(t)′L(t)a(S∗(t)) ≤ 1

t
max

j∈{1,...,t}
max

τ∈{1,...,t}
aj(S

O
j (τ))β(t)′L(t)1(t),

where 1(t) is a t × 1 vector all of whose components are ones. Since β(t)′L(t)1(t) =
∑n

i,j=1 βjLij
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and
∑∞

j=1 βj = 1, this implies

lim sup
t→∞

(
−π(t)

t

)
= lim sup

t→∞

1

t
max

j∈{1,...,t}
max

τ∈{1,...,t}
aj(S

O
j (τ))β(t)′L(t)1(t)

≤ lim sup
t→∞

1

1− θ
1

t
max

j∈{1,...,t}
max

τ∈{1,...,t}
aj(S

O
j (τ))

= lim sup
t→∞

D

1− θ
log2(t2)

t
= 0 almost surely,

where the last equality follows from Assumption 2.

Since lim inft→∞

(
−π(t)

t

)
≥ 0 (as additional technology choices cannot increase prices), the

previous argument establishes that g∗ = limt→∞ =
(
−π(t)

t

)
= 0.

Proof of Theorem 7. Let ε > 0 and T (ε) be such that for all i ∈ N,
∑∞

j=T (ε) αij ≤ ε. Recall

that α is the entire matrix of input-output elasticities, while α(S) is the observed matrix of input-

output elasticities when the input-output network is given by S. Assumption 3 tells us that if

Si ⊃ {1, ..., T (ε)} for all i, we will have
∑t

j=1 αij(S) ≥
∑t

j=1 αij − ε.
We next make use of the following lemma:

Lemma A2 Let α and β be non-negative matrices n × n matrices. Let A = (I − α)−1 and B =

(I − β)−1. If

• ‖α‖∞ ≤ θ, ‖β‖∞ ≤ θ for some θ < 1, and

•
∑n

j=1 βij ≥ (
∑n

j=1 αij)− ε for every row i,

then
∑n

j=1Bij ≥ (
∑n

j=1Aij)−
1

(1−θ)2 ε for every row i.

Proof of Lemma A2. Let α`ij be the (i, j) element of the matrix α`. Since A =
∑∞

`=0 α
`, B =∑∞

`=0 β
` and

∑∞
`=1 `θ

`−1 = 1
(1−θ)2 , it suffices to show that, for all ` ≥ 0 we have

∑n
j=1 β

`
ij ≥

(
∑n

j=1 α
`
ij) − `θ`−1ε. We proceed by induction. The base case (` = 1) is our assumption that∑n

j=1 βij ≥ (
∑n

j=1 αij)− ε. To prove the inductive case, assume we have shown the hypothesis for

`, and we want to show it for `+ 1. Write∑
j

β`+1
ij =

∑
j

∑
k

βikβ
`
kj =

∑
k

βik
∑
j

β`kj .

By induction, this is greater than or equal to∑
k

βik
∑
j

α`kj −
∑
k

βik`θ
`−1ε.

We now use the fact that
∑

k αik − ε ≤
∑

k βik ≤ θ to infer that
∑

k βik
∑

j α
`
kj −

∑
k βik`θ

`−1ε is

bounded below by ∑
k

αik
∑
j

α`kj − ε
∑
j

α`kj − θ`θ`−1ε.
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The first term in the above expression is equal to
∑

j

∑
k αikα

`
kj =

∑
j α

`+1
ij . The second term is

bounded below by −ε‖α`‖∞ ≥ −εθ`. We conclude that∑
j

β`+1
ij ≥

∑
j

α`+1
ij − (`+ 1)θ`ε.

Adding up over all ` ∈ N, we obtain∑
j

Bij ≥
∑
j

Aij −
1

(1− θ)2
ε

From this lemma, we can infer that for any S ⊃ {1, ..., T (ε)},
∑t

j=1 Lij(S) ≥
∑t

j=1 Lij−
1

(1−θ)2 ε,

which we will use in the proof that follows.

We first prove that lim inft→∞−
p∗i (t)

t
∑t
j=1 Lij

≥ D. We will first show that this is the case even

if industry i chooses a suboptimal set of inputs corresponding to those with the highest levels

of log productivity (rather than the cost-minimizing bundles), and then infer from this that it is

also true for the equilibrium price sequence. Let us define S0
i (t) = arg maxSi⊃{1,...,T (ε)}\{i} ai(Si),

S0(t) = {S0
i (t)}ti=1, and define p0

i (t) = −
∑t

j=1 Lij(S0(t))aj(S
0
j (t)). The value ai(S

0
i (t)) is the

maximum of 2t−1−T (ε) random variables. Then Assumption 2 implies that limt→∞
ai(S

0
i (t))

t−1−T (ε) = D

almost surely. Since T (ε) is a constant independent of t, we have limt→∞
ai(S

0
i (t))
t = D almost

surely. Since a countable intersection of almost sure events happens almost surely, we also have

limt→∞mini
ai(S

0
i (t))
t = D almost surely. Furthermore, since S0

i (t) ⊃ {1, ..., T (ε)}\{i}, we have∑t
j=1 Lij(S0(t)) ≥

∑t
j=1 Lij −

1
(1−θ)2 ε. Plugging these bounds into the definition of p0

i , we obtain

−p0
i (t) =

t∑
j=1

Lij(S(t))aj(S
0
j (t)) ≥ min

k≤t
ak(S

0
k(t))

t∑
j=1

Lij(S(t))

≥ min
k≤t

ak(S
0
k(t))(

t∑
j=1

Lij −
1

(1− θ)2
ε).

