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Abstract

Banks as informed intermediaries have information about their borrowers to make efficient

liquidation versus restructuring decisions for distressed loans, but their information also creates

an adverse selection problem when they seek financing from uninformed investors. We demonstrate

that a bank with high-quality loans faces incentives to distort its resolution policy in order to

improve allocative efficiency and to signal information about loan quality, with the direction of

the distortion depending on whether the security issued to uninformed investors is concave or

convex. We find that the bank’s equilibrium resolution policy is biased towards liquidation when

it optimally designs and sells a debt (concave) security to raise financing. Regulations aimed at

promoting ex post efficient liquidation may increase banks’ financing costs and discourage their

screening effort, thereby reducing welfare. (JEL: D8, G21, G23, G24)
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1 Introduction

The recent financial crisis has put the resolution of borrowers’ financial distress back to the

spotlight. For example, the amount of public company assets entering Chapter 11 bankruptcy

protection during the two-year period of 2008-09 were almost 20 times more than during the

previous two year, with over $3.5 trillion of corporate debt in distress or in default at one point.1

Households were severely impacted too, with over 14 million U.S. properties with foreclosure

filings from 2008 to 2014.2 Anecdotal reports and recent empirical research, in particular on

securitised mortgages, have argued that the resolution of financial distress might be inefficient.3

Inefficient resolution of borrowers’ financial distress can arise if there are information frictions

between lenders and borrowers.4 Theories of financial intermediation have proposed that banks

emerge as delegated information producers, who can achieve efficient resolution of borrowers’

financial distress thanks to their ability and incentives to acquire borrower-specific, ‘soft’ information

(e.g. Berlin and Loeys (1988), Rajan (1992), Chemmanur and Fulghieri (1994) and Bolton and

Freixas (2000)).5 Yet, banks’ information about their loans creates an adverse selection problem

when they need to raise funds from uninformed investors (e.g. Winton (2003) and DeMarzo

(2005)). Indeed, banks routinely need funds to finance borrowers and to comply with regulatory

requirements. In this paper we investigate banks’ incentives to efficiently resolve borrowers’

financial distress in the presence of adverse selection friction in banks’ funding.

We present a model in which an informed bank determines the resolution policy for its

loans in case of borrowers’ financial distress, and raises funds from uninformed investors by

selling a security backed by the loans.6 We show that, depending on the security design, a bank

may face incentives to distort its resolution policy in order to improve allocative efficiency and

to signal information about its loan quality. In equilibrium, a bank with high-quality loans

adopts a resolution policy biased towards liquidation (as opposed to restructuring), when the

bank endogenously designs and sells a debt security. Our results suggest that policies aimed at

1Source: Gilson (2012)
2Source: RealtyTrac (2015).
3Related empirics are discussed in the empirical implications part in the introduction.
4The information frictions between lenders and borrowers and the associated inefficiency in the resolution

of borrower financial distress can be found in Haugen and Senbet (1978), Giammarino (1989), Gertner and
Scharfstein (1991), Repullo and Suarez (1998) and Wang et al. (2002).

5Leland and Pyle (1977) and Diamond (1984) first point out that a bank would emerge endogenously as
delegated information producer to economise on investment in information.

6Begley and Purnanandam (2017) and Balasubramanyan et al. (2017) provide direct evidence that banks
use their private information about loan quality when designing the securities in mortgage securitisation and in
syndicated loan market respectively.
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promoting efficient liquidation of distressed loans ex post may ex ante hinder banks’ ability to

obtain funding and disincentivise banks’ screening effort, hence reducing welfare.

Model preview. The bank has a continuum of ex ante identical assets (a “pool” of loans).

Upon realisation of an aggregate shock (the bad state), some borrowers enter into financial

distress – “default”. The bank’s resolution policy determines whether a distressed loan is

liquidated or restructured. Liquidation of a distressed loan delivers a safe cash flow, whereas

restructuring a loan may result in a higher (lower) cash flow if the borrower recovers (re-defaults),

depending on the realisation of a future aggregate shock. The efficient resolution policy is to

liquidate all delinquent loans that have a higher liquidation value than the expected recovery

value, and restructure the rest.

To meet its funding needs, the bank designs and sells a security backed by the cash flow from

the loan pool to uninformed investors (as in DeMarzo (2005)), and chooses the resolution policy

for the loans. A key friction in our model is that investors do not have access to the information

the bank has on its loans, particularly regarding the default probability of its borrowers. Clearly,

if information is symmetric, the bank should choose the efficient resolution policy and reap the

full value of the assets immediately by simply selling a pass-through security to investors. In

other words, if the market for funds is frictionless, financing is irrelevant for the bank’s resolution

policy.

Results preview. We show that adverse selection problem at the bank’s financing stage could

cause the bank with high-quality, less distress-prone loans (the high type) to optimally biase its

resolution policy for its borrowers towards liquidation, when it endogenously designs and sells

a debt security to uninformed investors. In line with the literature on security design, debt is

the optimal security to raise financing from uninformed investors because it is least sensitive to

the private information held by the bank.7,8

7 Equivalently, the bank optimally signals the quality of its assets to investors via costly retention of the
residual equity claim. The notion of debt as the optimal security due to its information insensitivity dates back
to the Pecking Order Theory in Myers and Majluf (1984). DeMarzo et al. (2015) shows that in an ex-post
liquidity-based security design game like ours, standard debt is the least information sensitive and thus the
optimal monotone security when the cash flow satisfies Hazard Rate Ordering (HRO) property. See also Chemla
and Hennessy (2014) and Vanasco (2016) for recent theoretical works with costly retention of the equity tranche
as signals. Empirically, Begley and Purnanandam (2017) find that conditional on observable characteristics,
RMBS deals with larger equity tranche have lower delinquency rate and command higher prices, suggesting that
information asymmetry is relevant and the signalling mechanism is at play.

8As also discussed in Begley and Purnanandam (2017), even if the bank sells off the equity tranche at a later
date, the initial retention of the equity tranche could still be a costly signal because i) the opportunity cost of
the locked-up capital could still be significant in a high-growth market and ii) the equity tranches in practice are
often sold to sophisticated and informed investors like hedge funds and mutual fund managers, who are likely to
have stronger bargaining power and/or scarcer capital than uninformed senior tranche investors.
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The bank distorts its resolution policy towards liquidation for two reasons, namely to

improve allocative efficiency and to signal the quality of its loans. In equilibrium, the bank’s

payoff is comprised of the proceeds from selling the optimal debt security and the expected

value of the retained claim. A key observation is that biasing the resolution policy towards

liquidation reduces the riskiness of the cash flow from the loan pool by reducing the loan pool’s

exposure to borrowers’ re-default risks. On the one hand, this increases the expected value of

the optimal debt, a concave security, by Jensen’s inequality, resulting in greater gains from trade

between the bank and the investors and thus greater allocative efficiency. On the other hand, a

resolution policy with a liquidation bias could serve as a costly signal because it reduces the value

of the bank’s retained , convex, claim and crucially, more so for the bank with lower-quality,

more-distress-prone loans. We find that the liquidation bias in the equilibrium resolution policy

is greater when information asymmetry is more severe and is increasing in the quality of the

loans. Interestingly, different from the results of canonical security design models, banks with

higher-quality loans may not retain more of the loans’ cash flow in equilibrium, because the

resolution policy could emerge as the more efficient signal.

To highlight the relationship between security design and the resolution policy in our model,

we can generalise the above intuition to any security. A distortion in the bank’s resolution policy

towards liquidation (restructuring) is optimal if the security issued is concave (convex) in the

cash flow in the bad state in which the loans become distressed, through both the allocative

efficiency channel and the signalling channel. Our analysis thus reveals that, the direction of

the distortion in the resolution policy depends on the security issued in equilibrium. We believe

the insights of the model is general and can be applied to other economic settings.

Extension and Policy. We extend the model to allow the bank to ex ante exert screening

effort at loan origination to increase the likelihood of creating a high-quality loan pool. We

find that adverse selection in the bank’s funding discourages the bank from screening diligently

because part of the gains from having a high-quality pool is lost to costly retention. Nonetheless,

a resolution policy biased towards liquidation mitigates such inefficiency and in turn restores

some of the weakened screening incentives.

The main policy implication from our results is a cautionary one in the Lucas’ critique

fashion: policies aimed at promoting ex post efficient resolution of distressed loans, such as the

Home Affordable Modification Program (HAMP) for mortgages, could inadvertently reduce the

bank’s incentive to screen loans diligently, leading to lower average asset quality and overall
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welfare.9 The analysis suggests that, while policies mitigating liquidations might be warranted

due to some negative externalities not considered in our model, policy makers should take into

account their potential effects on loan origination and on banks’ ability to obtain financing.

Empirical implications. Our model generates novel empirical predictions. Our main result

predicts an average liquidation bias in banks’ resolution policy, consistent with Maturana

(2017).10 To the extent that banks rely on mortgage servicers to carry out the resolution of

borrowers’ financial distress, our model is consistent with the evidence that mortgage servicers

have biased incentives towards liquidation (Thompson (2009), Kruger (2016)). Moreover, after

controlling for observable loan pool characteristics, the liquidation bias in banks’ resolution

policy and the associated loan losses should be larger for banks with higher-quality loans.11

Finally, because banks signal quality through a combination of security design and a liquidation

bias in the resolution policy, the size of retention may be non-monotonic in the quality of the

loans. This can reconcile the empirical literature that tests retention as a signal of quality and

finds mixed results.12

Contribution to the literature. To our best knowledge, this paper is the first to study the

role played by banks’ resolution policy of their borrowers in mitigating the adverse selection

friction in banks’ financing. Our results suggest that while information asymmetry regarding

asset quality increases banks’ funding costs and undermines their screening incentives, a distorted

resolution policy could alleviate some of these inefficiencies. Our paper therefore complements

the analysis of one of the fundamental roles of banks as delegated information producers to

achieve efficient monitoring (Diamond (1984)) and resolution of borrowers’ financial distress

(Berlin and Loeys (1988), Chemmanur and Fulghieri (1994) and Bolton and Freixas (2000)), by

acknowledging their limits due to adverse selection frictions in banks’ financing.13

9In the aftermath of the subprime mortgage crisis, the U.S. experienced a large number of delinquencies and
foreclosure filings. In response, the U.S. government developed the HAMP to incentivise mortgage modification
instead of foreclosure, by providing direct one-off and annual monetary incentives to mortgage servicers for each
successfully modified delinquent mortgage. For a detailed description and an empirical evaluation of HAMP, see
Agarwal et al. (2012a).

