
 

Assessing the external net benefits of wind energy: the case of Iowa’s wind farms* 

T.J. Rakitan† 

December 30, 2017 

 

 

ABSTRACT: 

 Wind energy infrastructure is often associated with decreases in nearby property values and 
increases in local incomes.  However, these impacts are measured at different geographic scales, 
prompting the question of how the external net benefits of wind infrastructure are distributed over 
space.  Using restricted-access income microdata and address-level house value information from county 
assessor records, I estimate the impact of utility-scale wind energy infrastructure (“wind farms”) on both 
incomes and property values at the same geographic scale in northwest Iowa.  I use a difference-in-
differences approach that exploits the staggered installation times of Iowa’s major wind farms, estimating 
changes in incomes and house values as a function of wind energy infrastructure attributes following the 
analysis of Roback (1982), Rosen (1979) and others.  I find that county-level income effects reported in 
the literature do not appear to hold at the household level, while house value growth is not significantly 
different based on proximity to wind farms.  This suggests that county- or region-specific attributes 
correlated with wind energy placement are driving existing results.   
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1 - Introduction 

 The placement of energy infrastructure has the potential to impact the well-being of nearby 

residents, which may partially offset the broader benefits of an expanding energy portfolio.  In the 

economic literature, studies have considered the presence of oil and gas wells (e.g. Boxall, et al (2005); 

Gopalakrishnan and Klaiber (2012); Muehlenbachs, et al (2015)); natural gas pipelines (e.g. Hansen, et al 

(2006); Kask and Maani (1992)); and high-voltage transmission lines (e.g. Hamilton and Schwann 

(1995), Sims and Dent (2005)).  These studies find evidence that house prices capitalize negative net 

welfare impacts from proximity to energy infrastructure.   

 Recently, hedonic and impact-evaluation methods have been applied to the case of wind energy 

generation installations, also called “wind farms.”  While several hedonic and contingent-valuation 

studies find zero or negative property value capitalization of wind farms’ presence (e.g. Gibbons (2015), 

Hoen, et al (2010), Lutzeyer, et al (2016), Vyn and McCullough (2012)), other studies using input-output 

models find that construction of large-scale wind projects has positive effects on gross local product (e.g. 

Lantz and Tegen (2009), Slattery, et al (2011), Tegen, et al (2012)).  Other econometric studies find that 

wind energy installation placement is associated with increases in per capita income and county-level 

employment (Brown, et al (2012), Weber, et al (2013)), as well as increases in tax bases and government 

revenue (De Silva, et al (2015), Kahn (2013)).   

 Taken together, this set of results—that rents often capitalize welfare losses while incomes and 

employment seem to rise in the presence of wind energy installations—prompts the question of whether 

the local external net benefits of wind energy infrastructure are positive or negative.1  To this end, I 

estimate the impact of large-scale wind farms on house values and income using address-level data from 

Iowa.  I take a reduced-form, difference-in-differences approach, comparing outcomes for “treated” 

households located near wind farms with those from “control” households located farther away.  The 

                                                           
1 In this context, “external net benefits” refers to the overall welfare change experienced by those not party to a 
transaction.  The term encompasses both spillovers and externalities.   
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quasi-experimental research design “differences out” non-time-varying group effects, and both groups are 

composed of panels of households observed in 2002, 2008 and 2012.   

 To date, income studies have largely relied on aggregated data, while hedonic house price studies 

use data at the household level.  By contrast, I observe both measures at the household level, which 

allows me to estimate both income and house value impacts at a consistent geographic scale and provides 

a more complete characterization of the local net benefits of wind power.  The data come from separate 

sources; house values were obtained from county assessors throughout Iowa, while income observations 

come from restricted-access income tax records used on-site at the Iowa Department of Revenue (IDR).2   

Variation in “exposure” to wind farms is both temporal and spatial; I control for wind farm age as well as 

generation capacity, turbine count and distance from the household.   

 I find that the county-level wind farm-related welfare changes reported in the literature do not 

occur at the local level in rural Iowa.  A conservative interpretation of my results is that there are no 

substantial spillovers from wind farm placement in rural areas.  As a matter of policy, this suggests that 

regions with low population densities are best suited to host wind farms if negative welfare consequences 

are a principal concern.   

 The remainder of the paper is organized as follows: the next section discusses selected literature 

and details the institutional and technological background of Iowa’s wind energy landscape; Section 3 

presents the economic theory underlying the study and the econometric methodology; Section 4 discusses 

data; Section 5 presents the results and Section 6 concludes.   

 

2 - Literature 

 Since the mid-2000s, the state of Iowa has maintained the second-highest statewide wind energy 

generation capacity, and as of 2012 maintained the largest wind energy capacity share of any state in the 

                                                           
2 Iowa’s state tax collection bureau. 
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U.S. at 30% (EIA 2012).3  Iowa has more than 95 separate wind energy installations, with statewide 

nameplate generation capacity4 of over 6.1 gigawatts.  Most often turbines are sited on farmland or other 

exposed, relatively flat terrain with few buildings or trees to disrupt airflow.  On average, the turbines in 

most of Iowa’s wind farms are spread over 11,700 acres (about 18 square miles) per wind farm.  This 

equates to approximately 103 acres per megawatt of nameplate capacity.5  Areas of concentration are 

throughout the western half of the state, as well as along the northern tier.  The spatial distribution of 

wind farms generally follows the geographic distribution of Iowa’s greatest wind resource potential, 

visible in Figure 1.  Average wind speeds at an altitude of 80 meters throughout Iowa’s northwest fall 

between 7.5 and 9 meters per second.   

