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Abstract

Many sales, sports, and research contests are put in place to maximize contestants’

performance. We investigate and provide a complete characterization of the prize struc-

tures that achieve this objective in settings with many contestants. The contestants

may be ex-ante asymmetric in their abilities and prize valuations, and there may be

complete or incomplete information about these parameters. The contestants may be

risk neutral, risk averse, or risk seeking, and their performance cost may be linear,

concave, or convex. A main takeaway is that awarding numerous prizes whose values

gradually decline with contestants’ ranking is optimal in the typical case of risk averse

contestants that have a convex cost of performance.
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1 Introduction

Contests are used in a variety of settings to motivate people and increase their performance.

In the context of sales, contests are employed for this purpose by many large firms. For ex-

ample, Cisco Systems, one of the largest technology companies, regularly runs sales contests

among its thousands of partners to boost sales. It publishes the precise criteria used to rank

the contestants, and awards prizes to those with the highest performance.1 Two other exam-

ples are HubSpot, a three-billion dollar software company, and Clayton Homes, the largest

builder of manufactured housing and modular homes in the United States, whose use of sales

contests was reviewed by the Harvard Business Review.2 In the context of entertainment,

sporting contests play an important role, generating an annual attendance that according

to the U.S. Census Bureau exceeded 200 million in 2010. Szymanski (2003) discusses the

design of sporting contests from an economic perspective, and notes that because organizers

generate a profit by selling tickets and “spectators will be attracted by the quality of the field

entering the race and the effort the entrants contribute,” a reasonable objective of a sporting

contest is “to maximize the effort contribution of the selected entrants.” In the context of

academia, many agencies that fund basic research, such as the European Research Council

and the National Science Foundation, administer large contests that motivate researchers to

generate high-quality research proposals.

Inspired by the wide range of contests put in place to maximize contestants’ performance,

we study the prize structures that achieve this objective.3 That is, we study settings in which

a planner awards prizes based on the rank order of contestants’ performance and has substan-

1A recent example is the 2017 “Cisco Commercial Champs Sales Competition - Win a trip to Taipei,

Taiwan,” in which 79 round-trip vacation packages were awarded to the highest-performing partners. See

https://www.cisco-commercialxcelerate.com/AppFiles/pdf/tnc/sc/CCX_SC_FY17Q3_TnC.pdf

2“The Right Way to Use Compensation,” Harvard Business Review, April 2015 and “The Sales Director

Who Turned Work into a Fantasy Sports Competition,” Harvard Business Review, March 2015.

3Contests with other objectives give rise to different contest design questions. Many of these questions

can be investigated by variants of our analysis, as we discuss in Section 10. One important contest design

question for which our methodology is not appropriate is how to design a contest to generate the single best

product or innovation, which is relevant in many procurement settings.
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tial discretion in dividing the prize budget across prizes, as is the case in many sales, sporting,

and research contests.4 Should a small number of high-value prizes be awarded, or a larger

number of lower-value prizes? Or perhaps awarding prizes of different values is optimal?

And if so, how should the prize values change with their rank order? This classic contest

design question has proven challenging so far, because the equilibria of even simple contest

models with a fixed prize structure are often difficult or impossible to derive, and even when

they can be derived, it is often only by employing algorithms, which are not conducive to

further analysis. Thus, the reasonable approach to finding the performance-maximizing prize

structures of solving a family of contest models, one for every prize structure, and identifying

the optimal one in the family is impractical, except in severely restricted environments, and

even then it typically yields partial results.5

We take a different approach, which allows us to provide a complete characterization

of the performance-maximizing prize structures in a relatively general environment. The

approach, which we describe below, applies to contests with many contestants.6 The con-

testants may be ex-ante asymmetric in their abilities and prize valuations, and there may

be complete or incomplete information about these parameters. The contestants may be

risk neutral, risk averse, or risk seeking, and their performance cost may be linear, concave,

or convex. The approach allows us to consider identical prizes, heterogeneous prizes, and

a combination of identical and heterogeneous prizes. This is important, because restricting

the prize structures a-priori may rule out the optimal ones.

Amain takeaway from our analysis is the effect of contestants’ risk attitude on the optimal

prize structure. This is easiest to see when contestants’ performance cost is linear. With

4We take the budget as exogenous for most of our analysis. Section 7.2 discusses how to optimally

determine the budget when it is not given exogenously.

5See Section 9 for some of the existing results.

6Settings with a large number of contestants include sales competitions in large firms (Cisco Systems

has more than 15,000 partners in the US and regularly runs sales competitions among its partners), sports

competitions (between 2010 and 2012, Tokyo, London, New York, Chicago, and Sydney each hosted a

marathon with more than 30,000 participants), and research grant competitions (in each of the last several

years, the National Science Foundation (NSF) received more than 40,000 grant applications and awarded

more than 10,000 grants).
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risk aversion, the optimal prize structure consists of a range of positive prizes, all different,

with gradually decreasing values. There may in addition be multiple prizes of the highest

allowed value, but this does not happen when the highest allowed value is sufficiently high.

In contrast, with risk seeking the optimal prize structure consists of as many prizes of the

highest allowed value as the budget permits.7

Another takeaway from our analysis is the effect of the curvature of contestants’ perfor-

mance cost on the optimal prize structure. The effect of convex costs resembles that of risk

aversion, and the effect of concave costs resembles that of risk seeking. In particular, in the

most relevant case of risk aversion and convex costs, the optimal prize structure consists of

a range of prizes of different values, as described above for risk aversion.8 While similar,

the effects of contestants’ cost curvature and risk attitude on the optimal prize structure

are not identical. For example, with risk aversion and linear costs the number of prizes is

optimally restricted, even when the marginal prize valuation at 0 is infinite, whereas with

risk neutrality and convex costs, if the marginal cost at 0 is 0, then almost every contestant

is optimally awarded a positive prize.

These results suggest that large sales and workplace competitions aimed at maximizing

workers’ performance should award many prizes of various values. A similar implication may

hold for grant competitions aimed at increasing the overall quality of research in disciplines

such as economics, where funding is often not critical for projects’ realization.9 We provide

an illustrative example in Section 8.

We also use our characterization of the optimal prize structure to derive some comparative

statics. For example, with risk aversion and linear costs, a better pool of contestants (in a

sense that implies first-order stochastic dominance) optimally leads to a more homogeneous

set of prizes (in the sense of second-order stochastic dominance), and an increase in the

7Both of these results hold when the budget is not “too large” in a sense made precise in Section 5.2.

8Similarly, for risk seeking and concave costs the optimal prize structure is as descibed above for risk

seeking.

9In other disciplines, where projects typically require costly equipment, a minimum prize size may be

required. A reasonable objective in these settings would be to maximize the quality of the projects that are

awarded a prize. Our approach can also be used to study such settings.
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prize budget optimally leads to more valuable prizes (in the sense of first-order stochastic

dominance). A better pool of contestants (in the sense of first-order stochastic dominance)

also leads to higher aggregate performance, even when the prize structure is not optimal.

While this last result may seem intuitive, Section 7.2 shows that it does not always hold for

small contests.

The idea underlying our approach is to identify and solve a manageable optimization

problem whose solution approximates the optimal prize structure. This requires three steps.

First, we refer to Olszewski and Siegel (2016), who showed that in a large contest with a

fixed prize structure players’ equilibrium behavior is approximated by the unique single-

agent mechanism that assortatively allocates a continuum of prizes to a continuum of agent

types and gives the lowest type a utility of 0. This result is summarized by Theorem 1. The

intuition is that with many players the law of large numbers implies that any performance

level a player chooses (roughly) leads to a deterministic prize. From the resulting inverse

tariff, which maps performance levels to prizes, higher types choose higher performance

levels and obtain higher prizes. This leads to the assortative allocation. Second, we show

that it suffices to solve for the prize structure that maximizes the performance in the limit

single-agent setting. We show this by proving that the optimal prize structure in the limit

setting approximates the optimal prize structures in large contests in an upper- and lower-

hemicontinuity sense. This is done in Section 4.2. Third, we solve the optimization problem

in the limit setting. In the appendix we show that this problem can be formulated as an

optimal control problem, but its specific structure prevents us from using off-the-shelf tools

to describe the solution. Instead, we solve the problem from first principles by using some

ideas from the theories of optimal control and calculus of variations. We first do this for

players with linear costs, and then consider the more difficult case of non-linear costs.

The intuition for the optimal prize structure with linear costs follows from a connection

to Myerson’s (1981) optimal auction with a single buyer. Myerson’s optimal auction and the

mechanism that approximates the optimal contest both implement monotone allocations that

maximize the “virtual surplus” for each type, i.e., the allocation value minus the information

rents accrued to higher types. The intuition why the approximating mechanism maximizes

the virtual surplus is as follows. An increase in the value of a prize has only two, clear-cut
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effects: (1) It increases local competition for this prize by types just below the one allocated

the prize in equilibrium, and the increased competition increases performance to precisely

exhaust the entire benefit from the increase in prize value; (2) it reduces the performance

of all higher types, since they can now slack off and obtain a slightly higher prize than

they previously could. These two effect are captured by a “virtual performance” expression

identical to Myerson’s virtual surplus.

Now, suppose that we start with prizes of 0 assigned to all types, and we begin to increase

the prizes with the objective of maximizing aggregate performance. We first increase the

prize awarded to the highest type, because that type values the prize most, so the effect

described in (1) is the strongest. In addition, the effect described in (2) is non-existent,

because there are no higher types. If the marginal utility of prizes is increasing, then any

previous increase in the prize only magnifies the effect described in (1). So, we keep increasing

the prize of the highest type until we reach the highest possible prize. We next increase the

prize awarded to the “second-highest” type, and continue in this way until we exhaust the

budget. If the marginal utility of prizes is decreasing, then any previous increase in the prize

awarded to the highest type reduces the effect described in (1). This makes increasing the

prize awarded to the second-highest type more attractive from the perspective of maximizing

aggregate performance. Thus, at some point we begin to increase the prize awarded to the

second-highest type, which then makes increasing the prize awarded to the third-highest

type more attractive, and so on.

The rest of the paper is organized as follows. Section 2 describes the contest environment.

Section 3 describes the mechanism design approach to studying large contests. Section 4

formulates the contest design problem and the corresponding mechanism design problem, and

shows that it is enough to solve the latter. Section 5 analyzes the optimal prize structure

when players have linear costs, and Section 6 extends the analysis to more general costs.

This order is motivated by the simplicity and intuition that are gained with linear costs.

Nevertheless, the curvature of the cost function has an important effect on the optimal prize

structure. Section 5 makes the standard mechanism design assumption of monotone virtual

values. In the online appendix, we show that most of the qualitative results (at least for

linear costs) continue to hold without this assumption. Section 7 discusses comparative
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statics, and Section 8 describes an illustrative example of a research grant competition.

Section 9 discusses two closely related papers. Section 10 concludes by briefly discussing a

few additional contest design questions that can be addressed by our approach. The appendix

contains the proofs omitted from the main text.

2 Asymmetric contests

A contest is a game in which  players compete for  prizes. Each player is characterized by

a type  ∈ [0 1], and each prize is characterized by a number  ∈ [0]. For concreteness,
we will assume that prizes are monetary, so  is simply an amount of money.10 Prize 

is the highest possible prize. This bound on the prize sizes is required by our methods,

since the approximation results obtained in Olszewski and Siegel (2016) (henceforth: OS),

which are a fundamental tool for our analysis, rely the compactness of the spaces of types

and prizes.11 Beyond being necessary for the analysis, such a prize bound arises naturally

in some settings.12 To apply our results to settings in which such a bound is not imposed,

we will find the optimal prize structures for all , and then take the limit of the optimal

structures as  diverges to infinity. The prize values 1 ≤ 2 ≤ · · · ≤  are commonly

known. Some of the values may be 0, so it is without loss of generality to have the same

number of prizes as players. Player ’s privately known type  is distributed according to

a cdf 
 , and these distributions, which need not be identical, are commonly known and

independent across players. In the special case of complete information, each cdf corresponds

to a Dirac (degenerate) distribution.

In the contest, each player chooses her performance , the player with the highest perfor-

mance obtains the highest prize, the player with the second-highest performance obtains the

second-highest prize, and so on. Ties are resolved by a fair lottery. The utility of a player of

10More generally, the number  represents the prize’s cost, so prize  costs .

11The necessity of assuming compactness will also be apparent in the present analysis. In some cases, it

will be optimal to spend the entire budget on the highest possible prizes. With no bound on the prize sizes,

an optimal prize structure would not exist.

12This can be the result of policy, fairness considerations, or technological limitations. For example, several

NSF categories have maximal awards.
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type  from exerting performance  ≥ 0 and obtaining prize  is

(  ) =  ()− (), (1)

where  (0) =  (0) = 0, and prize valuation  and performance cost  are continuously

differentiable and strictly increasing. Notice that the game is strategically equivalent to one

in which players have private information about their performance cost, as in Spence’s (1973)

signalling model, by dividing the utility by  to obtain  ()−  () . This has no effect on

the results. We assume that sufficiently high performance levels are prohibitively costly, that

is,  ()   () for large enough , so no player chooses performance higher than −1 ( ()).