10Maturana (2017) shows that in the context of securitised mortgages, the marginal returns of liquidation
exceeds that of restructuring, suggesting that the associated loan loss could have been smaller if there were fewer
liquidations.

11Testing signalling models is challenging due to the unobservable nature of private information. Recent studies
like Begley and Purnanandam (2017) has proxied the ex ante unobservable pool quality with ex post abnormal
default rate. Our cross-sectional prediction about the resolution policy can be tested using similar methodology.

12Garmaise and Moskowitz (2004) and Agarwal et al. (2012b) fail to find strong evidence of retention as a signal
of quality, while Begley and Purnanandam (2017) find consistent evidence in the residential mortgage-backed
securities market.

13Rajan (1992) highlights another dark side of having an informed lender that the lender cannot commit not
to extract rent from the borrower with its private information by threatening to liquidate the firm.
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Some important elements of our paper can be found in Winton (2003). Winton also observes

that a bank’s private information regarding its loans enables efficient resolution but also increase

its funding costs due to adverse selection. The focus of Winton, however, is different from ours.

We study the bank’s optimal funding structure and show that the bank adopts a distorted

resolution policy in order to reduce its funding cost, whereas Winton assumes that the bank

issues equity and instead emphasises that the bank should hold the borrowers’ debt to reduce

its funding cost.

Our paper extends the canonical liquidity-based security design models, such as DeMarzo

(2005) and Biais and Mariotti (2005), by allowing the informed issuer to take actions that affect

the distribution of the underlying asset’s cash flow, specifically by choosing the resolution policy

of borrowers’ financial distress. While we also have debt as the optimal security thanks to its

relative information insensitivity, we contribute to this literature by showing that a distortion in

the bank’s resolution policy i) can further reduce the optimal security’s information sensitivity

and ii) may substitute retention as a signal of quality.

In terms of application, our paper contributes to the burgeoning literature on the interaction

between the financing problem of banks and banks’ roles as informed intermediaries. Chemla

and Hennessy (2014) and Vanasco (2016) explore the trade-off between secondary market

liquidity and the incentive to originate good assets. While the result that the adverse selection

problem in banks’ financing reduces banks’ screening incentive is also present in our paper, in

addition, we show that banks’ optimal resolution policy is distorted from the efficient benchmark

to mitigate such adverse selection problem.

Roadmap. The rest of the paper is organised as follows. Section 2 describes the model setup.

Section 3 carries out the main analysis of the equilibrium with an endogenous resolution policy.

Section 4 extends the model to consider ex ante screening incentives of the bank. Section 5

shows that our results are robust in a general model with multiple types. Section 6 concludes.14

2 Model setup

There are three dates in the baseline model: t = 1, 2 and 3.15 The model’s participants consist

of a bank who owns a continuum of loans and competitive outside investors. All agents are risk

neutral. The bank has a discount factor δ < 1 between t = 1 and t = 3. Outside investors are

14The Internet Appendix associated with the paper can be found at https://goo.gl/AgSTGy
15We extend the model to a loan-origination stage t = 0 in Section 4.
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deep-pocketed and have a discount factor equal to 1. Hence, there are gains from trade between

the bank and the investors. This follows the assumption of DeMarzo and Duffie (1999) and can

be interpreted as the bank’s funding needs.16

Loan pool and borrowers’ financial distress

The bank owns a loan pool containing a continuum of ex ante identical loans that pay off at

t = 3. We model the loan pool as a well-diversified portfolio of loans. The loan pool is thus only

exposed to aggregate risks, which affect the ability for all borrowers to repay.17 Specifically,

with probability π, the loan pool is in the good state (G) at t = 2 and no borrowers default.

In the good state, each loan returns a riskless cash flow Z > 0 at t = 3. With probability

1− π, the loan pool is in the bad state (B) at t = 2 and each borrower defaults with some i.i.d.

probability d. Thanks to the diversification benefit, the proportion of the loans that become

distressed at t = 2 is also d. The remaining performing loans continue to return a riskless cash

flow (1− d)Z at t = 3.

When a fraction d of the loans become distressed in the bad state at t = 2, the bank can

choose to liquidate a fraction λ of the distressed loans and restructure the remaining fraction

1− λ. We will henceforth refer to λ ∈ [0, 1] as the bank’s resolution policy. If a distressed loan

is liquidated, the loan is terminated and the collateral asset is sold to outside investors. Let

L(λ) denote the total liquidation proceeds. Alternatively, if a distressed loan is restructured,

the restructured loan pays off a cash flow X > 0 with probability θ at t = 3 (recovery)

or zero otherwise (re-default). For simplicity, we assume that the recovery (and re-default)

of restructured loans in a given pool are perfectly correlated. This is also in line with the

assumption of a well-diversified loan pool so that only aggregate risks affect the repayment of

the borrowers. Finally, we assume that X ≤ Z, so that the payoff of a loan in the good state

is at least as high as in a bad state, even if the loan is restructured and resumes payment.

Intuitively, the difference may account for the value of the temporary missing payments and

the reduced repayments after restructuring.

The exact functional form of the total liquidation proceeds L(λ) depends on characteristics

of the loans as well as the direct and indirect costs associated with liquidation. We abstract

16Modelling gains from trade as a discount factor δ < 1 is standard in the literature to capture liquidity needs
stemming from, e.g., capital constraints, new investment opportunities, risk-sharing, etc. (see Holmström and
Tirole (2011)).

17Such aggregate risks can be aggregate property prices or employment opportunities for the borrowers.

7



from these considerations to keep the analysis general and make the following assumption on

the liquidation technology.

Assumption 1. For λ ∈ [0, 1], (i) ∂ L(λ)
∂λ > 0 > ∂2 L(λ)

∂λ2
and (ii) limλ→0−

∂ L(λ)
∂λ > θX >

limλ→1+
∂ L(λ)
∂λ .

Part (i) of Assumption 1 states that the total liquidation proceeds increases at a decreasing

rate in the fraction of loans liquidated. Part (ii) of Assumption 1 implies that the efficient

resolution policy that maximises the expected value of distressed loans involves some liquidations

and some restructuring. Intuitively, Assumption 1 is satisfied if the distressed loans have

heterogeneous liquidation values (with those with highest liquidation values liquidated first),

which in turn could be motivated by heterogeneity in collateral values of the distressed loans or in

the costs associated liquidation.18 Heterogeneity in restructuring proceeds could be introduced

but does not bring any additional insights.

The loan pool’s exposure to aggregate risks is characterised by the probability of entering

state G. This probability π ∈ {πH , πL}, where πH > πL, is loan-pool specific and is the source of

information asymmetry between the bank and outside investors, as detailed in the next section.

We interpret πi as the “quality” of the loan pool and thus the “type” of the bank (subscript

“H” stands for “High” and “L” for “Low”).19 The assumption that the delinquency rate of a

loan pool being the bank’s private information is in line with empirical studies such as Begley

and Purnanandam (2017).20 A high-quality pool is less exposed or more resilient to aggregate

risks and hence is more likely to have no distressed loan (be in the good state G). At t = 1, all

model participants have the prior belief that π = πH with probability γ.21 One interpretation

of γ is a publicly observable signal about the quality of the loans in the pool, e.g. the average

FICO scores of the borrowers in a loan pool. Therefore, a pool with higher γ is observably

better because it is more likely to be a high-quality pool.

To summarise, for a given resolution policy λ, the overall cash flow c from a type i loan pool

at t = 3 is given by c1 ≡ Z with probability πi (the “Good” state), c2(λ) ≡ (1− d)Z + d[L(λ) +

18A microfoundation of such a liquidation technology based on heterogeneous liquidation values is provided in
the Internet Appendix, where we show that it is indeed optimal for the bank to liquidate the distressed loans
with higher liquidation values first.

19We extend the baseline two-type model to a multiple-type one in Section 5.
20In addition, we could also allow the bank to have some private information on the recovery probability θ. It

complicates the analysis without much additional insights as in that case the first-best benchmark will depend
on types as well. For simplicity, we assume information about θ is symmetric.

21In Section 4 we endogenise this probability γ in the loan-origination stage t = 0 through the bank’s screening
effort choice.
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Figure 1: Loan pool cash flow for a given resolution policy λ

Z
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(No defaults)

(1− d)Z + dL(λ)+

Bad state

(Default occurs)

d(1− λ)X

(Recover state)

0
(Re-default state)

t = 2 t = 3

πi

1− πi

θ

1− θ

(1−λ)X] with probability (1−πi)θ (the “Recovery” state), and c3(λ) ≡ (1−d)Z+dL(λ) with

probability (1− πi)(1− θ) (the “Re-default” state), as illustrated in Figure 1.

Financing and security design

Because of the liquidity discount δ, at t = 1, the bank would like to raise cash today by selling

a security backed by the cash flow of the loan pool to outside investors. The bank receives the

cash proceeds from selling the security at t = 1, and retains any residual cash flow from the

loan pool after paying off the investors at t = 3.

We mentioned earlier that there is asymmetric information between the bank and the

investors. This creates a financing friction for the bank akin to the classical lemon’s problem

in Akerlof (1970). Specifically, at the beginning of t = 1, the bank receives private information

regarding the quality of the mortage pool πi ∈ {πH , πL}. This reflects the bank’s soft information

about its borrowers.

We model the financing stage as follows, similar to the ex-post security design problem in

DeMarzo (2005).22 After observing the private information πi, the bank chooses to offer outside

investors a security F and promises a resolution policy λ. The security Fi is contracted upon

the cash flow of the loan pool at t = 3, specifying a payment f(c) to investors for each realisation

of the cash flow c ∈ {c1, c2(λ), c3(λ)}. The security can be expressed as F = (f1, f2(c2), f3(c2)),

specifying the payments to investors given the cash flow realisation in the good, recovery and

22DeMarzo and Duffie (1999) solves the ex ante security design problem, whereas we solve for the ex post
security design problem after the banks learn about their private information. As shown by DeMarzo (2005) and
DeMarzo et al. (2015), similar intuition carries through in the ex post problem, although the problem becomes
more complicated as the design itself becomes a signal.
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Table 1: Payoffs of a generic security backed by the loan pool cash flow

Realisation of cash flow Security payoff F
c1 ≡ Z f1

c2(λ) ≡ (1− d)Z + dL(λ) + d(1− λ)X f2(c2(λ))
c3(λ) ≡ (1− d)Z + dL(λ) f3(c3(λ))

re-default state respectively. Table 1 summarises the possible realisations of the cash flow and

the corresponding payments specified by a security. We restrict our attention to monotone

securities subject to limited liability.23 The value of the security F backed by a loan pool of

quality i, given a resolution policy λ, is thus given by

pi(F , λ) = πif1 + (1− πi)[θf2(c2(λ)) + (1− θ)f3(c3(λ))] (1)

After observing the offer (F , λ), the competitive investors form a posterior belief π̂ regarding

the private information of the bank, and bid the price of the security p up to its fair value given

the belief, pπ̂(F , λ), defined analogously to Eq. 1. At t = 3, after paying investors according to

F from the loan pool cash flow, the bank consumes any residual cash flow.

