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Abstract

This paper proposes a measure of dissimilarity between stochastic discount factors (SDFs) in
different economies. The SDFs are made comparable using the respective bond prices as the
numeraire. The measure is based on a probability distance metric, is dimensionless, synthesizes
features of the risk-neutral distribution of currency returns, and can be extracted from currency
option prices. Linking theory to data, our empirical implementation reveals a salient geographical
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between SDFs derived from several international asset pricing models to the empirical analog,
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1. Introduction

The idea of this paper is to present a measure of dissimilarity between stochastic discount fac-

tors (SDFs) in different economies, and we use the discount bond prices as the numeraire to ensure

comparability. This measure reflects the distinction between economy-specific Radon-Nikodym

derivatives (change of probability), which is also a SDF with unit expectation and enables the

correct pricing of gross returns scaled by the discount bond price.

In economic terms, the measure distills the heterogeneity among investors in different economies

with respect to their dislike of unfavorable outcomes. The measure is not denominated in any cur-

rency unit and is dimensionless. The notion of dissimilarity may appear opaque and eclectic, but,

as we show, can be rendered tractable with the help of the proposed measure.

1.1. What is our motivation for pushing the angle of dissimilarity between SDFs?

There are a priori reasons to think that SDFs are not homogeneous across international bor-

ders. Economies are separated by physical distance and inhabited by consumers with different

consumption baskets, while investors have different wealth levels, tastes, preferences for reso-

lution of uncertainty and risk aversions, and differential capacities to absorb adverse economic

shocks (e.g., Borovička, Hansen, and Scheinkman (2016)). Still, a formal measure of dissimilar-

ity between SDFs is lacking and not yet assimilated in international finance research.

We formalize a measure of dissimilarity with three properties: bounded between zero and

one, symmetric, and satisfies triangle inequality. It is based on the Hellinger probability distance

metric and, to our knowledge, has not been introduced in the context of comparing SDFs.

The measure can be employed to rank-order dissimilarity across various pairs of SDFs, and

can address questions as: Is the Japanese SDF more dissimilar from that of Australia than that of
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Canada? How does dissimilarity vary over time and with economic conditions? Do economies

get closer together or farther apart during periods with adverse economic shocks?

1.2. What is our approach to compute dissimilarity between SDFs?

One novelty in our paper is to show how the Hellinger measure of dissimilarity between

SDFs, or simply “Hellinger measure,” as we will denote it henceforth for brevity, can be extracted

from currency option prices under the specification of complete markets (the Radon-Nikodym

derivative is unique). Our Proposition 1 establishes that the Hellinger measure can be inferred

from a portfolio of options and can be updated from one period to the next.

Focusing on the economic interpretation, we further show that the Hellinger measure syn-

thesizes risk-neutral moments of (excess) currency returns, and thus goes conceptually beyond

reconciling their expectation (the currency risk premium). This interpretation is important in light

of the fact that international pricing models are often calibrated and simulated, and thus a case

could be made that the Hellinger measure should be an essential criterion for any parameterized

international economy driven by a system of SDFs. A new question that needs to be addressed is

whether an international pricing model is consistent with Hellinger measures extracted from the

prices of traded currency options.1 It is customary to characterize an international macro-finance

model by its specification of the SDFs.

1.3. What are the lessons of depicting dissimilarity for international macro-finance?

The empirical work in this paper employs forward and spot exchange rates, as well as a panel

of currency option prices to generate time series of Hellinger measures for 45 pairs of economies.

Among several insights, we detect geographical patterns across these measures, which implies

1While we also explore using the Chi-squared distance as an alternative probability distance metric, we highlight
the advantage of the Hellinger metric for interpretational and modeling reasons, and focus on it throughout.
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differences in the Radon-Nikodym derivatives. For example, Japan stands apart from the remain-

ing economies. In addition, we discern a factor structure in the Hellinger measures.

Besides computing and studying empirically Hellinger measures, we also investigate whether

some extant SDF parameterizations respect the unconditional estimates of these measures. From

this perspective, the Hellinger measure can be considered, in the spirit of Hansen and Jagannathan

(1991), but in a two-economy context, as a diagnostic seeking consistency of an international asset

pricing model with the risk-neutral distribution of currency returns. We further consider a mini-

mum discrepancy problem in an international setting, revealing that our dissimilarity measures are

consistent with the data on bond and equity index returns. Going beyond formal models, we ad-

ditionally show that physical distance and cultural differences describe cross-sectional variations

in dissimilarity, as embedded in the risk-neutral distribution of currency returns.

1.4. What is our value-added and how does it tie with extant research agenda’s?

Our work is related to a strand of literature aiming to develop model specifications that are

aligned with observed properties of interest rates, currency risk premiums, currency volatilities,

and equity returns, as well as the evidence on risk sharing.2

Previous work has also explored various characteristics along which economies are dissimilar,

such as magnitude of risk reversals, size, or resilience to external shocks. For example, Carr

and Wu (2007) show that risk reversals capture skewness that changes signs, whereas Farhi and

Gabaix (2016) associate reversals with country risk. Hassan (2013) argues that size is useful

for explaining interest rate differentials across economies. On the other hand, Farhi and Gabaix

2These include Hollifield and Uppal (1997), Backus, Foresi, and Telmer (2001), Brandt, Cochrane, and Santa-
Clara (2006), Pavlova and Rigobon (2007), Bakshi, Carr, and Wu (2008), Brunnermeier, Nagel, and Pedersen (2009),
Verdelhan (2010), Colacito and Croce (2011, 2013), Bansal and Shaliastovich (2013), Heyerdahl-Larsen (2014),
Jurek (2014), Lustig, Roussanov, and Verdelhan (2014), Favilukis, Garlappi, and Neamati (2015), Farhi and Gabaix
(2016), Bakshi, Cerrato, and Crosby (2017), Maurer and Tran (2016, 2017), Colacito, Croce, Gavazzoni, and Ready
(2017), Ready, Roussanov, and Ward (2017), and Zviadadze (2017), among many others.
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(2016) focus on the time variation of an economy’s exposure to global shocks, which is reflected

in exchange rate fluctuations. The analysis of Brandt, Cochrane, and Santa-Clara (2006) implies

that SDFs must be highly correlated pairwise. In addition, Bakshi, Cerrato, and Crosby (2017)

offer a model to show that the unspanned components of the SDFs are distinct across economies.

Our measure of dissimilarity — which underscores the distinction between the economy-

specific change of probability measures — differs from the many facets of dissimilarity inherent

in economic concepts of information, gravity, network centrality, and cultural distinctions. In the

two-country model of Van Nieuwerburgh and Veldkamp (2009), investors choose to have differ-

ent information sets, allowing to address puzzles related to investment choices. In the vein of

gravity models (e.g., Chaney (2017)), Lustig and Richmond (2015) consider a model of SDFs

that can reproduce a distance-dependent factor structure, and find that distance matters for co-

variation in exchange rate growth. The study of Richmond (2015) shows that countries that are

more central in the global trade network are associated with lower interest rates and currency risk

premiums. Karolyi (2016) examines the role of cultural disparities for reconciling international

finance phenomena, including foreign/home bias in international portfolio holdings. Diebold and

Yilmaz (2015) adopt a network approach to explore financial and macroeconomic connectedness.

However, our paper takes a novel angle and in contrast to previous work, we focus on formal-

izing and gauging the dissimilarity between SDFs. It aims to contribute by proposing and imple-

menting a measure of dissimilarity that can be calculated from currency option prices. Through

our measure, differences between SDFs (whether attributable to risk aversion, taste, technologies,

culture, or other economic primitives) can be quantified and encapsulated into a single number.

This number is comparable across economies and over time, and offers a way to distinguish be-

tween international pricing models. In essence, our work puts the notion of dissimilarity between

SDFs on a theoretical footing and, thus, renders it a less amorphous concept.
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2. A measure of dissimilarity between SDFs

This section formalizes a measure of dissimilarity between the SDFs of two economies, which

is based on the Hellinger probability distance metric. The use of bond prices as the numeraire

enables comparability. We justify our choice of the measure of dissimilarity, which we call the

Hellinger measure, on theoretical and practical grounds.3

Additionally, we provide examples illustrating the economic nature of the Hellinger measure

and identify a link to the risk-neutral distribution of currency returns when markets are complete.

We show how the proposed measure can be extracted from currency option prices. The devel-

oped theory and formulations are instrumental to our exploration of international macro-finance

models.

2.1. Formalizing dissimilarity

Different from Hansen and Jagannathan (1991) who develop a theory of SDFs in a single-

country setting, Lucas (1982), Saá-Requejo (1994), and Backus, Foresi, and Telmer (2001) iden-

tify a relation between SDFs in a two-country setting, based on exchange rate growth. If Mt+1 and

M∗
t+1 are the nominal pricing kernels in the domestic and foreign country, then let mt+1 ≡ Mt+1

Mt

(m∗
t+1 ≡

M∗
t+1

M∗
t

) denote the strictly positive domestic (foreign) SDF over t to t +1.

Let St be the level of the spot exchange rate, defined as the number of units of domestic

currency per one unit of foreign currency. The foreign currency is the reference.

Assume also that EP
t (m

2
t+1) < ∞ and EP

t ((m
∗
t+1)

2) < ∞, where EP
t (.) is time t conditional

expectation under the physical probability measure P. We consider mt+1 (m∗
t+1) that enforce

correct pricing of domestic (foreign) returns with EP
t (mt+1Rt+1) = 1 (EP

t (m
∗
t+1R∗

t+1) = 1), where

3While the analysis is focused on characterizing the dissimilarity between nominal SDFs, we show that the frame-
work can be adapted to also characterize the dissimilarity between real SDFs.
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the domestic and foreign gross return vectors are linked as Rt+1 = (St+1
St

)R∗
t+1. The gross return

R f ,t+1 and R∗
f ,t+1 of a domestic and foreign risk-free bond, respectively, satisfy 1

R f ,t+1
=EP

t (mt+1)

and 1
R∗

f ,t+1
=EP

t (m
∗
t+1). By Cauchy-Schwarz,

∣∣EP
t (
√

mt+1
√

m∗
t+1)

∣∣<√EP
t (mt+1)EP

t (m∗
t+1)< ∞.

Under no-arbitrage, it is shown in Backus, Foresi, and Telmer (2001, Proposition 1) that4

mt+1

(
St+1

St

)
= m∗

t+1. (1)

Associated with the exchange rate St in equation (1) is the one-period forward exchange rate,

denoted by Ft , which satisfies Ft
St
=

EP
t (m∗

t+1)
EP

t (mt+1)
=

R f ,t+1
R∗

f ,t+1
, from the perspective of the domestic investor.

Likewise, F−1
t

S−1
t

=
EP

t (mt+1)

EP
t (m∗

t+1)
=

R∗
f ,t+1

R f ,t+1
, from the perspective of the foreign investor.

Although we focus here on a discrete-time environment, our framework can be adapted to

a continuous-time environment (e.g., Brandt, Cochrane, and Santa-Clara (2006)). The work of

Maurer and Tran (2016, 2017) introduces the notion of risk entanglement in a setting that incor-

porates return jump diffusions and continuous trading, and shows that the exchange rate growth is

equal to the ratio of economy-specific SDFs projected onto their respective asset return spaces, if

and only if risks, which affect the conditional exchange rate growth, are completely disentangled.

To formalize the notion of mt+1 and m∗
t+1 being dissimilar, we consider the transformed vari-

ables:

ñt+1 ≡
mt+1

EP
t (mt+1)︸ ︷︷ ︸

domestic bond price is the numeraire

and ñ∗t+1 ≡
m∗

t+1

EP
t (m∗

t+1)
,︸ ︷︷ ︸

foreign bond price is the numeraire

(2)

4Equation (1) underpins much of the work on characterizing exchange rates and their dynamics, including Hol-
lifield and Uppal (1997, equation (7)), Brandt, Cochrane, and Santa-Clara (2006, equation (1)), Brennan and Xia
(2006, Section 1), Pavlova and Rigobon (2007), Bakshi, Carr, and Wu (2008, equation (3)), Alvarez, Atkeson, and
Kehoe (2009, equation (10)), Verdelhan (2010, equation (3)), Burnside, Eichenbaum, Kleshchelski, and Rebelo
(2011), Lustig, Roussanov, and Verdelhan (2011, 2014), Burnside and Graveline (2014, equation (5)), Colacito and
Croce (2011, 2013), Maggiori (2013), Hassan (2013), Farhi and Gabaix (2016), and Daniel, Hodrick, and Lu (2017).
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which are positive random variables with unit expectation and finite second moment. Since

EP
t (mt+1) (respectively, EP

t (m
∗
t+1)) represents the zero-coupon bond price in the domestic (re-

spectively, foreign) economy, we have used the bond price as the numeraire to scale each SDF.