 The years between 2000 and 2014 saw a proliferation of wind farms throughout the state.  Figure 

2 describes statewide cumulative installed capacity starting in 1992.  The large year-over-year capacity 

increases beginning in 2008 are clearly visible, with statewide capacity growing at approximately 125 

megawatts per year from 2000 to 2007, accelerating to 650 megawatts per year between 2007 and 2013.  

During this time period, the state of Iowa also maintained two fully-transferable renewable energy 

production tax credits.6  However, an analysis by the Iowa Department of Revenue finds that the policy 

has generated revenues for the state that partially offset its costs.  Girardi (2014) estimates a projected 

                                                           
3 At the time of writing, this fact is still true; wind power in Iowa boasted at 33% share of statewide generation 
capacity in 2016 and 2017 (U.S. EIA, “State Energy Profiles: Iowa.”  Available at 
https://www.eia.gov/state/print.php?sid=IA).    

4 “Nameplate capacity” refers to the theoretical maximum power output of a turbine generator under an ideal set of 
conditions.   

5 As a point of reference, Denholm, et al (2009) find that U.S. wind energy installations usually require between 30 
and 140 acres per megawatt of capacity. 

6 In 2005, the state of Iowa adopted two tax credits to subsidize renewable energy production in the state, aimed 
predominantly at large wind energy installations.  Iowa’s Wind Energy Production Tax Credit (WEP) is available as 
a non-refundable tax credit for eligible projects completed between July 1 2005 and July 1 2012 and paid in 
continuity for 10 years from the date of installation, while the Renewable Energy Tax Credit (RE) is available for 
wind farms brought on line beginning July 1, 2005 (Iowa Public Utilities Board).  As of the 2013 tax year, the 
claimed WEP and RE tax credits totaled approximately $5.2 million.  Credits are fully transferrable for state tax 
return purposes; the State of Iowa has ascertained that credits often trade below their face value (Girardi (2014)).  
Despite the potentially large dollar value of these payouts, only 1.3% to 3% of Iowa’s total wind energy production 
was awarded the tax credit.  As such, it does not appear that state-level incentives greatly altered Iowa’s utility-scale 
wind energy development. 
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property tax gain to the state of Iowa of approximately $958,000 between 2014 and 2015 due to these 

policies.   

 The property tax gains experienced by the state of Iowa are related directly to the land upon 

which wind farms are sited.  Studies in the academic literature substantiate the positive contributions of 

wind farms to public coffers.  For example, De Silva, et al (2016) find a 0.02% drop in property tax rates 

and a 0.014% increase in per-student school district revenues associated with a 1% increase in wind 

power capacity, while Kahn (2013) finds public schools in districts funded by green energy revenues 

spend approximately $1,300 more per student than comparable counties with no wind farms.  Both 

studies use data from the Texas Panhandle region.   

 Other benefits documented in the literature include employment and wage gains in areas with 

greater wind penetration.  In their Texas study, De Silva, et al (2016) estimate the per-capita income gains 

from an additional megawatt per capita of wind power capacity to be approximately $2,600, along with 

positive (but statistically insignificant) county-level employment increases in selected industries.  Brown, 

et al (2012) also find evidence of per-capita income benefits, using county-average wind speed as an 

instrument for county-level wind power capacity.  They estimate a per-capita income gain of $11,000 for 

each additional megawatt of capacity per capita, as well as employment gains of 0.5 jobs for each 

additional megawatt per capita.  In addition, energy royalty payments and land rents can contribute to 

non-wage income growth in areas with large energy resources.  Weber, et al (2013) document 

concentrated rural wealth creation from energy royalties paid to farm households.  Their analysis includes 

mineral royalties from oil and gas rights ownership as well as energy rents paid to wind farm households; 

they note that rents are concentrated among relatively few landowners.   

 Wind farms can also generate negative local impacts.  Public opposition to a large proposed wind 

farm in the waters of Cape Cod was driven in part by objections to the disruption of scenery (Eileen 

McNamara, “What really toppled Cape Wind’s plans for Nantucket Sound,” Boston Globe, Jan 30th, 

2015).   Wind farms have also been responsible for migratory bird kills and disruption of local 

ecosystems (Barclay, et al (2007)).  Additionally, long-term exposure to low-frequency sounds attributed 
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to wind turbine operation has been claimed to cause “wind turbine syndrome,” a condition associated with 

developmental difficulties in children and mental anguish in adults (Pierpont (2006); Farboud, et al 

(2013)), although there are competing hypotheses regarding the underlying basis for these conditions 

(Rubin, et al (2014)).  Less-severe annoyances may include interruptions to wireless communication 

technologies, including radio, television and cellular signals (Ángulo, et al (2013)).  Despite these claims, 

the environmental economics literature contains mixed evidence of adverse impacts on consumers.  Vyn 

and McCoullogh (2014), Hoen (2006), Hoen (2010) and Hoen, et al. (2014) have found no statistically or 

economically significant differences in residential house prices in the vicinity of wind power generation 

facilities in the U.S. and Canada.  On the other hand, some evidence indicates that the negative impact of 

wind infrastructure may be more closely associated with visibility than health risk.  Gibbons (2015), for 

example, finds evidence of a 4% drop in house values in the U.K. associated with proximity and visibility 

of wind turbines.  Dröes and Koster (2014) find similar results, observing a 1.4% to 2.3% decreases in 

hedonic sales value for houses sited within 2 kilometers of a wind turbine in Denmark.  Heitzelman and 

Tuttle (2012) also find a negative effect, and Jensen, et al (2014) are able to attribute a 3% residential 

house price drop to wind farms’ visual disamenity, while “soundshed” disruption accounts for a property 

value decrease between 3% and 7%.   