Dividing both sides by t
∑t

j=1 Lij , we obtain

− p0
i (t)

t
∑t

j=1 Lij
≥

mink≤t ak(S
0
k(t))

t
− ε

mink≤t ak(S
0
k(t))

t(1− θ)2
∑t

j=1 Lij
.

Using the fact that
∑t

j=1 Lij ≥ 1, this inequality can be written as

− p0
i (t)

t
∑t

j=1 Lij
≥

mink≤t ak(S
0
k(t))

t
− ε

mink≤t ak(S
0
k(t))

t(1− θ)2
.

Taking lim inf on both sides, we obtain

lim inf
t→∞

− p0
i (t)

t
∑t

j=1 Lij
≥ D − εD 1

(1− θ)2
.
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Since ε is arbitrarily small, we conclude that

lim inf
t→∞

− p0
i (t)

t
∑t

j=1 Lij
≥ D.

With the same arguments as in the proof of Theorem 1, we also have that the function

κ(p) = (minS1 k1(a1(S1), S1, p), ...,minSn kn(an(Sn), Sn, p)) has a smallest fixed point which gives

the equilibrium log price vector p∗(t). Starting from p0(t), we can define a decreasing sequence

pτ (t) = κ(pτ−1(t)) which converges to a fixed point p(t) of κ. Since the equilibrium log price vector

is the lowest fixed point of κ, we have that p∗(t) ≤ p(t) ≤ p0(t). Dividing by t
∑t

j=1 Lij and taking

lim inf on both sides, we conclude

lim inf
t→∞

− p∗i (t)

t
∑t

j=1 Lij
≥ D. (A1)

To prove that lim supt→∞
−p∗i (t)

t
∑t
j=1 Lij

≤ D, let us write −p∗i (t) =
∑t

j=1 Lij(S(t))aj(Sj(t)) ≤

maxk≤t ak(Sk(t))
∑t

j=1 Lij . The value of maxk≤t ak(Sk(t)) can be upper bounded by

maxk≤t maxS′k ak(S
′
k), which is the maximum of t × 2t−1 i.i.d. draws from the distribution Φ.

From Assumption 2, we have lim supt→∞
maxk≤t maxS′

k
ak(S′k)

log2(t)+t−1 ≤ D. Since log2(t)− 1 = o(t), we have

that lim supt→∞
maxk≤t maxS′

k
ak(S′k)

t ≤ D. Dividing −p∗i (t) by t
∑t

j=1 Lij and taking lim sup on both

sides, we obtain

lim sup
t→∞

− pi(t)

t
∑t

j=1 Lij
≤ lim sup

t→∞

maxk≤t maxS′k ak(S
′
k)

t
≤ D almost surely.

Combining this with (A1), we can thus conclude that

lim
t→∞
− p∗i (t)

t
∑t

j=1 Lij
= D almost surely, (A2)

and thus

g∗ = lim
t→∞

(
−π(t)

t

)
= D

∞∑
i,j=1

βiLij almost surely.

Proof of Corollary 3.

Let α̃ij =

{
αij if (i, j) 6∈ R
0 otherwise

be the exogenous input-output matrix after the direct restrictions

in R are applied. Let ε > 0 and T (ε) be such that for all i ∈ N,
∑∞

j=T (ε) α̃ij ≤ ε. Let Ri = {j : (i, j) ∈
R}. From Assumption 3, when Si ⊃ {1, ..., T (ε)}\Ri for all i, we have

∑t
j=1 α̃ij(S) ≥

∑t
j=1 α̃ij − ε.

From Lemma A2, when Si ⊃ {1, ..., T (ε)}\Ri for all i, we have
∑t

j=1 L̃ij(S) ≥
∑t

j=1 Lij−
1

(1−θ)2 ε.

We will use these facts in the proof that follows.
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We first prove that lim inft→∞−
p∗i (t)

t
∑t
j=1 L̃ij

≥ (1 − ρ)D. We first show that this is

the case even if industry i chooses a suboptimal set of inputs corresponding to those with

the highest levels of log productivity (rather than the cost-minimizing input combination),

which implies that the same is a fortiori true for the equilibrium price sequence. Let

us define S0
i (t) = arg maxSi⊃{1,...,T (ε)}\(Ri∪{i}) ai(Si), S0(t) = {S0

i (t)}ti=1, and let p0
i (t) =

−
∑t

j=1 L̃ij(S0(t))(aj(S
0
j (t)) + log(1 + τj)). The value ai(S

0
i (t)) is the maximum of at least

2t−|Ri|−1−T (ε) random variables. Then Assumption 2 implies that limt→∞
ai(S

0
i (t))

t−|Ri|−1−T (ε) ≥ D al-

most surely. Since T (ε) is a constant independent of t, we have limt→∞
ai(S

0
i (t))

t−|Ri| ≥ D almost surely.

Since each j is in Ri randomly with probability ρ, the limit limt→∞
|Ri|
t = ρ holds almost surely as

well, and we can write

lim
t→∞

ai(S
0
i (t))

t(1− ρ)
≥ D almost surely.

Since a countable intersection of almost sure events happens almost surely, we also have

limt→∞mini
ai(S

0
i (t))

t(1−ρ) ≥ D almost surely. Furthermore, since S0
i (t) ⊃ {1, ..., T (ε)}\(Ri ∪ {i}), we

have
∑t

j=1 L̃ij(S0(t)) ≥
∑t

j=1 L̃ij −
1

(1−θ)2 ε. Substituting these bounds into the formula for p0
i , we

obtain

−p0
i (t) =

t∑
j=1

L̃ij(S(t))(aj(S
0
j (t)) + log(1 + τj)) ≥ min

k≤t
ak(S

0
k(t))

t∑
j=1

L̃ij(S(t)) +
t∑

j=1

L̃ij(S(t)) log(1 + τj)

≥ min
k≤t

ak(S
0
k(t))(

t∑
j=1

L̃ij −
1

(1− θ)2
ε) +

t∑
j=1

L̃ij(S(t)) log(1 + τj).