To see the economic interpretation of ñt+1 and ñ∗t+1, suppose further that the density under

the physical probability measure is given by p[ν], where ν ∈ RN summarizes the uncertainty to

be resolved at date t + 1. Let also Q and Q∗ be risk-neutral probability (pricing) measures in

the domestic and foreign economy, respectively, with underlying densities q[ν] and q∗[ν]. Both

Q and Q∗ are absolutely continuous with respect to the measure P, with change of probability

Radon-Nikodym derivatives dQ
dP and dQ∗

dP (e.g., Harrison and Kreps (1979)).

Recognize that q[ν] = p[ν]mt+1[ν]
EP

t (mt+1)
and q∗[ν] = p[ν]m∗

t+1[ν]
EP

t (m∗
t+1)

. Rearranging, ñt+1 =
mt+1

EP
t (mt,t+1)

= q[ν]
p[ν]

and ñ∗t+1 =
m∗

t+1
EP

t (m∗
t,t+1)

= q∗[ν]
p[ν] , and thus ñt+1 and ñ∗t+1 represent change of probability (i.e., dQ

dP and

dQ∗

dP ). The transformations in (2) impart a probability function interpretation of ñt+1 and ñ∗t+1.

Remark 1 Equation (2) decouples the discounting and Radon-Nikodym derivative components of

the SDF. The Radon-Nikodym derivatives, ñt+1 and ñ∗t+1, are unique when markets are complete.

Remark 2 Even though mt+1 or m∗
t+1 are denominated in their own currency units, say, the U.S.

dollar or Japanese yen, the ñt+1 and ñ∗t+1 are rendered dimensionless (probabilities are unitless

objects) by scaling mt+1 and m∗
t+1 with the respective discount bond prices.

Remark 3 ñt+1 and ñ∗t+1 can each be viewed as an SDF, with two features. First, EP
t (ñt+1) = 1

and EP
t (ñ

∗
t+1) = 1, that is, ñt+1 and ñ∗t+1 are martingales. Second, ñt+1 and ñ∗t+1 enforce correct

pricing with EP
t (ñt+1At+1) = 1 and EP

t (ñ
∗
t+1A∗

t+1) = 1, where At+1 ≡ EP
t (mt+1)Rt+1 and A∗

t+1 ≡

EP
t (m

∗
t+1)R

∗
t+1 are scaled gross return vectors (e.g., Cochrane (2005, Chapter 8.1)). Section 3.3

formulates and implements a minimum discrepancy problem in an international setting to study

the properties of the extracted ñt+1 and ñ∗t+1.
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These interpretations are crucial for our purposes, and allow us to build on concepts that

quantify the distance between probability measures. Among many such approaches, we focus on

the Hellinger distance metric (e.g., Pollard (2002, Chapter 3)), and exploit it in our context with

respect to ñt+1 and ñ∗t+1. Section 2.5 elaborates further on the rationale for this choice.

We define the measure of dissimilarity between SDFs as

Ht ≡ 1
2
EP

t

([√
ñt+1 −

√
ñ∗t+1

]2
)
, (3)

=
1
2

∫
RN


√√√√√ q[ν]

p[ν]︸︷︷︸
Ratio-of-densities

−
√√√√√ q∗[ν]

p[ν]︸ ︷︷ ︸
Ratio-of-densities


2

p(ν)dν, (4)

and denote it throughout as the “Hellinger measure.” If q(v) dominates q∗(v) in certain states (say,

in the tails of the distribution due to higher risk aversion), then it will amplify Ht , irrespective of

whether the markets are complete or incomplete.

The Hellinger measure in equation (3) satisfies the axioms of distance: (i) Ht [a,b] > 0, (ii)

Ht [a,b] = Ht [b,a], and (iii) Ht [a,b]+Ht [a,c]≥ Ht [b,c] (the triangle inequality). In addition

Ht ∈ [0,1], whereby Ht = 0 for mt+1 = m∗
t+1. (5)

We employ Ht to quantify the dissimilarity between the Radon-Nikodym derivatives of different

economies.

An innovation to be highlighted shortly is that one can extract Ht (as in (3)) from currency

option prices under a (minimal) set of assumptions.

Expanding in equation (3) as in (
√

ñt+1 −
√

ñ∗t+1 )
2 = ñt+1 + ñ∗t+1 −2

√
ñt+1ñ∗t+1, and noting
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that EP
t (ñt+1) = EP

t (ñ
∗
t+1) = 1, we can further write

Ht = 1−EP
t

(√
ñt+1 ñ∗t+1

)
= 1− 1√

EP
t (mt+1)EP

t (m∗
t+1)

EP
t

(√
mt+1 m∗

t+1

)
. (6)

Returning to equation (5), we clarify the null hypothesis of zero Hellinger measure. Recall

that in complete markets mt+1
St+1
St

= m∗
t+1, hence if mt+1 = m∗

t+1, then EP
t (mt+1) = EP

t (m
∗
t+1) and

Ht = 0, implying St+1
St

= 1. On the other hand, if ñt+1 = ñ∗t+1 then mt+1
EP

t (mt+1)
=

m∗
t+1

EP
t (m∗

t+1)
and hence

St+1
St

− EP
t (m

∗
t+1)

EP
t (mt+1)

= 0 (point by point). Both of these versions of exchange rate determination do not

appear to align with data realities, therefore we expect to empirically reject the hypothesis of zero

Hellinger measure.

The Hellinger measure in equation (6) can be seen as distinguishing between SDFs via the

moments and cross-moments of log(mt+1) and log(m∗
t+1), of all orders:

Ht = 1−EP
t

(
exp
(

1
2

log(ñt+1)+
1
2

log(ñ∗t+1)

))
, (7)

= −EP
t

(
}+

}2

2!
+

}3

3!
+

}4

4!
+ . . .

)
, and (8)

where }≡ 1
2

log(ñt+1)+
1
2

log(ñ∗t+1). (9)

To gain some insights on the information encoded in Ht , we offer an example.

Example 1 Consider a model of log(mt+1) and log(m∗
t+1), in which the parameters Λ and Λ∗

reflect potentially different sensitivity to common disasters:

log(
Mt+1

Mt
) =−µ−σεt+1 −Λ

Nt+1

∑
i=Nt

zi, log(
M∗

t+1

M∗
t
) =−µ∗−σ∗ ε∗t+1 −Λ∗

Nt+1

∑
i=Nt

zi, (10)

where µ, µ∗, σ, and σ∗ are constants. The shocks εt+1 and ε∗t+1 are each N (0,1) with covariance ρ,
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Nt is a Poisson process with parameter λ, and {zi} is a sequence of independent random variables

each distributed N (µz,σ2
z ). Thus, ∑Nt+1

i=Nt
zi is a compound Poisson process (analogous to the one

also considered in Bakshi, Carr, and Wu (2008, equation (8)) and Farhi, Fraiberger, Gabaix,

Ranciere, and Verdelhan (2015, Section 2.1)). It can be shown that (see Internet Appendix I),

Ht = 1− exp
(
−1

8
(σ2 +σ2

∗)+
1
4

σσ∗ρ+λ{ed0 − 1
2

e−Λµz+
1
2 Λ2σ2

z − 1
2

e−Λ∗µz+
1
2 Λ2

∗σ2
z}
)
, (11)

where d0 ≡−1
2(Λ+Λ∗)µz +

1
8(Λ+Λ∗)

2σ2
z .

The Hellinger measure in this disaster model is not time-varying, yet can be useful for under-

standing cross-sectional variation across economies, in terms of σ, σ∗, ρ, λ, Λ, and Λ∗. ♣

2.2. The Hellinger measure in a simple model with tail exposures

Next, consider a state-space model in a two-date world with non-homogeneous SDFs. There

are four states, indexed by ω = (ω1,ω2,ω3,ω4). The associated physical probabilities, denoted

by p[ω], and SDFs are

p[ω] =



1− (1−υ)(1+ς)
2

2

(1−υ)ς
2

(1−υ)ς
2

1− (1−υ)(1+ς)
2

2


, m[ω] =



1+Λ

1

1

1−Λ


, and m∗[ω] =



1+Λ∗

1

1

1−Λ∗


, (12)

where 0 ≤ υ ≤ 1, 0 ≤ ς ≤ 1, 0 ≤ Λ < 1, 0 ≤ Λ∗ < 1, and ∑ω p[ω j] = 1.

The parameter υ calibrates the exposure to the extremes, ω1 represents the most unpleasant

extreme state, and ω4 the most desirable one, and they are of equal probability.

Our parametrization of m[ω] and m∗[ω] reflects the intuition that marginal utility is high (low)
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in the bad (good) state. By inflating (deflating) marginal utilities in the bad (good) state relative

to the middle states, we keep the means of m and m∗ equal to unity and their skewness to zero,

which allows to isolate the effects of SDF volatility and kurtosis on the Hellinger measure.

Based on the assumed model structure, the variances of the domestic and foreign SDFs are

Λ2 (1− 1
2(ς+1)(1−υ)

)
and Λ2

∗
(
1− 1

2(ς+1)(1−υ)
)
, respectively, and are both increasing in

the tail exposure υ. Besides, the kurtosis of the two SDFs is the same and equals 1
1− 1

2 (ς+1)(1−υ)
,

which increases in ς and decreases in υ, but does not depend on Λ and Λ∗.

Under the additional assumption that Λ > Λ∗, namely, the domestic country (say, the US) is

more heavily exposed to the common shock than the foreign country (say, Australia). The foreign

currency depreciates (appreciates) in the bad (good) state. The mean exchange rate growth is

∑ω p[ω j] (m∗[ω]/m[ω]− 1) = Λ(Λ−Λ∗)(1+υ−ς(1−υ))
2(1−Λ2)

, which is positive when Λ > Λ∗. Thus, the

foreign currency (with positive expected return) is relatively riskier, a trait that is featured in the

treatments of Hassan (2013), Farhi and Gabaix (2016), and Ready, Roussanov, and Ward (2017).

In this model, the Hellinger measure is

H =
1
4

(
2−
√

(1−Λ)(1−Λ∗)−
√

(1+Λ)(1+Λ∗)
)
(1+υ− ς(1−υ)). (13)

Therefore, H increases with the difference between Λ and Λ∗, which can be seen by setting

Λ = Λ∗+~0 and taking a derivative with respect to ~0. Moreover, increasing the probability of

the extremes tends to increase the Hellinger measure, which is captured by the positive derivative

of H with respect to υ. The means of the SDFs do not alter the Hellinger measure. This model

can produce cross-sectional variation in H, depending on the absolute and relative tail exposures.

Searching for a simple insight, the Hellinger measure captures key sources of heterogeneity

to which international macro-finance models can be calibrated across a system of economies.
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2.3. Extracting the measure of dissimilarity from currency option prices

This subsection shows how to compute the Hellinger measure from the prices of traded options

on foreign currency. Because the SDFs mt+1 and m∗
t+1 are positive random variables and m∗

t+1
mt+1

exists, it follows from the definition of the Hellinger measure in equation (6) that

Ht = 1 − 1√
EP

t (mt+1)EP
t (m∗

t+1)
EP

t

(
mt+1

√
m∗

t+1

mt+1

)
, (14)

= 1 − 1√
EP

t (mt+1)EP
t (m∗

t+1)
EP

t

(
mt+1

√
St+1

St

)
, (via equation (1)) (15)

= 1 −

√
EP

t (mt+1)

EP
t (m∗

t+1)
EQ

t

(√
St+1

St

)
, (16)

where, for any suitable random variable xt+1, EQ
t (xt+1) =

1
EP

t (mt+1)
EP

t (mt+1 xt+1).

The tractability of the Hellinger measure in equations (14)–(15) stems from the fact that both

ñt+1 and ñ∗t+1 represent change of probability measures, and are unique in complete markets.

Equation (16) shows that the calculation of Ht involves determining the value of the payoff
√

St+1
St

.

It also indicates that Ht is convex in St+1, implying that greater risk-neutral dispersion of St+1
St

will

increase the dissimilarity between the two SDFs.5

Next, suppose that European options with strike price K and underlier S are traded in the

domestic country (the foreign currency is the reference).

The following result shows how to calculate the Hellinger measure in equation (16) using

option prices, with the foreign currency as the reference.