Timeline and the equilibrium concept

The timeline of the model is summarised in Table 2. The main analysis of the baseline model

concerns only t = 1, 2 and 3. We extend the model to a loan-origination stage t = 0 in Section

4.

The equilibrium concept in this model is the perfect Bayesian equilibrium (PBE). Formally,

a PBE consists of a security Fi issued by the bank of each type i ∈ {H,L}, the resolution

policy λi of the bank of each type, and a system of beliefs such that i) the bank chooses the

security and the resolution policy at t = 1 to maximise its expected payoff, given the equilibrium

choices of the other agents and the equilibrium beliefs, and ii) the beliefs are rational given the

equilibrium choices of the agents and are formed using Bayes’ rule (whenever applicable). As

there can be multiple equilibria in games of asymmetric information, we invoke the Intuitive

23A monotone security satisfies that, a higher realisation of the loan pool cash flow should leave both the
outside investors and the bank a (weakly) higher payoff. Although this implies some loss of generality, it is not
uncommon in the security design literature, e.g. Innes (1990) and Nachman and Noe (1994). One potential
justification provided by DeMarzo and Duffie (1999) is that, the issuer has the incentive to contribute additional
funds to the assets if the security payoff is not increasing in the cash flow. Similarly, the issuers has the incentive
to abscond from the loan pool if the security leaves the issuer a payoff that is not increasing in the cash flow.
The full characterisation of a monotone security subject to limited liability is given in Appendix A.
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Table 2: Model timeline

t = 0 Bank exerts screening effort (Section 4 only)

t = 1 Bank observes πi and offers (Fi, λi)
Investors purchase the security Fi at price p

t = 2 Loan defaults occur in state B
Distressed loans are liquidated or restructured according to the resolution policy λi

t = 3 Loan pool cash flow is realised
Bank and investors are paid off

Criterion of Cho and Kreps (1987) to eliminate equilibria with unreasonable out-of-equilibrium

beliefs. This allows us to eliminate all but the least cost separating equilibrium (as shown in

Lemma 4).

Discussion of the framework

We adopt and extend the liquidity-based security design framework developed by DeMarzo

(2005) to study the joint optimisation problem of security design and the resolution of borrowers’

financial distress under asymmetric information. As we shall later illustrate, our mechanism

involves the retention of the residual equity claim as a signal of quality, the observability of the

bank’s resolution policy, and the bank’s ability to commit to an ex post inefficient resolution

policy. We believe our framework captures some realistic aspects of the securitisation market

and here we will discuss some of the crucial features.

On the evidence on equity tranche as a signal

As in DeMarzo (2005), the optimal security in our model is risky debt. In other words,

banks with high-quality loan pools signal information to investors through the retention of

the residual equity claim. The signalling mechanism is supported by empirical evidence in

the residential mortgage market.24 For example, Begley and Purnanandam (2017) find that,

conditional on observable characteristics, residential mortgage-backed securities (RMBS) deals

with larger equity tranches have lower delinquency rates and command higher prices, suggesting

that investors could and do learn from the equity tranche size.25

24See the discussion in footnote 7 for recent theoretical works featuring the same mechanism and for supporting
evidence in the RMBS market.

25While it is possible that in practice the retained tranche might be subsequently sold off in the secondary
market, the initial retention of the equity tranche could still signal information as long as there are substantial
(opportunity) costs associated with it. First, the delayed sale of the equity tranche could be costly to the banks
because it implies that some capital is locked-up and thus the banks have to forgo some profitable lending in the

11



On the observability of resolution policy and the bank’s ability to commit

In the model, the bank can commit to a resolution policy, which is observed by investors as

part of the signal. We argue that this is realistic. In the mortgage context for instance, banks

often delegate the resolution decisions of delinquent mortgages to third-party servicers. Banks

can effectively commit to a resolution policy through either the fine-tuning of incentives in the

servicers’ compensation contract or the choice of servicers with different liquidation capacity.

Empirical studies have shown that incentives and identity of servicers matter. Thompson (2009)

and Kruger (2016) have argued and documented that the compensation of servicers overall is

biased towards liquidation (foreclosure), whereas Agarwal et al. (2011), among others, have

shown that the identity of servicers has explanatary power for the liquidation probability of

delinquent mortgages. In practice, Moody’s, a rating agency, produces “Servicer Quality” (SQ)

rating which assesses RMBS and ABS servicers’ loss mitigation ability in case of delinquency in

securitisation (Moody’s (2016)). Therefore, by observing the servicers’ identity and compensation

structure listed in the prospectus of the deals, investors can infer the resolution policy indirectly

chosen by the issuing banks. In the Internet Appendix, we discuss these mechanisms in details

and formalise them as extensions of the model.

3 Security design and resolution policy

In this section we analyse our model of security design with endogenous resolution. We first

present the benchmark case under symmetric information, then establish the key properties of

the model, and finally proceed to characterise the equilibrium under asymmetric information.

3.1 First-best and the symmetric-information benchmark

In this section we first characterise the first-best resolution policy. We then analyse the

benchmark equilibrium under symmetric information and show that the first best is achieved

in the symmetric-information equilibrium.

loan market or investments in general. Second, due to the segmentation of markets for different ABS tranches,
the banks are also likely to be in a less advantageous position in the sale of equity tranche than those of the senior
tranche. In practice, the typical equity tranche investors are sophisticated investors like hedge fund with whom
the banks are likely to have a weaker bargaining position. For a detailed discussion, see Begley and Purnanandam
(2017).
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The first-best, efficient, resolution policy maximises the value of the loan pool Vi(λ).

λFBi = arg max
λ

Vi(λ) (2)

where Vi(λ) ≡ πiZ + (1− πi)[(1− d)Z + dL(λ) + d(1− λ)θX] (3)

The solution is characterised by the first order condition,
∂ L(λFBi )

∂λ = θX. That is, since the

marginal value obtained from liquidation is decreasing in the fraction of liquidated loans, the

first-best level of liquidation is determined such that the the margin value from liquidation

is equal to the expected recovery value given restructuring, conditional on the bad state (B).

Furthermore, as the H and L type loan pools only differ in the probability of entering state (B),

the first-best level of liquidation is identical across types. We therefore drop the type subscript

and denote the first-best resolution policy by λFB ∈ (0, 1).26

We now characterise the equilibrium under symmetric information. First consider the

optimal security issued at t = 1. Since any retention of the cash flow by the bank incurs a

discount, it is optimal for the bank to sell the entire cash flow of the loan pool to investors,

given that all securities are fairly priced under symmetric information. Second, given that

the entire cash flow is sold, the bank optimally adopts the first-best resolution policy λFB to

maximise the value of the loan pool and hence its payoff.

The following proposition summarises the symmetric-information benchmark results. All

proofs are in the Appendix.

Lemma 1. In the symmetric-information benchmark, the bank of both types sells the entire

cash flow of the loan pool, and chooses the first-best resolution policy λFB.

Denote henceforth the expected payoff to a type i bank in the symmetric-information

benchmark by UFBi ≡ Vi(λ
FB). We would like to stress the fact that the first-best resolution

policy is achieved in the symmetric-information benchmark equilibrium. Therefore, any distortion

in the equilibrium resolution policy in this paper is driven by information asymmetry between

the bank and the investors.

3.2 Security design and resolution policy: key properties

The main analysis of the paper focuses on how the bank’s private information affects its optimal

security design and resolution policy. Before turning to characterise the equilibrium under

26That λFB is strictly interior follows from Part (ii) of Assumption 1.
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asymmetric information, here we first highlight two key properties of the model that underlie

the relationship between the bank’s security design and resolution policy.

It is useful to write down the expected payoff of the bank for a given security design and

a given resolution policy. At t = 1, a bank with private information πi issues a security F

backed by the cash flow of the loan pool, and promises a resolution policy λ. Upon observing

the offer from the bank (F , λ), investors form a belief about the quality π̂ of the loan pool. Let

Ui(F , λ; π̂) denote the expected payoff to the bank, where

Ui(F , λ; π̂) = pπ̂(F , λ) + δ [Vi(λ)− pi(F , λ)] (4)

For a given (F , λ), the bank’s expected payoff consists of two parts. The first term of Eq.

4 is the proceeds from issuing the security pπ̂(F , λ), i.e. investors’ valuation of the security

given belief π̂. The second term of Eq. 4 is the bank’s own valuation of the retained cash

flow δ [Vi(λ)− pi(F , λ)], which is equal to the expected value of the loan pool less the expected

value of the security sold, given the bank’s private information πi and its liquidity discount δ.

pi(F , λ) is given by Eq. 1 and pπ̂(F , λ) is defined analogously.

The first key property of the model, presented in the following lemma, shows that security

design directly affects the bank’s choice of resolution policy, even when information is symmetric,

that is when π̂ = πi. Denote by λ̂i(F) = arg maxλ Ui(F , λ;πi) the optimal resolution policy for

the type i bank for a given monotone security F .

Lemma 2 (Directional distortion to improve allocative efficiency).

λ̂i(F) = λ̂(F)


> λFB, if f ′3(c3(λ)) ≥ f ′2(c2(λ)) for all λ and f ′3(c3(λFB)) > f ′2(c2(λFB))

< λFB, if f ′3(c3(λ)) ≤ f ′2(c2(λ)) for all λ and f ′3(c3(λFB)) < f ′2(c2(λFB))

= λFB, if f ′3(c3(λ)) = f ′2(c2(λ)) for all λ.

Note the distortion only depends on the security F but not bank type i.

When a security’s cash flow is more sensitive to the loan pool’s cash flow in the re-default

state than that in the recovery state, i.e. f ′3(c3(λ)) ≥ f ′2(c2(λ)) for all λ, we loosely refer to

it as “concave” in the underlying loan pool’s cash flow in the bad state. Similarly, a security

is “convex” if f ′3(c3(λ)) ≤ f ′2(c2(λ)) for all λ. This lemma implies that even in the absence

of information frictions, the bank prefers to distort its resolution policy towards liquidation
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(restructuring) if it issues a security that is concave (convex) in the bad state. To see this, when

information is symmetric, pπ̂(F , λ) = pi(F , λ) and the bank’s expected payoff becomes

Ui(F , λ;πi) = δVi(λ) + (1− δ)pi(F , λ) (5)

The bank’s expected payoff consists of the discounted value of the pool Vi(λ), and the gains from

trade by selling a security F fairly priced at pi(F , λ). Suppose the security is concave in the

underlying cash flow in the bad state and consider a marginal distortion in the resolution policy

towards liquidation from the efficient level λFB. Such distortion does not affect the expected

value of the pool but reduces the underlying cash flow’s riskiness, as it reduces the loan pool’s

exposure to borrowers’ re-default risks. By Jensen’s inequality, it increases the expected value

of the concave security, thereby increasing the total gains from trade. Conversely, given a

security that is convex in the cash flow in the bad state, distorting the resolution policy towards

restructuring increases the bank’s payoff. Lemma 2 thus suggests that, for a given security

design, distortion in the resolution policy can lead to greater allocative efficiency.