Dividing both sides by t
∑t

j=1 L̃ij , we obtain

− p0
i (t)

t
∑t

j=1 L̃ij
≥

mink≤t ak(S
0
k(t))

t
− ε

mink≤t ak(S
0
k(t))

t(1− θ)2
∑t

j=1 L̃ij
+

∑t
j=1 L̃ij(S(t)) log(1 + τj)

t
∑t

j=1 L̃ij(S(t))
.

Using the fact that
∑t

j=1 L̃ij ≥ 1, this inequality can be written as

− p0
i (t)

t
∑t

j=1 L̃ij
≥

mink≤t ak(S
0
k(t))

t
− ε

mink≤t ak(S
0
k(t))

t(1− θ)2
+

∑t
j=1 L̃ij(S(t)) log(1 + τj)

t
∑t

j=1 L̃ij(S(t))
.

Taking lim inft→∞ on both sides, the term
∑t
j=1 L̃ij(S(t)) log(1+τj)

t
∑t
j=1 L̃ij(S(t))

vanishes because
∑t

j=1 L̃ij(S(t)) ≤
1

1−θ and because τj does not vary with t. This yields the inequality

lim inf
t→∞

− p0
i (t)

t
∑t

j=1 L̃ij
≥ (1− ρ)D − ε(1− ρ)D

1

(1− θ)2
.

Since ε is arbitrarily small, we conclude that

lim inf
t→∞

− p0
i (t)

t
∑t

j=1 L̃ij
≥ (1− ρ)D.
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With the same arguments as in the proof of Theorem 1, we also have that the function

κ(p) = (minS1 k1(a1(S1), S1, p), ...,minSn kn(an(Sn), Sn, p)) has a smallest fixed point which gives

the equilibrium log price vector p∗(t). Starting from p0(t), we can define a decreasing sequence

pτ (t) = κ(pτ−1(t)) which converges to a fixed point p(t) of κ. Since the equilibrium log price vector

is the lowest fixed point of κ, we have that p∗(t) ≤ p(t) ≤ p0(t). Dividing by t
∑t

j=1 L̃ij and taking

lim inf on both sides, we conclude

lim inf
t→∞

− p∗i (t)

t
∑t

j=1 L̃ij
≥ (1− ρ)D. (A3)

To prove that lim supt→∞
−p∗i (t)

t
∑t
j=1

˜̃Lij ≤ (1−ρ)D, let us write −p∗i (t) =
∑t

j=1 L̃ij(S(t))(aj(Sj(t))+

log(1 + τj)) ≤ maxk≤t ak(Sk(t))
∑t

j=1 L̃ij +
∑t

j=1 L̃ij log(1 + τj). The value of maxk≤t ak(Sk(t))

can be upper bounded by maxk≤t max{S′k:S′k∩Rk=∅} ak(S
′
k), which is the maximum of at

least t × 2t−1−|Rk| i.i.d. draws from the distribution Φ. From Assumption 2, we

have lim supt→∞
maxk≤t max{S′

k
:S′
k
∩Rk=∅} ak(S′k)

log 2(t)+t−1−|Rk| ≤ D. Since log2(t) − 1 = o(t), we have that

lim supt→∞
maxk≤t max{S′

k
:S′
k
∩Rk=∅} ak(S′k)

t−|Rk| ≤ D. Dividing −p∗i (t) by t
∑t

j=1 L̃ij , and using the facts

that limt→∞
|Rk|
t = ρ, limt→∞

1+τj
t = 0 almost surely, we can take lim sup on both sides to obtain

lim sup
t→∞

− pi(t)

t
∑t

j=1 L̃ij
≤ lim sup

t→∞

maxk≤t max{S′k:S′k∩Rk=∅} ak(S
′
k)

t
≤ (1− ρ)D almost surely.

Combining this with (A3), we can thus conclude that

lim
t→∞
− p∗i (t)

t
∑t

j=1 L̃ij
= (1− ρ)D almost surely, (A4)

and thus

g∗ = lim
t→∞

(
−
∑t

i=1 βi(pi(t) + log(1 + τi))

t

)
= (1− ρ)D

∞∑
i,j=1

βiL̃ij almost surely,

where the last equation uses the fact that log GDP now depends on the vector of marginal

distortions τ , but our growth rate is unaffected by them since limt→∞
log(1+τi))

t = 0.

Proof of Lemma 3. The log unit cost of adopting set Si is ki(Si, ai(Si), p) =
∑

j∈Si αijpj −
ai(Si) where ai(Si) is distributed according to a Gumbel distribution with variance parameter σ.

Choosing Si to minimize ki(Si, ai(Si), p) is equivalent to choosing Si to maximize −ki(Si, ai(Si), p) =

−
∑

j∈Si αijpj+ai(Si). Part 1 then follows from the same derivation as that of Lemma 1 in McFadden

(1973).
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Part 2 follows because

Pr(j ∈ Si|P ) =

∑
Si:j∈Si

∏
j′∈Si P

−
αij′
σ

j′∑
Si

∏
j′∈Si P

−
αij′
σ

j′

=

∑
Si:j∈Si

∏
j′∈Si P

−
αij′
σ

j′∑
Si:j∈Si

∏
j′∈Si P

−
αij′
σ

j′ +
∑

Si:j 6∈Si
∏
j′∈Si P

−
αij′
σ

j′

=
P
−
αij
σ

j

∑
Si:j 6∈Si

∏
j′∈Si P

−
αij′
σ

j′

P
−
αij
σ

j

∑
Si:j 6∈Si

∏
j′∈Si P

−
αij′
σ

j′ +
∑

Si:j 6∈Si
∏
j′∈Si P

−
αij′
σ

j′

=
P
−
αij
σ

j

1 + P
−
αij
σ

j

.