5Clarifying the development of the Hellinger measure, we note that EP
t (mt+1)

EP
t (m

∗
t+1)

= 1
Ft
St

= 1
EQ

t

( St+1
St

) . Hence, we can

express equation (16) as Ht = 1−EQ
t

(√
St+1

St

)
/

√
EQ

t

(
St+1

St

)
. For any concave function g[x], Jensen’s inequality

implies that EQ
t (g[x])< g[EQ

t (x)]. Because
√

St+1
St

is concave in St+1
St

, it holds that Ht > 0.

12



Proposition 1 The Hellinger measure can be computed at each time t as

Ht =

√
R2

f ,t+1

16Ft

(∫
{K>Ft}

Ct [K]

K3/2 dK +
∫
{K<Ft}

Pt [K]

K3/2 dK
)
, (17)

where Ct [K] (Pt [K]) is the time t price of a call (put) on the foreign exchange with strike price K,

denominated in domestic currency units.

Proof: See Internet Appendix II.

Ensuring the internal consistency of the approach, we emphasize that the Hellinger measure

can be computed from the perspective of the foreign investor as well. Specifically, Ht = 1−

1√
EP

t (mt+1)EP
t (m∗

t+1)
EP

t

(
m∗

t+1

√
mt+1
m∗

t+1

)
. Thus, it follows that

Ht = 1 − 1√
EP

t (mt+1)EP
t (m∗

t+1)
EP

t

(
m∗

t+1

√
1/St+1

1/St

)
, (18)

= 1 −

√
EP

t (m∗
t+1)

EP
t (mt+1)

EQ∗
t

(√
1/St+1

1/St

)
. (19)

Suppose there are European options traded in the foreign country with strike price 1
K and underlier

1
S (the domestic currency is the reference). Then, the analog to Proposition 1 is Corollary 1.

Corollary 1 Let C∗
t [K

∗] (P∗
t [K

∗]) be the time t price of a call (put) with strike price K∗ ≡ 1
K ,

denominated in foreign currency units. Then

Ht =

√
(R∗

f ,t+1)
2

16F−1
t

(∫
{K∗>F−1

t }

C∗
t [K

∗]

(K∗)3/2 dK∗ +
∫
{K∗<F−1

t }

P∗
t [K

∗]

(K∗)3/2 dK∗
)
, (20)

where F−1
t is the forward exchange rate with the domestic currency as the reference.

Proposition 1 and Corollary 1 highlight a novelty in that the Hellinger measure is amenable

13



to computation from the prices of out-of-the-money calls and puts from the perspective of either

country. Importantly, our method allows to obtain time-varying estimates of Ht without specifying

the functional form of the SDFs or invoking distributional assumptions.

2.4. Interpretation in terms of currency returns

We argue that the Hellinger measure can be an important quantity to consider when parame-

terizing international asset pricing models, as it embeds information about the risk-neutral distri-

bution of currency returns when markets are complete.

To develop this interpretation, we appeal to a Taylor expansion and write
√

x =
√

µx +
x−µx
2
√

µx
−

(x−µx)
2

8µ3/2
x

+ (x−µx)
3

16µ5/2
x

− 5(x−µx)
4

128µ7/2
x

+O
(
(x−µx)

5). If x ≡ St+1
St

and µx ≡ EQ
t

(
St+1
St

)
= Ft

St
=

EP
t (m

∗
t+1)

EP
t (mt+1)

, then

one can define

rxt+1 ≡
St+1

St
− Ft

St
as the excess currency return. (21)

Its expectation under the P measure, i.e., EP
t (rxt+1), defines the currency risk premium.

Substituting the Taylor expansion of
√

x into equation (16) gives the following representation:

Ht =
1

8(Ft
St
)2
EQ

t
(
rx2

t+1
)
− 1

16(Ft
St
)3
EQ

t
(
rx3

t+1
)
+

5
128(Ft

St
)4
EQ

t
(
rx4

t+1
)
+ . . . (22)

The Hellinger measure can be viewed as a weighted sum of risk-neutral moments of rxt+1.

2.5. Comparison with other possible measures of dissimilarity and approaches

The Hellinger measure in equation (4) is 1
2 E

P
t ({
√

q[ν]
p[ν] −

√
q∗[ν]
p[ν] }

2), which is the second mo-

ment of the difference in the square-root of the change of probability Radon-Nikodym derivatives.

We recognize that a number of other measures of dissimilarity can in principle be considered, for

example, based on total variation or the Kullback-Leibler, or the Kolmogorov metrics (e.g., Gibbs

14



and Su (2002, Table 1)).

However, among these, and many others, the Hellinger measure has the appealing features

of being a proper distance metric, independent of the choice of the reference measure (the P

measure in our case), and symmetric. Moreover, the payoff underlying the Hellinger measure

meets a differentiability requirement, facilitating the development in Proposition 1.

Integral to our empirical characterizations, the expression for the Hellinger measure can be

calculated from data on currency options in the currency units of either economy. Being option-

based and forward-looking, the Hellinger measure can reflect time variation in dissimilarities

between SDFs, and this time-series dimension possibly sets it apart from alternatives.

Still, we consider the (symmetric) Chi-squared distance metric (e.g., Lindsay, Markatou, Ray,

Yang, and Chen (2008, Section 2.3)), which can be extracted from currency option prices:

Ct ≡ EP
t

(
(ñt+1 − ñ∗t+1)

2

(ñt+1 + ñ∗t+1)/2

)
, (Chi-squared distance) (23)

=
∫
RN

( q[ν]
p[ν] −

q∗[ν]
p[ν] )

2

( q[ν]
p[ν] +

q∗[ν]
p[ν] )/2

p(ν)dν, (24)

= EP
t

 mt+1

EP
t (mt+1)

(1− EP
t (mt+1)

EP
t (m∗

t+1)

m∗
t+1

mt+1
)2

(1+ EP
t (mt+1)

EP
t (m∗

t+1)

m∗
t+1

mt+1
)/2

 , (25)

= EP
t

(
mt+1

EP
t (mt+1)

(1− St+1
Ft

)2

(1+ St+1
Ft

)/2

)
, (since

Ft

St
=

EP
t (m

∗
t+1)

EP
t (mt+1)

) (26)

= EQ
t

(
(1− St+1

Ft
)2

(1+ St+1
Ft

)/2

)
, (27)

= R f ,t+1

∫
{K>Ft}

f[K]Ct [K]dK + R f ,t+1

∫
{K<Ft}

f[K]Pt [K]dK, (28)

where f[K]≡ 4
F2

t (
K
Ft
+1)

+
8(1− K

Ft
)

F2
t (

K
Ft
+1)2 +

4(1− K
Ft
)2

F2
t (

K
Ft
+1)3 . Our implementation of the Chi-squared measure

in equation (28) shows that the Hellinger and Chi-squared measures are in agreement (this is
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intuitively so since equation (27) can also be expressed as 1
(Ft

St
)2E

Q
t (rx2

t+1)−
1

2(Ft
St
)3E

Q
t (rx3

t+1)+

1
4(Ft

St
)4E

Q
t (rx4

t+1)+ . . .). However, equation (23) involves the conditional expectation of the ratio

of polynomials in mt+1 and m∗
t+1, precluding analytical solutions of the Chi-squared measure for

some of the international asset pricing models in Section 3.4.1. For these reasons, we feature the

Hellinger measure in the remainder of the paper.6

While the Hellinger measure involves computing the risk-neutral expectation EQ
t

(√
St+1
St

)
,

the Chi-squared measure involves computing EQ
t

(
(1− St+1

Ft
)2

(1+
St+1

Ft
)/2

)
. The form of the payoff under the

risk-neutral measure can be traced to the respective probability distance metric. The common

thread is that both measures are related to the risk-neutral distribution of currency returns.

The Hellinger measure is distinct from codependence. If Lt [xt+1]≡−EP
t (log(xt+1))+log(EP

t (xt+1)),

then Ht = 1− exp
(
Lt [
√

ñt+1ñ∗t+1]−
1
2Lt [ñt+1]− 1

2Lt [ñ∗t+1]
)
; therefore Ht differs from codepen-

dence between SDFs in the manner of Hansen (2012, page 930) (see Internet Appendix III).

This is more directly seen when (mt+1, m∗
t+1) is bivariate lognormal (as per the expression of the

Hellinger measure in equation (29)).

In incomplete international markets, some SDF pairs (mt+1, m∗
t+1) satisfy mt+1(

St+1
St

)−m∗
t+1 =

0, while others do not (e.g., Bakshi, Cerrato, and Crosby (2017, Definitions 1 and 2)). In this in-

complete markets setting, there is multiplicity of (mt+1, m∗
t+1), and, thus, an infinite number of

possible values of such a distance measure, prompting us to take infimums over mt+1 and m∗
t+1, of

EP
t
(√

mt+1m∗
t+1
)
. Thus, one can, at most, strive to obtain an upper bound on the Hellinger mea-

6Is it possible to characterize the Hellinger measure specifically for the martingale component of the SDFs,
and extract it from option data? To entertain such a possibility, consider SDFs that admit multiplicative de-
composition (unique in the sense of Alvarez and Jermann (2005) and Hansen and Scheinkman (2009)), implying
mP

t+1 = mt+1Rt+1,∞ and mP∗
t+1 = m∗

t+1R∗
t+1,∞, where mP

t+1 (mP∗
t+1) is the martingale component of the domestic (for-

eign) SDF, and Rt+1,∞ (R∗
t+1,∞) is the return of the domestic (foreign) discount bond with infinite maturity. Since

EP
t (m

P
t+1) = 1 and EP

t (m
P∗
t+1) = 1, it holds that Ht ≡ 1−EP

t

(√
mP

t+1 mP∗
t+1

)
= 1−EQ

t

(√
mt+1m∗

t+1Rt+1,∞R∗
t+1,∞

)
.

Analytical tractability in this case is hampered by the fact that mt+1, m∗
t+1, Rt+1,∞, and R∗

t+1,∞ are correlated (e.g.,
Bakshi, Chabi-Yo, and Gao (2017) and Christensen (2017)).
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sure as 1− inf(mt+1,m∗
t+1)

1√
EP

t (mt+1)EP
t (m∗

t+1)
EP

t
(√

mt+1m∗
t+1
)
. This optimization problem must be

solved subject to pricing restrictions and subject to ruling out extremely lucrative investment op-

portunities across incomplete international markets (in the flavor of Bakshi, Cerrato, and Crosby

(2017, Problem 1)). In the case of incomplete markets, even an unconditional upper bound on the

Hellinger measure may be untractable, and, in contrast to our Proposition 1, extracting a measure

of dissimilarity from currency option prices may be infeasible.

Finally, is it possible to quantify dissimilarity using risk-neutral densities extracted from eq-

uity options markets (see equation (4))? This requires parametric assumptions and a richer market

that trades product options of all strike pairs in domestic and foreign equities. Instead, our inno-

vation is to tap into an approach that infers the price of
√

m∗
t+1

mt+1
.

3. Linking the theory of dissimilarity to data and models

Next we explore the stylized features of the Hellinger measure and its variation through time.

While international macro-finance models often strive to reproduce empirical characteristics like

interest rates, currency risk premiums, and SDF volatilities, an additional important dimension

that can be captured with the help of the Hellinger measure is consistency with the risk-neutral

distribution of currency returns.

3.1. Panel of currency option prices and data construction

The main data source for this study is J. P. Morgan’s DataQuery database.7 We employ end-

of-month observations of spot and forward exchange rates, option-implied volatility quotes, and

7Similar data has been used in currency market research by Bates (1996), Carr and Wu (2007), Bakshi, Carr,
and Wu (2008), Burnside, Eichenbaum, Kleshchelski, and Rebelo (2011), Caballero and Doyle (2012), Gavazzoni,
Sambalaibat, and Telmer (2013), Branger, Herold, and Mucky (2014), Jurek (2014), Jurek and Xu (2014), Farhi,
Fraiberger, Gabaix, Ranciere, and Verdelhan (2015), Mueller, Stathopoulos, and Vedolin (2016), Della Corte, Sarno,
and Ramadorai (2016), Della Corte, Kozhan, and Neuberger (2016), Londono and Zhou (2017), Zviadadze, Chernov,
and Graveline (2018), and Daniel, Hodrick, and Lu (2017) among others.
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LIBORs over the 222-month sample period from 1/1996 to 6/2014 (from 12/1998 for the Euro and

Norwegian krone). Our focus is on the most actively traded G-10 currencies and their respective

economies: New Zealand (NZ), Australia (AU), United Kingdom (UK), Norway (NO), Sweden

(SD), Canada (CA), US, Euro-zone (EU), Switzerland (SW), and Japan (JP).