The functional form (1) and special cases thereof have been assumed in numerous existing

papers (see, for example, Clark and Riis (1998), henceforth: CR, Bulow and Levin (2006),

henceforth: BL, and Moldovanu and Sela (2001), henceforth: MS).

Our analysis will focus on large contests, that is, contests with a large . We will consider

sequences of contests, and refer to a contest with  players and  prizes as the “-th contest”

in the sequence. Every contest has at least one (mixed-strategy) Bayesian Nash equilibrium.13

3 Using mechanism design to study the equilibria of

large contests

The optimal design of asymmetric contests of the kind described in Section 2 is difficult or

impossible, because no method currently exists for characterizing their equilibria for most

type and prize distributions. And even in the few cases for which a characterization exists,

the equilibria have a complicated form, or can be derived only by means of algorithms (see,

for example , BL, Siegel (2010), and Xiao (2016)), so they are not amenable to further

analysis. Our approach to contest design builds on the technique for studying the equilibria

of large contests that was developed in OS. We now describe this technique, which allows

us to approximate the equilibrium outcomes of large contests by considering the mechanism

13This follows, for example, from Corollary 5.2 in Reny (1999), because the mixed extension is better-reply

secure.
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that implements a particular allocation of a continuum of prizes to a continuum of agent

types.

3.1 Limit distributions

The equilibrium approximation technique requires the contests in the sequence to become

increasingly similar in some sense as  increases. To formalize this requirement, let   =

(
P

=1 

 ) , so   () is the expected percentile ranking of type  in the -th contest

given the random vector of players’ types. Denote by  the empirical prize distribution,

which assigns a mass of 1 to each prize  (recall that there is no uncertainty about

the prizes). We require that  converge in weak∗-topology to a distribution  that has

a continuous, strictly positive density  , and that  converge to some (not necessarily

continuous) distribution .14 We then say that the sequence of contests converges.

The assumption that distribution  has a continuous and strictly positive density is

required by the approximation results in OS. Notice that this assumption does not imply a

similar restriction on distributions  
 of players’ types, so these distributions may have gaps

and atoms.15 It is important that we do not restrict , since we will optimize over prize

distributions, and any exogenous restriction on the optimal prize distribution would restrict

the scope of our analysis.16

To get a sense for this convergence of   and  to limit distributions  and , consider

two extreme cases: asymmetric contests with complete information, and symmetric contests

with incomplete information. A simple way to construct a converging sequence of contests

with complete information is first to choose the desired limit distributions  and , and

then to set player ’s deterministic type in the -th contest to be  = −1 () (so 
 is a

Dirac distribution concentrated on  ) and prize  in the -th contest to be 

 = −1 (),

14Convergence in weak∗-topology can be defined as convergence of cdf s at points at which the limit cdf is

continuous (see Billingsley (1995)).

15The restriction on  does rule out, for example, a sequence of contests with complete information that

have a non-vanishing fraction of identical players.

16Section 8 illustrates that our methods can also be used to optimize over a restricted set of prize distrib-

utions, by considering an example with identical prizes.
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where

−1() = inf{ :  () ≥ } for 0 ≤  ≤ 1.

Then, the -th contest is one of complete information,  converges to  , and  converges

to .

One example is contests with identical prizes and players who differ in their valuations for

a prize. For this, consider  () = ,  uniform, and  that has () = 1− for all  ∈ [0 1)
and (1) = 1, where  ∈ (0 1) is the limit ratio of the number of identical (non-zero) prizes
to the number of players. Then  = ,  = 0 if  ≤ 1− , and  = 1 if   1− .

The -th contest is an all-pay auction with  players and pq identical (non-zero) prizes,
and the value of a prize to player  is . Such contests were studied by CR, who considered

competitions for promotions, rent seeking, and rationing by waiting in line.

Another example with complete information is contests with heterogeneous prizes and

players who differ in their constant marginal valuation for a prize. For this, consider  () = 

and  and  uniform. Then  =  and  = . The -th contest is an all-pay auction

with  players and  heterogeneous prizes, and the value of prize  to player  is 2.

Such contests were studied by BL, who considered hospitals that have a common ranking

for residents and compete for them by posting wages.17

Many other asymmetric contests with complete information can be accommodated, in-

cluding contests for which no equilibrium characterization exists. One such class of examples,

for which no equilibrium characterization exists, is contests with a combination of heteroge-

neous and identical prizes.

At the other extreme we have symmetric contests with incomplete information, in which

players have the same iid type distributions 
 =   that converge to distribution  . This

case includes the setting of MS. Beyond these extreme cases, our model also accommodates

large contests with incomplete information and ex-ante asymmetric players.18 No equilibrium

17Xiao (2016) presented another model with complete information and heterogenous prizes, in which

players’ marginal utility of prizes is increasing. He considered quadratic and exponential specifications,

which are obtained in our model by setting  () = 2 and  () = , respectively, and  and  uniform.

18A reader interested in studying a specific -player contest may also take  =  = (
P

=1 

 ) . This

of course requires that the sample of players in the contest approximately represent the entire population,
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characterization exists for such settings.

3.2 Assortative allocation and transfers

As will be stated in the next subsection, the mechanism that approximates the equilibrium

outcomes of large contests implements the assortative allocation, which assigns to each type

 prize  () = −1 ( ()). That is, the quantile in the prize distribution of the prize

assigned to type  is the same as the quantile of type  in the type distribution. It is well

known (see, for example, Myerson (1981)) that the unique incentive-compatible mechanism

that implements the assortative allocation and gives type  = 0 a utility of 0 specifies for

every type  performance

 () = −1
µ

¡
 ()

¢− Z 

0


¡
 (e)¢ e¶ . (2)

For example, in the setting corresponding to CR the assortative allocation assigns prize 0

to types  ≤ 1 −  and assigns one of the identical positive prizes to each type   1 − .

The associated performance is  () = 0 for  ≤ 1 −  and  () = 1 −  for   1 − .

In the setting corresponding to BL, the assortative allocation assigns prize  to type , and

the associated performance is  () = 22.

3.3 The approximation result

Corollary 2 in OS, which we state as Theorem 1 below, shows that the equilibrium outcomes

of large contests are approximated by the unique mechanism that implements the assortative

allocation and gives type  = 0 a utility of 0.19

Theorem 1 (OS) For any   0 there is an  such that for all  ≥  , in any equilibrium

of the -th contest each of a fraction of at least 1−  of the players  obtains with probability

at least 1−  a prize that differs by at most  from  ( ), and chooses performance that is

with probability at least 1−  within  of  ( ).

which implies that adding additional players would roughly replicate the sample.

19OS also provide a result on the rates of convergence, which roughly says that it suffices for 1 to be

smaller than an expression of order −2 ln . We refer the reader to their Section 6 for the precise statement
of the result. We will not discuss the rates of convergence in the present paper.
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4 Performance maximization

4.1 Contest design problem

We will be interested in maximizing players’ expected aggregate performance. This classical

contest design goal is natural in some settings, as discussed in the introduction and in Section

8. In other settings the designer may value the performance of some types more than that of

other types, or value a player’s performance based on other statistics of performance. Such

settings can be captured by slight variants of our analysis, as discussed in Section 10.

More precisely, when  () is the performance of player  of type , the expected average

performance is

1



X
=1

Z 1

0

 () 

 () .

We will maximize this quantity across the equilibria of contests in which the average budget,

that is, the budget per capita, is  :

1



X
=1

 ≤  .

The reason that we work with averages is to avoid the quantities becoming infinitely large

as  tends to infinity.

For most of the analysis we will treat the budget constraint as exogenous and optimize

over all possible prize structures. This fits settings in which the contest designer does not

determine the budget but can determine how it is allocated across prizes.20 When the

designer also determines the budget, our results on the optimal prize structure for exogenous

budgets can be used as an intermediate step to determine the optimal budget. This is

illustrated in Section 7.2. Section 8 illustrates how our approach can be applied when the

designer is restricted in the prize structures he can use, and the extra performance that is

generated when such restrictions are removed.

20Departments in many organizations do not determine their own budget but control how the budget is

used.
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4.2 The design problem in the limit setting

Our first result shows that in order to maximize the expected average performance in large

contests it is enough to solve the corresponding design problem in the limit setting. To

obtain the result, we first observe that given a converging sequence of contests, Theorem 1

implies that the expected average performance for large  is approximated by the average

performance in the mechanism that implements the assortative allocation in the limit setting:Z 1

0

 ()  () . (3)

Corollary 1 For any   0 there is an  such that for all  ≥  , in any equilibrium of

the -th contest the expected average performance is within  of (3).

Corollary 1 applies to a given limit distribution . Our aim is to characterize the limit

distribution (and show that it exists) when the prizes in the sequence are the ones that

maximize the expected average performance of the contests in the sequence. We do this by

showing that the limit of the sequence of maximizing prizes coincides with the distribution

of prizes that maximizes (3).

To show this, consider a sequence of type distributions that converges to distribution 

with a continuous, strictly positive density  , and denote by 
max the empirical distribution

of prizes that maximizes the equilibrium expected average performance in the -th contest

over all equilibria and all sets of prizes 1 ≤ · · · ≤  whose average is no greater than  .21

We denote by 
max the maximal expected average performance attained by 

max. For the

limit setting, we denote by M the set of prize distributions that maximize (3) subject to

the budget constraint
R 
0
 () ≤  . An upper hemi-continuity argument, given in the

appendix, shows that a maximizing distribution exists.

Claim 1 The setM is not empty.

21That a maximizing set of prizes exists can be shown by a straightforward upper hemi-continuity argument

of the kind used, for example, to prove Corollary 2 in Siegel (2009). We note, however, that our results do

not depend on the existence of such a maximizing set of prizes. For example, none of the analysis changes

if 
max is instead chosen to correspond to a set of  prizes that lead to some equilibrium with an expected

average performance that is within 1 of the supremum of the expected average performance over all sets

of  prizes that meet the budget constraint and all equilibria for any given set of prizes.

13



Denote by  the corresponding maximal value of (3) subject to the budget constraint.

Finally, consider any metrization of the weak∗-topology on the space of prize distributions.

Proposition 1 1. For any   0, there is an  such that for every  ≥  , 
max is within

 (in the metrization) of some distribution in M. In particular, if there is a unique prize

distribution max that maximizes (3) subject to the budget constraint, then 
max converges

to max in weak
∗-topology. 2. 

max converges to  . 3. For any   0, there are an  and

a   0 such that for any  ≥  and any empirical prize distribution  of  prizes that is

within  of some  in  , the expected average performance in any equilibrium of the -th

contest with empirical prize distribution  is within  of 
max.

Part 1 of Proposition 1 shows that the optimal prize distributions in large contests are

approximated by the prize distributions that maximize (3) subject to the budget constraint.

Part 2 shows that the maximal expected average performance is approximated by the max-

imal value of (3) subject to the budget constraint. Part 3 shows that any prize distribution

that is close to a prize distribution that maximizes (3) subject to the budget constraint gen-

erates an expected average performance (in any equilibrium) that is close to maximal. For

example, given a prize distribution  that maximizes (3) subject to the budget constraint,

the set of  prizes defined by  = −1 () for  = 1   generates, for large , an

expected average performance that is close to maximal; moreover, the average prize   for

the so defined distributions  converges to the average prize  for the distribution .22

By Proposition 1, we can focus on solving the following problem:

max
R 1
0
 ()  () 

s.t.
R 
0
 () ≤  .

(4)

We will now transform the problem (4) to obtain a more manageable form. We first

transform the budget constraint to an equivalent constraint as a function of −1. Since  is

a probability distribution on [0], we have
R 
0
 () = − R 

0
 ()  (by integrating

by parts); we also have
R 
0
 ()  +

R 1
0
−1 ()  =  (by looking at the areas below

22It is easy to see that for any distribution , such distributions  that converge to  can also be chosen

so that   does not exceed  .
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the graphs of  and −1 in the square [0] × [0 1]). Thus, the budget constraint can be
rewritten as Z 1

0

−1 ()  ≤  . (5)

The interpretation of −1 (), for each quantile  ∈ [0 1] in the type distribution, is the prize
allocated to type  in quantile  =  (). This is because the allocation is assortative.

We similarly transform the objective function. By substituting (2) into (3) and denoting

by  () = 
¡
 ()

¢
the valuation of the prize allocated to type  in the assortative alloca-

tion, we obtain the following expression for the average performance in the mechanism that

implements the assortative allocation:Z 1

0

µ
−1

µ
 ()−

Z 

0

 (e) e¶¶  () . (6)

In Appendix 11 we show that maximizing (6) subject to (5) can be written as an optimal

control problem in variable −1.23 When cost function  is linear, the problem reduces to

a calculus of variations problem, and in this case the analysis becomes much simpler. We

begin with the analysis of this simpler case.

5 Linear cost functions

The case of linear costs is particularly instructive, both because it turns out to be easier

to solve than the general case, and because the first-order conditions that characterize the

optimal inverse prize distribution −1 and the conditions that guarantee its monotonicity

are relatively easy to interpret.