 Other recent literature has used stated-preference methods to understand local sentiment about 

existing wind farms rather than using hedonic methods to characterize a willingness-to-pay to avoid the 

negative effects or gain access to amenities. In one such paper, Lutzeyer, et al (2016) utilize a choice 

experiment to gauge willingness-to-pay for off-shore wind energy in vacation-rental viewsheds, finding 

evidence that recreational renters would never pay more for a beach view interrupted by wind turbines.  

Walker, et al. (2014) point out that hedonic methods, which rely on observed sales of a fixed asset (e.g. a 

house, a plot of agricultural land), tend to over-sample high-population-density areas relative to low-

population-density areas–however, the spacing requirements of wind energy production, along with other 

subjects the hedonic literature, often translates to turbines being located in low-density areas with large 

areas of available land. Walker, et al. (2014) turn instead to surveys and interviews to assess local 
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perceptions about the property-value changes associated with wind farms in two communities on Lake 

Erie in Ontario, Canada, finding that local residents perceive a loss in property value regardless of the 

available data.  Similarly, Firestone, et al (2015) use a survey instrument to evaluate perceptions about the 

amenities and disamenities of a single turbine installed along the Delaware coast.  However, they find that 

locals report positive attitudes toward the turbine’s placement. 

 

3 – Theory and Empirical Strategy 

 I assume a spatial equilibrium where wages and rents adjust to local characteristics, 

following Roback (1982) and Rosen (1978).  Locational fixed factors—including wind energy 

infrastructure—affect the utility of nearby households, and workers’ choices of where to live 

bids rents and wages up or down accordingly.  Workers are assumed to be freely mobile between 

regions and face competitive labor markets.  Labor is supplied inelastically and paid a wage w .  

Workers live in households indexed by h .  Each household maximizes utility U  by consuming 

a numeraire x  at a price of 1 and renting land K  at price r  subject to the budget constraint 

w x rK  .  The above implies that indirect utility will depend on both wages and rents.  Since 

households control their exposure to local characteristics by their choice of where to live, wages 

and rents will be implicit functions of local characteristics.   

 Figure 3 illustrates this mechanism in action.  Consider two regions indexed by the 

variable   that are identical but for wind farm exposure.  Region 0   lacks a wind farm, 

while region 1   has one.  Worker mobility implies that indirect utilities will equalize across 

markets, i.e. ( , ,0) ( , ,1)V w r V w r V  .  If wind farms are a nuisance, utility in region 1 will be 

lower at all values of r  and w  than utility in region 0, i.e. ( , ,1)V w r  will lie strictly to the 

southeast of ( , , 0)V w r .  Equilibrium occurs where ( , , )V w r   intersects the unit iso-cost line 

corresponding to numeraire production, given by ( , ) 1C w r   in wage-rent space.  Although 
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utility is identical between regions, rents decline and wages rise in region 1 relative to region 0, 

implying an expanded budget set for region 0 consumers.  That is, if wind farms are a 

disamenity, real incomes must rise to compensate workers located nearby them.   

 I operationalize the analysis above by examining the cross-sectional growth in wage and 

rent measures as functions of the wind farm exposure variable  .  Let y  be the outcome of 

interest (either wages or rents) and define time period 0t   as the time period during which no 

houses were exposed to wind farms and 1t   as the time period in which 1   for some but not 

all households.  The real income differential can then be estimated by comparing the cross-

sectional rates of growth of wages and rents.   

 The outcome of interest (i.e. incomes or house values; here denoted by y ) will be a 

function of local characteristics at time t  as well as household characteristics.  This suggests the 

reduced-form relation 

 ln( )hct ht h ht h ct hcty z                (1) 

where ht  is the wind farm exposure dummy, hz  is a measure of the intensity of house h ’s 

exposure to a wind farm, h  is a household fixed effect, ct  is a county-year effect and hct  is a 

normally-distributed i.i.d. error term with a mean of zero and constant variance conditional on 

county or household attributes.  At 0t  , 0ht  , while 1ht   for some households at 1t  .   

The logarithmic treatment of y  follows Roback’s (1982) formulation and allows the right-hand 

side coefficients to be interpreted as percent changes. 

 The house fixed-effect captures both house characteristics and characteristics of 

household occupants (such as human capital).  Necessarily, wage and rent growth will be 

correlated with these characteristics, as well as with county-specific and time-specific factors.  I 
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account for this by differencing across time periods.  Following the time-period definitions 

above, ( 0) 0h t    for all households, implying 

 ( 0) ( 0) ( 0)ln( )hc t h c t hc ty          (2) 

Similarly, the outcome at 1t   can be written 

 ( 1) ( 1) ( 1) ( 1) ( 1)ln( )hc t h t h h t h c t hc ty z                    (3) 

Differencing between time periods yields the expression 

 
( 1) ( 0) ( 1) ( 1)

( 1) ( 1) ( 0) ( 0)

ln( ) ln( )

( )

hc t hc t h t h h t

h c t hc t h c t hc t

y y z   

   
   

   

     

      
  (4) 

Collecting terms yields the growth equation 

 
( 1) ( 0)

( 1) ( 1)

ln( ) ln( ) ln( )t hc hc t hc t

h t h h t c hct

y y y

z     
 

 

  

      
  (5) 

where ( 1) ( 0)( )c c t c t       and ( 1) ( 0)( ) ( )hct h h hc t hc t         .  The specification in (5) 

differences out the household effect h , while a county control c  accounts for the influence of 

changes in local characteristics that can affect regional growth.   

 The wind farm exposure parameters   and   are identified if wind farm placement is 

uncorrelated with the error term ( 1) ( 0)hc t hc t   .  That is, if unobserved shocks to household h ’s 

wage or rent growth also affect the probability of the existence of a wind farm of size hz , then 

estimates of   and   will be biased.  However, this would also require that such shocks be 

uncorrelated with the county growth effect c  as well as with the household effect h , which has 

been differenced out in computing the growth rate of Equation (5).   