Quoted implied volatilities, the building blocks for the option prices used in our study, are

available for all pairs of G-10 currencies (45 pairs in total). They correspond to European options

of constant maturity (30 days in our work) and five levels of constant delta: 10 and 25 delta puts,

10 and 25 delta calls, and at-the-money. For details, see Internet Appendix IV.

While standard, this format of option data requires some further manipulation in order to

render it suitable for our study. In particular, we need to transform the five volatilities provided

on each date into prices of options (both puts and calls) with a wide range of strikes, since our

approach requires numerical integration involving such option prices.

For this purpose, we interpolate the volatilities on a grid of deltas and extrapolate conserva-

tively beyond the minimum and maximum strikes, keeping constant the volatilities given at these

strikes, following Jiang and Tian (2005), Carr and Wu (2009), and Reiswich and Wystup (2009).

Next, we transform these deltas into strike prices as in Jurek (2014, equations (9a), (9b) and (10)),

and as noted also in Wystup (2006). With the volatilities and strikes thus obtained, we calculate

the corresponding call and put prices using the Garman and Kohlhagen (1983) formula. All inputs

for the calculation of the option prices come from the same database to ensure consistency.8 Hav-

ing access to all 45 cross-rates among the G-10 currencies and the corresponding option volatility

quotes allows for direction calculation of the pairwise Hellinger measures.

8We note that, in principle, further manipulation may be needed in cases when certain currency appears as a
reference currency in some underlying exchange rates, but as a non-reference one in others, for example, the USD
is reference currency against CAD or JPY, but not against AUD or EUR. The issue can be addressed by symmetry
relations as in Jurek (2014, equations (11) and (12)), and via our Corollary 1. However, the Hellinger measure is by
design symmetric, and hence, the issue of the reference currency is inessential.
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3.2. Empirical attributes of the Hellinger measure

While the theory bounds the possible values of the Hellinger measure between zero and one,

any a priori intuition of what values of the measure should be considered “large” or “small” is

still lacking. To provide a perspective, we consider the following baseline model.

Example 2 Suppose that log(mt+1) and log(m∗
t+1) are bivariate normally distributed. If varPt (.)

and covPt (., .) denote conditional variance and covariance under the physical probability measure,

then (see Internet Appendix V),

HLN
t ≡ 1− exp

(
−1

8
{varPt (log(m∗

t+1))+varPt (log(mt+1))}

+
1
4

covPt (log(m∗
t+1), log(mt+1))

)
, (29)

= 1− exp
(
−1

8
varPt (log(

St+1

St
))

)
. (30)

When (mt+1,m∗
t+1) is lognormal, the dissimilarity between mt+1 and m∗

t+1 can be inferred from

the conditional variance of log(St+1
St

) under the physical probability measure. ♣

Isolating the impact of distributional non-normalities in (log(mt+1), log(m∗
t+1)): Equation

(30) of Example 2 allows us to address two questions: How important are non-normalities in

(log(mt+1), log(m∗
t+1)) to the Hellinger measures extracted in a model-free manner from currency

options? What are the anchoring values of Hellinger measures?

Before proceeding to answers, we define

H [i, j]
t ≡

√
H (based on monthly data, in %) for economy pair (i, j) in month t, (31)

H [45]
t ≡ Cross-sectional average of H [i, j]

t for all 45 pairs of economies in month t (32)

HUS,[9]
t ≡ Cross-sectional average of H [US, j]

t for nine other pairs of economies in month t. (33)
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Table 1 (Panel A) reports the mean, standard deviation, minimum, maximum, and percentiles

of H [45]
t and HUS,[9]

t . Panel B reports the counterparts constructed from the empirical analog to

equation (30). Specifically, we proxy the monthly varPt (log(St+1
St

)) as the quadratic return variation,

utilizing daily currency returns (e.g., Andersen, Bollerslev, Diebold, and Labys (2003)):

Ht ≡ 1 − exp(−1
8

22

∑
n=1

{log(
St+n∆t

St+(n−1)∆t
)}2). (34)

For comparison, we compute and report (see Panel C of Table 1) the following deviations

log(
H [45]

t

H
[45]
t

) and log(
HUS,[9]

t

H
US,[9]
t

). (35)

The central observation from Table 1 is that the deviations log( H [45]
t

H
[45]
t

) (log( HUS,[9]
t

H
US,[9]
t

)), are sizable,

time-varying, and switch sign, with a minimum of -19.4% (-19.7%) and a maximum of 47%

(53%). We interpret the time-varying nature of the deviations (seen from Figure 1) as the con-

tribution of stochastically-varying risk-neutral moments of currency returns (some evidence on

risk-neutral stochastic skewness is provided in Carr and Wu (2007)).

[Figure 1 about here.]

The takeaway is that the Hellinger measure based on varPt (log(St+1
St

)) appears to omit a sizable

portion of the variation in the dissimilarity between SDFs, computed using Proposition 1.

Distinct geographical pattern: Here we construct, for each economy, the time series of cross-

sectional average measures with respect to the remaining nine economies:

H i,[9]
t ≡ Cross-sectional average: 1

9 ∑9
j=1 H [i, j]

t for economy i in month t. (36)
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Using H [45]
t as a benchmark against which to compare other Hellinger measures, we consider

differences between H i,[9]
t and H [45]

t and, importantly, estimate confidence intervals for these dif-

ferences. Measures that are found to be significantly different from H [45]
t can be considered to be

large or small in our sample.

These averages aggregate information for the individual economies and can identify geograph-

ical patterns, if present in the Hellinger measures. Table 2 shows the mean differences between

H i,[9]
t and H [45]

t . We also show 95% confidence intervals for these mean differences, obtained

from 10,000 bootstrapped series of Hellinger measures, using the stationary bootstrap as in Poli-

tis and Romano (1994), with optimal block size determined following Politis and White (2004).

This procedure has been shown to account for conditional heteroskedasticity (e.g., Goncalves and

White (2002)), as well as non-normality. In addition, we show the minimum and maximum values

of the mean differences obtained in the respective 10,000 bootstrap samples.

The Euro-zone has the lowest Hellinger measures, implying that its SDF is on average the

closest to all SDFs in the sample. Its mean difference with H [45]
t is negative and significant at the

5% level, and, in fact, all bootstrapped mean differences are also negative. The mean differences

with H [45]
t are also significantly negative for the UK, Switzerland, Norway, and Sweden, while

they are statistically insignificant for the US and Canada, and positive and significant for Australia,

New Zealand, and Japan. For the latter two economies, the minimum bootstrapped differences

are also positive.

While Table 2 hints at a pattern with low Hellinger measures for the European economies,

intermediate measures for the North American economies, and higher measures for the three

Asia-Pacific economies, any such attempt at geographical classification brings further questions

such as: Are the measures involving the European economies uniformly low, or only with respect

to each other? Are the measures for the Asia-Pacific economies uniformly large, or only with
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respect to the other regions?

To elaborate, Table 3 shows mean differences between each Hellinger measure H [i, j]
t and

H [45]
t , and identifies in bold those that are statistically significant. It is seen that (i) most of these

differences are significant, (ii) the measures among the European economies tend to be small, but

are intermediate (large) for these economies with respect to the US and Canada (the three Asia-

Pacific economies), and (iii) measures for the US and Canada are overall intermediate, while those

of Japan, New Zealand, and Australia (to some extent) are the largest.

Importantly, the measure for the US with respect to Canada, and that for Australia with re-

spect to New Zealand are small, consistent with a regional distinction among Hellinger measures.

However, Japan exhibits large measures with respect to most European countries, and even larger

ones with respect to Australia and New Zealand, which points to a four-region geographic classi-

fication based on Hellinger measures.

Strong common component: We also ask how different (or similar) is the time series behavior of

the Hellinger measures. The first principal component of the 45 time series of measures explains

more than 97% of the variation, thus a strong single-factor structure appears to be another essential

feature of the Hellinger measure. The first principal component is closely associated with H [45]
t ,

justifying the use of this average as a benchmarking device.

[Figure 2 about here.]

For an illustration, Figure 2 plots H [45]
t together with the average measures for the Euro-

zone, US, UK, New Zealand, and Japan. The Hellinger measures appear to vary with economic

conditions. All six plots exhibit an increase around the financial crisis at the end of 2008, and a

smaller, but again common, increase around 1998–2000. The series have sizable amplitude, with

the maximum value of H [45]
t being about four times higher than its minimum value. Furthermore,
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they are persistent, and the first-order autocorrelation coefficient of H [45]
t equals 0.87.

Summary: Table 1 and Figure 1 indicate that deviations from the normality of (log(mt+1),log(m∗
t+1))

are economically important. Specifically, the Hellinger measure extracted from daily currency re-

turns differs substantially from our model-free construction based on currency option prices.

Moreover, Table 2 shows that the Euro-zone and UK have the lowest Hellinger measures

H i,[9]
t , indicating that their SDFs on average are the closest to those of all remaining economies in

the sample. In contrast, the SDFs of Japan and New Zealand on average differ the most from all

the remaining ones. In most cases these distinctions are statistically significant, as evidenced by

the reported bootstrap results.

Complementing these findings, Table 3 shows the differences between the 45 individual Hellinger

measures H [i, j]
t and the average Hellinger measure H [45]

t . The lowest measure is observed for the

Euro-zone and Switzerland, which hence have the most similar SDFs, while Japan and New

Zealand exhibit the highest measure, and hence the most distinct SDFs.

3.3. Economic interpretation and consistency with returns of bonds and equities

Here we go beyond the currency options data and construct the Hellinger (and Chi-squared)

measures using international equity and bond market data. The measures are consistent with

Radon-Nikodym derivatives ñ and ñ∗ based on a minimum discrepancy problem (e.g., Borovička,

Hansen, and Scheinkman (2016, Section VIII)), which entails minimizing the expectation of con-

vex functions d[ñ] = ñ log ñ and d[ñ∗] = ñ∗ log ñ∗, as formalized below:

inf
ñ

EP(d[ñ]) = sup
ζζζ∈R6, ϖ∈R

inf
ñ

EP(ñ log ñ−ζζζ
′
(ñA−1)−ϖ(ñ−1)), (37)

inf
ñ∗

EP(d[ñ∗]) = sup
ζζζ∗∈R6, ϖ∗∈R

inf
ñ∗

EP(ñ∗ log ñ∗−ζζζ
′

∗ (ñ
∗A∗−1)−ϖ∗(ñ∗−1)), (38)
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where ζζζ (ζζζ∗) are the Lagrange multipliers associated with EP(ñA) = 1 (EP(ñ∗A∗) = 1) and ϖ

(ϖ∗) are the Lagrangian multipliers associated with EP(ñ) = 1 (EP(ñ∗) = 1). These restrictions

are imposed unconditionally.

The featured choice of d[.] guarantees the positivity of the Radon-Nikodym derivatives ñ and

ñ∗. Our goal is to examine whether such extracted measures of dissimilarity agree with what is

reported in Tables 1, 2, and 3 and illustrate the economic relevance of our dissimilarity measure.

Our empirical exercises involve the scaled return vectors At+1 and A∗
t+1, given as:

At+1︸︷︷︸
6×1

=
1

R f ,t+1



R f ,t+1

Rbond,t+1

Requity,t+1

(St+1
St

)R∗
f ,t+1

(St+1
St

)R∗
bond,t+1

(St+1
St

)R∗
equity,t+1


︸ ︷︷ ︸

Rt+1

and A∗
t+1︸︷︷︸

6×1

=
1

R∗
f ,t+1



( St
St+1

)R f ,t+1

( St
St+1

)Rbond,t+1

( St
St+1

)Requity,t+1

R∗
f ,t+1

R∗
bond,t+1

R∗
equity,t+1


.

︸ ︷︷ ︸
R∗

t+1

(39)

Further, the U.S. is the home economy and the foreign economy is each of the economies with the

remaining G-10 currencies. Germane to the calculations in equation (39) is the return vector Rt+1,

which contains the gross returns of the U.S. risk-free bond (R f ,t+1), the U.S. ten-year Treasury

bond (Rbond,t+1), and the U.S. MSCI equity index (Requity,t+1) in U.S. dollars, together with the

returns of the foreign counterparts (denoted by * superscripts) converted into U.S. dollars, and an

analogous vector of returns R∗
t+1 expressed in the foreign currency. The vector of domestic and

foreign gross returns are related as Rt+1 = (St+1
St

)R∗
t+1.