With linear costs  () =  the expression (6) for the average performance in the mecha-

nism that implements the assortative allocation becomesZ 1

0

µ
 ()−

Z 

0

 (e) e¶  () ,

23We cannot easily apply standard tools from optimal control theory to solve the problem, because −1 is

required to be the inverse of a cdf . Instead, we characterize the solution by using some ideas from optimal

control theory in a way that may also provide some intuition for the solution.
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and integrating by parts we obtainZ 1

0

 ()

µ
− 1−  ()

 ()

¶
 () . (7)

Observe that (7) coincides with the expected revenue from a bidder in a single-object

independent private-value auction if we let  () be the probability that the bidder wins

the object when his type is  (Myerson (1981)). This provides some intuition for why (7)

approximates the expected average performance in large contests. In the auction setting,

increasing the probability that type  obtains the object along with the price the type is

charged allows the auctioneer to capture the entire increase in surplus for this type, but

requires a decrease in the price that higher types are charged to maintain incentive compat-

ibility. This net increase in revenue, or “virtual value,” also coincides with a monopolist’s

marginal revenue (Bulow and Roberts (1989)). In a large contest, increasing the prize that

type  obtains also allows the designer to capture the entire surplus increase for this type,

because the higher prize increases this type’s competition with slightly lower types until the

surplus increase from the higher prize is exhausted. But the prize increase also decreases the

competition of higher types for their prizes, since the prize of type  becomes more attractive

to them.

We rewrite (7) by noting that  (−1 ()) =  (−1 ()) is the value of the prize in

quantile  and substituting  =  () to obtainZ 1

0


¡
−1 ()

¢µ
−1 ()− 1− 

 (−1 ())

¶
 =

Z 1

0


¡
−1 ()

¢
 () , (8)

where

 () = −1 ()− (1− ) 
¡
−1 ()

¢
.

Maximizing (8) subject to (5) is a calculus of variations problem in variable −1. The

value  () can be interpreted as the marginal “virtual performance.” That is, the additional

average performance that can be induced by a marginal increase in the prize valuation 

resulting from an increase in the prize assigned to the type in quantile . This additional

performance is the combination of the increase in performance of the type in quantile  and

the decrease in performance by all higher types.

Before presenting a rigorous analysis of the calculus of variations problem, we provide

some intuition for our approach. Consider first the relaxed problem of maximizing (8)
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subject to (5) without imposing a monotonicity constraint on −1 (implied by −1 being

an inverse cdf ). We derive two conditions. The first is a condition on distribution  that

guarantees that the maximizer of the relaxed problem is nondecreasing, and therefore solves

the original problem. The second is a version of the Euler-Lagrange equation, which is a

necessary condition for a solution of the relaxed problem. To derive both conditions, notice

that a slight increase of the prize −1 () allocated to the type in quantile  increases (8)

by 0 (−1 ())  () .24 Thus, a sufficient condition for monotonicity of the maximizer of

the relaxed problem is that  () strictly increases in . This is because whenever   0 (so

 ()   (0)) but −1 ()  −1 (0), these values of −1 can be exchanged, which increases

the sum  (−1 ())  () +  (−1 (0))  (0) without violating the budget constraint. Strict

monotonicity of () is equivalent to the following assumption, which we maintain in the

main text:25

Assumption 1.  () = − (1−  ())  () strictly increases in  ∈ [0 1].

This assumption is standard in the mechanism design literature, and corresponds to

Myerson’s (1981) “regular case.”26 The assumption is implied, for example, by a monotone

hazard rate of distribution  . When players are ex-ante symmetric, Assumption 1 is satisfied

when it holds for the distributions  = 
 and the densities 

 pointwise converge to the

limiting density  . In complete-information settings, an assumption on the limit distribution

is particularly natural, because we often first choose the desired limit distribution  and then

set player ’s deterministic type in the -th contest to be  = −1 () (such settings are

studied in BL and CR).

We now heuristically derive conditions on the maximizer of the relaxed problem that rule

out small improvements.

24This is just a heuristic illustration. The proof of Lemma 1 does not involve the relaxed problem, but

the intuition using the relaxed problem is clearer.

25In the online appendix we show that many of the results for linear costs also hold without Assumption

1.

26In Myerson’s setting the assumption guarantees that choosing  () to maximize the integrand of (7)

type by type leads to a non-decreasing function . The argument for monotonicity in our case is slightly

different, because of the budget constraint.
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5.1 Conditions describing the solution

Consider a maximizer −1 of the relaxed problem. It cannot be that there are  6= 0 with

−1 ()  −1 (0) ∈ (0) and 0 (−1 ())  ()  0 (−1 (0))  (0), because slightly de-

creasing−1 () and increasing−1 (0) by the same amount increases the sum  (−1 ())  ()+

 (−1 (0))  (0) without violating the budget constraint. Similarly, if −1 () = 0 and

−1 (0)  0, then 0 (−1 ())  () ≤ 0 (−1 (0))  (0), and if −1 () = 1 and −1 (0) 

1, then 0 (−1 ())  () ≥ 0 (−1 (0))  (0).

Now, for any prize distribution  (optimal or not), in the assortative allocation there are

quantiles min ≤ max in [0 1] such that types in quantiles  ≤ min in the limit distribution

 are each allocated the prize −1 () = 0 (no prize),27 types in quantiles   max are

each allocated the highest possible prize −1 () = , and types in intermediate quantiles

min    max are allocated positive, non-maximal prizes 
−1 () ∈ (0). Since under

Assumption 1 the maximizer of the relaxed problem solves the original problem, we obtain

the following result:28

Lemma 1 Given a prize distribution , let min ≤ max in [0 1] be such that 
−1 () = 0

for  ≤ min, 
−1 () =  for   max, and 

−1 () ∈ (0) for  ∈ (min max). If  is an

optimal prize distribution, then it satisfies the following conditions:

If min  max (Case 1): Then, there exists a  ≥ 0 such that 0 (−1 ())  () =  for

 ∈ (min max]; in addition, 0 (0)  (min) ≤ , and 0() (max) ≥  if max  1.

If min = max (Case 2): Then, 
0 (0)  (min) ≤ 0 ()  (max).

In the special case of 0 (0) =∞, it is understood that (min) = 0 and 0 (0)  (min) = 0.
The parameter  in Case 1 is the shadow price of the budget constraint, that is, by how

much the average performance increases if the budget is increased slightly. This shadow price

can be used to determine the optimal budget when the budget is endogenous, as discussed

in Section 7.2.

27The inequality  ≤ min is weak because
−1 is left-continuous as the inverse of a probability distribution.

28The proof of Lemma 1 shows that under Assumption 1 any inverse cdf −1 that satisfies the budget

constraint but fails the conditions in Lemma 1 can be improved upon by another inverse cdf that satisfies

the budget constraint.
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5.2 Risk averse, risk neutral, and risk loving players

We now use Lemma 1 to characterize the optimal prize distribution for risk averse, risk nat-

ural, and risk loving players, who have concave, linear, and convex prize valuation functions

, respectively. We first identify the maximal amount that will ever be allocated to prizes,

and show that when the budget exceeds this amount players’ risk attitude does not affect

the optimal prize distribution. We then show how players’ risk attitude affects the optimal

prize distribution when the budget is smaller than this amount.

Denote by ∗ ∈ (0 1) the unique type that satisfies  (∗) = 0, and by ∗ =  (∗) ∈ (0 1)
the quantile of type ∗ in the type distribution, so  (∗) = 0.29 That is, type ∗ is the type

for whom the marginal virtual performance is 0. Types   ∗ have negative marginal

virtual performance, so the value of the integrand in (8) for them is negative, and types

  ∗ have positive marginal virtual performance, so the value for them is positive. Since

the marginal prize utility is positive regardless of the curvature of , optimizing the integrand

in (8) separately for each  ∈ [0 1] leads to assigning the lowest possible prize −1 () = 0
to types in quantiles  ≤ ∗, and assigning the highest possible prize  to types in quantiles

  ∗.30 This −1 is left-continuous and nondecreasing, so the corresponding  is a prize

distribution. Its cost is  (1−  (∗)), so this distribution is the optimal one when the

budget  is at least  (1−  (∗)). We thus obtain the following result.

Proposition 2 If  ≥  (1−  (∗)), then for any function  the optimal prize distribution

consists of a mass 1−  (∗) ∈ (0 1) of the highest possible prize, , and a mass  (∗) of
prize 0.

Proposition 2 shows that with a sufficiently large budget it is optimal to award a set of

identical prizes, as in the all-pay auctions studied by CR, rather than heterogeneous prizes,

as in, for example, the all-pay auctions studied by BL, or a combination of identical and

heterogeneous prizes. Notice that the optimal mass of prizes, 1−  (∗), is independent of

the size of the highest possible prize, . Another implication is that if increasing the budget

29Such a type exists and is unique because by Assumption 1,  () strictly increases in , and since  is

continuous and strictly positive on [0 1],  is also continuous on [0 1].

30This corresponds to Case 2 of Lemma 1, with min = max = ∗.

19



is costly (see Section 7.2), then the budget will optimally not exceed  (1−  (∗)), since

awarding additional prizes would reduce the average performance. This is analogous to a

monopolist limiting the quantity sold.

When the budget is lower than  (1−  (∗)), players’ risk attitude affects the optimal

prize distribution. We first present the simpler result for convex functions .

Proposition 3 If    (1−  (∗)) and  is weakly convex, so players are risk neutral or

risk loving, then the optimal prize distribution consists of a mass  of the highest possible

prize, , and a mass 1−  of prize 0.

Proof : Weak convexity implies that min = max, so only prizes 0 and  are awarded.

Otherwise, since 0 and −1 are weakly increasing and  is strictly increasing, for any 0  00

in (min max) we would have 
0 (−1 (0))  (0)  0 (−1 (00))  (00), which would violate

the condition 0 (−1 (0))  (0) = 0 (−1 (00))  (00) =  in Case 1 of Lemma 1.

Proposition 3 shows that awarding identical prizes remains optimal when the budget is

low, provided that agents’ marginal prize utility is nondecreasing. If the highest possible prize

is increased, fewer maximal prizes are optimally awarded. The limit as  grows arbitrarily

large corresponds to a single grand prize.

Propositions 2 and 3 fully characterize the optimal prize distribution when the budget is

large (regardless of the curvature of ) and when the marginal prize utility is increasing. In

these cases, the optimal prize distribution does not depend on the precise functional form

of . With a small budget and decreasing marginal prize utility, however, the optimal prize

distribution depends more heavily on . We first provide a qualitative characterization of the

optimal prize distribution in this case, and then a full characterization for strictly concave

functions .

Proposition 4 1. If    (1−  (∗)) and  is weakly concave (but not linear on [0]),

so players are weakly risk averse (but not risk neutral), then any optimal prize distribution

assigns a positive mass to the set of intermediate prizes (0). In addition, any optimal

prize distribution may have atoms only at prize 0 and prize . 2. If  is strictly concave,

then any optimal prize distribution awards all prizes up to the highest prize awarded. That

is, the optimal  strictly increases on [0 −1 (1)].
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Proof : Observe that min  max. Indeed, since 0(0)  0(), we cannot have

that min = max and 0 (0)  (min) ≤ 0 ()  (max), unless  (min) =  (max) ≤ 0.

But  (max) ≤ 0 implies that max ≤ ∗. Since −1 () =  for   max, we ob-

tain that
R 1
0
−1 ()  ≥  (1−  (∗))   violates the budget constraint (5). This

yields the first part of 1. For the second part, notice that −1 () strictly increases in 

on interval (min max), so  does not have atoms there. This follows from the fact that

0 (−1 ())  () =  on (min max] and the fact that  () strictly increases in .

To see 2, note that 0 is strictly decreasing and, by assumption, continuous. Thus,

0 (−1 ())  () =  also implies that −1 is continuous on (min max]. If −1 were not

right-continuous at min, then the fact that 
0 (0)  (min) ≤  and the assumption that 0

is strictly decreasing would violate the condition 0 (−1 ())  () =  for  slightly higher

than min.
31 Thus, −1 is continuous on [min max], which means that  strictly increases on

[0 −1 (max)]. If −1 (max) = −1 (1), this completes the proof. If −1 (max)  −1 (1),

which can happen when max  1, then 
−1 (max)  −1 (1) = , which also completes the

proof, as otherwise the fact that 0() (max) ≥  and the assumption that 0 is strictly

decreasing would violate the condition 0 (−1 (max))  (max) = .

Proposition 4 shows that decreasing marginal prize utility optimally leads to awarding

intermediate prizes, whose values gradually decrease with players’ performance ranking.

Among the (positive) prizes, only the highest possible prize, , may optimally be awarded

to multiple players. This generally does not occur when  is sufficiently large, however, as

the the following result shows.

Proposition 5 Suppose that    (1−  (∗)). Let 
max be an optimal prize distribution

when  is the highest possible prize. If  is weakly concave (but not linear on [0]), and

0() → 0 as  → ∞, then there exists an  such that 0
max = 

max for any 
0 ≥ , and

this 
max may have an atom only at prize 0.

31More precisely, the argument delivering the right-continuity at min applies only to cases in which

0(0) ∞. The case when 0(0) =∞ requires a somewhat special treatment.