Proof of Theorem 8. Part 1. Since
∑n

j=1 αij ≤ 1 for every i from Assumption 3′, Ii(n) =

1
n

∑n
j=1 αij(S(n)) ≤ 1

n . Thus, for every ε > 0, we have ‖I(n)‖∞ ≤ 1
n . This implies that I(n)

uniformly converges to 0.

Part 2. We can write Oj(n) = 1
n

∑n
i=1 αijI(i, j, n), where I(i, j, n) is an indicator function that

is equal to 1 if j ∈ Si(n) and 0 otherwise. Since I(i, j, n) ≤ 1,

Oj(n) ≤ 1

n

n∑
i=1

αij = αj .

This implies that lim supn→∞Oj(n) = Oj ≤ αj for all j.

Part 3. Let P (n) be the price vector in economy E(n), and let Oj(n)|P (n) be the out-

degree of j conditional on prices. From Lemma 3, the decisions of any two industries i, i′ on

whether or not to choose j as a supplier are independent given prices. Thus, the sequence of ran-

dom variables {I(i, j, n)|P (n)}ni=1 is a sequence of independent Bernoulli random variables with

Pr(I(i, j, n)|P (n)) =
P
−αij
j

1+P
−αij
j

. The expected outdegree of firm j given a fixed price vector P (n) is

E[Oj(n)|P (n)] = 1
n

∑n
i=1 αij

P
−αij
j

1+P
−αij
j

. If Pj(n) ≤ 1 for every j ∈ N, then we have
P
−αij
j

1+P
−αij
j

≥ 1
2 , and

E[Oj(n)|P (n)] ≥ 1
n

∑n
i=1

αij
2 = 1

2αj .

Recall that if X1, ..., Xn are indpendent random variables in the interval [0, 1], we have the

following Chernoff bound

Pr(| 1
n

n∑
i=1

Xi −
1

n

n∑
i=1

E[Xi]| ≥ ε) ≤ 2e−2nε2 .

Using this Chernoff bound and the conditional independence of each I(i, j, n)|P (n), we get that

for any ε > 0, we have Pr(|Oj(n) − E[Oj(n)|P (n)]| ≥ ε) ≤ 2e−2nε2 . Using the first Borel-Cantelli

Lemma (Lemma B2) and the fact that
∑∞

n=1 2e−2nε2 <∞, we conclude that lim supn→∞ |Oj(n)−
E[Oj(n)|P (n)]| ≤ 0 almost surely. Using the reverse triangle inequality and the fact that Oj(n) ≥ 0,

this becomes

lim sup
n→∞

E[Oj(n)|P (n)] ≤ lim inf
n→∞

Oj(n) = Oj almost surely.
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Finally, recall from the proof of Theorem 7 that lim supn→∞maxj≤n pj(n) ≤ 0 almost surely, and

thus lim supn→∞maxj≤n Pj(n) ≤ 1 almost surely (this result still holds, since the assumptions

imposed here are stronger versions of those in Theorem 7). Therefore, lim infn→∞minj≤n
P
−αij
j

1+P
−αij
j

≥
1
2 almost surely, and consequently,

lim sup
n→∞

1

2
αj ≤ lim sup

n→∞
E[Oj(n)|P (n)] ≤ Oj

holds almost surely for all j ∈ N.

Finally, note that if O were a degenerate distribution, then either Oj = 0 for all j or Oj = ρ > 0

for all j. In the former case, we would have
∑∞

j=1Oj = 0, which cannot be the case because O > α
2

and
∑∞

j=1
αj
2 > 0. In the latter case, we would have

∑∞
j=1Oj = ∞, which cannot be the case

because O ≤ α and
∑∞

j=1 αj ≤ 1. The argument that O cannot be a degenerate distribution is

analogous to the argument for O.

Proof of Theorem 9. Under logarithmic preferences as specified in Assumption 1′, we have

βi = PiCi. Then the parameter vector β is identified from the consumption expenditure shares

P1C1, ..., PnCn. In particular, let β̂(E(n)) = (PiCi)
n
i=1, then plimn→∞β̂(E(n)) = β.

For σ, recall that the price index of the economy is given by π(n) =
∑n

i=1 βi logPi(n) and that

−plimn→∞
π(n)
n = D

∑∞
i,j=1 βiLij . Under Assumption 2′, we have D = σ log 2. Thus, we can set

σ̂(E(n)) = − π(n)
n log 2

∑∞
i,j=1 βiLij

. From Theorem 7, plimn→∞σ̂(E(n)) = σ.

For α, let P (n) and S(n) be the price vector and equilibrium network in economy E(n). Then

consider the estimator α̂j(E(n)) = arg minz
1
n

∑n
i=1(αij(S(n))−zPj(n)

Pj(n)−
z
σ

1+Pj(n)−
z
σ

)2, where αij(S(n))

is the ij-th and feel the observed input-output network S(n).

Let Φ(z;Pj(n)) = z
Pj(n)−

z
σ

1+Pj(n)−
z
σ

. The derivative of this function with respect to z is ∂Φ
∂z =

1+Pj(n)
z
σ−Pj(n)

z
σ log(Pj(n)

z
σ )

(1+Pj(n)
z
σ )2σ

. For Pj(n) < 1, Φ(z;Pj(n)) is increasing in z. Furthermore, there exists

a constant K independent of n such that ∂Φ
∂z ≤ K for all Pj(n) ≤ 1.29 From Theorem 7, we know

that limn→∞ Pj(n) < 1 almost surely. In the remainder of the proof, we will omit the qualifier

“almost surely” for notational convenience and simply state that Pj(n) < 1 and the derivative ∂Φ
∂z

is bounded.