 To estimate Equation (5) econometrically, I specify:  

 ln( )t hc h h h c hc hcy Treatment Treatment Intenisty County            (6) 
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where y  is income or house value; hTreatment  is a dummy equal to 1 if house h  is within 5 

miles of a wind turbine, c  is a fixed-effect that is nonzero if household h  is in county c, and h  

is the error term.  The county fixed-effect c  accounts for county-level factors that can affect the 

growth in wages or property values.  The hIntensity  measure decomposes the treatment effect 

across several measures of exposure intensity.  These include the household’s years of exposure 

to a wind farm ( hDuration ), distance away from a wind farm ( hDistance ), wind farm power 

capacity in units of 100 MW ( hCapacity ) and total number of turbines that make up the wind 

farm (in 100-count units) ( hTurbines ).  The coefficients have the interpretation of changes in the 

rate of growth of house values and incomes.  If wind farm exposure is a disamenity, then 

increasing exposure intensity should be associated with lower house values and higher incomes.7 

 The econometric specification in Equation (6) has the form of a difference-in-differences 

estimation.  Differencing the outcome of interest between time-periods provides the first 

difference, accounting for house-level fixed effects, while wind farm exposure constitutes the 

second difference.  By removing the influence of non-time-varying household-specific effects 

and controlling for county-specific time-varying factors, I minimize the potential for bias in the 

estimate of the effect of wind farm placement. 

 

4 – Data 

 I construct two datasets from three separate sources.  Wind turbine data come from the 

U.S. Geological Survey Data Series 817 (Diffendorfer, et al 2014), while household data are 

                                                           
7 Note that, in the case of distance, larger distances constitute lower intensity—therefore, if wind farm exposure is a 
disamenity, the expected sign of distance is positive.   
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taken from the records of county assessors and proprietary data maintained by the State of Iowa.  

The wind farm dataset contains geo-coded location and attribute information for individual wind 

towers throughout the United States, including date of installation, generation capacity per 

turbine and total number of turbine towers within a given wind farm.  Utility-scale wind farms in 

Iowa typically have 40 to 100 individual turbines, with a mean turbine count of 69.71.  Average 

capacity per turbine has also increased over the years; the largest installation in Iowa as of 2012 

was constructed in 1999 and contains 257 individual towers, although each one is only rated at 

0.75 MW capacity.  On the other hand, the wind farm having the greatest capacity (443.9 MW) 

was built in 2011 and has 193 individual turbines.  Mean generation capacity for wind farms in 

Iowa is 112.55 megawatts.  Iowa’s wind farms are concentrated in the western and north portions 

of the state; Figure 4 shows this distribution visually, displaying county-level total turbine counts 

as of 2014.   

 Income data come from records maintained by the Iowa Department of Revenue (IDR), 

the state’s tax-collection bureau.  These data are confidential and unavailable to the public, and 

the income analysis was conducted on-site at IDR.  The records capture information from all 

Iowa state income tax returns filed electronically (“e-file”), as well as limited data captured from 

all paper returns filed in a timely fashion,8 beginning in 2002.9  Income data is aggregated to the 

household level and reflects the earnings of non-dependent taxpayers filing on the same tax 

return at the same address.10  I observe household Adjusted Gross Income (AGI) for all 

households in the dataset, although I do not observe the particular sources of income by 

                                                           
8 Here, “timely” refers to January of the year following the year for which the return is filed.  For example, a paper 
return for tax year 2007 filed by January of 2009 would be captured in IDR’s files.   

9 Electronically filed tax returns have accounted for an increasing share of all returns filed in Iowa; internal data 
from IDR indicate an e-file share of 62.2% in 2004, increasing to 86.6% in 2011.   

10 The income of children or other residents who do not file as independent taxpayers is not considered. 
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household, i.e. I cannot distinguish between wage and non-wage income.  As a result, some of 

the income changes I observe may be due to changing returns on capital owned by the 

household, possibly including land leased to agriculture or energy, but the area-frame sampling 

and the difference in differences approach mitigate these issues somewhat.  Observations 

excluded from the final dataset include taxpayers with out-of-sate home addresses and those who 

did not file tax returns for tax years 2002, 2008 and 2012.  Finally, to control for human capital 

and worker characteristics in each household, I restrict the income sample to households with the 

same principle tax filers in all years under study.   

 House values were obtained directly from county assessors’ offices.  House values are 

composed of the total assessed value of the land, dwelling and any improvements to buildings on 

a given parcel.  Data in the sample reflect residential parcels containing single-family residences 

or rural dwellings.  Assessed values have certain advantages over transaction-based observations: 

they provide a complete time series of values for individual properties regardless of whether the 

property is sold, and they are not subject to thin and selected samples.  The local effects of 

nearby sales influence the assessor’s valuation of non-transacted properties, meaning that the 

information contained in the price of transacted houses should be reflected in the assessor’s 

valuation.11   

 Using the wind turbine location data to determine turbine positions, houses were selected 

using area-frame sampling based on proximity to turbines and observed similarities of the 

parcels on which they were located.  This initial dataset was refined to include only addresses 

with dwellings for the duration of the study period.  Houses with unclear location information 

                                                           
11 Ma and Swinton (2012) examine the differences in amenity valuations from transaction prices and assessed-value 
data, concluding that assessed values do not accurately capture marginal willingness-to-pay for natural amenities, 
especially in a dynamic context.  However, this also implies that assessed values will not capitalize energy royalties, 
meaning that royalties paid should appear as income gains. 
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were geo-located by address using ArcGIS software.  The resulting dataset was used to 

determine exposure to wind energy at each household location.  Once measures of wind farm 

size were associated with each house, the data were merged with value and income data by 

physical address.  Households in the “control” group are located more than 5 miles away12 from 

a wind turbine but with otherwise similar wind and topography characteristics comparable to 

wind farm locations.   