If 0(0) =∞, then (min) = 0, so if 
−1 were not right-continuous at min the product 0

¡
−1 ()

¢
 ()

would be strictly positive for any  ∈ (min max], but would approach 0 as  ↓ min, so could not be constant
on (min max].
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It may be tempting to attribute the qualitative difference between the optimal prize

distributions with convex and concave prize valuations to the difference in players’ risk

attitudes as follows: lotteries between no prize and the highest possible prize are riskier than

ones over a range of intermediate prizes, so the former can elicit more performance when

players are risk loving, and the latter when they are risk averse. This intuition is misleading,

however, because in large contests almost all player types are nearly certain of the prize they

receive in equilibrium (Theorem 1).32 Instead, what drives the qualitative difference is how

the marginal prize utility changes as the prize increases. Because the marginal prize utility

is always positive, absent the budget constraint it is optimal to award the lowest possible

prize to types with negative marginal virtual performance, and the highest possible prize

to types with positive marginal virtual performance. The budget constraint introduces a

tradeoff between the prizes allocated to different types. This tradeoff is optimally resolved

by comparing the product of the marginal prize utility and the marginal virtual performance

across types. Since the marginal virtual performance increases in type, what determines the

comparison is whether the marginal prize utility increases or decreases in the prize, which

correspond to convex and concave prize valuations. In the former case, increasing the prize

increases the product, so it is optimal to allocate the highest possible prize to the highest

types. In the latter case, increasing the prize decreases the product, so continuity of the

marginal virtual performance implies that as we increase the prizes awarded to some types,

it becomes increasingly attractive to award prizes to slightly lower types. The optimal prize

distribution equates the product across all types allocated intermediate prizes. Such types

exist, because    (1−  (∗)) implies that not all types can be awarded the highest

possible prize.

We now provide a full characterization of the optimal prize distribution when  

 (1−  (∗)) and  is strictly concave. Since the optimal  is strictly increasing (part

2 of Proposition 4), −1 is continuous, so we have 0 (0)  (min) = . Thus,

min = −1(0 (0)). (9)

32In addition, if the intuition were correct, we would expect the optimal prize distribution to vary with

players’ risk attitudes also when the budget exceeds  (1−  (∗)), in contrast to the statement of Propo-

sition 2.
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Since 0 (−1 (max))  (max) =  and 0 is decreasing, 0 ()  (max) ≤ . If max  1,

then we also have 0() (max) ≥  (because we are in Case 1 of Lemma 1), so we obtain

0 ()  (max) = . Thus,

max = 1 or 
−1(0 ()). (10)

In addition,

−1 () = (0)
−1
( ()) for  ∈ (min max] (11)

and

−1 () =

⎧⎨⎩ 0  ≤ min

   max

.

Thus, −1 is pinned down by . The value of  is determined by the fact that (5) holds as

an equality (because    (1−  (∗))).

To demonstrate the usefulness of this characterization, we now derive the optimal −1 for

contests with prize valuations  () = 1 for   1 (and any type distribution  ). This will

be useful in Section 7. We assume that the maximal prize  is large enough that max = 1

(see Proposition 5), which also implies that    (1−  (∗)), so the entire budget is used.

Since 0 (0) =∞, we have min = ∗. Since (0)−1 () = ()(1−), by (11) we have

−1 () = (0)−1 ( ()) =
1

(−1)(−1)
 ()

(−1)
(12)

for  ∈ (∗ 1]. Thus,

 =

Z 1

∗
−1 ()  =

1

(−1)(−1)

Z 1

∗
 ()

(−1)
,

so

(−1) =
1

 (−1)

Z 1

∗
 (e)(−1) e.

Substituting this expression for (−1) into (12) we obtain

−1 () = 
 ()

(−1)R 1
∗  (e)(−1) e for  ∈ (∗ 1] and −1 () = 0 for  ≤ ∗. (13)

23



6 More general cost functions

In this section, we develop the conditions satisfied by an optimal prize distribution for a

more general class of cost functions. For this it is useful to substitute  = −1() into (6)

to express the average performance asZ 1

0

−1
³e ()´ , (14)

where e () = −1 ()
¡
−1 ()

¢− Z −1()

0

 (e) e (15)

is the cost of the performance of type  in quantile  =  (). Notice that e () is well
defined even when function −1 () is not monotone. We will consider such functions in

some of our proofs.

Similarly to Section 5, to derive the conditions for optimality it is useful to consider the

effect of a slight increase∆ in the value of −1 at quantile  on the average performance (14).

In the case of linear cost , the effect was to generate an increase of 0 (−1 ())  ()∆, where

 () was the marginal virtual performance. With non-linear costs, the marginal virtual

performance  () (given by (17) below) in the corresponding expression for the increase

will involve −1 and the derivative of −1. The expression will be instrumental in formulating

conditions that characterize the optimal −1 and generalize the conditions in Lemma 1. But

because the expression involves −1, it cannot be used directly in formulating Assumption

2 below, which guarantees that any optimizer of the relaxed problem is nondecreasing and

generalizes Assumption 1, because such an assumption must refer only to the primitives of

the model, that is, only to functions , , and  .

To estimate the effect of a slight increase in −1 () on (14), consider a function −1

that takes values only in the set {0 12 22  (2 − 1)2 1}, and is constant on each
interval (0 12] (12 22]  ((2 − 1)2 1]. Suppose that we increase the value of

−1 on an interval (2 ( + 1)2] by ∆ = 12. Since  (−1 ()) =  (−1 ()), this

change increases the value of  on (−1(2) −1(( + 1)2)] by 0(−1(( + 1)2))∆,

to a first-order approximation. In Figure 1 this corresponds to shifting the graph of  on

(−1(2) −1(( + 1)2)] to the right by the width of the shaded square. This change
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does not affect ̃, and thus the integrand in (14), on intervals (2 ( + 1)2] for   .

It increases the integrand for  ∈ (2 ( + 1)2], to a first-order approximation, by

(−1)0(e(( + 1)2))−1(( + 1)2)0(()−1(( + 1)2))∆
(the union of the shaded and darkened rectangles in Figure 1). For any   , it decreases

the integrand for  ∈ (2 ( + 1)2], to a second-order approximation, by

(−1)0(e(( + 1)2))0(()−1(( + 1)2))∆[−1(( + 1)2)− −1(2)]

(the shaded square in Figure 1).

F-1((l+1)/2n)

L(F-1((l+1)/2n))
before the 
increase

F-1(l/2n)

L(F-1((l+1)/2n))
after the 
increase

Figure 1: Increasing −1

Since −1(( + 1)2)− −1(2) = ∆(−1(( + 1)2)), to a first-order approximation,

letting  = ( + 1)2, we express the total increase in (14) as

0
¡
−1 ()

¢⎛⎝−1 ()
¡
−1
¢0 ³e ()´− R 1 (−1)0

³e (e)´ e
 (−1 ())

⎞⎠∆2. (16)

Recalling that e () is the cost of the performance of type  in quantile  =  (), we

can interpret

 () =

⎛⎝−1 ()
¡
−1
¢0 ³e ()´− R 1 (−1)0

³e (e)´ e
 (−1 ())

⎞⎠ (17)
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as the marginal virtual performance of the type in quantile : a marginal increase in the

prize allocated to this type intensifies competition for this prize and exhausts the corre-

sponding increase in allocation utility (the first term on the right-hand side of (17)), but

reduces competition by all higher types (the second term on the right-hand side of (17)).

With non-linear costs these effects depend on the prizes allocated to lower types (throughe ()), because they determine the current performance, which affects the marginal cost of
performance. This dependency disappears with linear cost  () = , in which case  ()

coincides with  ().

With linear costs, Assumption 1 guarantees that the maximizer −1 of the relaxed prob-

lem is nondecreasing. Indeed, if −1 () were lower on an interval (2 ( + 1)2] than on

an interval (2 ( + 1)2] for some   , we could exchange the two values, generating

a higher increase on (2 ( + 1)2] than a decrease on (2 ( + 1)2]. The assump-

tion that  () is strictly increasing would be a natural counterpart of Assumption 1 in the

more general setting. Unfortunately,  () involves the endogenous variable −1 (throughe ()), which would make the assumption unattractive; moreover, it would no longer serve
its purpose, because exchanging the values of −1 on (2 (+1)2] and (2 (+1)2]

would affect the value of  (). We instead make the following assumption, expressed only

in terms of the primitives of the model, which guarantees directly that exchanging the

values of −1 on the two intervals is beneficial, and therefore guarantees that the maxi-

mizer of the relaxed problem is nondecreasing. For the assumption, recall that no player

chooses performance higher than −1 ( ()), and let  = min {0 () :  ∈ [0 −1 ( ())]}
and  = max {0 () :  ∈ [0 −1 ( ())]}. We restrict attention to continuously differentiable
density functions  .

Assumption 2. For all  in [0 1],

2

(−1())
+

 0(−1())(1− )

3(−1())
 0, (18)

where if  = 0 the second fraction is equal to ∞, −∞, or 0 when its numerator is positive,
negative, or 0, respectively.

Assumption 2 generalizes Assumption 1, because when  =  = 1 the left-hand side of

(18) is equal to 0(). Assumption 2 is satisfied, for example, whenever  is nondecreasing
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(for any cost function ).33 Note also that Assumption 2 imposes no conditions on valuation

function .34

6.1 Conditions describing the solution

Equipped with (17), we obtain the following analogue of Lemma 1.

Lemma 2 Given a prize distribution , let min ≤ max in [0 1] be such that 
−1 () = 0

for  ≤ min, 
−1 () =  for   max, and 

−1 () ∈ (0) for  ∈ (min max). If  is an

optimal prize distribution, then it satisfies the following conditions:

If min  max (Case 1): Then, there exists a  ≥ 0 such that

0
¡
−1 ()

¢
 () =  (19)

for  ∈ (min max]; in addition,
0 (0) (min) ≤ , (20)

and

0() (max) ≥  (21)

if max  1.

If min = max (Case 2): Then,

0 (0) (min) ≤ lim
↓max

0 () () . (22)

The difference between Case 2 in Lemma 2 and Case 2 in Lemma 1 arises because  () is

continuous at every , whereas () is left-continuous at every  but changes discontinuously

at quantiles  at which −1 () increases discontinuously. In particular, if min = max, thene (min) = 0 (type min obtains prize 0 and chooses performance 0) but e () =  (0) ()

33In addition, the set of primitives for which Assumption 2 holds is generic in the sense that if it holds

for some pair of a continuous derivative of a cost function and a continuous derivative of a density function,

then it holds for all such pairs that are sufficiently close to it in the sup norm.

34We strongly conjecture that, similarly to the case of linear costs, many of the results for general costs

also hold without Assumption 2.

27



for all   max (types above max obtain prize  and choose the performance with cost

 (0) (), which makes type min = max =  (0) indifferent between choosing this perfor-

mance and obtaining prize  and choosing performance 0 and obtaining prize 0).

A more subtle difference from Lemma 1 relates to (20). The intuition for (20) is that if

the inequality were reversed, then in the relaxed problem increasing −1 () for  slightly

below min by decreasing
−1 () for  in (min max) would increase the average performance.

This relies on min  0, which is always the case with linear costs (because  (0)  0). More

generally, however, it can be that min = 0 (see part 3 of Proposition 6 below). But in this case

(20) follows from (19) directly, because −1 (), and therefore (), are continuous at  = 0.

Otherwise min = lim↓0−1 ()  0, so −1 could be “shifted down” to reduce  (−1 ())

by  (min),
35 which would reduce the cost of providing the prizes without changing each

type’s performance. The prizes −1 () for  close to 1 could then be increased, which would

increase the average performance.

6.2 Risk averse and risk neutral players with convex costs

We now use Lemma 2 to characterize the optimal prize distribution for risk averse and risk

neutral players with convex costs. This will generalize Proposition 4 and highlight additional

features of the optimal prize distribution implied by convex costs. As we will see, the effects

of risk aversion and convex costs on the optimal prize distribution are qualitatively similar,

but not identical. It is also possible to generalize the results from Section 5.2 for risk loving

players to concave costs, but this case seems less relevant for economic applications. Lemma

2 can also be used to study the optimal prize distribution for risk loving players with convex

costs, but no general results exist in this case, because the effects of convex costs and convex

prize valuations go in opposite directions.36

Proposition 6 Suppose that  is weakly concave. 1. If  is weakly convex but not linear on

any interval with lower bound 0, then any optimal prize distribution assigns a positive mass

35The new inverse prize distribution would assign prize −1 ()−−1
¡

¡
−1 ()

¢−  (min)
¢
to quantile

. This maintains the same value of (2) for every .

36For details see footnote 31 and the sentence that precedes it.
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to the set of intermediate prizes (0). In addition, any optimal prize distribution may have

atoms only at 0 (no prize) and  (the highest possible prize). 2. If  is strictly convex, then

any optimal prize distribution awards all prizes up to the highest prize awarded. That is, 

strictly increases on [0 −1 (1)]. 3. If the marginal cost of the first unit of performance is 0,

that is, 0 (0) = 0, then min = 0, so almost every type is awarded a positive prize.

Proof : The first part of 1 is true because min  max. Indeed, if min = max, thene () =  (0) () for all   max (as explained immediately after Lemma 2), and sincee (min) = 0 and (−1)0 (0)  (−1)0 ((0)()), we obtain that  (min)  lim↓max  ().