As in Bakshi, Chabi-Yo, and Gao (2017, Case 2), the problem in (37) and (38) has the follow-
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ing explicit solution:

ñ = exp(ζζζ
′
A+ϖ−1), where (ζζζ,ϖ) solves inf

(ζζζ,ϖ)
−ϖ−1

′
ζζζ+EP(exp(A

′
ζζζ+ϖ−1)), (40)

ñ∗ = exp(ζζζ
′

∗A∗+ϖ∗−1), where (ζζζ∗,ϖ∗) solves inf
(ζζζ∗,ϖ∗)

−ϖ∗−1
′
ζζζ∗+EP(exp((A∗)

′
ζζζ∗+ϖ∗−1)).(41)

We then compute the unconditional Hellinger measure (equation (3)) as 1
T ∑T

t=1
1
2 (
√

ñt −
√

ñ∗t )2,

and likewise for the Chi-squared measure (equation (23)) as 1
T ∑T

t=1 2(ñt − ñ∗t )
2/(ñt + ñ∗t ).

Table 4 reports the extracted Hellinger and Chi-squared measures. It is seen that the average

Hellinger measure is close to those derived from currency options. Furthermore, the relative

ranking between the Hellinger measures is also preserved, and is also mirrored by the ranking

between the Chi-squared measures. These results imply that the structure of risk differs across

economies, and our measures capture in a consistent way this difference.

Additionally, we report the annualized volatility of the Radon-Nikodym derivatives, given

by (12
T ∑T

t=1(ñt − 1)2)1/2 and (12
T ∑T

t=1(ñ
∗
t − 1)2)1/2. The volatility of the U.S. (foreign) Radon-

Nikodym derivatives that correctly prices the considered set of assets range between 74% and

105% (70% and 104%).

3.4. Implications for international asset pricing models

This section examines Hellinger measures obtained from several models of international economies,

including those in Verdelhan (2010), driven by the surplus consumption ratio, and in Lustig, Rous-

sanov, and Verdelhan (2014), which features global and economy-specific state variables, as well

as a long-run risk model from Colacito and Croce (2011), and a model with time-varying proba-

bility of disasters.

Our focus is on studying the consistency of these models with the risk-neutral-distribution
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of currency returns (which is available here for a large cross-section of economies). Since the

models were not intended to match this data feature, we employ the Hellinger measure as a tool

for differentiation.

Our null hypothesis is whether the 95% confidence intervals of model-based Ht bracket the

options-market-based unconditional values based on Proposition 1.

3.4.1. Models

A. Verdelhan (2010, Section I.A): In this model, the SDF in each economy satisfies the following:

log(mt+1) = log(β)− γ(g+(ϕ−1)(st − s))− γ(1+λ[st ])(log(Ct+1/Ct)−g), (42)

log(Ct+1/Ct) = g + ut+1 for ut+1 ∼ i.i.d. N (0,σ2), and (43)

st+1 = (1−ϕ)s+ϕst +λ[st ] (log(Ct+1/Ct)−g), (44)

where st is the log surplus consumption ratio, and λ[st ] =
1
S

√
1−2(st − s)−1 when s ≤ smax and

zero otherwise.

Denoting by ρ the correlation between the shocks to domestic and foreign consumption

growth ut+1 and u∗t+1, the Hellinger measure can be derived as

Ht = 1− exp
(
−γ2(1+λ[st ])

2σ2

8
− γ2(1+λ[s∗t ])2σ2

8
+

γ2(1+λ[st ])(1+λ[s∗t ])σ2ρ
4

)
. (45)

Since st and s∗t vary over time, so does the measure of dissimilarity.9

B. Lustig, Roussanov, and Verdelhan (2014, Section 4.2): In this model, there are i = 1, . . . ,N

9We emphasize that this international asset pricing model (and some other models considered here) does not
admit closed-form solution for the Chi-squared distance measure in equation (23). The reason is that the conditional
expectation of the ratio of two polynomials (i.e., the numerator (denominator) consists of three (two) exponential
terms) in (23) has no analytical solution to the best of our knowledge when uncertainty ut+1 is distributed normal.
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economies, where (ui
t+1,u

w
t+1,u

g
t+1)∼ i.i.d. N (0,1), and

log(mi
t+1) = −α−χzi

t −
√

γzi
t ui

t+1 − τzw
t −

√
δi zw

t uw
t+1 −

√
κzi

t ug
t+1, (46)

zi
t+1 = (1−ϕ)θ+ϕzi

t −σ
√

zi
t ui

t+1, and (47)

zw
t+1 = (1−ϕw)θw +ϕw zw

t −σw
√

zw
t uw

t+1. (48)

The model accommodates heterogeneity in the exposure to global shocks uw and ug. For any two

economies (domestic and foreign), the Hellinger measure can be derived as

Ht = 1 − exp
(
−1

8
γz∗t −

1
8

γzt −
1
8

δ∗ zw
t − 1

8
δzw

t +
1
4

√
δ∗ δzw

t

− 1
8

κzt −
1
8

κz∗t +
1
4

√
κ2 zt z∗t

)
. (49)

The time variation in the Hellinger measures is due to the state variables zt , z∗t , and zw
t .

C. Colacito and Croce (2011, Section II.B): This long-run risk model exploits a first-order linear

approximation of the SDFs (see their equation (4); see also Bansal and Shaliastovich (2013),

Lewis and Liu (2015), and Zviadadze (2017)) as:

log(mt+1) = logδ− 1
ψ

xt +κc
1− γψ

ψ(1−ρx κc)
εx,t+1 − γεc,t+1, (50)

log(m∗
t+1) = logδ− 1

ψ
x∗t +κc

1− γψ
ψ(1−ρx κc)

εx∗,t+1 − γεc∗,t+1, (51)

xt+1 = ρx xt + εx,t+1 and x∗t+1 = ρx x∗t + εx∗,t+1. (52)

The two economies are assumed to be symmetric with same preference and transition laws param-

eters, and the shocks are independent, identically, and normally distributed: εc,t+1 ∼ N (0,σ2),

εx,t+1 ∼ N (0,φ2
eσ2), εc∗,t+1 ∼ N (0,σ2), and εx∗,t+1 ∼ N (0,φ2

eσ2). The correlation between

27



εc,t+1 and εc∗,t+1 is ρh f
c , and the correlation between εx,t+1 and εx∗,t+1 is ρh f

x . We can show that

Ht = 1 − exp
(
−

c2
0

4
φ2

eσ2 +
c2

0
4

ρh f
x φ2

eσ2 − 1
4

γ2 σ2 +
1
4

γ2ρh f
c σ2

)
, (53)

where c0 ≡ κc
1−γψ

ψ(1−ρx κc)
. In this model, the Hellinger measure is determined by risk aversion (γ),

elasticity of intertemporal substitution (ψ), and parameters of transition laws.

D. Model with time-varying probability of common disasters: The Hellinger measures in our sam-

ple exhibit a pronounced single-factor structure, and the model we introduce next is tailored to

reflect such a framework. Drawing on Santa-Clara and Yan (2010), Gabaix (2012), and Wachter

(2013), it offers a multi-economy refinement and allows for asymmetric effects of common disas-

ters. The model also relates to Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2015) and Farhi and Gabaix

(2016), and admits a closed-form Hellinger measure.

Generalizing Example 1, this model incorporates time-varying probability of disasters λt , and

the dynamics of the pricing kernels (Mt , M∗
t ) of two economies is given by

dMt

Mt−
= −µdt −σdBt + (e−Λz −1)dNt , (54)

dM∗
t

M∗
t−

= −µ∗ dt −σ∗ dB∗
t + (e−Λ∗ z −1)dNt , (55)

dNt =

 1 with probability λt dt

0 with probability 1−λt dt,
(56)

dλt = κ(θ−λt)dt + η
√

λt dB•
t , (57)

z ∼ N
(
µz,σ2

z
)
. (58)

When a disaster occurs, it can affect the economies asymmetrically, and in this case Λ ̸= Λ∗. The

Brownian motions (Bt ,B∗
t ) have correlation ρ, and are uncorrelated with the Brownian motion B•

t .
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The (percentage) jump size z is normally distributed, but the framework is amenable to alternative

jump size distributions.

In this model of economies exposed to a common disaster, the τ-period Hellinger measure is

Ht = 1− exp
(

a1(τ)−
1
2

a2(τ)−
1
2

a3(τ)+{b1(τ)−
1
2

b2(τ)−
1
2

b3(τ)}λt

)
. (59)

The expressions for a j(τ) and b j(τ), for j = 1, . . . ,3, are displayed in Appendix A.

3.4.2. Model-based versus actual Hellinger measures

Table 5 shows results for the Hellinger measures computed from the four models, as well as

four actual average Hellinger measures inferred from the data: H [45]
t , HUS,[9]

t (the cross-sectional

average of US versus all other nine economies), the smallest (i.e., EU|SW, the EU and Switzerland

economy pair), and the largest (i.e., NZ|JP, the New Zealand and Japan economy pair).

We also provide bootstrap confidence intervals, obtained by first estimating all ARMA(p,q)

models, with p ≤ 2 and q ≤ 2, to the log of the Hellinger measures, and then simulating from the

best model according to the Bayesian Information Criterion (BIC).

We use parameter as provided in Verdelhan (2010, Table II), Lustig, Roussanov, and Verdelhan

(2014, Table 5) and Colacito and Croce (2011, Table I), and displayed in the note to Table 5. For

the disaster model, we take κ, θ, and η from Wachter (2013, equation (2) and Table 1). We also

set µz to −0.15 and σz to 0.15 (but we do vary them over a wide range to assess robustness, as

clarified in footnote 10), whereas σ and ρ parameters are determined jointly by targeting SDFs’

volatilities of 50%, and a ρ = 0.95, in line with Brandt, Cochrane, and Santa-Clara (2006).

The Hellinger measures extracted from currency option prices are in nominal terms. We define

the real domestic (foreign) pricing kernels as Mt
Πt

(M∗
t

Π∗
t
), where the domestic (foreign) price level
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is Πt (Π∗
t ) (i.e., Constantinides (1992, page 534)). Then the Hellinger measure in real terms,

that is 1− 1√
EP

t (mt+1
Πt

Πt+1
)EP

t (m∗
t+1

Π∗
t

Π∗
t+1

)
EP

t

(√
mt+1 m∗

t+1
Πt

Πt+1

Π∗
t

Π∗
t+1

)
, will coincide with the nominal

counterpart, if the inflation processes are independent of each other and from the SDFs. For a

related clarification on the role of inflation in models of real and nominal economies, see Lustig,

Roussanov, and Verdelhan (2014, page 536).

To obtain time series of Hellinger measures, we resort (when needed) to simulations that yield

the dynamics of the latent state variables. For example, for the model in Verdelhan (2010), we

first generate {ut ,u∗t }t=1,...,222 and construct the time series of (λ[st ],λ[s∗t ]) using the evolution of

the log consumption surplus ratio as per equation (44), and then obtain the series of the Hellinger

measure according to equation (45).

The main observation is that the models differ with respect to the Hellinger measures that they

generate. For example, those from the habit-based model are about twice higher than the actual

measures. We recognize, however, that the assumed model parameters have been calibrated over

a very different period, which is a likely explanation for the discrepancy.

On the other hand, the model of Lustig, Roussanov, and Verdelhan (2014) is able to mimic the

actual Hellinger measures, except the smallest ones. We also note that although not time-varying,

the Hellinger measure generated by the long-run risk model matches reasonably well the average

measure observed in the data. Finally, the disaster model also generates Hellinger measures with

the correct magnitude on average. However, it is unable to reproduce the variation in Hellinger

measures, both in time series, and across various simulations.10

Our exercise shows that although these models were not designed from the vantage point

of risk-neutral distribution of currency returns, they still could come close to achieving certain

10We also consider an exercise where we varied −0.25 ≤ µz ≤−0.05, and 0.05 ≤ σz ≤ 0.25. These combinations
of jump size distribution parameters (µz, σz) still generate Hellinger measures consistent with the distribution of the
actual measures in our sample.
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consistency with the options data.

3.4.3. Other variables capturing dissimilarity

Having considered several formal pricing models, we recognize that the international finance

literature has explored a variety of further approaches, allowing for various other determinants of

dissimilarity among economies like distance, cultural differences, and informational asymmetries.

In this section we focus on some of these variables, specifically on their relation with the Hellinger

measure, which we examine in a regression framework.

We rely on an observation from equation (29) of Example 2, where the Hellinger measure

is, to first-order, linear in the variance of the two log SDFs’ and the covariance between them.

Guided by Hansen and Jagannathan (1991, Section V) and Brandt, Cochrane, and Santa-Clara

(2006), we associate the log SDF with equity market returns, and employ in our regressions the

equity return variances and covariances corresponding to each pair of economies.