29The term
1+Pj(n)

z
σ

(1+Pj(n)
z
σ )2σ

is clearly bounded by 1. The term
−Pj(n)

z
σ log(Pj(n)

z
σ )

(1+Pj(n)
z
σ )2σ

is bounded since the function

yz log yz is bounded for every y, z ∈ [0, 1]× [0, 1] since limy→0 y
z log yz = 0 for any fixed z.
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Since Φ(z;Pj(n)) is increasing in z, we can write

α̂j = arg min
z

1

n

n∑
i=1

(αij(S(n))− Φ(z;Pj(n)))2

= Φ−1(arg min
y

1

n

n∑
i=1

(αij(S(n))− y)2)

= Φ−1(
1

n

n∑
i=1

αij(S(n))),

where the first equality follows from the fact that Φ(z;Pj(n)) is increasing in z and the second

equality follows from the fact that the the average value 1
n

∑n
i=1 αij(S(n)) minimizes the sum of

square 1
n

∑n
i=1(αij(S(n))− y)2.

Note that each αij(S(n)) is a random variable equal to an exogenous value αij with probability

Pj(n)−
αij
σ

1+Pj(n)−
αij
σ

and equal to zero otherwise. These random variables are independent conditional on

prices. From Assumption 3′, 1
n

∑n
i=1 αij(S(n)) converges to a constant as n→∞. Moreover, since

the expectation of αij(S(n)) is Φ(αij ;Pj(n)), this limit is equal to limn→∞
1
n

∑n
i=1 Φ(αij ;Pj(n)),

which therefore also converges to a finite limit.

From the continuity of Φ−1, we have limn→∞ α̂j = Φ−1(limn→∞
1
n

∑n
i=1 Φ(αij ;Pj(n));Pj(n)).

Letting αij = αj + εij and taking a Taylor expansion of Φ(·;Pj(n)) around αj , we obtain

Φ(αij ;Pj(n)) = Φ(αj ;Pj(n)) +
∂Φ

∂z
(zij ;Pj(n))εij

for εij = αij − αj and some zij between αij and αj . Substituting for this expression, we have

lim
n→∞

1

n

n∑
i=1

Φ(αij ;Pj(n)) = Φ(αj ;Pj(n)) + lim
n→∞

1

n

n∑
i=1

∂Φ

∂z
(zij ;Pj(n))εij .

Since ∂Φ
∂z is a non-negative and bounded function and 1

n

∑n
i=1 εij = 0,

limn→∞
1
n

∑n
i=1

∂Φ
∂z (zij ;Pj(n))εij = 0. Therefore,

lim
n→∞

1

n

n∑
i=1

Φ(αij ;Pj(n)) = Φ(αj),

and thus

lim
n→∞

α̂j = Φ−1(Φ(αj ;Pj(n));Pj(n)) = αj .

Appendix B: Additional Results

Lemma B1 The unit cost function of the Cobb-Douglas production function is

Ki(Si, Ai(Si), P ) =

∏
j∈Si P

αij
j

Ai(Si)
.
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Proof of Lemma B1. Let X∗ij and L∗i be firm i’s optimal choices of inputs and labor when

producing one unit of output. From the firm’s first-order conditions, we have PjX
∗
ij = αijPi and

L∗i = (1−
∑

j∈Si αij)Pi. Dividing the former equation by the latter, we obtain X∗ij =
αijL

∗
i

(1−
∑
j∈Si

αij)Pj
.

Plugging this into the production function (and recalling that only one unit of output is produced),

we obtain

1 =
1

(1−
∑

j∈Si αij)
1−

∑
j∈Si

αij ∏
j∈Si α

αij
ij

Ai(Si)(L
∗
i )

(1−
∑
j∈Si

αij)
∏
j∈Si

(
αijL

∗
i

(1−
∑

j∈Si αij)Pj
)αij

1 =
1

(1−
∑

j∈Si αij)
1−

∑
j∈Si

αij ∏
j∈Si α

αij
ij

L∗iAi(Si)(1−
∑
j∈Si

αij)
−

∑
j∈Si

αij
∏
j∈Si

α
αij
ij

P
αij
j

1 =
L∗iAi(Si)

(1−
∑

j∈Si αij)
∏
j∈Si P

αij
j

.

Therefore, L∗i =
(1−

∑
j∈Si

αij)
∏
j∈Si

P
αij
j

Ai(Si)
. Since Ki(Si, Ai(Si), P ) = Pi =

L∗i
(1−

∑
j∈Si

αij)
, we conclude

that Ki(Si, Ai(Si), P ) =

∏
j∈Si

P
αij
j

Ai(Si)
.

Corollary B1 When all industries have Cobb-Douglas production functions and the input-output

network is S, equilibrium log prices are given as a solution to the following system of linear equations:

p = −(I − α(S))−1a(S).

Proof of Corollary B1. From Lemma B1, Pi =

∏
j∈Si

P
αij
j

Ai(Si)
for each i. Taking logs on both sides,

we obtain

pi =
∑
j∈Si

αijpj − ai(Si) for each i.

From Assumption 1, labor is essential and thus
∑n

j=1 αij < 1 for each i. Then, from the

Perron-Frobenius Theorem, the matrix (I − α(S)) is invertible, and thus p = −(I − α(S))−1a(S).