 One caveat is necessary: while most Iowa counties use electronic databases to record 

property values, many only began keeping electronic records after 2005.  Additionally, many 

assessors who began maintaining electronic records in years after 2002 do not have complete 

records for years prior to the start of the electronic recordkeeping.  Of the Iowa counties hosting 

utility-scale wind energy, only 5 were able to provide electronic house-value records dating back 

to 2002.  Also, not all tax filers report a physical home address.  As a result, the full sets of 

income observations and house value observations do not perfectly overlap.  I estimate Equation 

(6) separately for each data set rather than condition on a household belonging to both datasets.  

From each dataset I obtain a panel of observations, i.e. households that appear in 2002, 2008 and 

2012. 

 Tables 1 and 2 report summary statistics for treatment and control households.  

Households in the “Treated by 2012” group are located within five miles of a wind farm that 

began operation after 2002 and prior to 2012.  Table 1 reports statistics for the income dataset,13 

including household distance away from the nearest wind turbine regardless of treatment group 

                                                           
12 The 5-mile cutoff follows Gibbons’ (2015) result that negative visual disamenity effects dissipate at 
approximately 5 miles away from a wind turbine.    

13 Percentile cutoffs are censored in Table 1 to preserve the confidentiality of income data. 
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status, contemporaneous years of exposure and treatment-intensity measures of capacity and 

turbine count.  Table 2 reports statistics for house values and includes the same covariates.14     

 In 2002, incomes and house values in the control group are lower than households in the 

treatment group.  However, control incomes grow quickly, ending higher than the treated group 

in 2012.  The realized covariate measures differ somewhat between both data sets, but the 

summary statistics are similar.  On average, “Treated by 2012” households in the income dataset 

are exposed to older wind farms of higher capacity and lower turbine counts than their 

counterparts in the house value dataset.   

 

5 – Results 

 Tables 3 and 4 present the results of estimating the log-differenced specifications.  All the 

estimations follow Equation (6) and include county fixed effects ( )c .  The average treatment 

effect   is presented in column 1, while subsequent columns examine the effect of the 

treatment-intensity parameter  .  Superscripts denote the outcome of interest as wages (incomes) 

and rents (house values).  The presence of wind farms does not significantly affect incomes or 

house values, although the signs of the treatment intensity coefficients (  ) suggest negative 

impacts.  Distance is an exception—it is negative for house values and positive for income.  

Though the estimate is not significantly different from zero, the pattern of signs is consistent 

with higher house values and lower incomes at close distances to a wind farm.   

 In addition, the joint effect of exposure and intensity (i.e. ˆ
s s   , where s  is the 

average intensity and intensity is { , , , }s Distance Duration Capacity Turbines ) is also negative 

                                                           
14 The samples were matched separately, which accounts for differences in covariate measurements. 
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for incomes and house values.  F-tests of the joint significance of   and s  cannot reject the null 

of no effect in Tables 3 and 4, although some of the specifications in the Appendix do yield joint 

significance.  Changing the treatment radius does little for the significance of the income results.  

In contrast to the previous literature, house value effects remain insignificant across the differing 

radii.15   

 The general lack of significance is confirmed in the alternative specifications presented in 

the Appendix.  While some of the coefficients in Tables A.1 and A.2 are significant, their signs 

are not intuitive (e.g. in model 8 in Tables A.1 and A.2, the turbine count coefficients are 

positive and significant while the capacity coefficients are negative and significant).  Varying the 

start and end dates generally does not affect the significance of the intensity coefficient 

estimates.  However, an additional mile of distance away from a wind farm between 2002 and 

2008 is associated with a 1.6% increase in incomes (Table A.3).  Additionally, the average effect 

on rents ( )r  is 0.065 and significant at the 5% level between 2004 and 2012 (Table A.6).  The 

marginal effect of an additional mile away from a wind farm is negative and significant, 

suggesting that proximity to a wind farm is associated with increased house values.   

 In the context of the theory outlined in Section 3, this implies that wind farms do not 

comprise a disamenity for households within five miles of the wind farm.16  That is, if the 

disamenity effect is significant, then either rents must fall or wages must rise, as depicted in 

Figure 3.  As an alternative, the same theory predicts that gains to local productivity due to wind 

                                                           
15 Estimates with different treatment group radii are not reported due to confidentiality requirements.  However, the 
marginal effects of capacity and turbine count become positive and significant for houses within 1 mile of a wind 
farm.  While it is possible that larger wind farms bid up local rents through the capitalization of energy royalties, the 
lack of significant income effects suggests over the same area suggests that this could be due to sampling variation.   

16 This does not rule out the possibility that households located immediately adjacent to (or within the boundaries of) 
wind farms are compensated for exposure, but the effect size may be too small to matter over a wider area.   
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farm placement will shift the iso-cost curve to the right in Figure 3, leading to increased wages 

and rents.  If the disamenity effect is great enough to counter the productivity effect, workers will 

bid rents down as firms bid them up, and wages still rise.17   

 The income increases documented in the literature at wider geographic scales (e.g. at the 

county level) do not appear here.  For example, Brown, et al (2012) examine data at the county 

level, finding an implied benefit of approximately $11,000 per additional megawatt per capita 

over an eight-year span (i.e. $1,375 per year) attributable to wind energy throughout the United 

States.18  This prompts the question of how county-level gains have occurred when households 

located nearby large wind farms do not appear to benefit directly over a similar timeframe.  One 

possibility is that few energy royalty recipients reside close to the source of their royalties, or 

that royalty payments are concentrated among a small number of landowners (as reported in 

Weber, et al (2013)).  Alternatively, economic development in wind-heavy regions may be tied 

to agricultural indicators; the study period considered by Brown, et al (2012) includes years in 

which agricultural commodity prices were unusually high.  While I also include data from these 

years, my data are at the household level, so I am able to observe within-county income 

variation.  It is possible that regions with higher wind resource potential also host productive 

farmland, making incomes susceptible to agricultural commodity price changes.  If there is 

unobserved heterogeneity that is correlated with county-level wind resource potential, I have 

accounted for it with the county fixed effect c .   