The second key property underlies the signalling function of the resolution policy. It is

a single-crossing property of the informed bank’s indifference curves, which is stated in the

following lemma.

Lemma 3 (Directional single-crossing). ∂Ui(F ,λ;π̂)/∂λ
∂Ui(F ,λ;π̂)/∂π̂ is

� constant in i for all λ if f2(c2(λ)) = c2(λ) and f3(c3(λ)) = c3(λ); otherwise, it is

� strictly decreasing in i for λ ≥ λFB if f ′3(c3(λ)) ≥ f ′2(c2(λ)) and f ′3(c3(λFB)) > f ′2(c2(λFB)),

� strictly increasing in i for λ ≤ λFB if f ′3(c3(λ)) ≤ f ′2(c2(λ)) and f ′3(c3(λFB)) < f ′2(c2(λFB)),

� strictly decreasing in i for λ > λFB and strictly increasing in i for λ < λFB if f ′3(c3(λ)) =

f ′2(c2(λ)).

The single-crossing property states that, the ratio of marginal cost (in the form of a lower

retained payoff due to a distortion in the resolution policy) to marginal benefit (in the form of

a higher issuance price due to an improvement in the bank’s perceived quality) is monotonic

in the bank’s type. Since the latter ∂Ui(F ,λ;π̂)
∂π̂ = ∂pπ̂(F ,λ)

∂π̂ is the same for all types of banks,

the single-crossing property is equivalent to the monotonicity of the marginal cost ∂Ui(F ,λ;π̂)
∂λ in
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type, where

∂Ui(F , λ; π̂)

∂λ
=
∂pπ̂(F , λ)

∂λ
+ δ

∂

∂λ
[Vi(λ)− pi(F , λ)] (6)

We show that ∂Ui(F ,λ;π̂)
∂λ can be increasing or decreasing in type i, depending on the security

design. Notice that the first term of equation 6 is about the issuance proceeds and only depends

on investors’ belief π̂ but not the bank’s true type i. The second term of Eq. 6 represents the

effect of increasing liquidation on the bank’s valuation of the retained cash flow, which drives

the directional single-crossing property for two reasons. First, the effect of a distortion in the

resolution policy depends on security design. When the security issued is concave and hence the

retained claim is convex in the underlying cash flow in the bad state, for any λ ≥ λFB, biasing

the resolution policy towards liquidation (increasing λ) decreases the value of the retained

security. This is because both the expected value and the riskiness of the underlying cash

flow are decreased. Second, any effect from the change in resolution policy is stronger for

lower-quality banks, as their loans default more often. Therefore, when the issued security is

concave, biasing the resolution policy towards liquidation is more costly for lower-quality banks

than for higher-quality ones. Conversely, if the issued security is convex and hence the retained

security is concave, for all λ ≤ λFB, biasing towards restructuring (reducing λ from λFB) is

more costly for lower-quality banks than for higher-quality banks.

The single-crossing property is a maintained assumption of the signaling literature and a

key step to establishing the uniqueness of the refined equilibrium under the Intuitive Criterion

(e.g. Cho and Kreps (1987), Mailath (1987) and DeMarzo (2005)). While the single-crossing

property is satisfied in our model with respect to the resolution policy, Lemma 3 emphasises

that the direction of the single-crossing condition depends on the security design. It suggests

that if the bank with high-quality loans issues a concave (convex) security, it can signal its

quality by adopting a resolution policy with a liquidation (restructuring) bias.

To sum up, we show in this section that security design could affect a bank’s resolution

policy through an allocative efficiency channel and a signalling channel. Importantly, both

channels bias the bank’s resolution policy in the same direction: if the issued security is concave

(convex), a liquidation (restructuring) bias in resolution policy can improve allocative efficiency

and may serve as a costly signal of information.
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3.3 Equilibrium security design and resolution policy under asymmetric

information

The bank’s private information about the quality of the loan pool creates an adverse selection

problem when the bank raises financing from uninformed investors. In this section, we show how

the bank optimises its security design and resolution policy to mitigate the adverse selection

problem. The analysis leads to the main result of the paper: biasing the resolution policy

towards liquidation is optimal because the optimal security is debt.

Our analysis focuses on the least cost separating equilibrium, which is the unique equilibrium

that satisfies the Intuitive Criterion in our model. We state this uniqueness result in the following

lemma and formally prove it in the Appendix.

Lemma 4. The unique equilibrium that satisfies the Intuitive Criterion is the least cost separating

equilibrium.

Let’s start the analysis with the bank who owns a low-quality, i.e. a more distress-prone loan

pool. In the least cost separating equilibrium, the low-type bank achieves the first best outcome

because the high-type bank has no incentive to mimic the low type (verified in equilibrium).

Denote by U∗i , λ∗i and F∗i the expected payoff, the resolution policy, and security design of

a type i bank in equilibrium respectively. Therefore, U∗L = UFBL , λ∗L = λFB, and F∗L =

(c1, c2(λFB), c3(λFB)).

Meanwhile, in order to deter the low type’s mimicry, the high-type bank has to take costly

actions such as retention of the loan pool’s cash flow and distortion in the resolution policy.

More precisely, in the least cost separating equilibrium, the high-type bank’s expected payoff is

maximised by the choices of the monotone security FH under limited liability and the resolution

policy λH , subject to the incentive compatibility constraint (IC) that the low type does not

mimic. The maximisation problem is stated below.27

U∗H = max(FH ,λH) UH(FH , λH ;πH) s.t. (IC) UFBL ≥ UL(FH , λH ;πH) (7)

where Ui(F , λ; π̂) is defined by Eq. 4. The optimisation problem in Eq. 7 involves the

simultaneous optimisation along two dimensions: the security design and the resolution policy.

We solve the joint optimisation problem sequentially and first characterise the optimal security

27The characterisation of the monotonicity and limited liability constraints on the security design is in Appendix
A.
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for any given resolution policy.

Lemma 5 (Optimal security). For any resolution policy λH , risky debt with a promised repayment

FH ∈ (c3(λH), Z) implements the optimal security for the high-type bank.

This result is consistent with the classic literature on the pecking order of external financing

under asymmetric information (e.g. Myers (1984)).28 The optimal monotone security issued

by the high type is a debt security, because it is least information sensitive. The high type

exhausts its capacity to issue risk-free debt (FH > c3(λ)), which is free from any information

asymmetry. The retention of future cash flow being a costly signal is a well-established result in

the security design literature such as Leland and Pyle (1977) and DeMarzo and Duffie (1999).

We now proceed to characterise the joint determination of the optimal resolution policy and

the optimal security. To solve the problem stated in Eq. 7, by Lemma 5, we can restrict the

security FH to be risky debt, which is characterised by the promised repayment FH . Hence,

the value of the security pi(F , λ) can be expressed as pi(F, λ) for a given promised repayment

F and a resolution policy λ, backed by a loan pool of quality i, where

pi(F, λ) = πiF + (1− πi) [θmin{c2(λ), F}+ (1− θ)c3(λ)] (8)

The following proposition states the main result of the paper.

Proposition 1 (Equilibrium resolution policy and security design under asymmetric information).

In the least cost separating equilibrium, the low-type bank sells the entire cash flow and adopts

the first-best resolution policy λ∗L = λFB, whereas the high-type bank issues risky debt with a

promised repayment F ∗H ∈ (c3(λ∗H), Z) and adopts a resolution policy with a liquidation bias

λ∗H ≥ λFB. The inequality is strict if and only if G(λFB) > 0, where

G(λ) ≡ δπLZ + (1− δπL)c2(λ)− (1− πH)(1− θ)d(1− λ)X − UFBL (9)

The result that the high-type bank adopts a resolution policy with a liquidation bias follows

from the two channels – the allocative efficiency channel and the signalling channel – through

which security design affects the bank’s resolution policy (Lemmas 2 and 3), and from the

28Technically, the cash flow distribution in our model satisfies the Hazard Rate Ordering (HRO) property, which
is weaker than the Monotone Likelihood Ratio Property (MLRP) commonly assumed in signalling environments.
DeMarzo et al. (2015) show that the (HRO) is a sufficient condition to ensure that debt is the optimal monotone
security in a signalling framework with liquidity needs.
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optimality of debt (Lemma 5). Importantly, the bias is strict if only if G(λFB) > 0. We discuss

this condition below.

There is no distortion in equilibrium resolution policy when G(λFB) ≤ 0. This condition, as

shown in the Appendix, implies that F ∗H ≥ c2(λFB) and thus the optimal debt defaults whenever

the bad state occurs. In this case, both channels imply no distortion. For the allocative efficiency

channel, when the bad state realises, the debt becomes a claim of total cash flow from the loan

pool. The debt is thus linear in the underlying cash flow and by Lemma 2, the value of the debt

security is maximised at λFB. For the signalling channel, the strict single-crossing property is

not satisfied because the retained claim has a value of zero for all types of banks. Therefore,

the equilibrium resolution policy is the efficient one.

On the other hand, the equilibrium resolution policy is distorted towards liquidation when

G(λFB) > 0. In this case, the optimal debt only defaults in the re-default state, but not in the

recovery state. The security is thus concave in the underlying cash flow of the loan pool in the

bad state. Thus, both channels imply a distortion in the resolution policy towards liquidation.

First, the allocatively efficient resolution policy is given by λ̂(F ∗H) > λFB, following immediately

from Lemma 2. Second, the signalling channel further biases the high-type bank’s equilibrium

resolution policy towards liquidation beyond the allocatively efficient level, i.e. λ∗H ≥ λ̂(F ∗H).29

To see this, suppose λ̂(F ∗H) is given by the first order condition. Then, at λ = λ̂(F ∗H),

∂UL(F ∗H , λH ;πH)

∂λH
|λH=λ̂(F ∗H) <

∂UH(F ∗H , λH ;πH)

∂λH
|λH=λ̂(F ∗H) = 0

The inequality follows immediately from the single-crossing condition for λH > λFB shown in

Lemma 3. That is, a marginal increase in λH strictly decreases the low type’s mimicking payoff

in Eq. 7 without affecting the high-type bank’s payoff in equilibrium. Hence, it is strictly

optimal for the high type to liquidate more than the allocatively efficient level λ∗H > λ̂(F ∗H) in

this case. In general, given the optimal security F ∗H , increasing λ beyond λ̂(F ∗H) is costly and

crucially, more costly for the low-type bank than for the high-type bank. Therefore, biasing the

resolution policy beyond λ̂(F ∗H) can serve as a signal of information in equilibrium.