Lemma B2 (First Borel-Cantelli Lemma) Suppose that {Zn}n∈N is a sequence of random

variables. If for any fixed ε > 0 we have

∞∑
n=1

Prob[Zn > ε] <∞

then lim supn→∞ Zn ≤ 0 almost surely.
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Lemma B3 (Second Borel-Cantelli Lemma) Suppose that {Zn}n∈N is a sequence of indepen-

dent random variables. If
∞∑
n=1

Prob[Zn ≥ 0] =∞

then lim supn→∞ Zn ≥ 0 almost surely

Proposition B1 Let Φ be a Gumbel distribution with cdf Φ(z;µ, σ) = e−e
− zσ . Then Φ satisfies

Assumption 2 with D = σ log 2.

Proof. We can write limn→∞
maxi∈{1,...,n} Zi

logn as lim supn→∞
Zn

logn . The probability that Zn is above

µ+ σ log n is equal to 1− e−e− logn
= 1− e−

1
n . Since 1− e−z = 1 + z + o(z), there exists a constant

κ > 0, and an integer N such that for all n ≥ N we have 1 − e−
1
n ≥ κ

n . Since
∑∞

n=N Prob[Zn >

µ+ σ log n] >
∑∞

n=N
κ
n =∞ and the variables Z1, ..., Zn are independent, we can use Lemma B3 to

conclude that lim supn→∞
Zn

logn ≥ σ almost surely.

To prove the reverse inequality, let ε > 0 be arbitrary. The probability that Zn is above

µ + σ(1 + ε) log n is 1 − e−e−(1+ε) logn
= 1 − e−n−1−ε

. Since 1 − e−z = 1 + z + o(z), there exists

a constant κ > 0 and an integer N such that for all n ≥ N , we have 1 − e−
1

n1+ε ≤ κ
n1+ε .

Since ε > 0 is arbitrary and
∑∞

n=N Prob[Zn ≥ µ + σ(1 + ε) log n] ≤
∑∞

n=N κn
−1−ε < ∞,

Lemma B2 implies that lim supn→∞
Zn

logn ≤ σ almost surely. The union of two almost-sure

events occurrs almost surely, so we can conclude that lim supn→∞
Zn

logn = σ or equivalently

limn→∞
max(Z1,...,Zn)

logn = σ almost surely. Using the change of base formula log2 n = logn
log 2 , we obtain

limn→∞
max(Z1,...,Zn)

log2 n
= limn→∞

max(Z1,...,Zn)
logn log 2 = σ log 2.

Proposition B2 Let Φ be an exponential distribution with cdf Φ(z;λ) = 1−e−λz. Then Φ satisfies

Assumption 2 with D = 1
λ log 2.

Proof. We can write limn→∞
maxi∈{1,...,n} Zi

logn as lim supn→∞
Zn

logn . The probability that Zn is above
logn
λ is equal to e− logn = n−1. Since

∑∞
n=1 n

−1 = ∞ and the variables Z1, ..., Zn are independent,

Lemma B3 implies that lim supn→∞
Zn

logn ≥
1
λ almost surely.

To prove the reverse inequality, let ε > 0 be arbitrary. The probability that Zn is

above logn+ε logn
λ is e− logn−ε logn = n−1−ε. Since ε > 0 is arbitrary and

∑∞
n=1 n

−1−ε < ∞,

Lemma B2 implies lim supn→∞
Zn

logn ≤
1
λ almost surely. The intersection of two almost-sure

events occurrs almost surely, so we can conclude that lim supn→∞
Zn

logn = 1
λ or equivalently

limn→∞
max(Z1,...,Zn)

logn = 1
λ almost surely. Using the change of base formula log2 n = logn

log 2 , we obtain

limn→∞
max(Z1,...,Zn)

log2 n
= limn→∞

max(Z1,...,Zn)
logn log 2 = 1

λ log 2.
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A Model of Hierarchical Input Requirements

In this part of the Appendix, we generalize our model to incorporate the realistic feature that not

all input combinations are feasible for producing each product, and in particular, some industries

may have a set of “essential inputs” that are necessary for production.30 More specifically, we now

extend the model by assuming that there are K categories of inputs, and some (or all) industries

will need to use inputs from at least some of these categories. For example, many products will

need to use some metals. For simplicity, and to avoid repetition when we show the possibility of

sustained growth in this case, we assume Cobb-Douglas production functions throughout this part

of the Appendix.

There are K <∞ categories. At each time t, one new good in each category arrives, so the total

number of goods after t time periods is tK. The categories partition the space of goods into k sets

V1(t), ..., VK(t) so that ∪Kk=1Vk(t) = {1, ..., tK}. For each industry i, there is a set Ri ⊂ {1, ...,K} of

categories that the industry needs to produce. This implies that industry i’s production function is

given by family of Cobb-Douglas production functions

Yi = Ai(Si)L
1−

∑
k∈Ri

∑
j∈Si,k

αij

i

∏
k∈Ri

∏
j∈Si,k

X
αij
ij ,

with

Si = ∪kSi,k, Si,k ⊂ Vk and Si,k 6= ∅ for each k ∈ Ri.

Our main result is given in the next theorem.