 

                                                           
17 Even in the case that wind farms are a negative local productivity shock, the wage effect is ambiguous, but rents 
must fall. 

18 This finding would require an additional megawatt per resident; at the mean county population of 45,200 in the 
data used by Brown, et al (2012), this implies that the $11,000 per megawatt per capita translates to $11,000 for 
45,200 additional megawatts of installed capacity, or approximately $0.24 over eight years per individual megawatt. 
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6 – Conclusion 

 I estimate the external net benefits of wind farm location by examining income and house 

value growth in rural Iowa.  I use data at the address level, allowing me to difference out 

unobserved household-specific characteristics that may affect growth in both outcomes, and I 

account for local market activity with county fixed effects.  My data are more detailed than 

others in the literature, and my estimation strategy allows me to distinguish the effect of wind 

farm placement from other local drivers of economic activity.   

 My results indicate that the external net benefits of wind farm placement are not different 

from zero.  Neither incomes nor house values vary significantly with wind farm exposure.  This 

result stands in contrast to results documented in the existing literature, which has found negative 

house value impacts and positive effects on income.  I attribute this to the difference in 

geographic scales between the present study and others.  For example, house value impacts have 

been shown to occur only within short distances of individual wind towers.  At the same time, 

income gains may be distributed over so wide an area that their influence is too small to measure 

without precise information regarding land ownership.   

 Future work will address several of the gaps in the present analysis.  For example, it 

remains unknown whether agricultural land capitalizes the disamenities of wind farm exposure 

as part of an option value.  That is, if agricultural land were converted to residential use, would 

the disamenities of life near a wind farm be capitalized?  Given the sparse population densities in 

areas with large wind farms, research into this question might provide an alternative to assessors’ 

data in measuring cost-of-living as outlined in the theoretical framework.  Additionally, assessed 

house values may reflect long-run trends in real estate prices, but do not necessarily represent an 

exact mutual valuation of a house and all its attributes as assumed in the traditional hedonic 
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framework; this can possibly bias the marginal effect estimates toward zero.  Expansions of this 

research will use parcel-level transactions for residential, rural and agricultural land to address 

both of these shortcomings.   
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Figures and Tables 
 

 

Figure 1: a map of Iowa's wind resource potential 
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Figure 2: Cumulative wind power capacity installed in Iowa, 1992 to 2012 
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Figure 3: Local wage and rent differential when wind farm exposure is a disamenity 
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Figure 4: Iowa wind turbine counts by county 
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Table 1: Summary statistics – Income dataset 

Year Treatment group Variable Mean Std Dev 10th Pctl† 90th Pctl† Observations 

2002:        
 Control Household Income $42,471.73 33844.3 $12,800.00 $75,800.00 152 

 
 

Distance (miles) 10.477 4.138 5.653 16.491 152 

 
 

Duration (Years) 0 0 0 0 152 

 
 

Capacity (100 MW) 0 0 0 0 152 

 
 

Turbines (100 count) 0 0 0 0 152 

 
       

 Treated by 2012 Household Income $49,804.51 33995.77 $17,800.00 $79,200.00 267 

 
 

Distance (miles) 2.418 1.447 0.405 4.156 267 

 
 

Duration (Years) 0 0 0 0 267 

 
 

Capacity (100 MW) 0 0 0 0 267 

 
 

Turbines (100 count) 0 0 0 0 267 

 
       

2012:        

 Control Household Income $123,158.68 348059.87 $16,600.00 $220,800.00 152 

 
 

Distance (miles) 10.480 4.144 5.653 16.491 152 

 
 

Duration (Years) 0 0 0 0 152 

 
 

Capacity (100 MW) 0 0 0 0 152 

 
 

Turbines (100 count) 0 0 0 0 152 

 
       

 Treated by 2012 Household Income $94,352.11 196041.74 $19,243.00 $169,775.00 267 

 
 

Distance (miles) 2.418 1.447 0.405 4.156 267 

 
 

Duration (Years) 3.873 2.607 0 7 267 

 
 

Capacity (100 MW) 0.915 0.624 0.016 1.5 267 

    Turbines (100 count) 0.592 0.431 0 1 267 
†Observations censored by rounding 
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Table 2: Summary statistics – House values dataset 

Year Treatment group Variable Mean Std Dev 10th Pctl 90th Pctl Observations 
2002:        
 Control House value $58,508.02 40,249.27 $12,840.00 $111,780.00 91 

  Distance (miles) 8.068 5.904 5.526 10.24 91 

  Duration (years) 0 0 0 0 91 

  Capacity (100 MW) 0 0 0 0 91 

  Turbines (100 count) 0 0 0 0 91 

        
 Treated by 2012 House value $98,246.57 44,649.23 $50,609.00 $155,115.00 968 

  Distance (miles) 2.93 1.251 0.758 4.107 968 

  Duration (years) 0 0 0 0 968 

  Capacity (100 MW) 0 0 0 0 968 

  Turbines (100 count) 0 0 0 0 968 

        
2012:        
 Control House value $96,279.23 77,882.24 $26,110.00 $164,290.00 91 