We explore physical distance as a possible determinant of dissimilarity, prompted by the geo-

graphical pattern in Hellinger measures, as revealed in Tables 2 and 3. In this choice, we possibly

relate to studies of the explanatory power of distance for international trade (e.g., the gravity equa-

tion of Tinbergen (1962), or more recently Chaney (2017)), financial flows (e.g., Okawa and van

Wincoop (2012)), and also currency risk premia (Lustig and Richmond (2015)), among others.

Besides, following a voluminous literature that aims to link various distinctions between

economies to their cultural differences (for the financial perspective see, e.g., Grinblatt and Kelo-

harju (2001), Stulz and Williamson (2003), and Guiso, Sapienza, and Zingales (2008)), we

construct a variable that combines the six Hofstede cultural measures (available at https://geert-

hofstede.com/). In line with Karolyi (2016), this variable is calculated as the root mean squared

difference between the respective cultural measures for each pair of economies (for the Euro-zone
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we first average the measures for its largest members).

Each column in Table 6 refers to a regression of the 45 individual average Hellinger measures

H [i, j]
t on the corresponding values of some combination of the above four explanatory variables,

and shows estimated intercept and slope(s), corresponding p-values based on White’s standard

errors (in curly brackets), and adjusted R2. The regressions indicate that these variables describe

a large part of the variation in average Hellinger measures. Besides, the four variables capture

distinct dimensions of the differences between economies, since the significance of the slope

estimates is largely preserved in the regressions combining several of these variables.

Additionally, we note that the variance (covariance) proxies are positively (negatively) related

to the Hellinger measures, consistent with the implications of Examples 1 and 2, and with the

illustrative model in Section 2.2. While we use the distance between capitals to show that the

slope coefficients on physical distance are positive, the results are practically identical for all

four versions of the distance measure in Mayer and Zignago (2011). We further find that the

cultural measure proxy is positively and significantly related to the Hellinger measures. Finally,

the intercept in the full regression specification (Column I) is statistically insignificant, affirming

the explanatory power of the variables for the Hellinger measures.

These results show that the information contained in physical distance and cultural differences

is essential for understanding the dissimilarities between economies, as also reflected in the risk-

neutral distribution of currency returns.

4. Conclusion

In this paper, we have developed and operationalized a measure of dissimilarity for SDFs

in different economies. By using the bond prices as the numeraire, we ensure comparability.

While the SDF is a fundamental object embedding information about discounting and risk, such a
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formal measure has not been proposed previously, even though the international finance literature

has explored multiple other dimensions of distinction among economies.

The proposed measure follows from the Hellinger metric of distance between probability mea-

sures, and inherits from it features like boundedness and symmetry. The measure allows to gauge

how different or similar the SDFs of various pairs of economies are. The measure is not denom-

inated in any currency unit and is hence dimensionless. Intuitively, the measure of dissimilarity

reflects how economy-specific Radon-Nikodym derivatives (its square-root) are distinct from one

another and can be extracted from a portfolio of currency options when international markets are

complete.

Unlike certain static indicators of difference, the Hellinger measure is time-varying and can

reflect the dynamics of dissimilarity. We characterize the economic nature of the Hellinger mea-

sure and its mapping to the risk-neutral distribution of currency returns.

The empirical implementation relies on data for 10 industrialized economies and finds a sig-

nificant variation in the Hellinger measures across them, as well as a geographical pattern, which,

in particular, sets Japan apart from the remaining economies. The empirical exercise also reveals

a pronounced factor structure in the Hellinger measures.

We argue that the Hellinger measure can be used as a criterion for judging whether a parame-

terized international economy driven by a system of SDFs agrees with the risk-neutral distribution

of currency returns, and is in the spirit of Hansen and Jagannathan (1991), but in a two-economy

context. We generate model-based Hellinger measures from several international asset pricing

models, and outline certain hurdles that some of them face in reproducing the values obtained

from the data.
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A. Appendix A: Model with time-varying probability of disasters

Given the setting in equations (54)–(58), we need to solve three partial integro-differential

equations, for (i) EP
t (
√

mt+τ m∗
t+τ), (ii) EP

t (mt+1), and (iii) EP
t (m

∗
t+1). We conjecture solutions

and solve the resulting ordinary differential equations, details for which are provided in Inter-

net Appendix VI.

The final expression for the Hellinger measure is displayed in equation (59). We present a j(τ)

and b j(τ), for j = 1, . . . ,3 below:

a1(τ) =

(
−1

8
(σ2 +σ2

∗)+
1
4

σσ∗ρ
)

τ

−κθ
(

v1 −κ
η2

)
τ− 2κθ

η2 log
(

1− (v1 −κ)(1− e−τv1)

2v1

)
, (60)

a2(τ) = −κθ
(

v2 −κ
η2

)
τ− 2κθ

η2 log
(

1− (v2 −κ)(1− e−τv2)

2v2

)
, and (61)

a3(τ) = −κθ
(

v3 −κ
η2

)
τ− 2κθ

η2 log
(

1− (v3 −κ)(1− e−τv3)

2v3

)
, (62)

with

c1 = exp
(
−1

2
(Λ+Λ∗)µz +

1
8

σ2
z (Λ+Λ∗)

2
)
−1, v1 =

√
κ2 −2η2c1, (63)

c2 = exp
(
−Λµz +

1
2

σ2
z Λ2
)
−1, v2 =

√
κ2 −2η2c2, and (64)

c3 = exp
(
−Λ∗µz +

1
2

σ2
z Λ2

∗

)
−1. v3 =

√
κ2 −2η2c3, (65)

and

b j(τ) =
2c j (1− e−τv j)

2v j − (v j −κ)(1− e−τv j)
, for j = 1, . . . ,3. (66)

34



References

Aı̈t-Sahalia, Y., Cacho-Diaz, J., Laeven, R., 2015. Modeling financial contagion using mutually

exciting jump processes. Journal of Financial Economics 117, 585–606.

Alvarez, F., Atkeson, A., Kehoe, P., 2009. Time-varying risk, interest rates, and exchange rates in

general equilibrium. Review of Economic Studies 76, 851–878.

Alvarez, F., Jermann, U., 2005. Using asset prices to measure the persistence of the marginal

utility of wealth. Econometrica 73, 1977–2016.

Andersen, T., Bollerslev, T., Diebold, F., Labys, P., 2003. Modeling and forecasting realized

volatility. Econometrica 71, 529–626.

Backus, D., Foresi, S., Telmer, C., 2001. Affine term structure models and the forward premium

anomaly. Journal of Finance 56, 279–304.

Bakshi, G., Carr, P., Wu, L., 2008. Stochastic risk premiums, stochastic skewness in currency

options, and stochastic discount factors in international economies. Journal of Financial Eco-

nomics 87, 132–156.

Bakshi, G., Cerrato, M., Crosby, J., 2017. Implications of incomplete markets for international

economies. Review of Financial Studies (forthcoming).

Bakshi, G., Chabi-Yo, F., Gao, X., 2017. A recovery that we can trust? Deducing and testing the

restrictions of the recovery theorem. Review of Financial Studies (forthcoming).

Bakshi, G., Madan, D., 2000. Spanning and derivative-security valuation. Journal of Financial

Economics 55, 205–238.

Bansal, R., Shaliastovich, I., 2013. A long-run risks explanation of predictability puzzles in bond

and currency markets. Review of Financial Studies 26, 1–33.

35



Bates, D., 1996. Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche

Mark options. Review of Financial Studies 9, 69–107.
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Table 1
Contribution of non-normalities in (log(mt+1), log(m∗

t+1)) to the Hellinger measure
Each Hellinger measure is computed as in equation (17):

Ht =

√
R2

f ,t+1

16Ft

(∫
{K>Ft}

Ct [K]

K3/2 dK +
∫
{K<Ft}

Pt [K]

K3/2 dK
)
,

where Ct [K] (Pt [K]) is the price of a call (put) on the foreign exchange with strike price K and a constant
maturity of 30 days, Ft is the (30 day) forward exchange rate, and R f ,t+1 is the gross return on the domestic
risk-free bond. We compute the empirical analog to equation (30) using daily currency returns within a
month as (∆t is one day)

Ht ≡ 1− exp(−1
8

22

∑
n=1

{log(
St+n∆t

St+(n−1)∆t
)}2).

We emphasize that a square-root transformation is applied to each Hellinger measure and multiplied by
100 (for ease of reporting). Thus, we define the following:

H [i, j]
t ≡

√
H (based on monthly data, in %) for economy pair (i, j) in month t,

H [45]
t ≡ Cross-sectional average of H [i, j]

t for all 45 pairs of economies in month t, and

HUS,[9]
t ≡ Cross-sectional average: 1

9 ∑9
j=1 H [US, j]

t in month t.

Likewise

H
[i, j]

t ≡
√

H (based on monthly data, in %) for economy pair (i, j) in month t,

H
[45]
t ≡ Cross-sectional average of H

[i, j]
t for all 45 pairs of economies in month t, and

H
US,[9]
t ≡ Cross-sectional average: 1

9 ∑9
j=1 H

[US, j]
t in month t.

The deviations log(H [45]
t /H

[45]
t ) and log(HUS,[9]

t /H
US,[9]
t ) represent the contribution of non-normalities in

(log(mt+1), log(m∗
t+1)) to the Hellinger measure inferred from options market. The sample period is from

1/1996 to 6/2014 (and from 1/1999 for pairs including NO or EU).

Properties Percentiles
Mean Std. Min. Max. 5th 25th 50th 75th 95th

A. Hellinger measures based on currency option prices (constant maturity of 30 days)
H [45]

t 1.14 0.33 0.64 3.39 0.80 0.92 1.09 1.26 1.65
HUS,[9]

t 1.12 0.34 0.59 3.34 0.73 0.94 1.08 1.24 1.64
B. Hellinger measures based on variance of currency returns (monthly, from daily data)

H
[45]
t 1.05 0.36 0.55 3.90 0.69 0.84 0.99 1.13 1.66

H
US,[9]
t 1.03 0.37 0.48 3.53 0.61 0.83 0.97 1.15 1.77

C. Deviations

log(H [45]
t /H

[45]
t ), % 10.3 12.8 -19.4 47.0 -10.5 1.2 10.0 18.2 31.9

log(HUS,[9]
t /H

US,[9]
t ), % 11.1 14.4 -19.7 53.0 -10.0 1.1 10.5 19.9 38.4
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Table 2
Economy-specific Hellinger measures versus average measure across all economies
The Hellinger measure is computed as in equation (17):

Ht =

√
R2

f ,t+1

16Ft

(∫
{K>Ft}

Ct [K]

K3/2 dK +
∫
{K<Ft}

Pt [K]

K3/2 dK
)
,

where Ct [K] (Pt [K]) is the price of a call (put) on the foreign exchange with strike price K and
a constant maturity of 30 days, Ft is the (30 day) forward exchange rate, and R f ,t+1 is the gross
return on the domestic risk-free bond. We define the following:

H [i, j]
t ≡

√
H (based on monthly data, in %) for economy pair (i, j) in month t,

H i,[9]
t ≡ Cross-sectional average: 1

9 ∑9
j=1 H [i, j]

t for economy i in month t, and

H [45]
t ≡ Cross-sectional average of H [i, j]

t for all 45 pairs of economies in month t.

The first column in the table shows the mean difference between each of the economy-specific
average measures H i,[9]

t and H [45]
t . The remaining columns show 95% confidence intervals for

these mean differences, obtained with 10,000 stationary bootstrap samples, as well as the respec-
tive minimums and maximums of the bootstrapped mean differences. The sample period is from
1/1996 to 6/2014 (and from 1/1999 for pairs including NO or EU). All numbers are reported in
percent.

H i,[9]
t −H [45]

t Mean [95% CI] Minimum Maximum

Euro-zone (EU) -0.17 [-0.21 -0.13] -0.26 -0.12
United Kingdom (UK) -0.09 [-0.10 -0.07] -0.11 -0.05
Switzerland (SW) -0.07 [-0.11 -0.03] -0.14 0.02
Norway (NO) -0.05 [-0.08 -0.03] -0.11 0.00
Sweden (SD) -0.03 [-0.06 -0.01] -0.08 0.01
United States (US) -0.01 [-0.08 0.05] -0.15 0.09
Canada (CA) 0.00 [-0.04 0.04] -0.07 0.08
Australia (AU) 0.04 [0.01 0.07] -0.01 0.11
New Zealand (NZ) 0.12 [0.08 0.17] 0.05 0.22
Japan (JP) 0.23 [ 0.16 0.32] 0.09 0.43
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Table 3
Individual Hellinger measures versus H [45]

t

For each pair of G-10 economies, we calculate the Hellinger measure as per equation (17). For
our purposes, we compute the following:

H [i, j]
t ≡

√
H (based on monthly data, in %) for economy pair (i, j) in month t, and

H [45]
t ≡ Cross-sectional average of H [i, j]

t for all 45 pairs of economies in month t.