Theorem C1 Suppose that Assumptions 1′, 2 and 3 hold, and let D > 0 be as defined in Assump-

tion 2. Each industry i chooses sets of suppliers S∗i,k(t) ⊂ Vk(t), S
∗
i,k(t) 6= ∅. Then for each i ∈ N ,

the equilibrium log price vector p∗(t) satisfies,

lim
t→∞
− p∗i (t)

tK
∑tK

j=1 Lij
= D > 0 almost surely,

and thus

g∗ = DK

∞∑
i,j=1

βiLij > 0 almost surely,

Once again, the Leontief inverse, L, that appears in this theorem is different than the one in

Theorem 7. The intuition for Theorem C1 can be presented as follows. Even with the restriction

that industry j must have one input from each category in Rj , all possible non-empty combinations

of inputs still yields exponentially many draws from the low productivity distribution, and then

Assumption 2 ensures sustained (exponential) growth. The proof of this result is similar to that of

30Assumption 3 imposes that 1− ε of the input share of each industry is made up of the first T industries, but this
does not imply that any of these first T goods is essential to any industry.
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Theorem 7, with the key modification that we do impose that at least one supplier is chosen from

each set Vk, and then prove that the log productivity term ai(Si) is still almost surely linear in t,

and the implied Leontief inverse is close to the maximal Leontief inverse. We provide this proof

next for completeness.

Proof. Using Lemma A2, for every ε > 0 there exists T (ε) such that for any S ⊃ {1, ...,KT (ε)},∑tK
j=1 Lij(S) ≥

∑tK
j=1 Lij −

1
(1−θ)2 ε.

We now prove that lim inft→∞−
p∗i (t)

tK
∑tK
j=1 Lij

≥ D. We will first show that this is the case

even if industry i chooses a suboptimal set of inputs corresponding to those with the high-

est levels of log productivity in each category (rather than the cost-minimizing bundles), and

then infer from this that it is also true for the equilibrium price sequence. For each firm i,

define S0
i (t) = arg maxSi⊃{1,...,T (ε)}Ai(Si). Let S0(t) = {S0

i (t)}i∈{1,...,tK} , and define p0
i (t) =

−
∑tK

j=1 Lij(S0(t))ai(Si). The value ai(Si) is the maximum of
∑|Ri|

r=0(−1)r
(|Ri|
r

)
2(t−T (ε))(K−r) inde-

pendent draws from a distribution Φ satisfying Assumption 2.31 Since |Ri| ≤ K, and K is a constant

independent of t, we have that for large t the expression
∑|Ri|

r=0(−1)r
(|Ri|
r

)
2(t−T (ε))(K−r) is bounded

below by E2tK where E is a constant independent of t. Thus, the value ai(Si) is the maximum of

at least E2(t−T (ε))K independent draws from Φ.

Assumption 2 implies that limt→∞
aj(S

0
j (t))

log2(E2(t−T (ε))K)
≥ D almost surely. Since T (ε) and E are

constants independent of t, this limit is equal to limt→∞
aj(S

0
j (t))

tK which is greater than or equal to

D almost surely.

Since a countable intersection of almost sure events happens almost surely, we also have

limt→∞minj
aj(S

0
j (t))

tK ≥ D almost surely. Furthermore, since S0
i (t) ⊃ ∅ ∪ {1, ...,KT (ε)}, we have∑tK

j=1 Lij(S0(t)) ≥
∑tK

j=1 Lij −
1

(1−θ)2 ε. Plugging these bounds into the definition of p0
i , we obtain

−p0
i (t) =

tK∑
j=1

Lij(S(t))aj(S
0
j (t)) ≥ min

j
aj(S

0
j (t))

tK∑
j=1

Lij(S(t))

≥ min
j
aj(S

0
j (t))(

tK∑
j=1

Lij −
1

(1− θ)2
ε).

Dividing both sides by tK
∑tK

j=1 Lij , we obtain

− p0
i (t)

tK
∑tK

j=1 Lij
≥

minj aj(S
0
j (t))

t
− ε

minj aj(S
0
j (t))

tK(1− θ)2
∑tK

j=1 Lij
.

31The expression
∑|Ri|
r=0(−1)r

(|Ri|
r

)
2(t−T (ε))K−r is derived through the exclusion-inclusion principle. To count the

sets that firm i can choose, start from all possible 2(t−T (ε))K subsets of inputs that contain {1, ...,KT (ε)}. However,
we must remove the

(|Ri|
1

)
2(t−T (ε))(K−1) sets which do not contain an element in some category k ∈ Ri that the firm

needs to produce. If we stopped here, we would be removing sets where two or more categories are absent multiple
times, and thus miscounting the number of available sets. Thus, we must add the

(|Ri|
2

)
2(t−T (ε))(K−2) with two or

more sets being absent back into the sum of total feasible sets. Again, this leads to a miscount because sets where
three or more categories are absent are being added back to the sum multiple times. Thus, we must remove the(|Ri|

3

)
2(t−T (ε))(K−3) sets where 3 or more categories are absent. This procedure keeps going until we reach the set

where all elements in all categories in Ri are absent.
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Using the fact that
∑t

j=1 Lij ≥ 1, this inequality can be written as

− p0
i (t)

tK
∑tK

j=1 Lij
≥

minj aj(S
0
j (t))

tK
− ε

minj aj(S
0
j (t))

tK(1− θ)2
.

Taking lim inf on both sides, we obtain

lim inf
t→∞

− p0
i (t)

tK
∑tK

j=1 Lij
≥ D − εD 1

(1− θ)2
.

Since ε is arbitrarily small, we conclude that

lim inf
t→∞

− p0
i (t)

t
∑tK

j=1 Lij
≥ D.