To summarise, Proposition 1 highlights that a resolution policy with a liquidation bias

can arise in the equilibrium under asymmetric information to mitigate adverse selection. In

particular, it arises when G(λFB) > 0, which is the case if i) the adverse selection problem

29The claim that λ∗H ≥ λ̂(F ∗H) is formally shown in the proof of Proposition 1.
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is severe, i.e. πH is high or πL is low, and/or ii) the cost of retention (1 − δ) is low, so that

retention is ineffective in signalling information.

Finally, the following comparative statics further illustrates the effect of adverse selection

on the high-type bank’s resolution policy. An increase in the high-type bank’s loan quality, πH ,

exacerbates the information asymmetry because it creates greater mimicking incentives. This

then leads to a larger liquidation bias in the high-type bank’s resolution policy in equilibrium.

Corollary 1. The liquidation bias in the high-type bank’s resolution policy is increasing in the

quality of its loans. That is,
∂λ∗H
∂πH
≥ 0, where the inequality is strict if and only if G(λFB) > 0.

4 Screening and resolution policy

In this section, we study the implication of the bank’s distortion in the resolution policy for

the bank’s screening incentives. We extend the model to incorporate a loan-origination stage

t = 0, at which point the bank can exert non-observable costly screening effort to increase

the probability γ of receiving a high-quality loan pool at t = 1. The main finding is that

while information asymmetry leads to underinvestment in screening effort, adopting the optimal

resolution policy featuring a liquidation bias mitigates this underinvestment problem and the

associated inefficiency.

At t = 0, the bank is endowed with 1 unit of funds and can invest in a loan pool. When

investing, the bank can exert non-observable effort to affect γ ∈ [γ, γ̄], the probability that the

loan pool is of high quality at t = 1, where 0 ≤ γ < γ̄ ≤ 1. Such effort can be interpreted

as, for example, time and resources spent to assess the quality of the borrowers’ investment

projects and to screen out borrowers who have less valuable projects. Effort incurs a quadratic

cost of
1

2
k(γ − γ)2. We assume k ≥ UFBH −UFBL

γ̄−γ to guarantee an interior optimal level of effort,

and UFBL ≥ 1 so that investing in the loan pool is always efficient.

4.1 Equilibrium screening effort

In this section we solve for the optimal screening effort exerted by the bank in equilibrium. The

bank is willing to exert costly effort because the expected payoff to the high type UH is higher

than that to the low type UL. Since UH and UL are potentially affected by the information

environment, the security design, and the resolution policy in the subsequent stages of the

model, so is the bank’s optimal screening effort.
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Notice that since the subsequent equilibrium in the funding stage is separating, the equilibrium

payoffs {UH , UL} do not depend on γ. We can therefore consider any generic pair of {UH , UL}

that represents the expected payoffs to the bank in the separating equilibrium in the subgame

starting at t = 1. At t = 0, the bank chooses the optimal level of effort to maximise its ex ante

expected payoff

max
γ

γUH + (1− γ)UL −
1

2
k(γ − γ)2 (10)

The optimal effort is thus

γ∗(UH , UL) = γ +
UH − UL

k
(11)

The optimal effort chosen by the bank is increasing in the difference in the expected payoff

(UH − UL) between having a high-quality and a low-quality pool. We will look at how this

difference changes under symmetric and asymmetric information, and given different resolution

policy.

Under symmetric information, both banks with high- and low-quality pools adopt the

efficient resolution policy λFB and achieve payoff (UFBH , UFBL ) respectively. Under asymmetric

information, the low-type bank attains the same payoff as under symmetric information, i.e.

U∗L = UFBL , because it suffers no information friction and hence optimally chooses the efficient

resolution policy λFB and sells a full pass-through security. On the other hand, the high type is

strictly worse off under asymmetric information because of the signalling cost U∗H < UFBH . As

a result, the bank exerts strictly less effort.

Lemma 6. Compared to the symmetric information case, the bank under-expends screening

effort under asymmetric information. That is γ∗(UFBH , UFBL ) > γ∗(U∗H , U
∗
L).

4.2 Inefficiency of intervention in resolution policy

Next we turn to the question of how regulatory interventions in banks’ resolution policies can

affect banks’ screening effort. As shown in our main result, adopting a resolution policy with a

liquidation bias allows the high-type bank to alleviate adverse selection problem in equilibrium.

Our extension reveals that this also creates stronger incentives for the bank to screen borrowers

in order to create a high-quality loan pool, further increasing welfare. The following proposition
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summarises the effect of a regulatory intervention in the resolution policy on banks’ ex ante

screening effort and on welfare.

Proposition 2 (Policy implication). If the government imposes a resolution policy λH different

from the equilibrium policy λ∗H , including the ex post efficient policy λFB, the bank exerts less

screening effort at t = 0, hence reducing the total welfare.

Proposition 2 suggests that there is an unintended consequence of government policy like

Home Affordable Modification Program (HAMP) which aims to restore efficiency in the resolution

decision of delinquent mortgages. When banks have financing needs, imposing any resolution

policy different from λ∗H on the bank reduces its payoff in the case of receiving a high-quality

loan pool due to adverse selection. This in turn lowers its incentive to exert screening effort to

obtain a high-quality pool. This under-provision of value-enhancing screening effort decreases

social welfare.

5 Extension: multiple types

The goal of this section is to show that our result is robust to an extension to multiple types.

In line with the baseline two-type model, we find that the liquidation bias is (weakly) larger for

banks with higher-quality loan pools.

We extend the baseline model with two types to n types. That is, the probability that the

loan pool enters the good (G) state is given by πi ∈ {π1, π2, ..., πn}, where 1 > πi > πi−1 > 0

for all i ∈ {2, ..., n}. As before, we focus on the least cost separating equilibrium.30 Analogous

to Eq. 7, the least cost separating equilibrium with n types is given by

Un1 = max
(F1,λ1)

p1(F1, λ1) + δ [V1(λ1)− p1(F1, λ1)]

Uni = max
(Fi,λi)

pi(Fi, λi) + δ [Vi(λi)− pi(Fi, λi)] s.t. (ICi) ∀ i ≥ 2 (12)

where the incentive compatibility constraint (ICi) that type i− 1 will not mimic type i is given

by

(ICi) Uni−1 ≥ pi(Fi, λi) + δ [Vi−1(λi)− pi−1(Fi, λi)] (13)

30The prior distribution of types is thus irrelevant.
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and the value of the security pi(F , λ) is given by Eq. 8. We show in the Appendix that the set

of local incentive compatibility constraints (ICi) implies no mimicking by all other types, and

thus characterises the equilibrium. We summarise the result in the following proposition and

discuss the intuition below. We denote by superscript n all equilibrium quantities in a model

with n types.

Proposition 3. In a model with n types, the least cost separating equilibrium exists, in which

the bank of type i issues risky debt with a promised repayment Fni . There exists a unique type

j > 1 such that the equilibrium resolution policies are

λni


= λFB for i < j

> λFB for i ≥ j

Moreover, λni ≥ λni−1 for all i ≥ j, where the inequality is strict whenever λni < 1.

Proposition 3 shows that the insights from our baseline two-type model (Proposition 1) can

be extended to a model with multiple types. That is, banks with higher-quality loans adopt

resolution policies with (weakly) larger liquidation bias. The intuition behind this result is

similar to the two-type case, and is a consequence of the allocative efficiency channel and the

signalling channel given by Lemmas 2 and 3. In particular, banks with higher-quality loans

(i ≥ j) who face severe adverse selection retain larger amounts of the loan pool’s cash flow

Fni < c2(λFB). These banks issue debt securities that are concave in the cash flow of the loan

pool in the bad state, as discussed in Section 3.3, and therefore distort their resolution policies

in equilibrium towards liquidation. Banks with lower-quality loans (i < j) adopt the first-best

resolution policy and separate by retaining more cash flow of the loan pool.

This extension sheds additional light on the interaction between the bank’s security design

and the choice of resolution policy. Banks with higher-quality loans (i ≥ j) signal their quality

through a combination of cash flow retention and distortion in the resolution policy. In contrast

to DeMarzo (2005) and DeMarzo et al. (2015) who only allow retention as a signal, we find

that cash flow retention by banks in equilibrium may be non-monotonic in loan quality. This

is because a liquidation bias in the resolution policy can substitute retention as a signal of

quality in our model. While a bank with higher-quality loans may issue debt with a higher

promised repayment, separation is still achieved as long as the distortion in the resolution

policy is sufficiently costly to deter mimicry. This result is formally presented in Corollary 2
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Figure 2: The equilibrium resolution policy λni (left panel) and promised repayment Fni (right
panel). The parameter values used in this plot are Z = 0.55, (1−d)Z = 0.2, dX = 0.3, θ = 0.5,

δ = 0.9, π1 = 0.4, π100 = 0.75, πi − πi−1 = 0.35
99 for all i ∈ {2, ..., 100}, and L(λ) = 1−(1−λ)2

2 X.
The red dashed line in the left panel marks the type j.

λFB

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
πi

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
λi

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75
πi

0.40

0.45

0.50

0.55

Fi

and illustrated in Figure 2.

Corollary 2. In equilibrium, Fni is strictly decreasing in loan quality i for all i < j. Fni may

be non-monotonic in loan quality i for i ≥ j.

6 Conclusion

This paper studies a bank’s resolution policy for its borrowers in case the borrowers enter

financial distress, when the bank must raise financing from uninformed investors. We show that

the bank may distort its resolution policy to i) improve allocative efficiency and ii) to signal

information about the quality of its loans to investors. Our analysis highlights the importance

of security design for the resolution policy. For a normative perspective, our results caution that

policies attempting to restore ex post resolution efficiency can have the unintended consequence

of reducing the banks’ ex ante screening effort, thereby worsening the average quality of the

loan pools and reducing social welfare.