Together with 0 (0) ≥ 0 (), (22) is violated.37 For the second part of 1, an atom at some

intermediate prize would mean that −1 () = −1 () for some min      max. We

would then have 0 (−1 ()) = 0 (−1 ()) and e () constant on [ ]. The derivative of
 () on [ ] would then be

2

(−1 ())

¡
−1
¢0 ³e ()´+  0 (−1 ())

R 1

(−1)0

³e (e)´ e
3 (−1 ())

,

which is strictly positive if  0 (−1 ()) ≥ 0, and also if  0 (−1 ())  0 (by Assumption 2).
We could then not have (19) for both  =  and  = .

For 2, notice that e () increases discontinuously when −1 () increases discontinuously.
So, if (−1)0 is strictly decreasing, a discontinuity in −1 () would leads to a discontinuous

decrease in the left-hand side of (19). Thus, −1 is continuous on (min max]. If −1 were

not right-continuous at min, then (19) and (20) could not both be satisfied, because of the

discontinuous decrease of (−1)0 at min (and, if  is strictly concave, also a discontinuous

decrease of 0). Thus,  strictly increases on [0 −1 (max)]. If max  1, then −1 (max) =

−1 (1) = . Indeed, if −1 (max)  −1 (1), then (19) and (21) could not both be satisfied,

because of the discontinuous decrease in the left-hand side of (19) at max.

For 3, suppose that min  0. If 
−1 is discontinuous at min, then (20) cannot hold. And

if −1 is continuous at min  0, then (), and so the left-hand side of (19), diverge to ∞
for  that tends to min from the right, so (19) is violated for ’s close to min.

37If  were strictly convex, we would have 0 (0)  0 (), so we could be in Case 1 or Case 2 of Lemma 2.
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Proposition 6 highlights some similarities and differences between the effects on the op-

timal prize distribution of convex costs and concave prize valuations. When the budget is

not large (   (1−  (∗))), both strictly convex costs with linear prize valuations and

linear costs with strictly concave prize valuations optimally lead to awarding intermediate

prizes. The prizes’ values gradually decrease with players’ performance ranking, with only

the highest possible prize (among the positive prizes) possibly being awarded to multiple

players. But when the budget is large ( ≥  (1−  (∗))), convex costs still lead to award-

ing intermediate prizes (since Proposition 6 holds for any budget), whereas concave prize

valuations lead to awarding only the highest possible prize. This is because with convex

costs a slight change in the prize a type is awarded induces a higher change in performance

when the prize is 0 than when the prize is , but affects higher types’ performance in the

same way, both when the prize is 0 and when the prize is . Thus, it cannot be optimal

for some type to be awarded prize 0 and a slightly higher type to be awarded prize . In

addition, if the marginal performance cost at 0 is 0, then almost every type is optimally

awarded a positive prize. This is because a marginal cost of 0 implies that a slight increase

from 0 in the prize awarded to a positive type leads to an increase in that type’s performance

that infinitely outweighs the decrease in the performance of higher types. In other words,

it is optimal to have almost every type participate in the contest, unlike with linear costs.

These two differences can be seen by comparing the optimal prize distributions in Figure 3 in

Section 7.1 and Figure 4 in Section 8, which correspond to a contest with concave valuations

and linear costs and a contest with linear valuations and convex costs with a marginal cost

of 0 at 0. In addition, the derivation of the optimal prize distributions in Figure 4 illustrates

how to use Lemma 2 and Proposition 6 to explicitly derive the optimal prize distribution

with convex costs.

7 Comparative statics

In this section, we investigate how varying players’ ability distribution and increasing the

budget affect the optimal prize distribution and the maximal expected average performance.

For example, an agency supporting basic research can affect the ability distribution in the
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pool of contestants by imposing participation eligibility criteria. We conduct the investiga-

tion in the limit setting, since Corollary 1 and Proposition 1 imply approximately the same

effects for large contests. For the results on the optimal prize distribution, we restrict atten-

tion to linear costs and use our characterization of the unique optimal prize distribution for

convex and concave prize valuations.

7.1 Optimal prize distribution

We restrict attention to linear costs  () = , and first consider how varying the limit type

distribution  affects the optimal prize distribution . For this we denote by e a second

limit type distribution with corresponding optimal prize distribution e (we will use ˜ for all
the relevant variables under ̃ ). The case of a large budget ( ≥  (1−  (∗))) is relatively

simple, and less interesting, since by Proposition 2 the optimal prize distribution consists

of a mass 1 −  (∗) of the highest possible prize and a mass  (∗) of prize 0, where ∗

satisfies  (∗) = 0. Thus, the effect of a change in  is determined by its effect on  (∗).

If the budget is not large (   (1−  (∗))) and valuation function  is weakly convex,

then Proposition 3 shows that the optimal prize distribution consists of a mass  of the

highest possible prize and a mass 1−  of prize 0. In particular, it is independent of the

limit type distribution.

The remaining case of    (1−  (∗)) and strictly concave  is less straightforward

and more interesting. Unlike the case of a large budget, as long as   
³
1− e (e∗)´, the

optimal prize distributions  and e cannot be compared in terms of first-order stochastic

dominance (FOSD). Otherwise, the budget constraint (5) would be violated by one of these

distributions. The following result provides a sufficient condition for e to second-order

stochastically dominate (SOSD) , that is, for e to be less dispersed than . For the

result, denote by  () = e−1 () −1 () the ratio of the types in quantile   0 in the two
distributions.

Proposition 7 Suppose that  is strictly concave and  () is weakly convex and strictly

decreasing in . Then −1 crosses e−1 once, from below, and therefore e SOSD .

The assumption in Proposition 7 that  () is decreasing implies that ̃ FOSD  . Thus,
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Proposition 7 roughly says that the optimal heterogeneity in prizes is lower when the popula-

tion of contestants is sufficiently more able. The next result shows that under an additional

condition every player type optimally obtains a lower prize when the population of con-

testants is sufficiently more able.

Proposition 8 Suppose that  is strictly concave,  () is weakly convex and strictly de-

creasing in , and e () ≤  () for every type . Then e () ≤  () for every type ,

that is, every type optimally obtains a lower prize under e than under  .

The ranking e ≤  holds, for example, when e dominates  in the hazard ratio sense,

which is implied by domination in the the likelihood ratio sense (so e is a weakly increasing
function). For a class of distributions that satisfy the conditions of Propositions 7 and 8,

consider the family of cdf s  for   0. For any ̃    0, let e () =  and  () = .

We have

 () =
e−1 ()
−1 ()

=

1


1


= 
−
̃ ,

which is strictly decreasing and convex, since − e  0. In addition,e ()
 ()

=
e−1
−1

=
e

−,

which is strictly increasing, since e −   0. The following figure depicts the optimal

inverse prize distribution −1 and the associated assortative allocation () = −1( ())

for  () =
√
,  = 16, and  () =  for various values of . Functions −1 and 

were computed by using (13) for  = 2 and noting that

 () =
(+ 1)  − 1


−1


and ∗ =
1

+ 1
.

Figure 2: The optimal inverse prize distribution (left) and corresponding assortative allocations (right) for various values of 
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Consistent with Proposition 7, the optimal inverse prize distributions for lower values

of  cross those for higher values of  once, from below, and are therefore more dispersed.

Consistent with Proposition 8, every type optimally obtains a lower prize as  increases. Note

that as  increases the mass 1−∗ of types that obtain a prize increases (since ∗ = 1 (+ 1)
decreases), but the set of types [∗ 1] that obtain a prize shrinks (since ∗ = (+ 1)

−1

increases).

We now consider the effect of increasing the budget  on the optimal prize distribu-

tion. By Proposition 2, such an increase only has an effect when the budget is not large

(   (1−  (∗))). In this case, the increase leads to a FOSD shift in the optimal prize

distribution, for any distribution  and regardless of whether  is convex or concave. Every

type obtains a weakly higher prize, because the type distribution does not change.

Proposition 9 If  is weakly convex or concave, an increase in the budget  leads to a

FOSD shift in the optimal prize distribution. In particular, every type obtains a weakly

higher prize.

The following figure depicts the optimal prize distributions for different budgets  ≤ 12,
with  = 1,  () =

√
, and  uniform. Since ∗ = 12, Proposition 2 applies for  ≥ 12,

at which point the optimal prize distribution is a mass 12 of prize 1 (the highest possible

prize) and a mass 12 of prize 0. The prize distributions were computed by using (13) for

 ≤ 16 (which implies that max = 1 and there is no mass of prize  = 1), and by using

the more general characterization from Section 5.2 for   16 (which implies that max  1

and there is a mass of prize  = 1).38 Consistent with Proposition 9, the distributions for

higher budgets FOSD those for lower budgets.

38The optimal distributions are

 () =

⎧⎨⎩ 1
2
+
p


24

 ∈ [0 6 ]
1  ∈ [6 1]

and  () =

⎧⎨⎩ 1
2
+

q
(3−6 )2

16
 ∈ [0 1)

1  = 1

for 0   ≤ 16 and 16   ≤ 12, respectively.
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Figure 3: The optimal prize distribution as the budget increases from 0 to 12.

7.2 Maximal average performance

We now consider general cost functions  and valuation functions . We first consider how

varying the limit type distribution affects the maximal average performance, attained by the

optimal prize distribution. The following result shows that a FOSD shift in the limit type

distribution increases the average performance for any prize distribution.

Proposition 10 If e FOSD  , then for any prize distribution  the average performance

is higher under e than under  . In particular, the maximal average performance is higher

under e than under  .

While it may seem intuitive that a more able pool of players will generate higher equi-

librium performance, this is not always the case in contests with a small number of players.

To see this, consider a two-player all-pay auction with complete information and one prize.

The prize is  = 1, the prize valuation function satisfies  (1) = 1, and the cost function is

 () = . Players’ publicly observed types satisfy 0  1  2  1. It is well known (Hillman

and Riley (1989)) that in the unique equilibrium player 2 chooses a bid by mixing uniformly

on the interval [0 1] and player 1 bids 0 with probability 1− 12 and with the remaining

probability mixes uniformly on the interval [0 1]. The resulting expected aggregate bids
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are 12 + (1)
2
 (22), which monotonically increase in 1 and monotonically decrease in

2. Thus, an increase in player 2’s type, even when accompanied by a small increase in

player 1’s type, decreases the expected aggregate bids. The intuition is that the increased

asymmetry between the players, which discourages competition, outweighs the increase in

their types, which encourage higher bids. The intuition for Proposition 10 is that in a large

contest competition is “localized” in the sense that players compete against players with

similar types.39 Therefore, any decrease in local competition between some types resulting

from a FOSD shift in players’ type distribution is more than compensated for by an increase

in local competition between some higher types.

We now consider the effect of increasing the budget. This clearly weakly increases the

maximal average performance, since the set of feasible prize distributions increases. More

interestingly, suppose that the designer can determine the budget  . Suppose that the

budget cost is strictly increasing, continuously differentiable, and takes high enough values

for large  to make the designer never choose such values. To compare the marginal budget

cost to the marginal budget benefit, consider the most relevant case of concave  and convex

. Propositions 4 and 6 show that Case 1 of Lemmas 1 and 2 applies. The shadow cost  is

then the marginal budget benefit, so the optimal budget  can be identified by comparing

the marginal budget cost to . As an example, consider the contest with  = 1,  () =
√
,

 () = , and  uniform for  ≤ 12, which was discussed at the end of Section 7.1. The
characterization from Section 5.2 shows that  = 1

√
24 for  ≤ 16, and  = (34−32)

for   16.40 Consistent with Proposition 2,  = 0 for  = 12, so the budget will never

optimally exceed 12. With a linear budget cost of  , for example, the optimal budget is

 = 124, and with a quadratic cost of  2 the optimal budget is 314.

39A discussion of this phenomenon appears in Bulow and Levin (2006).

40The maximal average performance is
p
6 for  ≤ 16 and [12 (1−  ) + 1]16 for  ≥ 16. The

difference between the functional forms is due to the atom at the highest possible prize, 1, which appears

when the budget exceeds 16.
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8 An illustrative example

To illustrate our results and the potential benefit of a gradual prize structure, we consider

a grant competition in which research proposals are ranked according to their quality, and

prizes are awarded according to this rank order.41 Researchers vary in their marginal prize

valuations, and the cost of a research proposal is convex and increasing in its quality.42

The designer wishes to maximize the aggregate quality of the submitted proposals.43 We

consider an example of a contest with quadratic costs, uniform limit type distribution, and

risk neutral players, and compare the average performance generated by the optimal prize

distribution to the one generated by awarding identical prizes.

Formally, we let  () = 2,  () = , and  be uniform. Suppose a mass  of identical

prizes   0 is awarded (along with a mass 1−  of prize 0). Then, (2) shows that types

 ≤ −1 (1− ) bid 0, and types   −1 (1− ) bid −1 (−1 (1− ) ()). The average

performance is therefore

−1
µ
−1 (1− )

µ




¶¶
= 

r
(1− )




=
√

p
(1− ) . (23)

For the optimal prize distribution , recall that Proposition 6 shows that min  max

and  may have atoms only at 0 and . In the appendix, we use the conditions in Case

1 of Lemma 2 to derive −1. Suppose first that , the highest possible prize, is at least

4 . Then −1 () = 43 for  in [0 1]. This distribution is independent of , and the

associated average performance is
p
3. Consistent with Proposition 6, every positive

type obtains a positive prize, the prizes increase gradually from 0 to 4 , and there are

no atoms (see Figure 4 below). The ratio between
p
3 and

√

p
(1− )  from (23) is

1
p
3 (1− )  ≥ 2√3 = 11547 (achieved at  = 12). This shows that replacing identical

41Quality can be a function of various variables, such as conceptual novelty, technical novelty, applied

value, and clarity. We assume that these dimensions are aggregated to a single score that is used to rank

the proposals.