We show the mean difference between each individual Hellinger measure H [i, j]
t and H [45]

t . The
differences shown in bold are significant at the 95% confidence level, using stationary bootstrap.
The sample period is from 1/1996 to 6/2014 (from 1/1999 for pairs including NO or EU), and the
numbers are in percent. The economies are denoted as in Table 2.

UK SW NO SD US CA AU NZ JP

EU -0.30 -0.60 -0.38 -0.40 -0.04 -0.04 -0.02 0.10 0.17
UK -0.20 -0.14 -0.14 -0.20 -0.11 -0.01 0.09 0.16
SW -0.24 -0.24 -0.02 0.05 0.14 0.23 0.08
NO -0.37 0.11 0.03 0.06 0.15 0.30
SD 0.08 0.08 0.07 0.18 0.32
US -0.27 0.08 0.16 0.04
CA -0.05 0.06 0.25
AU -0.29 0.37
NZ 0.43
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Table 4
Hellinger and Chi-squared measures from minimum discrepancy problems
First we solve the optimization (minimum discrepancy) problems in equations (40) and (41), with the
U.S. as the domestic economy and each of seven other economies as the foreign one. Comparable data
on bond returns for Norway (NO) and Sweden (SD) is not available. Then we use the time series of the
extracted Radon-Nikodym derivatives ñt+1 and ñ∗t+1 to compute the Hellinger measure in equation (3) and
the Chi-squared measure in equation (23), whereby:

- R f ,t+1 and R∗
f ,t+1 are gross returns of the domestic and foreign risk-free bonds (in local currency);

- Rbond,t+1 and R∗
bond,t+1 are gross returns of the domestic and foreign bonds with constant maturity of

ten years (in local currency);

- Requity,t+1 and R∗
equity,t+1 are gross returns of the domestic and foreign equity (MSCI, total return, in

local currency).

The vectors of (scaled) asset returns employed in our calculations are:

At+1︸︷︷︸
6×1

=
1

R f ,t+1



R f ,t+1
Rbond,t+1
Requity,t+1

(St+1
St

)R∗
f ,t+1

(St+1
St

)R∗
bond,t+1

(St+1
St

)R∗
equity,t+1


︸ ︷︷ ︸

Rt+1

and A∗
t+1︸︷︷︸

6×1

=
1

R∗
f ,t+1



( St
St+1

)R f ,t+1

( St
St+1

)Rbond,t+1

( St
St+1

)Requity,t+1

R∗
f ,t+1

R∗
bond,t+1

R∗
equity,t+1


,

︸ ︷︷ ︸
R∗

t+1

where St is the level of the exchange rate with the foreign currency as the reference. We report the square
root (in %) of the unconditional Hellinger measure given by 1

T ∑T
t=1

1
2 (
√

ñt −
√

ñ∗t )2, and the Chi-squared
measure given by 1

T ∑T
t=1 2(ñt − ñ∗t )

2/(ñt + ñ∗t ). The annualized volatility (shown in %) of the (unit mean)
Radon-Nikodym derivatives is (12

T ∑T
t=1(ñt −1)2)1/2 and (12

T ∑T
t=1(ñ

∗
t −1)2)1/2, respectively. T is the sam-

ple length in months, and all samples end in 12/2016.

Hellinger Chi-squared Volatility
T measure measure ñ ñ∗

(
√

H ×100) (%) (%)

EU 191 0.81 0.096 105 104
UK 336 0.74 0.081 77 76
SW 336 0.89 0.107 84 84
CA 319 0.62 0.056 85 84
AU 336 0.97 0.127 74 70
NZ 309 0.98 0.138 76 70
JP 336 0.91 0.113 92 95
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Table 5
Hellinger measures in international macro-finance models
We present the Hellinger measures computed from four international models: (i) Model A: Verdelhan
(2010) (equation (45)), (ii) Model B: Lustig, Roussanov, and Verdelhan (2014) (equation (49)), (iii) Model
C: Colacito and Croce (2011) (equation (53)), and (iv) Model D: model with time-varying probability
of disasters (equation (59)). The parameters in Models A, B, and C are as specified in the respective studies.

Model A. g (%) σ (%) γ ϕ ρ β s smax
0.53 0.51 2.00 0.995 0.15 1.00 log(0.07) log(0.12)

Model B. α (%) χ τ γ κ ϕ θ (%) σ (%) ϕw θw (%) σw (%)
0.76 0.89 0.06 0.04 2.78 0.91 0.77 0.68 0.99 2.09 0.28

Model C. γ ψ σ κc κx φe ρh f
c ρh f

x
4.25 2.0 0.0068 0.997 0.987 0.048 0.30 1.00

Model D. σ σ∗ ρ Λ Λ∗ κ θ η µz σz
0.30 0.30 0.95 1.2 0.8 0.08 0.0355 0.067 -0.15 0.15

From each model, we simulate 10,000 series of measures, each of length 222 as in our data, and calculate
the respective time-series averages. Displayed are the mean of these statistics, as well as the 2.5 and
97.5 percentiles of the simulated distribution of the time-series averages. We employ a square-root
transformation to each Hellinger measure and then multiplied it by 100 (for ease of reporting). We
consider three different parameterizations of δ and δ∗ for Model B. The last four columns refer to the
average measure H [45]

t , HUS,[9]
t , and the smallest (i.e., EU|SW), and largest (i.e., NZ|JP) Hellinger measure

as per Table 3. In our calculations, HUS,[9]
t is the cross-sectional average 1

9 ∑9
j=1 H [US, j]

t in month t. To
obtain the bootstrap confidence intervals for the reported average measures obtained in the data, we first fit
all ARMA(p,q) models – with p ≤ 2 and q ≤ 2 – to the log of the Hellinger measures. Next, we simulate
from the best model according to BIC (which turns out in each case to be AR(1)).

Models Data
A B C D

(i) (ii) (iii)
δ 0.22 0.22 0.35 H [45]

t HUS,[9]
t Smallest Largest

δ∗ 0.49 0.36 0.36 EU|SW NZ|JP

Mean H 2.93 1.60 1.26 1.07 1.21 1.31 1.14 1.12 0.54 1.56

Bootstrap
2.5 perc. 1.96 1.53 1.18 0.98 - 1.30 0.96 0.95 0.39 1.27
97.5 perc. 4.37 1.69 1.36 1.18 - 1.34 1.30 1.30 0.69 1.84
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Table 6
Hellinger measure and other dissimilarity variables
We regress the averages of the 45 individual Hellinger measures H [i, j]

t (as defined in equation (31))
on the corresponding values of several explanatory variables: H [i, j]

= Ψ0 +∑k Ψk X [i, j]
k + e[i, j].

The explanatory variables X [i, j]
k are (i) average variances of the monthly equity returns of the

respective two economies (times 100), (ii) covariance between the monthly equity returns of these
economies (times 100), (iii) log distance between the corresponding pair of capital cities (divided
by 100), (iv) square root of the sum of squared differences between six cultural measures of
the respective two economies (divided by 100). The regression models I to VII include various
combinations of the explanatory variables. Equity returns are calculated from MSCI indexes, and
the cultural measures are from Hofstede, Hofstede, and Minkov (2010) (available at https://geert-
hofstede.com/). The p-values, based on White’s standard errors that allow for heteroscedasticity,
are reported in curly brackets, and the adjusted R2s are in percent.

I II III IV V VI VII

Ψ0 0.01 0.00 0.04 -0.01 0.04 -0.01 0.03
{0.38} {0.68} {0.00} {0.09} {0.00} {0.25} {0.00}

Ψvar 0.02 0.06 0.04 0.08
{0.10} {0.00} {0.00} {0.00}

Ψcov -0.06 -0.08 -0.13 -0.17
{0.00} {0.00} {0.00} {0.00}

Ψdistance 0.36 0.40 0.49 0.52
{0.00} {0.00} {0.00} {0.00}

Ψculture 0.01 0.01 0.01 0.01
{0.00} {0.00} {0.00} {0.00}

R2 (%) 78 68 63 75 49 63 19
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Figure 1. Depicting the impact of distributional non-normalities in (log(mt+1), log(m∗
t+1)) on

the Hellinger measure
The figure plots the time series of the deviations log(H [45]

t /H
[45]
t ) and log(HUS,[9]

t /H
US,[9]
t ), over

the sample of 1/1996 to 6/2014. We compute Ht using equation (17) of Proposition 1, and as
described in equations (31)–(33). In contrast, we compute Ht using the expression in equation
(30), utilizing daily (log) currency returns to calculate the conditional variance varPt (log(St+1

St
)).

As reported in the tables, a square-root transformation is applied to each Hellinger measure and
multiplied by 100.
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Figure 2. Averages of Hellinger measures
The figure plots the time series of Hellinger measures (i.e.,

√
H × 100). That is, as reported in

the tables, a square-root transformation is applied to each Hellinger measure and multiplied by
100. The first plot shows the cross-sectional average H [45]

t , as defined in equation (33), and the
remaining plots show economy-specific measures H i,[9]

t , as in equation (36) for several economies.
The sample period is from 1/1996 to 6/2014 (from 1/1999 for EU).
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Abstract

This Internet Appendix provides the proofs of results presented in the main text. We derive the

Hellinger measure for a model with constant probability of disasters in Section I. The proof of ex-

pression (17) in Proposition 1 is in Section II, while Section III shows that the Hellinger measure

is distinct from codependence. The details of the data construction are in Section IV. Section V

derives the Hellinger measure displayed in equation (30), when (mt+1,m∗
t+1) is distributed log-

normal. The steps leading to the Hellinger measure in the model with time-varying probability of

disasters are in Section VI.



I. Hellinger measure in a model with disasters

Based on the dynamics of log(Mt+1
Mt

) and log(M∗
t+1

M∗
t
) in equation (10), and the moment generat-

ing function of ∑Nt+1
i=Nt

zi (e.g., Privault (2016, Proposition 15.6)),

EP
t (
√

mt+1 m∗
t+1) = EP

t

(
exp(−1

2
(µ+µ∗)− 1

2
σεt+1 −

1
2

σ∗ε∗t+1)

)
EP

t

(
exp({−Λ

2
− Λ∗

2
}

Nt+1

∑
i=Nt

zi)

)
,

= exp
(
−1

2
µ+

1
2
(
σ
2
)2 − 1

2
µ∗+

1
2
(
σ∗
2
)2 +

1
4

σmσ∗ρ+λ(ed0 −1)
)
, (A1)

where d0 ≡ {−1
2Λ− 1

2Λ∗}µz +
1
2{−

1
2Λ− 1

2Λ∗}2σ2
z . Additionally,

√
EP

t (mt+1) = exp
(
−1

2
µ+

1
4

σ2 +
1
2

λ(e−Λµz+
1
2 Λ2σ2

z −1)
)
, (A2)√

EP
t (m∗

t+1) = exp
(
−1

2
µ∗+

1
4

σ2
∗+

1
2

λ(e−Λ∗µz+
1
2 Λ2

∗σ2
z −1)

)
. (A3)

Therefore, we have established the expression for Ht presented in equation (11).

II. Proof of Proposition 1

The proof involves computing the intrinsic value of a claim with a payoff equal to
√

St+1
St

,

which is determined using a positioning in currency calls and puts.