We conclude with some conjectures for directions for future work and extensions. First, this

framework can be extended to a setting with multiple banks to study the spillover effects of

distressed loan liquidation due to fire-sale or information externality. It could also be fruitful

to analyse, in a general equilibrium, the potential impact of banks’ resolution policy on the

quantity, quality, and the prices of loans originated. Finally, a dynamic framework could shed

light on how banks’ incentive to liquidate loans vary across business cycles.
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Appendices

A Monotone security under limited liability

We restrict to monotone securities under limited liability. In this section we formalise these

constraints as follows

(MNO) f1 ≥ f2(c2) ≥ f3(c3) ≥ 0 ∀c2 ∈ [c2(1), c2(0)] and c3 ∈ [c3(0), c3(1)] and

and
∂fj(cj)

∂cj
≥ 0 ∀j ∈ {2, 3}

(MNI) c1 − f1 ≥ c2 − f2(c2) ≥ c3 − f3(c3) ∀c2 ∈ [c2(1), c2(0)] and c3 ∈ [c3(0), c3(1)]

and
∂

∂cj
(cj − fj(cj)) ≥ 0 ∀j ∈ {2, 3} (14)

where (MNO) and (MNI) stand for the monotonicity constraints of the outside investors and

the insider respectively. These constraints state that, respectively, the payoff of the security

and the residual payoff to the bank are weakly increasing in the realisation of the cash flow.

Note by restricting the payoff of the security and the residual payoff to the bank to be positive,

the limited liability constraint is satisfied.

B Proofs

B.1 Proof of Lemma 1

This result follows immediately from the discussion.

B.2 Proof of Lemma 2

Following the discussion immediately following the lemma in Section 3.2, Ui(F , λ;πi) can be

expressed as Eq. 5. Therefore

∂Ui(F , λ;πi)

∂λ
= δ

∂Vi(λ)

∂λ
+ (1− δ)∂pi(F , λ)

∂λ

= (1− δ)(1− πi)
[
f ′2(c2(λ))θc′2(λ) + f ′3(c3(λ))(1− θ)c′3(λ)

]
where the second line follows by substituting pi(F , λ) given by Eq. 1 into the first line.
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If f ′3(c3(λ)) ≥ f ′2(c2(λ)) for all λ and f ′3(c3(λFB)) > f ′2(c2(λFB)), then

∂Ui(F , λFB;πi)

∂λ
= (1− δ)(1− πi)f ′3(c3(λ))

f ′2(c2(λ))

f ′3(c3(λ))︸ ︷︷ ︸
≤1

θc′2(λ) + (1− θ)c′3(λ)


In this case, ∂Ui(F ,λFB ;πi)

∂λ > 0 for all λ ≤ λFB, because and ∂Ui(F ,λFB ;πi)
∂λ ≥ (1 − δ)(1 −

πi)f
′
3(c3(λ))[θc′2(λ) + (1 − θ)c′3(λ)] ≥ 0, where the first inequality is strictly for λFB and the

second inequality is strictly for all λ > λFB. This implies that λ̂(F) > λFB.

If f ′3(c3(λ)) ≤ f ′2(c2(λ)) for all λ and f ′3(c3(λFB)) < f ′2(c2(λFB)), then

∂Ui(F , λFB;πi)

∂λ
= (1− δ)(1− πi)f ′2(c2(λ))

θc′2(λ) +
f ′3(c3(λ))

f ′2(c2(λ))︸ ︷︷ ︸
≤1

(1− θ)c′3(λ)


In this case, ∂Ui(F ,λFB ;πi)

∂λ < 0 for all λ ≥ λFB, because and ∂Ui(F ,λFB ;πi)
∂λ ≤ (1 − δ)(1 −

πi)f
′
3(c3(λ))[θc′2(λ) + (1 − θ)c′3(λ)] ≤ 0. where the first inequality is strict for λFB and the

second inequality is strictly for all λ < λFB. This implies that λ̂(F) < λFB.

B.3 Proof of Lemma 3

Using Eq. 1, ∂Ui(F ,λ;π̂)
∂π̂ = f1 − [θf2(c2(λ)) + (1− θ)f3(c3(λ))], which is strictly greater than 0

by (MNO) given by Eq. 14. Following Eq. 6, the ratio ∂Ui(F ,λ;π̂)/∂λ
∂Ui(F ,λ;π̂)/∂π̂ is increasing in i if and

only if ∂Ui(F ,λ;π̂)
∂λ is increasing in i, which is the case if and only if ∂Vi(λ)

∂λ − ∂pi(F ,λ)
∂λ is increasing

in i, where

∂Vi(λ)

∂λ
− ∂pi(F , λ)

∂λ
= (1− πi)

[
θ(1− f ′2(c2(λ)))c′2(λ) + (1− θ)(1− f ′3(c3(λ)))c′3(λ)

]
Notice that 1− f ′2(c2), 1− f ′3(c3) ∈ [0, 1] by (MNI) given by Eq. 14.

If f3(c3(λ)) = c3(λ) and f2(c2(λ)) = c2(λ), then ∂Vi(λ)
∂λ − ∂pi(F ,λ)

∂λ = 0 and ∂Ui(F ,λ;π̂)/∂λ
∂Ui(F ,λ;π̂)/∂π̂ is

constant in i.

29



If f ′3(c3(λ)) ≥ f ′2(c2(λ)) for all λ and f ′3(c3(λFB)) > f ′2(c2(λFB)), then

∂Vi(λ)

∂λ
− ∂pi(F , λ)

∂λ
= (1− πi)(1− f ′2(c2(λ)))

θc′2(λ) + (1− θ) 1− f ′3(c3(λ))

1− f ′2(c2(λ))︸ ︷︷ ︸
≤1

c′3(λ)


In this case, θc′2(λ) + (1− θ)1−f ′3(c3(λ))

1−f ′2(c2(λ))
c′3(λ) ≤ θc′2(λ) + (1− θ)c′3(λ) ≤ 0 for all λ ≥ λFB, where

the first inequality is strict for λFB and the second inequality is strict for all λ > λFB. Therefore

∂Vi(λ)
∂λ − ∂pi(F ,λ)

∂λ and thus ∂Ui(F ,λ;π̂)/∂λ
∂Ui(F ,λ;π̂)/∂π̂ are strictly decreasing in i for all λ ≥ λFB.

If f ′3(c3(λ)) ≤ f ′2(c2(λ)) for all λ and f ′3(c3(λFB)) < f ′2(c2(λFB)), then

∂Vi(λ)

∂λ
− ∂pi(F , λ)

∂λ
= (1− πi)(1− f ′3(c3(λ)))

θ 1− f ′2(c2(λ))

1− f ′3(c3(λ))︸ ︷︷ ︸
≤1

c′2(λ) + (1− θ)c′3(λ)


In this case, θ

1−f ′2(c2(λ))
1−f ′3(c3(λ))

c′2(λ) + (1− θ)c′3(λ) > θc′2(λ) + (1− θ)c′3(λ) ≥ 0 for all λ ≤ λFB, where

the first inequality is strict for λFB and the second inequality is strict for all λ < λFB. Therefore

∂Vi(λ)
∂λ − ∂pi(F ,λ)

∂λ and thus ∂Ui(F ,λ;π̂)/∂λ
∂Ui(F ,λ;π̂)/∂π̂ are strictly increasing in i for all λ ≤ λFB.

Finally, the above analysis implies that, if f ′3(c3(λ)) = f ′2(c2(λ)), then ∂Ui(F ,λ;π̂)/∂λ
∂Ui(F ,λ;π̂)/∂π̂ is strictly

decreasing in i for λ > λFB and strictly increasing in i for λ < λFB.

B.4 Proof of Lemma 4, Lemma 5, and Proposition 1

We establish the proofs of these related results in two steps. We first solve for the least cost

separating (LCS) equilibrium which is characterised by the maximisation problem stated in Eq.

7 (Lemma 5 and Proposition 1). Then we show that only the LCS equilibrium survives the

Intuitive Criterion (Lemma 4).

In the least cost separating equilibrium is characterised by the opitimisation problem stated

in Eq. 7, as discussed in the main text. Here we re-write the problem as follows, with explicit

constraint for a monotone security under limited liability.

max(FH ,λH) pH(FH , λH) + δ [VH(λH)− pH(FH , λH)]

s.t. (IC) UFBL ≥ pH(F , λH) + δ [VL(λH)− pL(FH , λH)] and

(MNO) and (MNI) given by Eq. 14 (15)
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In what follows, since the resolution policy λH is pre-committed, only three cash flow occur

in equilibrium, namely c1, c2(λH) and c3(λH).31 For brevity we suppress the dependency of

fj(cj) on cj , j ∈ {2, 3}, whenever it is clear.

Lemma 5: The optimality of risky debt

We can now begin to prove Lemma 5. The proof is constructed by establishing several claims

in succession. For any given λH , an optimal security maximises the high-type bank’s expected

payoff

δVH(λH) + (1− δ)pH(FH , λH)

subject to the constrains (IC), (MNO) and (MNI). Since VH(λH) is not affected by the

security design, the security maximises the sales proceeds pH(FH , λH) = πHf1 + (1−πH)[θf2 +

(1− θ)f3]. Since λH plays no role in this proof, we subsequently denote proceeds from the sale

of the security by pH(FH) for the ease of notation.

Given a committed resolution policy λH , there can only be three cash flow realisations c1,

c2(λH), and c3(λH) in equilibrium. Denote by f∗1 , f∗2 , and f∗3 the payoffs of the optimal security

for these equilibrium cash flow realisations respectively. Claim 1–4 below aim to establish

the properties that the equilibrium payoffs of the optimal security must satisfy. We finally

characterise the properties of the full security and show that a risky debt as described in Lemma

5 is indeed an optimal security.

Claim 1. For an optimal security F∗H , f∗1 < c1.

Proof. If f∗1 = c1, by (MCI), f∗2 = c2(λH) and f∗3 = c3(λH). This security (full equity) violates

(IC).

Claim 2. For any optimal security F∗H , the (IC) must bind.

Proof. Suppose instead the (IC) is slack for some optimal security with payoffs {f∗1 , f∗2 , f∗3 }. By

Claim 1, f∗1 < c1. Unless c1−f∗1 = c2(λH)−f∗2 , there exists a security F̂ with payoffs {f̂1, f
∗
2 , f

∗
3 }

with f̂1 > f∗1 that satisfies the (IC). As pH(·) strictly increases with f1, pH(F̂) > pH(F∗H),

contradicting the supposition that the security is optimal.

31The equilibrium security is uniquely defined for these cash flow that occur in equilibrium. Although the
payoff of the optimal security may not be uniquely pinned down for the cash flow associated with off-equilibrium
resolution policies, this is inconsequential for solving the optimal resolution policy.
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If f∗1 < c1 and c1 − f∗1 = c2(λH) − f∗2 , one can increase the objective function pH(·) by

increasing both f∗1 and f∗2 by some ε > 0 without violating the (IC), unless f∗2 = c2(λH) or

c2(λH)− f∗2 = c3(λH)− f∗3 . Note that f∗2 = c2(λH) implies f∗1 = c1 hence violates Claim 1.