42As discussed immediately after (1), it is immediate to allow the players to vary in their marginal per-

formance cost instead of or in addition to their marginal prize valuations.

43This is appropriate for research areas, such as economics, in which obtaining funding is often not crucial

for the realization of a project, but where competing for such funding may serve to motivate researchers.
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prizes with the optimal prize distribution increases the average performance by at least a 15

percent. For suboptimal values of  the increase can be substantially higher. For  = 14, for

example, which roughly mimics the recent proposal funding rates of the NSF’s Directorate

for Social, Behavioral, and Economic Science,44 the increase is 33 percent.

Now suppose that the highest possible prize is restricted relative to the budget, so

  4 . Then, as long as  ≥ 85, we have −1 () = 2734
¡
64 (−  )

3
¢
for  in

[0 4(−  ) (3)] and −1 () =  for  in [4(−  ) (3)  1]. The associated average

performance is
√
−  (1− 8 (−  )  (9)). Every positive type still obtains a positive

prize, and the prizes increase gradually from 0 to, but there is also a mass (4 −)  (3)

of prize  (see Figure 4 below). If  falls below 85, then the budget in excess of 58 is

optimally not used, so the optimal prize distribution coincides with the one for  = 85.

Notice that unlike the case of linear costs, and consistent with Proposition 6, even when the

budget is large ( ≥ 58) the optimal prize distribution still awards all prizes between 0

and , and every positive type obtains a prize.

Restricting the highest possible prize limits the improvement in average performance pro-

vided by the optimal prize distribution. For example, the ratio of the average performances

for  = 12 (the optimal mass of identical prizes) is 2
√
3 for  = 4 and  ≤ 85, just

like with  ≥ 4 , but decreases in  on [4 2 ], reaches a minimum of 109 at 2 , and

increases on [2 85].45

44According to the NSF’s 2017 budget request to congress, the rates were 24 percent in 2015 (1042 out of

4284), 23 percent in 2016 (1000 out of 4300), and estimated to be 26 percent in 2017 (1120 out of 4300).

45The ratio is
¡√

−  (1− (8 (−  ))  (9))
¢

³p

min {2} ¡2√2¢´.
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Figure 4: The optimal prize distribution for  = 1 and  = 14 (red) and  = 58 (green)

9 Previous results

Several previous papers consider maximizing the expected aggregate output (or effort) in

various contests. Two among them, Glazer and Hassin (1988) and MS (Moldovanu and Sela

(2001)) examine this maximization with respect to the prize structure subject to a budget

constraint.46 Both papers study contests in which players’ utilities are special cases of (1).

Glazer and Hassin (1988) analyze contests in which contestants are randomly drawn from

a population, and use a somewhat specific concept of equilibrium,47 which facilitates their

analysis in a manner similar to that in which our limit approach facilitates the analysis of

large contests. They derive an optimal prize structure in two cases. First, when contestants’

ability is uniformly distributed in the population, the costs are linear, and prize valuations are

weakly concave, they obtain a result that corresponds to our Propositions 3 and 4. Second,

when all contestants have identical abilities, they show that the optimal prize structure has

− 1 equal prizes and one prize of 0. This result is specific to discrete contests.48

46Moldovanu, Sela, and Shi (2007) and Immorlica, Stoddard, and Syrgkanis (2015) study this maximization

in the context of social status.

47They disregard the consistency condition between the distribution of abilities in the population and the

equilibrium distribution of output of a randomly chosen contestant.

48It can be shown in our setting, and consistent with their result, that when the limit distribution of types

 converges to a Dirac distribution, the optimal prize distribution also converges to a Dirac distribution.
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MS restrict attention to the symmetric equilibria of discrete contests with ex-ante sym-

metric contestants, incomplete information, and linear prize valuations. They show that for

weakly concave costs, it is optimal to award the entire budget as a single prize.49 MS also

point out that with convex costs awarding the entire budget as a single prize may be inferior

to splitting the budget between two prizes.

Proposition 3 is an analogue of the result of MS for linear costs. Although Proposition

3 was established under Assumption 1, Corollary 2 in the online appendix shows that this

result does not require Assumption 1. Note that Proposition 3 holds for weakly convex (not

necessarily linear) prize valuations. In addition, Proposition 3 can be generalized to weakly

concave costs by using the conditions in Case 2 of Lemma 2 instead of those in Case 2 of

Lemma 1.

Proposition 6 is related the result of MS that shows that with convex costs splitting the

budget into two prizes is sometimes better than awarding the entire budget as a single prize.

Our results go beyond this, and characterize the optimal prize structure. This facilitates

deriving comparative statics and investigating applications. In addition, our results apply

to all equilibria of contests with a large, but finite, number of players. The players may be

ex-ante symmetric or asymmetric, and may or may not have private information.

10 Concluding remarks

This paper investigates the performance-maximizing prize structures in contests with many

contestants. Our key qualitative finding is that risk aversion and convex performance costs

call for numerous prizes of different value. This has implications for sales and workplace

competitions, and possibly for certain research grant competitions. The analysis facilitates

comparative statics, and enables deriving closed-form approximations of the performance-

maximizing prize distributions for concrete utility functions and distributions of player types.

49Kaplan and Zamir (2016) notice that this result for linear costs is implied by a result from auction

theory, which says that if an auction maximizes revenue, the object must be allocated (if it is allocated at

all) to the highest bidder. (The auction-theory result also holds when the object must be allocated to some

bidder.)
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Our approach can be used to investigate many other contest design questions. One ex-

ample is maximizing the expected aggregate performance when the designer does not have

complete discretion in allocating the budget across prizes (as in the case of identical prizes

in Section 8), or when the budget is also determined optimally (as discussed in Section 7.2).

Another example is maximizing a weighted sum of contestants’ performance. For example,

the designer may want to maximize the aggregate performance of contestants whose type

exceeds a certain cutoff, or the aggregate performance of the top five percent of contestants.

Our analysis can be extended to capture both scenarios.50 As an example, consider mathe-

matical olympiads, and suppose that the goal is to identify and encourage the development

of the most mathematically gifted individuals. This would correspond in our setting to

maximizing the aggregate performance of a top fraction of the players. In this case, a mi-

nor modification of our analysis implies that it is optimal to spend the entire budget on

prizes for this top fraction of contestants. Conditional on this top fraction, the optimal type

distribution is the one that maximizes the average performance for a distribution of types

that is the conditional distribution of the types in the top fraction. More generally, many

objectives can be investigated by identifying the corresponding objectives in the limit setting

and showing that they approximate the ones in large contests, as we do in Section 4.2, and

then solving the optimization problem in the limit setting, using existing tools or from first

principles, as we do here.

11 Appendix

Proof of Corollary 1. Theorem 1 shows that for large , in any equilibrium of the -th

contest the expected average performance is within 2 ofP

=1

R 1
0
 () 

 ()


=

Z 1

0

 ()  () ,

where the equality follows from the definition of . In addition,Z 1

0

 ()   ()→

Z 1

0

 ()  () ,

50In the limit setting there is no distinction between the two scenarios, because higher types choose higher

performance.
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which follows from the fact that  is monotonic and the assumption that  is continuous,

because

Z
  →

Z
 for any bounded and measurable function  for which distribu-

tion  assigns measure 0 to the set of points at which function  is discontinuous. (This fact

is established as the first claim of the proof of Theorem 25.8 in Billingsley (1995).) Thus,

for large ,
R 1
0
 ()   () is within 2 of

R 1
0
 ()  ().

Proof of Claim 1. Let ()∞=1 be a sequence on which (3) converges to its supremum,

and which satisfies the budget constraint. By passing to a convergent subsequence (in the

weak∗-topology) if necessary, assume that  converges to some . We will show below

that ()−1 converges almost surely to −1. This will imply that ()() = ()−1( ())

converges almost surely to () = −1( ()), and since functions  and −1 are continuous,

also that ()() given by (2) with replaced with converges almost surely to () given

by (2). This will in turn imply that the value of (3) with ()−1 instead of −1 converges

to the value of (3). Finally, as  satisfies the budget constraint,  satisfies the budget

constraint as well. Indeed, the budget constraints are integrals of a continuous function

(mapping  to ) with respect to distributions  and , respectively, and weak∗-topology

may be alternatively defined as convergence of integrals of continuous functions.

Thus, it suffices to show that ()−1 converges to −1, except perhaps on the (at most)

countable set  = { ∈ [0 1] : there exist 0  00 such that () =  for  ∈ (0 00)}.
Suppose first that for some  ∈ [0 1] and   0 we have that ()−1() ≤ −1()−  for

arbitrarily large . Passing to a subsequence if necessary, assume that the inequality holds

for all , and that ()−1() converges to some  ≤ −1()− . Then, there exists a prize

 such that     −1() and  is continuous at . We cannot have that () = , since

this would imply that −1() ≤ . Thus, ()  . Since () converges to (), as 

is continuous at , we have that ()   for large enough . This yields  ≤ ()−1(),

contradicting the assumption that ()−1() converges to   .

Suppose now that for some  ∈ [0 1]− and   0 we have that ()−1() ≥ −1()+ 

for arbitrarily large . Passing to a subsequence if necessary, assume that the inequality

holds for all , and that ()−1() converges to some  ≥ −1() + . Then, there exists

a prize  such that −1()     and  is continuous at . We have that   (), as
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 ∈ . Since () converges to (), as  is continuous at , we have that  ≤ ()

for large enough . This yields ()−1() ≤ , contradicting the assumption that ()−1()

converges to   .

Proof of Proposition 1. Since every sequence of distributions has a converging sub-

sequence in weak∗-topology, suppose without loss of generality that 
max converges to some

distribution . Denote the value of (3) under distribution  by  . If Part 1 is false, then

 ∈M, so    . The distribution  satisfies the budget constraint, since distributions


max satisfy the budget constraint.

Consider a distribution max ∈M, and for every  consider an empirical distribution 

of a set of  prizes, such that  converges to max in weak
∗-topology. For example, such a

set of  prizes is defined by  = −1max () for  = 1  .

Corollary 1 shows that for large  the expected average performance in any equilibrium of

the -th contest with empirical prize distribution exceeds ( +) 2. On the other hand,

Corollary 1 also shows that for large  the expected average performance in any equilibrium

of the -th contest with empirical prize distribution 
max falls below ( +) 2. This

contradicts the definition of 
max for large .

For Part 2, Corollary 1 applied to the sequence defined above implies that lim inf
max ≥

 . If lim sup
max   , then there is a corresponding subsequence of 

max. A converging

subsequence of this subsequence has a limit . For this , the value of (3) is by Corollary

1 strictly larger than  , a contradiction.

For Part 3, notice that the proof of Claim 1 also implies that the set  is closed in

weak∗-topology. Thus, if part 3 were false, there would exist a sequence of contests with

empirical prize distributions  converging to some  in , such that the expected average

performance in an equilibrium of the -th contest with empirical prize distribution  would

be lower than 
max − . This would contradict Part 2 and Corollary 1.

Optimal control formulation. By substituting e =  (e), we obtain thatZ 

0


¡
−1( (e))¢ e = Z  ()

0

 (−1 (e))
 (−1 (e))e,
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and then by substituting  =  () we rewrite (6) asZ 1

0

µ
−1

µ
−1()

¡
−1()

¢− Z 

0

 (−1 (e))
 (−1 (e))e

¶¶
 =Z 1

0

µ
−1

µ
−1()

¡
−1()

¢− Z 

0

 (−1(e))
(−1(e)) e

¶¶
,

where the equality follows from  () = 
¡
 ()

¢
=  (−1 ( ())). This is an op-

timal control problem with control variable () = −1() and state variable () =R 
0
( (−1(e)) (−1(e)))e, where (0) = 0 and  0() =  (()) (−1()) (see, for

example, Chapter 1.1 in Sethi and Thompson (2000)). The objective functional isZ 1

0

¡
−1

¡
−1() (())−()

¢¢
.

The budget constraint can be represented as a constraint on the terminal values (in the

optimal control terminology) by considering a vector state variable (1() 2()), where

1() = (),  0
2() = −(), and 2(0) =  . Then, the budget constraint is equivalent to

the inequality 2(1) ≥ 0.

Proof of Lemma 1. Let  be an optimal distribution, and suppose that min  max.

We now show that 0 (−1 ())  () = 0 (−1 ())  () for all   ∈ (min max). The idea
is that if this were not the case, e.g., if we had  instead of =, then we could increase −1

around  and decrease −1 around , thereby increasing the average performance. We must

be careful, however, not to violate the budget constraint, and to maintain the monotonicity

of −1. These properties will be easier to control if we first approximate −1 by a piecewise

constant function.

To simplify notation, we assume that  = 1. We approximate −1 by a sequence

of inverse distribution functions (()−1)∞=1. To define (
)
−1
, partition interval [0 1] into

intervals of size 12, and set the value of ()−1 on interval (2 (+1)2] to be constant

and equal to the highest number in the set {0 12 22  (2−1)2 1} that is no higher
than −1(2). By left-continuity of −1, ()−1 converges pointwise to −1. By definition

of ()−1 and monotonicity of −1, ()−1 satisfies the budget constraint (5).