With the same arguments as in the proof of Theorem 1, we also have that the function κ(p) =

(minS1 k1(a1(S1), S1, p), ...,minStK ktK(atK(StK), StK , p)) has a smallest fixed point which gives the

equilibrium log price vector p∗(t). Starting from p0(t), we can define a decreasing sequence pτ (t) =

κ(pτ−1(t)) which converges to a fixed point p(t) of κ. Since the equilibrium log price vector is the

lowest fixed point of κ, we have that p∗(t) ≤ p(t) ≤ p0(t). Dividing by tK
∑tK

j=1 Lij and taking

lim inf on both sides, we conclude

lim inf
t→∞

− p∗i (t)

tK
∑tK

j=1 Lij
≥ D. (C1)

To prove that lim supt→∞
−p∗i (t)

tK
∑tK
j=1 Lij

≤ D, let us write −p∗i (t) =
∑tK

j=1 Lij(S(t))aj(Sj(t)) ≤

maxj aj(Sj(t))
∑tK

j=1 Lij . The value of maxj aj(Sj(t)) can be upper bounded by maxj maxS′j aj(S
′
j),

which is the maximum of tK × 2tK i.i.d. draws from the distribution Φ. From Assump-

tion 2, we have lim supt→∞
maxj maxS′

j
aj(S

′
j)

log2(tK)+tK ≤ D. Since log2(tK) = o(tK), we have that

lim supt→∞
maxj maxS′

j
aj(S

′
j)

tK ≤ D. Dividing −p∗i (t) by tK
∑tK

j=1 Lij and taking lim sup on both

sides,we obtain

lim sup
t→∞

− pi(t)

tK
∑tK

j=1 Lij
≤ lim sup

t→∞

maxj maxS′j aj(S
′
j)

tK
≤ D almost surely.

Combining this with (C1), we can thus conclude that

lim
t→∞
− p∗i (t)

tK
∑tK

j=1 Lij
= D almost surely,

and thus

g∗ = lim
t→∞

(
−π(t)

t

)
= DK

∞∑
i,j=1

βiLij almost surely.
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Appendix D: Imputing Removal Probabilities from OECD Data

In our counterfactual simulations in Section 7, we use OECD data to impute sectoral marginal

distortions. The OECD provides input-output tables for 63 countries at the level of 34 sectors as

well as the tax share of intermediate input spending in each industry and each country.32 The

average tax share across all developing countries and all sectors is 1.4 %, which we impute as the

average marginal distortion in our counterfactual simulation. We also simulate our model with a

very high level of τ = 10%, which is approximately four times as high as the average tax in the

OECD data, and approximately twice as large as the highest observed tax (Saudi Arabia has an

average intermediate input tax share of 6.11 %).

We also use the OECD data to estimate average probabilities with which input-output linkages

present in the US data are missing in the production networks of developing countries. Since

the effects of reasonable marginal distortions appear to be small on the production network, we

take these probabilities as a representation of the direct restrictions on input-output linkages. To

estimate these probabilities, we first verify that the OECD input-output table for the United States

matches the data provided in the BEA input-output table with 377 industries. Following Acemoglu,

Ozdaglar and Tahbaz-Salehi (2017), we use uppercase letters to refer to sectors in the aggregate

OECD data, and lowercase letters to refer to industries in the disaggregated BEA data. We use

a crosswalk to match each industry i in the BEA data to a unique sector I in the OECD data.

We denote this relation by i ∈ I. For any sectors I, J in the aggregate data, the following flow

conditions must hold

PJXIJ =
∑
i∈I

∑
j∈J

PjXij

PICI =
∑
i∈I

PiCi

wLI =
∑
i∈I

wLi

Let vi = PiYi
GDP and let vI = PIYI

GDP be the industry and sectoral Domar weights. Acemoglu,

Ozdaglar and Tahbaz-Salehi (2017) establish:

Lemma D1 For any two sectors I, J in the aggregate data, we have

vIαIJ =
∑
i∈I

∑
j∈J

αijvi.

Let α̃IJ =
∑

i∈I
∑

j∈J αij
vi
vI

. We can compute this expression using the BEA data, and compare

it to the value of αIJ observed in the OECD data. In particular, we compare the vectors of indegrees

32The intermediate input tax share is obtained by dividing the row “Taxes less subsidies on intermediate and final
products” by the row “Total intermediate and final expenditure at purchasers’ prices”.
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{
∑

J αIJ}I , {
∑

J α̃IJ}I and the vectors of outdegrees {
∑

I αIJ}J , {
∑

I α̃IJ}J . Using a Kolmogorov-

Smirnov test, we obtain that the probability that the vectors of indegrees in the BEA and OECD

data are drawn from the same distribution is 0.999. The probability that the vectors of outdegrees

are drawn from the same distribution is 0.962. Furthermore, the average values of 1
N2

∑
I,J αIJ and

1
N2

∑
I,J α̃ij are both equal to 0.015. The root mean squared error

√
1
N2

∑
I,J(αIJ − α̃IJ)2 is equal

to 0.014.

This evidence thus suggests that the OECD aggregate data for the United States matches the

disaggregated BEA data for the United States. Motivated by this, we then treat the OECD data

for other countries as an aggregate of an unobserved disaggregate input-output matrix. For each

country c, we impute a probability that an edge (i, j) observed in the US data would be missing

in that country’s disaggregated input-output matrix. Let us assume that the disaggregate Domar-

weighted exogneous input-output shares viαij are the same across countries, but each edge (i, j)

present in the US input-output network is missing from the data in country c with probability ρc.

Then we have
vI,cαIJ,c

vI,USαIJ,US
=

∑
i∈I,j∈J(1− ρc)αijvi,c∑

i∈I,j∈J αijvi,US
= 1− ρc.

This parameter ρc can be estimated as ρ̂c = 1 − 1
N

∑N
J=1(

∑N
I=1 vI,cαIJ,c∑N

I=1 vI,USαIJ,US
). For the 22 countries

catalogued in the OECD data as developing countries, we obtain that 1 − ρ̂c ranges from 0.321 to

1.537 and has an average value of 0.891.
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