Any twice-continuously differentiable payoff function G[St+1] with bounded expectation can

be synthesized as per Bakshi and Madan (2000, Appendix A.3) and Carr and Madan (2001, equa-

tion (1)):

G[St+1] = G[Ft ] + GS[Ft ](St+1 −Ft)

+
∫
{K>Ft}

GSS[K] (St+1 −K)+ dK +
∫
{K<Ft}

GSS[K] (K −St+1)
+ dK, (B1)

1



where a+ ≡ max(a,0). GS[Ft ] is the first-order derivative of the payoff G[St+1] with respect to

St+1 evaluated at Ft , and GSS[K] is the second-order derivative, with respect to St+1 evaluated at

K. The terms under the integrals in equation (B1) are weighted payoffs of European put or call

options. In our context, consider G[St+1] = (St+1
St

)1/2. Then

G[Ft ] =

(
St+1

St

)1/2 ∣∣∣
St+1=Ft

=

√
Ft

St
, (B2)

GS[Ft ] =
dG[St+1]

dSt+1

∣∣∣
St+1=Ft

=
(1/2)

S1/2
t

(St+1)
−1/2

∣∣∣
St+1=Ft

=
1

2
√

StFt
, and (B3)

GSS[K] =
d2G[St+1]

dS2
t+1

∣∣∣
St+1=K

=
−1

4S1/2
t

S−3/2
t+1

∣∣∣
St+1=K

=
−1

4S1/2
t

K−3/2. (B4)

The value of EQ
t

(√
St+1
St

)
in equation (16) is then a sum of level, slope, and curvature terms:

Level term :
√

Ft

St
=

√
EP

t (m∗
t+1)

EP
t (mt+1)

=

√
R f ,t+1

R∗
f ,t+1

. (B5)

Slope term : GS[Ft ]EQ
t (St+1 −Ft) =

GS[Ft ]

EP
t (mt+1)

EP
t (mt+1(St+1 −Ft))︸ ︷︷ ︸
zero cost of forward

= 0. (B6)

Curvature term for call :
−K−3/2

4S1/2
t EP

t (mt+1)
EP

t (mt+1(St+1 −K)+)︸ ︷︷ ︸
≡Ct [K]

. (B7)

Curvature term for put :
−K−3/2

4S1/2
t EP

t (mt+1)
EP

t (mt+1(K −St+1)
+)︸ ︷︷ ︸

≡Pt [K]

. (B8)

Equation (16) then implies Ht = 1−
√

St
Ft
(
√

Ft
St
+

∫
{K>Ft}

−K−3/2

4S1/2
t EP

t (mt+1)
Ct [K]dK +∫

{K<Ft}
−K−3/2

4S1/2
t EP

t (mt+1)
Pt [K]dK). To obtain the final expression, note that

√
St

Ft

−K−3/2

4
√

St EP
t (mt+1)

is the same as −K−3/2

√
R2

f ,t+1

16Ft
. (B9)

The proof of equation (17) of Proposition 1 is complete.
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III. Hellinger measure is distinct from codependence

Consider two positive random variables xt+1 and yt+1. Codependence, as in Hansen (2012,

page 930) or Chabi-Yo and Colacito (2017, equation (1)), is denoted by ct [x,y] and defined as

ct [x,y]≡ Lt [x]+Lt [y]−Lt [xy], where Lt [a]≡−EP
t (log(a))+ log(EP

t (a)). (C1)

Set a =
√

ñt+1ñ∗t+1, for ñt+1 and ñ∗t+1 as defined in equation (2). Then

Lt [
√

ñt+1ñ∗t+1] = −EP
t (log(

√
ñt+1ñ∗t+1)) + log(EP

t

√
ñt+1ñ∗t+1). (C2)

Rearrange the above expression to consider

log(EP
t

√
ñt+1ñ∗t+1) = EP

t (log(
√

ñt+1ñ∗t+1))+L[
√

ñt+1ñ∗t+1], (C3)

=
1
2
EP

t (log(ñt+1))+
1
2
EP

t (log(ñ∗t+1))+L[
√

ñt+1ñ∗t+1], (C4)

= −1
2

L[ñt+1] +
1
2

log(EP
t (ñt+1))︸ ︷︷ ︸
=0

− 1
2

L[ñ∗t+1]

+
1
2

logEP
t ((ñ

∗
t+1))︸ ︷︷ ︸

=0

+ L[
√

ñt+1ñ∗t+1], (C5)

= L[
√

ñt+1ñ∗t+1]−
1
2

L[ñt+1]−
1
2

L[ñ∗t+1]. (C6)

Since EP
t (
√

ñt+1ñ∗t+1) = 1−Ht by definition, therefore,

Ht = 1− exp
(

Lt [
√

ñt+1ñ∗t+1]−
1
2

Lt [ñt+1]−
1
2

Lt [ñ∗t+1]

)
. (C7)

This expression is not quite of the form ct [x,y] ≡ Lt [x]+Lt [y]−Lt [xy]. Specifically, ct [m,m∗] =

−covPt (log(m), log(m∗)) when (m, m∗) is lognormal, whereas Ht is as displayed in (E5).
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IV. Details of the data construction

Throughout, the remaining time to expiration of the options and forward contracts, τ, equals

30/360.

For ease of exposition, we employ the following notation (e.g., Wystup (2006) and Jurek

(2014, Section 4.1)):

S j,i
t : spot price of one unit of currency j (the foreign currency) in terms of currency i (the do-

mestic currency).

F j,i
t,t+τ: τ period forward price of one unit of currency j (the foreign currency) in terms of currency

i (the domestic currency).

ri
t (r j

t ): τ-period matched (net) risk-free rate in the domestic (foreign) currency.

By currency market conventions, option data is quoted as 10 delta, 25 delta, and at-the-money

call or put volatilities. We denote them by σ[δC] or σ[δP]. The ATM volatility is derived from

the price of a delta-neutral straddle, and the strike price K of the delta-neutral straddle satisfies

δC[K]+δP[K] = 0.

Let KATM, KδC , and KδP be the strike prices for the respective call and put options and corre-

sponding to call (respectively, put) deltas δC (respectively, δP).

We apply the following standard conversion formulas:

KATM = F j,i
t,t+τ exp

(
1
2

σt [ATM]2τ
)
, (D1)

KδC = F j,i
t,t+τ exp

(
1
2

σ2
t [δC]τ−σt [δC]

√
τ N−1

[
exp(r j

t τ) δC

])
, and (D2)

KδP = F j,i
t,t+τ exp

(
1
2

σ2
t [δP]τ+σt [δP]

√
τ N−1

[
−exp(r j

t τ) δP

])
. (D3)
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Via the put-call symmetry relations in Wystup (2006), we also obtain

Ct(S
i, j
t ,

1
K
,τ,r j

t ,r
i
t) =

1

S j,i
t K

Pt(S
j,i
t ,K,τ,ri

t ,r
j
t ) and (D4)

Pt(S
i, j
t ,

1
K
,τ,r j

t ,r
i
t) =

1

S j,i
t K

Ct(S
j,i
t ,K,τ,ri

t ,r
j
t ), (D5)

which yield the option prices for an underlying Si, j
t , when only data for the same currency pair,

but with the underlying quoted as S j,i
t = 1

Si, j
t

is available.

V. Hellinger measure when (mt+1,m∗
t+1) is distributed lognor-

mal

Consider Ht = 1− 1√
EP

t (mt+1)EP
t (m∗

t+1)
EP

t
(√

mt+1 m∗
t+1
)
, when (mt+1,m∗

t+1) is jointly lognor-

mal.

The moment generating function of the bivariate normal distribution of (xt+1,yt+1) is

EP
t

(
eϕxt+1+φyt+1

)
= exp

(
ϕµx +φµy +

1
2
(ϕ2σ2

x +φ2σ2
y +2ϕφσx,y)

)
, (E1)

where µx(µy) and σ2
x (σ2

y) are, respectively, the expected value and variance, and σx,y is the co-

variance.

It then follows that

√
EP

t (mt+1) = exp
(

1
2
EP

t (log(mt+1))+
1
4

varPt (log(mt+1))

)
and (E2)√

EP
t (m∗

t+1) = exp
(

1
2
EP

t (log(m∗
t+1))+

1
4

varPt (log(m∗
t+1))

)
. (E3)
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The numerator of the Hellinger measure is

EP
t (
√

mt+1m∗
t+1) = exp

(
1
2
EP

t (log(mt+1))+
1
2
EP

t (log(m∗
t+1))+

1
8

varPt (log(mt+1))

+
1
8

varPt (log(m∗
t+1))+

1
4

covPt (log(mt+1), log(m∗
t+1))

)
. (E4)

Canceling terms and simplifying, we obtain the expression for the Hellinger measure (under the

lognormality assumption for (mt+1, m∗
t+1)) presented below:

HLN
t = 1− exp

(
−1

8
{varPt (log(m∗

t+1))+varPt (log(mt+1))−2covPt (log(m∗
t+1), log(mt+1)})

)
.

(E5)

Since St+1
St

=
m∗

t+1
mt+1

, we have the identity that

varPt (log(
St+1

St
)) = varPt (log(m∗

t+1))+varPt (log(mt+1))−2covPt (log(m∗
t+1), log(mt+1)). (E6)

The final expression for HLN
t presented in equation (30) is verified.

VI. Model with time-varying probability of disasters

In light of the dynamics of (Mt ,M∗
t ) in equations (54)–(58) (e.g., the setup in Runggaldier

(2003, Section 3, equation (30))), consider the characteristic function of the remaining uncertainty

G(t,τ;ϕ,ϕ∗) = EP
t

(
eiϕ log(Mt+τ)+iϕ∗ log(M∗

t+τ)
)
. (F1)
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G(t,τ;ϕ,ϕ∗) solves the partial integro-differential equation

1
2

GMMσ2M2 +GM (−µ)M+
1
2

GM∗M∗σ2
∗(M

∗)2 +GM∗ (−µ∗)M∗+GMM∗ρσσ∗(MM∗)

+
1
2

Gλλη2λ+Gλκ(θ−λt)−Gτ +λEP
t

(
G [Me−Λz,M∗e−Λ∗z]−G [M,M∗]

)
= 0. (F2)

We also have the condition that G(t + τ,0;ϕ,ϕ∗) = eiϕ log(Mt)+iϕ∗ log(Mt). The solution is

G(t,τ;ϕ,ϕ∗) = ea(τ)+b(τ)λt+iϕ log(Mt)+iϕ∗ log(M∗
t ). (F3)

Substituting the conjecture (F3) into equation (F2), we obtain

1
2
(iϕ)(iϕ−1)σ2 +(iϕ)(−µ)+

1
2
(iϕ∗)(iϕ∗−1)(σ∗)

2 +(iϕ∗)(−µ∗)+(iϕ)(iϕ∗)(σσ∗)ρ

+
1
2

b2(τ)η2λ+b(τ)κ(θ−λt)−a′(τ)−b′(τ)λ+λt EP
t

(
e−iϕΛz−iϕ∗Λ∗z −1

)
= 0, (F4)

and also

1
2

b2(τ)η2 −b(τ)κ−b′(τ)+ EP
t

(
e−iϕΛz−iϕ∗Λ∗z −1

)
= 0. (F5)

The solution to equation (F5) is

b(τ;ϕ,ϕ∗) =
2c(1− e−τv)

2v− (v−κ)(1− e−τv)
, (F6)

which is verified by direct substitution. The coefficients c and v are

c[ϕ,ϕ∗] = exp
(
−(iϕξ+ iϕ∗ξ∗)µz +

1
2

σ2
z (iϕξ+ iϕ∗ξ∗)2

)
−1, v[ϕ,ϕ∗]≡

√
κ2 −2η2c.

(F7)
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Moreover

∫ τ

0
b(s) = −

(
v−κ

η2

)
τ− 2

η2 log
(

1− (v−κ)(1− e−τv)

2v

)
. (F8)

Therefore, we determine the solution to a(τ) in equation (F4) as

a(τ;ϕ,ϕ∗) = {1
2
(iϕ)(iϕ−1)σ2 +(iϕ)(−µ)+

1
2
(iϕ∗)(iϕ∗−1)σ2

∗+(iϕ∗)(−µ∗)

+ (iϕ)(iϕ∗)σσ∗ρ} τ−κθ
(

v−κ
η2

)
τ− 2κθ

η2 log
(

1− (v−κ)(1− e−τv)

2v

)
. (F9)

Completing the solution, define

G1(t,τ;ϕ) =
G(t,τ;ϕ,0)
(Mt)iϕ = EP

t

(
eiϕ log(Mt+τ

Mt
)
)
, (F10)

G2(t,τ;ϕ∗) =
G(t,τ;0,ϕ∗)
(M∗

t )
iϕ∗ = EP

t

(
e

iϕ∗ log(
M∗

t+τ
M∗

t
)

)
, and (F11)

G3(t,τ;ϕ,ϕ∗) =
G(t,τ;ϕ,ϕ∗)
Miϕ

t (M∗
t )

iϕ∗
= EP

t

(
e

iϕ log(Mt+τ
Mt

)+iϕ∗ log(
M∗

t+τ
M∗

t
)

)
. (F12)

Therefore,

EP
t (mt+τ) = G1(t,τ;

1
i
), (F13)

EP
t (m

∗
t+τ) = G2(t,τ;

1
i
), and (F14)

EP
t (
√

mt+τ m∗
t+τ) = G3(t,τ;

1
2i
,

1
2i
). (F15)

Thus, we can compute Ht = 1− 1√
EP

t (mt+τ)EP
t (m∗

t+τ)
EP

t
(√

mt+τ m∗
t+τ
)
.

The Hellinger measure varies with λt , and the final expression is displayed in equation (59),

where a j(τ) and b j(τ), for j = 1, . . . ,3, are in equations (60)–(66).
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