Suppose that 0 (−1 ())  ()  0 (−1 ())  () for some   ∈ (min max). By

left-continuity of −1, and continuity of 0 and , the previous inequality also holds for
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points slightly smaller than  and . Thus, there are   0,  , and intervals (2  ( +

1)2 ] and (2  ( + 1)2 ], such that for every  ≥  we have 0 (()−1 (0))  (0) −
0 (()−1(0)) (0)   for any 0 ∈ (2  ( + 1)2 ] and 0 ∈ (2  ( + 1)2 ].
Denote by  the infimum of the values 0 (()−1()) () for  ≥  and  in the former

interval, and by  the supremum of the values 0 (()−1()) () for  ≥  and  in the

latter interval. Thus, we have that − ≥ . Define functions ()−1 by increasing the value

of ()−1 on (2  (+1)2 ] by , and decreasing the value of ()−1 on (2  (+1)2 ]

by , so the budget constraint is maintained. For sufficiently small   0, the former change

increases (8) at least by
¡
2

¢
( − 3), and the latter change decreases (8) at most by¡

2
¢
( + 3). This increases the value of (8) by at least 

¡
3 · 2¢ (for all  ≥ ),

since  −  ≥ .

If functions ()−1 are monotone, they are inverse distribution functions, and the value

of (8) with ()−1 instead of −1 exceeds, for large enough , the value of (8) for −1. If

functions ()−1 are not monotone, define
³ e

´−1
by setting its value on interval (0 12]

to the lowest value of ()−1 over intervals (0 12] (12 22]  ((2− 1)2 1], setting
its value on interval (12 22] to the second lowest value of ()−1 on these intervals, etc.

The value of (8) with ( e)−1 instead of −1 is higher than with ()−1 instead of −1,

because  is an increasing function.

The second condition in Case 1 and the condition in Case 2 are obtained by analogous

arguments, noticing that min  0 (since  (0)  0) and, since  is increasing and continuous,

the inequality 0 ()  () ≥  for   max is equivalent to 
0() (max) ≥ .

Proof of Proposition 5. Let min, 

max, and  denote min, max, and  for a given

. The proof of Proposition 4 shows that min  max for all . We claim that  weakly

increases with . Suppose to the contrary that 
0
 

00
for some 0  00.

Since 0
¡
(

max)
−1
()
¢
 () =  for all  ∈ (min max] and 0 is decreasing, 0 (0)  () ≥

 for all  ∈ (min max], and since  is continuous, we have 0 (0)  (min) ≥ . Since

we also have 0 (0)  (min) ≤  (because we are in Case 1 of Section 5.1), we obtain

0 (0)  (min) = . Since  is increasing, this implies that 
0

min  
00

min. In particular, we

have (a): (0
max)

−1 () = 0 ≤ (00
max)

−1 () for all  ≤ 
0

min, and the inequality is strict for
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 ∈ (00
min 

0
min). Since 

0 ¡(
max)

−1
()
¢
 () =  for all  ∈ (min max] and 0 is decreasing,

we have (b): (0
max)

−1 () ≤ (00
max)

−1 () for all  ∈ (0
minmin{0

max 
00
max}]. If 0

max ≥ 
00

max,

then we have (c): (0
max)

−1 () ≤ 0  (00
max)

−1 () = 00 for   min{0
max 

00
max}. If


0

max  
00

max ≤ 1, then 0(0)
¡


0
max

¢ ≥ 
0
(because we are in Case 1 of Section 5.1).

But 0
³¡
00
max

¢−1 ¡


0
max

¢´

¡


0
max

¢
= 

00
, so 

0
 

00
implies that

¡
00
max

¢−1 ¡


0
max

¢ ≥ 0.

Thus, as the inverse of any cdf is increasing, we again obtain (c), except that this time

(00
max)

−1 () ≤ 00. Now, (a), (b), and (c) imply that the budget constraint cannot be

satisfied with equality by both 0
max and 00

max, which completes the proof that 
 weakly

increases with .

By 0 (0)  (min) = , we obtain that min also weakly increases with . If 
0
max  

00
max

for 0  00, then 0
³¡
0
max

¢−1 ¡


00
max

¢´
(

00
max) = 

0
and 0(00)

¡


00
max

¢ ≥ 
00 ≥ 

0
,

which would imply that
¡
0
max

¢−1 ¡


00
max

¢ ≥ 00  0. Thus, max also weakly increases with

. Moreover, max converges to 1 as  diverges, because otherwise the budget constraint

would be violated for large enough values of . Because 0 ((
max)

−1 ())  () = , we

have that (00
max)

−1 () ≤ (0
max)

−1 () for all  ≤ 
0

max.
51

Notice that max = 1 for sufficiently large . Otherwise, the condition 
0() (max) ≥ 

cannot be satisfied for large enough , by the assumption that 0() → 0 as  → ∞. And
if max = 1 for some , then (

0
max)

−1 ≡ (
max)

−1 for all 0 ≥ , because (0
max)

−1 () ≤
(

max)
−1 () for all  ≤ max and both 

max and 0
max satisfy the budget constraint with

equality. This completes the proof.

Proof of Lemma 2. The idea of the proof is analogous to that of the proof of Lemma

1. As in that proof, suppose that min  max, that is, we are in Case 1; the condition in

Case 2 is obtained by analogous arguments. For an optimal distribution , approximate −1

by a sequence of inverse distribution functions (()−1)∞=1 that are constant on intervals

(2 ( + 1)2] and with values in the set {0 12 22  (2 − 1)2 1}. If (19) is
violated, we construct functions ()−1 (also constant on intervals (2 ( + 1)2] and

51Therefore, (
max)

−1 converges pointwise to some −1 on [0 1), even when 0() 9 0 as  → ∞. We
cannot conclude, however, that this −1 is an inverse cdf. For example, −1 can be a constant function

equal to 0.

45



with values in the set {0 12 22  (2 − 1)2 1}) such that the value of the target
function (14) with ()−1 instead of −1 exceeds, for large enough , that of (14) for −1.

This part of the proof replicates the argument from the corresponding part of the proof of

Lemma 1, and will be omitted. If for a large enough  function ()−1 is nondecreasing, it

is an inverse distribution function. We then obtain a contradiction to the optimality of −1,

which completes the proof. If function ()−1 is not monotone, we define another function³ e
´−1

whose value on interval (0 12] is equal to the lowest value of ()−1 over intervals

(0 12] (12 22]  ((2− 1)2 1], whose value on interval (12 22] is equal to the
second lowest value of ()−1 on these intervals, and so on. We will complete the proof by

showing that the value of (14) is no lower for ( e)−1 than for ()−1 for sufficiently large

’s.

To show this, we will consider only two adjacent intervals (2 (+1)2] and (2 (+

1)2] (that is, +1 = ) such that ()−1() =  on (2 (+1)2] and ()−1 () = 

on (2 ( + 1)2], where    , and estimate the effect on (14) of changing the value of

()−1 on (2 ( + 1)2] to  and changing the value of ()−1 on (2 ( + 1)2] to

 . We will use the same symbol ( e)−1 to denote the function obtained from ()−1 as a

result of this change, and we will sometimes use symbol ∆ to denote 12.

The exchange of  and  does not affect the integrand of (14) on the intervals lower

than (2 ( + 1)2]. It affects the value of e on interval (2 ( + 1)2], increasing it
by some e∆, as well as the value of e on interval (2 (+1)2], increasing it by some e∆.

As a result of the change in e on the two intervals, (14) increases by
∆
h
−1(e(( + 1)2) + e∆)− −1(e(( + 1)2))i

+∆
h
−1(e(( + 1)2) + e∆)− −1(e(( + 1)2))i

= ∆
h
−1(e(( + 1)2) + e∆)− −1(e(( + 1)2))i

+∆
h
−1(e(( + 1)2) + e∆)− −1(e(( + 1)2))i .

Observe thathe(( + 1)2) + e∆

i
−
he(( + 1)2)i = £−1(( + 1)2)− −1(2)

¤
[()− ()].

This is easiest to see by looking at Figure 5, in which the graph of  for ( e)−1 is obtained

from the graph of  for ()−1 by moving it to the right by the darkened rectangle, and
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moving it to the left by the shaded rectangle. By definition, e for ()−1 on (2 (+1)2]

is equal to the area of the rectangle [0 ()] × [0 −1(2)] minus the area to the left
of the graph of  for ()−1 on the interval [0 −1(2)]. Similarly, e for ( e)−1 on

(2 ( + 1)2] is equal to the area of the rectangle [0 ()] × [0 −1(2)] minus the
area to the left of the graph of  for ( e)−1 on the interval [0 −1(2)]. So, the difference

between the latter and the former areas consists only of the shaded rectangle.

Similarly,he(( + 1)2) + e∆)
i
−
he(( + 1)2)i = £−1(( + 1)2)− −1(2)

¤
[()− ()].

Using the mean value theorem, the increase in (14) caused by changing the value of e on
intervals (2 ( + 1)2] and (2 ( + 1)2] can be expressed as

∆(−1)0
³e

´ £
−1(( + 1)2)− −1(2)

¤
[()− ()]

+∆(−1)0
³e

´ £
−1(( + 1)2)− −1(2)

¤
[()− ()]

for some e between e(( + 1)2) + e∆ and e(( + 1)2), and some e between e(( +
1)2) + e∆ and e(( + 1)2).

Figure 5: Making −1 monotonic
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The exchange of  and  also affects the integrand of (14) on the intervals higher than

(2 ( + 1)2]. We can estimate this change in the integrand, as we did for the intervals

(2 ( + 1)2] and (2 (+ 1)2], by using the mean value theorem. On each interval

(2 (+ 1)2], where   , the integrand increases by

(−1)0(e){
£
−1(( + 1)2)− −1(2)

¤
[()− ()]

− £−1(( + 1)2)− −1(2)
¤
[()− ()]}

for some e.

Setting  = ( + 1)2 and dividing the aggregate increase in (14) by [() − ()]

(which appears in all expressions), we obtain

∆[(−1)0
³e

´
+ (−1)0

³e

´
]
£
−1()− −1( −∆)

¤
(24)

−{£−1( +∆)− −1()]− [−1()− −1( −∆)
¤} 2−1X

=+1

∆(−1)0(e).

By using the mean value theorem twice on (24), once in the first line and once in the second

line (for function () = −1( +∆)− −1() on interval [ −∆ ]), we obtain

∆2[(−1)0
³e

´
+ (−1)0

³e

´
]

∙
1

(−1( − ))

¸
− (25)

∆

∙
1

(−1( + ))
− 1

(−1( −∆+ ))

¸ 2−1X
=+1

∆(−1)0(e),

where 0 ≤   ≤ ∆.

Applying the mean value theorem again, (25) is equal to

∆2[(−1)0
³e

´
+ (−1)0

³e

´
]

∙
1

(−1( − ))

¸
+∆2

∙
 0(−1(0))
3(−1(0))

¸ 2−1X
=+1

∆(−1)0(e) (26)

for some 0 ∈ [ −∆+   + ]. By continuity of  and  0, (26) is equal to

∆2[(−1)0
³e

´
+ (−1)0

³e

´
]

∙
1

(−1())

¸
+∆2

∙
 0(−1())
3(−1())

¸ 2−1X
=+1

∆(−1)0(e) + (∆2),

(27)

where (∆2) is an expression that tends to zero faster than ∆2.
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To determine the sign of (27), consider two cases: (1) If  0(−1()) ≥ 0, then (27) is
positive for sufficiently small∆’s, since its first component is strictly positive, and the second

component is nonnegative; (2) If  0(−1())  0, then the first component is no smaller than

2∆2

(−1())
,

and the second component is no smaller than

∆2

∙
 0(−1())
3(−1())

¸ 2−1X
=+1

∆


= ∆2

∙
 0(−1())
3(−1())

¸
(1− )


+ (∆2)

So, (27) is positive for sufficiently small ∆’s by Assumption 2. This completes the proof of

(19).

Proof of Proposition 7. We first observe that if −1 crosses e−1 once, from below,

that is, if for some ̂ ∈ (0 1) we have −1 () ≤ e−1 () for  ∈ [0 ̂] and −1 () ≥ e−1 ()
for  ∈ [̂ 1], then e SOSD . Indeed, since    (1−  (∗)) and the condition on  ()

implies that e FOSD  , we have that   
³
1− e (e∗)´. Thus,  and ̃ have the same

expectation  , so SOSD holds if and only if for every  ∈ [0 1] we have thatZ 

0

 ()  ≥
Z 

0

e () . (28)

Since Z 1

0

 ()  =

Z 1

0

e ()  = 1−  , (29)

a sufficient condition for (28) is that e crosses  once, from below. This happens if and

only if −1 crosses e−1 once, from below.

We will now show that −1 crosses e−1 once, from below. For expositional convenience

only, suppose that  = 1. By Case 1 in Lemma 1, we have for any  ∈ (min max] that

0
¡
−1 ()

¢
=  () , (30)

and similarly for e ∈ (emin emax].
We will now show that the single crossing occurs if e strictly decreases on ( ], where

 = max {min emin} ≥ ∗ and  = min {max emax}. By (30) and the concavity of , for
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 ∈ ( ] we have that

−1 () ≤ e−1 () ⇐⇒ 0
¡
−1 ()

¢ ≥ 0
³ e−1 ()´ ⇐⇒  () ≥ ee () ⇐⇒ e ()

 ()
≥
e

.