  Distance (miles) 8.068 5.904 5.526 10.24 91 

  Duration (years) 0 0 0 0 91 

  Capacity (100 MW) 0 0 0 0 91 

  Turbines (100 count) 0 0 0 0 91 

        
 Treated by 2012 House value $121,480.24 56,624.22 $60,085.00 $193,650.00 968 

  Distance (miles) 2.93 1.251 0.758 4.107 968 

  Duration (years) 2.99 2.452 0 7 968 

  Capacity (100 MW) 0.895 0.709 0.016 1.5 968 
    Turbines (100 count) 0.603 0.468 0.01 1 968 
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Table 3: Income growth, 2002 to 2012 

 Dependent variable: change in log income 
Parameter (1) (2) (3) (4) (5) 

      
Treated by 2012 ( )w  -0.084 -0.003 -0.025 0.03 -0.023 

 (0.135) (0.175) (0.164) (0.159) (0.157) 

      
Distance (miles) ( )w

dist   0.015    
  (0.022)    
      
Duration (years) ( )w

dur    -0.017   
   (0.027)   
      
Capacity (100 MW) ( )w

cap  
   -0.131  

    (0.086)  
      
Turbines (100 count) ( )w

turb      -0.123 

     (0.131) 

      
Joint effect: - 0.033 -0.09 -0.089 -0.095 
Joint significance: No No No No No 
County FE: Yes Yes Yes Yes Yes 
Observations 419 419 419 419 419 
R2 0.1041 0.1055 0.1049 0.1075 0.1055 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table 4: House value regressions, 2002 2012 

 Dependent variable: change in log house value 

Parameter (1) (2) (3) (4) (5) 

      
Treated by 2012 ( )r  -0.066 -0.120* -0.03 -0.056 -0.057 

 (0.052) (0.070) (0.058) (0.052) (0.053) 

      
Distance (miles) ( )r

dist   -0.009    
  (0.007)    
      
Duration (years) ( )r

dur    -0.005   
   (0.004)   
      
Capacity (100 MW) ( )r

cap  
   -0.008  

    (0.010)  
      
Turbines (100 count) ( )r

turb      -0.011 

     (0.015) 

      
Joint effect: - -0.146 -0.044 -0.063 -0.063 
Joint significance: No No No No No 
County FE: Yes Yes Yes Yes Yes 
Observations 1,059 1,059 1,059 1,059 1,059 
R2 0.183 0.188 0.184 0.184 0.184 

Note: *p<0.1; **p<0.05; ***p<0.01 
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APPENDIX: ADDITIONAL TABLES 
 
 In additional specifications, capacity and turbine count become significant only when both are 

included (see model 8 in Tables A.1 and A.2).  Effect sizes and signs are similar for both income growth 

and house value growth.  Capacity coefficients are negative, implying a 1.4% income decrease and a 

0.84% house value decrease per megawatt.  Applying these growth rate differences to base-year control-

group averages yields an income difference of $595 per megawatt and a house value difference of $491 

per megawatt.  Turbine results are similar.  Using control-group incomes, the estimated 2.1% income gain 

reported in Table A.1 is approximately equivalent to $892 per additional turbine.  House value differences 

are similar—using the base-year control-group house values, the 1.4% house value gain is equivalent to 

$819 per turbine.  House values also grow more slowly within 5 miles of a wind farm, although the 

implied loss of 0.0034% (approximately $2, using control-group base-year house values) per year is not 

economically significant.   

 Use of alternative endpoint years also has little effect on growth rates (see Tables A.3 – A.6).  

While the 2002-2008 growth estimations reported in Tables A.3 and A.4 use the same data as the 

estimations presented in Chapter 2, the 2004-2012 growth estimations use an expanded dataset that 

overlaps substantially with the original data.  In particular, a larger number of house value observations 

are available beginning in 2004, and sampling variation in tax filers led to a greater number of data points 

between 2004 and 2012.  While treatment intensity measures are not significant in Table A.5, the 

treatment effect w  is significant, implying a loss of 30% relative to control group income growth.  

House value growth over the same period is negatively related to distance, implying that treated houses 

lose 7% in house value growth per additional mile away from a wind farm.  Duration of exposure is also 

negative and significant; growth of treated houses is 2% lower per additional year of exposure.   
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Table A.1: Income growth, 2002 to 2012 (additional specifications) 

 
Dependent variable: change in log 

income 
Parameter (6) (7) (8) 

    

Treated by 2012 ( )w  0.023 -0.016 0.295 

 (0.165) (0.166) (0.183) 

    
Duration (years) ( )w

dur  0.004 -0.004 -0.055 

 (0.035) (0.037) (0.039) 

    
Capacity (100 MW) ( )w

cap  -0.14  -1.395*** 

 (0.114)  (0.452) 

    
Turbines (100 count) ( )w

turb   -0.109 2.091*** 

  (0.183) (0.716) 

    
Joint effect: -0.089 -0.095 0.043 
Joint significance: No No 10% 
County FE: Yes Yes Yes 
Observations 419 419 419 
R2 0.1075 0.1055 0.1193 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table A.2: House value growth, 2002 to 2012 (additional specifications) 

 
Dependent variable: change in log house 

value 

Parameter (6) (7) (8) 

    

Treated by 2012( )r  -0.007 0.001 0.039 

 (0.061) (0.061) (0.054) 

    
Duration (years) ( )r

dur  -0.011 -0.013 -0.034*** 

 (0.011) (0.012) (0.013) 

    
Capacity (100 MW) ( )r

cap  0.017  -0.896*** 

 (0.031)  (0.238) 