Suppose now f∗1 < c1 and c1 − f∗1 = c2(λH)− f∗2 = c3(λH)− f∗3 , similarly one can increase

all f∗1 , f∗2 , f∗3 without violating the (IC) to strictly increase pH(·), unless f∗3 = c3(λH). And

f∗3 = c3(λH) implies f∗1 = c1 hence violates Claim 1.

Since we have shown that any security with a slack (IC) can be improved upon, the (IC)

must be binding at any optimal security.

Claim 3. For any optimal security F∗H , f∗1 > c3(λH).

Proof. Suppose instead that f∗1 ≤ c3(λH). By (MNO), c3(λH) ≥ f∗1 ≥ f∗2 ≥ f∗3 . This implies

that the (IC) is slack because the mimicking payoff

δVL(λH) + pH(F∗H)− δpL(F∗H) ≤ δVL(λH) + (1− δ)c3(λH) < VL(λH) ≤ VL(λFB) = U∗L

By Claim 2, a slack (IC) contradicts the optimality of F∗H .

Claim 4. Any optimal security F∗H has either

1. f∗1 = f∗2 > f∗3 = c3(λH) or

2. f∗1 > f∗2 = c2(λH) > f∗3 = c3(λH)

Proof. Consider a security that pays off f̂1, f̂2, and f̂3 for cash flow c1, c2(λH) and c3(λH)

respectively, such that with the (IC) binds. Using the (IC), write f̂1 as a function of f̂2 and f̂3

f̂1(f̂2, f̂3) =
(1− δ)U∗L − [(1− πH)− δ(1− πL)](θf̂2 + (1− θ)f̂3)

πH − δπL
(16)

Substitute this f̂1 into the objective function. After some algebraic manipulation, the objective

function becomes

δVH + (1− δ)
[

πH
πH − δπL

(1− δ)U∗L + δ
πH − πL
πH − δπL

(θf̂2 + (1− θ)f̂3)

]
(17)

which is strictly increasing in f̂2 and f̂3. Since f̂2 is bounded above by either c2(λH) or f̂1, and

f̂3 only by c3(λH), any optimal security F∗H must have f∗3 = c3(λH) and f∗2 = min{f∗1 , c2(λH)}.

Finally, by Claim 3, f∗1 > c3(λH) and hence f∗2 > c3(λH).
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Having now analysed the properties of an optimal security’s equilibrium payoffs {f∗1 , f∗2 , f∗3 },

we now consider the security’s payoffs associated with the off-equilibrium cash flow realisations,

i.e. f2(c2) and f3(c3) ∀λ ∈ (0, 1).

Claim 5. For any optimal security F∗H , f3(c3) = c3(λ) ∀λ ≤ λH , and either

1. f∗1 = f∗2 = f2(c2(λ)) ∀λ ≤ λH , or

2. f∗1 > f2(c2) = c2(λ) and f3(c3) = c3(λ) ∀λ ≥ λH

Proof. Notice that these payoffs do not affect either the objective function or the (IC). Therefore

they are only restricted by the (MNO) and the (MNI). By Claim 4, f∗3 = c3(λH). The (MNI)

thus implies that f3(c3) = c3(λ) ∀λ ≤ λH , because c3(λ) is increasing in λ.

By Claim 4, there are two cases. In the first case, f∗1 = f∗2 . The (MNO) then implies

that f∗1 = f∗2 = f2(c2(λ)) ∀λ ≤ λH , because c2(λ) is decreasing in λ. In the second case,

f∗2 = c2(λH) > f∗3 = c3(λH). The (MNI) then implies that f2(c2) = c2(λ) and f3(c3) =

c3(λ) ∀λ ≥ λH .

Finally we can now verify that a risky debt with face value FH ∈ (c3(λH), c1), as defined in

Lemma 5, indeed is an optimal security as it satisfies Claim 1–5.

Proposition 1: the LCS equilibrium

We prove Proposition 1 by solving the optimisation programme in Eq. 7, which characterises

the LCS equilibrium. Our goal is to highlight the properties of the equilibrium security design

and resolution policy.

Firstly, we establish that any optimiser of the programme must bind the (IC). We prove

this by contradiction. Suppose there exists (FH , λH) that is an optimiser of the programme

such that the (IC) is slack. Then there exists F ′H > FH such that the (IC) is still satisfied at

(F ′H , λH). However, the objective function is strictly greater at (F ′H , λH) than at (FH , λH). This

contradicts with the supposition that (FH , λH) is an optimiser of the programme. Therefore

any optimiser of the programme must bind the (IC).

We then substitute the binding (IC) into the objective function to eliminate FH , and solve

the resulting univariate optimisation problem. Let F̂H(λH) denote the FH implied by a binding
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(IC). Let u(λH) denote the objective function of the resulting univariate optimisation problem.

The solution to the problem characterised by Eq. 7 is equal to λ∗H = arg maxλH u(λH), where

u(λH) = (1− δ)pH(F̂H(λH), λH) + δVH(λH) (18)

There can be two cases:

(i) F̂H(λH) ∈ [(1− d)Z + dL(λH) + d(1− λH)X,Z) if and only if G(λH) ≤ 0, or

(ii) F̂H(λH) ∈ ((1−d)Z+dL(λH), (1−d)Z+dL(λH)+d(1−λH)X) if and only if G(λH) > 0,

where G(λ) is given by Eq. 9

Case (i): G(λH) ≤ 0 and F̂H(λH) ∈ [(1− d)Z + dL(λH) + d(1− λH)X,Z)

In this case, the market value of the high type’s security is given by

pH(FH , λH) = πHFH + (1− πH)[(1− d)Z + dL(λH) + dθ(1− λH)X] (19)

A binding (IC) implies that

F̂H(λH) =
U∗L − δπLZ − (1− πH)[(1− d)Z + dL(λH) + θd(1− λH)X]

πH − δπL
(20)

We now show that, the objective function of the resulting univariate optimisation programme,

u(λH), is increasing in λH if and only if λH ≤ λFB. To see this, we differentiate u(λH) w.r.t.

λH :

∂u(λH)

∂λH
= (1− δ)

[
∂pH(F̂H(λH), λH)

∂λH
+
∂pH(F̂H(λH), λH)

∂FH

∂F̂H(λH)

∂λH

]
+ δ

∂VH(λH)

∂λH
(21)

Notice that
∂u(λFBH )
∂λH

= 0 because ∂p(FH ,λ
FB)

∂λH
= 0 and ∂F̂H(λFB)

∂λH
= 0. Moreover, u(λH) is strictly

concave in λH . After some algebraic manipulation, we have

∂2u(λH)

∂λ2
H

=
δ(1− πH)(πH − πL)

πH − δπL
dL′′(λH) < 0 (22)

Therefore, for all λH such thatG(λH) ≤ 0, u(λH) is increasing in λH if and only if λH ≤ λFB.
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Case (ii): G(λH) > 0 and F̂H(λH) ∈ ((1− d)Z + dL(λH), (1− d)Z + dL(λH) + d(1− λH)X)

In this case, the market value of the high type’s security is given by

pH(FH , λH) = [πH + (1− πH)θ]FH + (1− πH)(1− θ)[(1− d)Z + dL(λH)] (23)

A binding (IC) implies that

F̂H(λH) =

U∗L − δπLZ − δ(1− πL)θ[(1− d)Z + dL(λH) + d(1− λH)X]
− (1− πH)(1− θ)[(1− d)Z + dL(λH)]

[πH + (1− πH)θ]− δ[πL + (1− πL)θ]
(24)

We now show that, there exists λ̃H ∈ (λFB, 1], such that u(λH) is increasing in λH if and

only if λH ≤ λ̃H , which is equivalent to u(λH) being quasi-concave in λH . To see this, we

evaluate the first derivative of u(λH) w.r.t. λH , given by Eq. 21 using Eq. 23–24:

∂u(λH)

∂λH
= (1− δ) [πH + (1− πH)θ] [−δ(1− πL)θd(L′(λH)−X)− (1− πH)(1− θ)dL′(λH)]

[πH + (1− πH)θ]− δ[πL + (1− πL)θ]

+ (1− δ)(1− πH)(1− θ)dL′(λH) + δ(1− πH)d(L′(λH)− θX)

And the second derivative is given by

∂2u(λH)

∂λ2
H

= [(1− πH)(1− θ)− θ(1− δ)]

× δ(πH − πL)

[πH + (1− πH)θ]− δ[πL + (1− πL)θ]
dL′′(λH) (25)

Notice that, depending on the sign of [(1− πH)(1− θ)− θ(1− δ)], u(λH) can be either concave

or convex.

Suppose [(1 − πH)(1 − θ) − θ(1 − δ)] ≤ 0, then u(λH) is convex in λH . This implies that

u(λH) is increasing in λH for all λH , as

∂u(λH)

∂λH
> −(1− δ) [πH + (1− πH)θ](1− πH)d(1− θ)X

[πH + (1− πH)θ]− δ[πL + (1− πL)θ]
+ (1− πH)(1− θ)X

= δ
[πH + (1− πH)θ]− [πL + (1− πL)θ]

[πH + (1− πH)θ]− δ[πL + (1− πL)θ]
(1− πH)d(1− θ)X > 0

where we have used the fact that L′(λH) < X for all λH (Assumption 1) when deriving the first

line.

Suppose [(1− πH)(1− θ)− θ(1− δ)] > 0, then u(λH) is concave in λH . At λH = λFB, after
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some algebraic manipulation using the fact that L′(λFB) = θX, we have

∂u(λFB)

∂λH
=

(1− δ)δ(πH − πL)θd(1− θ)X
[πH + (1− πH)θ]− δ[πL + (1− πL)θ]

> 0 (26)

Therefore there exists λ̃H ∈ (λFB, 1], such that u(λH) is increasing in λH if and only if λ ≤ λ̃H ,

where λ̃H is given by ∂u(λ̃H)
∂λH

= 0 if ∂u(1)
∂λH

≤ 0, and λ̃H = 1 otherwise.