Thus, −1 () ≤ e−1 () if and only if e ()  () ≥ e, and similarly with strict instead
of weak inequalities (by strict concavity of ). This last observation implies that if e
strictly decreases on ( ], then it crosses e at some point ̂ ∈ ( ); if it did not cross
e, then (29) would be violated. We then have that −1 ()  e−1 () for  ∈ ( ̂) and
−1 ()  e−1 () for  ∈ (̂ ]. Since −1 and e−1 are continuous at min and max, andemin and emax, respectively, (part 2 of Proposition 4, and left-continuity of inverse cdfs), we
have that  = min and  = max, so 

−1 () ≤ e−1 () for  ∈ [0 ] and −1 () ≥ e−1 ()
for  ∈ ( 1]. Therefore, −1 () ≤ e−1 () for  ∈ [0 ̂] and −1 () ≥ e−1 () for  ∈ [̂ 1],
so −1 crosses e−1 once, from below.

We will complete the proof of the proposition by showing that e strictly decreases on
(∗ 1] (recall that ∗ ≤ ) if  () is weakly convex and decreasing on (∗ 1]. Observe that

 () =
¡−−1 () (1− )

¢0
and e () = ³− e−1 () (1− )

´0
=
¡−−1 () () (1− )

¢0
,

soe ()
 ()

=
(−−1 () (1− ) ())

0

(−−1 () (1− ))
0 =

(−−1 () (1− ))
0
 () + (−−1 () (1− ))0 ()

(−−1 () (1− ))
0 =

 () +
(−−1 () (1− ))0 ()

 ()
.

We need to show that
³e ()  ()´0  0 for   ∗. Since 0 ()  0, it suffices to show

that the derivative of the fraction is weakly negative. This holds if and only if¡¡−−1 () (1− )
¢
0 ()

¢0
 ())− ¡−−1 () (1− )

¢
0 ())0 () ≤ 0.

And since

 ()  0 and − ¡−−1 () (1− )
¢| {z }

−

0 ()| {z }
−

0 ()| {z }
+

≤ 0,

where  ()  0 follows from   ∗ and 0 () ≥ 0 by Assumption 1, it suffices to observe
that ¡−−1 () (1− )0 ()

¢0
=  ()|{z}

+

0 ()| {z }
−

+
¡−−1 () (1− )

¢| {z }
−

00 ()| {z }
+

≤ 0.
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Proof of Proposition 8. This proof continues the proof of Proposition 7. By substitut-

ing  =  () into (30) we obtain 0
¡
 ()

¢
=  () for any  ∈ (−1 (min)  −1 (max)].

Recall that e strictly decreases on (∗ 1] (see the proof of Proposition 7). Since e (1) =
 (1) = 1, we have that e ()  ()  1 for all  ∈ (∗ 1). This implies that e  . Indeed,

for e ≤  we would have min ≥ emin and max ≥ emax by (10) and (9), and by the conditions
of Lemma 1 for all  ∈ (min emax], we would have

0
¡
−1 ()

¢
=  ()  ee () = 0

³ e−1 ()´⇒ e−1 ()  −1 () .

This, together with min ≥ emin and max ≥ emax, would imply that e−1 () ≥ −1 () for all

, and e−1 ()  −1 () for a positive measure of ’s, which would violate (29).

Thus, e  , so emin  min and emax ≥ max. And since e () ≤  () for all ,

0
¡
 ()

¢
=  ()  e e () = 0

¡
̃ ()

¢⇒ ̃ ()   ()

for  ∈ (−1 (emin)  −1 (max)]. This, together with −1 (min)  −1 (emin) and −1 (max) ≤
−1 (emax), implies that every type obtains a weakly lower prize under e than under  .

Proof of Proposition 9. If  is weakly convex, the result follows immediately from

Proposition 3. Suppose that  is weakly concave, but not linear. By Proposition 4, we are in

Case 1 of Lemma 1. Without loss of generality, we assume that the budget constraint holds

with equality for the higher budget (and therefore also for the lower budget). If this were

not the case, we would consider the intermediate budget for which the budget constraint

holds with equality but the optimal distribution of prizes already consists of an atom at 0

and an atom at . Then, we would first compare the lower budget with the intermediate

one, and then the intermediate one with the higher one.

If we had that  ≤ , where  and  are the shadow prices for the lower and higher

budget, respectively, then we would also have that −1 () ≤ −1 () for all  (see the proof

of Proposition 8). But then the budget constraint would not hold with equality for the higher

budget. Thus   , so 
−1
 () ≥ −1 () for all  (again, see the proof of Proposition 8),

which is a FOSD shift in the optimal prize distribution.
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Proof of Proposition 10. Choose some prize distribution . By looking at the areas

below the graphs of  and −1 in the square [0 ]× [0 ()], we obtain that the cost of the
performance of type  in the mechanism that implements the assortative allocation satisfies

 ()−
Z 

0

 (e) e = Z ()

0

−1 () .

Thus, the average performance (6) is equal toZ 1

0

Ã
−1

ÃZ ()

0

−1 () 

!!
 ()  =

Z 1

0

Ã
−1

ÃZ (−1())

0

−1 () 

!!
, (31)

where the equality follows from the change of variables  =  () and the identity  (−1 ()) =

 (−1 ()).52 Since a FOSD shift in  decreases  and therefore  pointwise, it increases

−1 pointwise, and therefore increases (31).

Deriving the optimal prize distribution for the example in Section 8. Propo-

sition 6 shows that min  max and  may have atoms only at 0 and . We now use

the conditions in Case 1 of Lemma 2 to derive . Define an auxiliary function  () =

(−1)0(e()), plug  () into (19), and differentiate with respect to  to obtain the dif-

ferential equation 0() + 2() = 0 for ().53 Solving this equation, and substituting

back into (19), we obtain (−1)0(e ()) = 2. By the definition (15) of e (), we obtain
((−1)0)−1 (2) = −1 () − R 

0
−1 () . If −1 is differentiable, differentiating the last

equality gives (−1)0() = (−24)(((−1)0)−1)0(2).54

Since −1 () =
√
, we have (−1)0 () = 1 (2

√
),
¡
(−1)0

¢−1
() = 1 (42), and

³¡
(−1)0

¢−1´0
()

= −1 (23). Thus, −1 () = 3(32)+ min, where min is the “lowest prize” awarded. By

parts 2 and 3 of Proposition 6, min = 0 and min = 0.

52Even though −1 may be discontinuous, because −1 may be discontinuous, it is monotonic, so the

change of variables applies.

53The solution can be verified to be differentiable.

54We will show that an optimal prize distribution  with differentiable inverse −1 exists. No other prize

distribution will lead to higher average performance, since the average performance corresponding to any

prize distribution can be approximated arbitrarily closely by the average performance corresponding to a

prize distribution with a differentiable inverse.
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Consider first ≥ 4 . Suppose that max = 1 and the entire budget is used. Substituting
the expression for −1() into the budget constraint with equality, we obtain  = 1

√
12 ,

which gives −1 () = 43 . Thus, −1 does not exceed  ≥ 4 . Substituting −1 into

the target function, the average performance is
p
3, which increase in the budget  , so

it is indeed optimal to use the entire budget. Moreover, we cannot have max  1, because

the budget constraint would be violated: on [max 1] the prize would be , higher than with

max = 1, and in order to have 
−1 (max) = , the value of  would have to be lower than

that with max = 1, which implies a pointwise higher value of −1 on [0 max] than with

max = 1.

Now suppose that   4 and the entire budget is used. Then, we still have −1 () =

3
¡
32
¢
for  ≤ max, but this new  is different from that for  = 4 . (Other-

wise, since −1 () = 4 at  = 1 for the old , the entire budget would not be used.)

This implies that max  1. Since the budget constraint is satisfied with equality,  =

2max(12( − (1− max)))
12. Substituting this  into  = −1 (max) = 3max

¡
32
¢
gives

that max = 4( −  ) (3). Substituting the expression for max into the expression for

, and substituting the resulting expression for  into the expression for −1 for  ≤ max,

gives −1 () = 2734
¡
64 (−  )

3
¢
. Substituting this −1 into the target function, the

average performance is
√
−  (1− 8 (−  )  (9)).

This expression increases for  in [4 58], and decreases for  in [58].55 There-

fore, this expression is the maximal average performance for  in [4 58]. Any budget

in excess of 58 will optimally not be used.

55No budget above  will ever be used, since  is the cost of awarding all types the highest possible prize.
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12 Online Appendix

In this appendix, we discuss the solution to (4) for linear costs in the case when Assumption

1 is not satisfied. We will provide only heuristic, informal arguments, but the reader will see

that making the arguments rigorous should not encounter any major difficulty.

Suppose that the range of ’s is divided into a large number of small (infinitesimal)

intervals, on which we will increase the value of −1 progressively by small (infinitesimal)

moves of a size ∆, until we exhaust the entire budget given by (5). By raising −1 on such

an interval by ∆, we increase, up to a first-order approximation, the objective function by

0(·)(·)∆, where the value of  is taken at any point from the interval, and the value of

0 is taken at the current value of −1 on this interval. However, in order to maintain the

monotonicity of −1 when we increase its value on an interval , we must increase its value

also on all intervals  0 higher than  on which the value of −1 is the same as that on .

Thus, we always want to increase the value of −1 on an interval  such that the average

value of 0(·)(·) across all intervals  0 is the highest.
When  is increasing, as assumed in the main text, the average value of 0(·)(·) is initially

the highest for the highest interval. So, we begin with raising −1 on the highest interval by

∆. When, in addition, 0 is increasing, this makes the average value of 0(·)(·) even higher
for the highest interval, without affecting the average values for the other intervals.56 So, we

raise −1 on the highest interval until we reach its bound of . Next, we raise −1 on the

second highest interval, and we continue in this manner until we exhaust the budget. This

yields Proposition 3.

When, in turn, 0 is decreasing (assume strictly for the sake of our argument), raising −1

makes the average value of 0(·)(·) lower for the highest interval. This ultimately makes
the average highest for the second highest interval. (Notice that the average on the second-

highest interval will be equal just to the value on that interval, after we first raise the value

on the highest interval.) And we will then begin raising −1 on the second-highest interval.

We will never raise −1 on the second-highest interval to a value strictly higher than that on

56Actually the first jump even decreases the average on lower intervals, since it makes the highest interval

no longer count in the average.

54



the highest interval, because  is increasing. Ultimately, we will make the average highest

on the third-highest interval. We will not stop until we reach the lowest interval, because

any nontrivial increase in −1 on an interval reduces 0(·) by more than enough to offset the
just slightly lower value of (·) on the adjacent lower interval.57 This yields Proposition 4.
These arguments imply a number of claims even when  is not increasing.

Claim 1. If  is weakly convex, so players are risk neutral or risk loving, then the optimal

prize distribution consists of: (1) a mass of prize  and a mass of prize 0; or (2) a mass of

prize , a mass of some intermediate prize  ∈ (0), and a mass of prize 0.

Indeed, notice that even though  is no longer increasing, 0(·)(·) still takes the highest
value on the highest interval , since (1) = 1 is the highest possible value of . Raising −1

increases the value of 0(·)(·) on the highest interval , without affecting the value on the
intervals lower than . So, we keep raising −1 on the highest  until reach the bound of

. And then we go to the second highest interval. However, as  is no longer increasing, we

may at some moment happen to go to an interval lower than the next highest one; and then

we may exhaust the remaining budget before reaching the bound of  on that interval 

and all higher intervals on which the value of −1 is the same as that on . If this happens,

the optimal prize distribution has the form as described in (2).

Corollary 2 If  is weakly convex, and  is sufficiently large, then the optimal prize dis-

tribution consists of a mass of prize  and a mass of prize 0.

Indeed, the previous argument implies that the budget is exhausted at the highest inter-

vals.

Claim 2. If  is strictly concave, so players are risk averse, then any optimal prize

distribution assigns a positive mass to the set of intermediate prizes (0), and any optimal

prize distribution awards all prizes up to the highest prize awarded. That is,  strictly

increases on [0 −1 (1)].

57Of course, the continuity of  is essential here.
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As before, we first raise −1 on the highest interval . Raising −1 makes the value of

0(·)(·) on  lower. This ultimately makes the value of 0(·)(·) higher for the second highest
interval. And we then begin raising −1 on the second highest interval, and continue going

down to lower and lower intervals. We will not stop until we exhaust the budget or run out

of intervals on which (·) is positive, because any nontrivial increase in −1 on any interval

reduces 0(·) by more than enough to offset a slightly lower value of (·) on the adjacent
highest interval.

Notice, however, that we may make discrete jumps on the way down to lower and lower

intervals when (·) takes higher values on lower intervals. This implies that even if  is
strictly concave, an optimal prize distribution may have atoms at prizes other than 0 and

. Finally, it can be readily checked that Claim 2, except the statement that  strictly

increases on [0 −1 (1)], holds true even when  is only weakly concave but not linear on

[0].
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