    
Turbines (100 count) ( )r

turb   0.036 1.465*** 

  (0.048) (0.402) 

    
Joint effect: -0.024 -0.016 0.018 
Joint significance: No No 5% 
County FE: Yes Yes Yes 
Observations 1,059 1,059 1,059 
R2 0.185 0.185 0.191 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Table A.3: Income growth, 2002 to 2008 

 Dependent variable: change in log income 
Parameter (1) (2) (3) (4) (5) (6) (7) (8) 

         
Treated by 2008 2008( )w  -0.08 -0.051 -0.02 0.039 -0.018 0.218 -0.015 12683*** 

 (0.081) (0.083) (0.088) (0.19) (0.083) (0.222) (0.089) (0.425) 

         
Distance (miles) ( )w

dist   0.016*       
  (0.009)       
         
Duration (years) ( )w

dur    -0.043   -0.065 -0.003 -0.037 

   (0.037)   (0.041) (0.045) (0.098) 

         
Capacity (100 MW) ( )w

cap  
   -0.097  -0.171  -0.104 

    (0.129)  (0.139)  (0.29) 

         
Turbines (100 count) ( )w

turb      -0.318  -0.309 -0.15 

     (0.196)  (0.239) (0.508) 

         
Joint significance: No No No No 10% No No No 
County FE: Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 419 419 419 419 419 419 419 419 
R2 0.1103 0.1152 0.1128 0.1117 0.1165 0.1167 0.1165 0.1169 
Note: *p<0.1; **p<0.05; ***p<0.01 
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Table A.4: House value growth, 2002 to 2008 

 Dependent variable: change in log house value 
Parameter (1) (2) (3) (4) (5) (6) (7) (8) 

         
Treated by 2008 2008( )r  0.021 0.016 0.028 0.058 0.06 0.085** 0.089** 0.053 

 (0.022) (0.021) (0.024) (0.041) (0.049) (0.041) (0.045) (0.081) 

         
Distance (miles) ( )r

dist   -0.005       
  (0.005)       
         
Duration (years) ( )r

dur    -0.013   -0.016 -0.016 -0.016 

   (0.012)   (0.010) (0.010) (0.010) 

         
Capacity (100 MW) ( )r

cap  
   -0.026  -0.038*  -0.205 

    (0.025)  (0.023)  (0.301) 

         
Turbines (100 count) ( )r

turb      -0.041  -0.062 0.282 

     (0.046)  (0.040) (0.523) 

         
Joint significance: 10% No 10% No No 10% 10% No 
County FE: Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 1,059 1,059 1,059 1,059 1,059 1,059 1,059 1,059 
R2 0.066 0.068 0.067 0.066 0.066 0.069 0.069 0.069 

Note: *p<0.1;**p<0.05;***p<0.01 
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Table A.5: Income growth, 2004 to 2012 

 Dependent variable: change in log income 
Parameter: (1) (2) (3) (4) (5) (6) (7) (8) 

         

Treated by 2008 ( )w  -0.308** -0.209 -0.321* -0.313* -0.331** -0.321* -0.3* 0.088 

 (0.156) (0.18796) (0.17813) (0.16877) (0.16523) (0.17806) (0.18088) (0.2132) 

         
Distance (miles) ( )w

dist   0.017       
  (0.01974)       
         
Duration (years) ( )w

dur    0.004   0.005 -0.018 -0.11* 

   (0.03193)   (0.04911) (0.05606) (0.06657) 

         
Capacity (100 MW) ( )w

cap  
   0.007  -0.002  -1.441*** 

    (0.08157)  (0.1287)  (0.46927) 

         
Turbines (100 count) ( )w

turb      0.066  0.126 2.542*** 

     (0.12245)  (0.21846) (0.83056) 

         
Joint significance: 5% No 10% 10% No 10% No 10% 
County FE: Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 448 448 448 448 448 448 448 448 
R2 0.0624 0.0644 0.0625 0.0624 0.0629 0.0625 0.0631 0.0764 
Note: *p<0.1; **p<0.05; ***p<0.01 
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Table A.6: House value growth, 2004 2012 

 Dependent variable: change in log house value 
Parameter (1) (2) (3) (4) (5) (6) (7) (8) 

         

Treated by 2008( )r  0.065** 0.159*** 0.157*** 0.106* 0.115** 0.187*** 0.187*** 0.183*** 

 (0.026) (0.047) (0.054) (0.056) (0.057) (0.066) (0.067) (0.067) 

         
Distance (miles) ( )r

dist   -0.071***       
  (0.027)       
         
Duration (years) ( )r

dur    -0.023**   -0.022* -0.022* -0.023 

   (0.011)   (0.012) (0.012) (0.017) 

         
Capacity (100 MW) ( )r

cap  
   -0.03  -0.023  -0.086 

    (0.040)  (0.034)  (0.569) 

         
Turbines (100 count) ( )r

turb      -0.054  -0.036 0.102 

     (0.061)  (0.056) (0.933) 

         
Joint significance: 5% 1% 5% 5% 5% 10% 10% 10% 
County FE: Yes Yes Yes Yes Yes Yes Yes Yes 
Observations 1,824 1,824 1,824 1,824 1,824 1,824 1,824 1,824 
R2 0.098 0.104 0.1 0.098 0.098 0.1 0.1 0.1 
Note: *p<0.1; **p<0.05; ***p<0.01.  Table A.6 presents estimates of the house value specifications of Equation (6) using data from 2004 to 
2012.  Due to variation in electronic recordkeeping by county assessors, additional observations are available during this time period—the 
estimates in Table A.6 use this expanded data set.  Marginal results are similar when the data set is restricted to the set of overlapping addresses 
from the 2002 base year, but joint significance is lost for most of the specifications under this restriction. 

 