To summarise, there exists λ̃H ∈ (λFB, 1], such that for all λH such that G(λH) > 0, u(λH)

is increasing in λH if and only if λH ≤ λ̃H . After some algebraic manipulation, λ̃H can be

defined by

λ̃H


is defined by if [(1− πH)(1− θ)− θ(1− δ)] > 0

L′(λ̃H) = δ−[πH+(1−πH)θ]
(1−πH)(1−θ)−θ(1−δ)θX, and L′(1) < δ−[πH+(1−πH)θ]

(1−πH)(1−θ)−θ(1−δ)θX

= 1, otherwise

(27)

We can now describe the equilibrium resolution policy λ∗H . Notice that G(λ̃H) < G(λFB),

where G(λ) is given by Eq. 9. This follows because G(λ) is decreasing in λ for λ ≥ λFB. To

see this,

∂G(λ)

∂λ
= (1− δπL)d[L′(λ)−X] + (1− πH)d(1− θ)X (28)

For λ ≥ λFB, L′(λ) ≤ θX, and the above expression is smaller than

−(1− δπL)d(1− θ)X + (1− πH)d(1− θ)X = (δπL − πH)d(1− θ)X < 0 (29)

The equilibrium resolution policy is thus characterised as follows

1. If G(λ̃H) < G(λFB) ≤ 0, then λ∗H = λFB.

This follows because, for λH ≤ λFB, u(λH) is increasing in λH in either case; for λH ≥

λFB, G(λH) < λFB ≤ 0, and u(λFB) is decreasing as described by Case (i). Therefore,

u(λH) is maximised at λ∗H = λFB.

2. If G(λ̃H) ≤ 0 < G(λFB), then λ∗H = λ̆H , where λ̆H > λFB is given by G(λ̆H) = 0.

To see this, notice that G(λ̃H) ≤ 0 < G(λFB) and that G(λ) is decreasing in λ for λ ≥ λFB

imply that there exists λ̆H ∈ (λFB, λ̃H ] such that G(λ̆H) = 0. Moreover, G(λH) > 0 for
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λH ∈ (λFB, λ̆H) and G(λH) < 0 for λH > λ̆H . The result thus follows because, for

λH ≤ λFB, u(λH) is increasing in λH in either case; for λH ∈ (λFB, λ̆H), G(λH) > 0 and

u(λH) is increasing as described by Case (ii); for λ ≥ λ̆H > λFB, G(λH) ≤ 0 and u(λH)

is decreasing as described by Case (i). Therefore, u(λH) is maximised at λ̆H .

3. If 0 < G(λ̃H) < G(λFB), then λ∗H = λ̃H > λFB, where λ̃H is given by Eq. 27.

This follows because, for λ ≤ λFB, u(λH) is increasing in λH in either case; for λH ∈

(λFB, λ̃H ], G(λH) > 0 and u(λH) is increasing in λH as described by Case (ii); for λH >

λ̃H , u(λH) is decreasing in λH in either case. Therefore, u(λH) is maximised at λ̃H .

To summarise, the equilibrium resolution policy is λ∗H ≥ λFB, where the inequality is strict

if and only if G(λFB) > 0.

Lemma 4: only the LCS equilibrium survives the Intuitive Criterion

We prove Lemma 4 in two steps. We will first show no pooling PBE satisfy the Intuitive

Criterion. And then we show the same for any separating PBE other than the least cost

separating PBE.

The logic of the proof is as follows: for any candidate pooling PBE (UPH , U
P
L ) with an offer

{FP , λP }, we construct an off-equilibrium pooling offer {F ′, λP } that prunes the candidate PBE

with Intuitive Criterion. Since we do not involve changing λP in the following analysis, for the

ease of notation we will simply denote an offer with F whenever it does not create confusion.

We begin by applying the Intuitive Criterion to our two-type model as follows: a PBE fails

to satisfy the Intuitive Criterion if there exists an unsent offer F ′, such that the type H is

strictly better off than at the posited PBE by proposing F ′ for all best responses with beliefs

focused on H, and the type L is strictly better at the posited PBE than at F ′ for all best

responses for all beliefs in response to F ′.

Define JH(F ′) and JL(F ′) as the payoff of the H and L type when they deviate to the

off-equilibrium offer F ′ under a belief focused on H

JH(F ′) ≡ pH(F ′) + δ[VH − pH(F ′)]

JL(F ′) ≡ pH(F ′) + δ[VL − pL(F ′)] (30)

Therefore a pooling PBE (UPH , U
P
L ) does not satisfy the intuitive criterion if there exists an
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F ′ such that JH(F ′) > UPH and JL(F ′) < UPL .

We begin the proof with establishing some useful properties of any pooling PBE (UPH , U
P
L ).

First, the payoffs can be computed as follows:

UPH ≡ p̄(FP ) + δ[VH − pH(FP )]

UPL ≡ p̄(FP ) + δ[VL − pL(FP )] (31)

where p̄(F) = π̄f1 + (1− π̄)[θf2 + (1− θ)f3)] and π̄ ≡ γπH + (1− γ)πL.

Second, in any pooling PBE that satisfies Intuitive Criterion, both types must attain weakly

higher payoffs than the least cost separating (LCS) payoffs (U∗H , U
∗
L). The following claim

establishes this property formally.

Claim 6. For any pooling PBE (UPH , U
P
L ) that satisfies the Intuitive Criterion, UPH ≥ U∗H and

UPL ≥ U∗L.

Proof. This claim is proved by contradiction. First of all, UPL < U∗L cannot be a PBE because

the low type can always attain at least the LCS payoffs U∗L by deviating to the first-best offer

of the low type.

Suppose now UPH < U∗H and UPL ≥ U∗L. To invoke the Intuitive Criterion, consider a set of

beliefs that all deviations are done by the high type. Then by deviating to (F ∗H , λ
∗
H), the high

type achieves its LCS payoff U∗H > UPH whereas the low type’s payoff pH(F ∗H , λ
∗
H) + δ[VL(λ∗H)−

pL(F ∗H , λ
∗
H)], is also equal to its LCS payoff U∗L because (F ∗H , λ

∗
H) is the solution of the LCS

problem in Eq. 7 and the (IC) therein is binding at the solution. Now consider another offer

{F ′, λ∗H} with F ′ = F ∗H − ε for some arbitrarily small and positive ε such that the high type’s

payoff with this off-equilibrium offer is U ′H ∈ (UPH , U
∗
H). Such an F ′ exists because UPH < U∗H and

F ∗H > c3 (Lemma 5). Finally the low type’s payoff with the offer {F ′, λ∗H} is U ′L < U∗L ≤ UPL .

The third property is shown in the following claim

Claim 7. In any pooling PBE with offer {FP , λP }, fp1 > c3(λP ).

Proof. Suppose instead fP1 ≤ c3(λP ). Because of (MNO), c3 ≥ fP1 ≥ fP2 ≥ fP3

UPL = δVL(λP ) + (π̄ − δπL)fP1 + [(1− π̄)− δ(1− πL)][θfP2 + (1− θ)fP3 ]

≤ δVL(λP ) + (π̄ − δπL)[θfP2 + (1− θ)fP3 ] + [(1− π̄)− δ(1− πL)][θfP2 + (1− θ)fP3 ]

≤ δVL(λP ) + (1− δ)c3(λP ) < VL(λP ) ≤ VL(λFB) ≡ U∗L
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which contradicts the fact that UPL ≥ U∗L.

We are now equipped to construct the PBE pruning offer F ′ for any pooling PBE with offer

FP . First, we parametrise a series of offers with y such that

F(y) = {fP1 − y, fP2 −max{y − (fP1 − fP2 ), 0}, fP3 } (32)

for y ∈ [0, fP1 − fP3 ]. Note that F(0) = FP and the domain of y is non-empty thanks to Claim

7 and fP3 ≤ c3(λP ) due to limited liability. The rest of the proof involves two claims with the

parametrised offer F(y).

Claim 8. There exists a unique ỹ ∈ (0, fP1 − fP3 ) that satisfies JL(F(ỹ)) = UPL

Proof. The proof is based on the Intermediate Value Theorem. First, JL(F(ε)) > UPL with

ε→ 0 because

JL(F(ε))− UPL = pH(F(ε))− p̄(FP )− δ[pL(F(ε))− pL(FP )]

= pH(FP )− p̄(FP ) > 0 as ε→ 0

Second, JL(F(fP1 − fP3 )) < UPL as F(fP1 − fP3 ) = {fP3 , fP3 , fP3 }, fP3 ≤ c3(λP ) due to (LL), and

following the same argument as in Claim 7,

JL(F(fP1 − fP3 )) ≤ δVL + (1− δ)c3(λP ) < VL(λP ) ≤ VL(λFB) = U∗L ≤ UPL

Finally, JL(F(y)) is strictly decreasing and continuous in y

∂JL(F(y))

∂y
=


−πH + δπL < 0 for y ∈ [0, fP1 − fP2 )

(1− θ)(δπL − πH)− θ(1− δ) < 0 for y ∈ [fP1 − fP2 , fP1 − fP3 )

(33)

Therefore, the Intermediate Value Theorem applies.

Claim 9. JH(F(ỹ)) > UPH

Proof. This result relies on two properties:

(i) JH(F(ε))− UPH = JL(F(ε))− UPL = pH(FP )− p̄(FP ) > 0 as ε→ 0;

(ii) 0 >
∂JH(F(y))

∂y
>
∂JL(F(y))

∂y
for y ∈ [0, fP1 − fP3 ]
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(i) is immediate from the definition of JH while (ii) from the direct comparison between Eq. 33

and

∂JH(F(y))

∂y
=


−πH + δπH < 0 for y ∈ [0, fP1 − fP2 )

(1− θ)(δπH − πH)− θ(1− δ) < 0 for y ∈ [fP1 − fP2 , fP1 − fP3 )

(34)

These two properties imply that the wedges JH − UPH and JL − UPL are the same when y is

arbitrarily close to zero. As y increases, JL decreases strictly faster then JH . Therefore, at ỹ,

the wedge of JL − UPL is zero while the wedge JH − UPH is strictly positive.

The last step of constructing the PBE pruning F ′ is to set F ′ = F(ỹ+εy) with an arbitrarily

small but positive εy such that JH(F ′) > UPH . This εy exists because JH(F(ỹ)) > UPH as in

Claim 9. And by the properties of ỹ in Claim 8 and JL, JL(F ′) < JL(F(ỹ)) = UPL . As a result,

the posited pooling PBE (UPH , U
P
L ) cannot satisfy the Intuitive Criterion.

The proof for showing that no separating PBE other than the LCS PBE can satisfy Intuitive

Criterion is very similar to Claim 6. Consider a separating PBE (UH , UL), by definition of LCS,

UH ≤ U∗H and UL ≤ U∗L with at least one strict inequality. First UL cannot be strictly less

than U∗L because the low type can always achieve at least U∗L by giving the first-best offer. The

relevant class of separating PBE is thus with UH < U∗H and UL = U∗L. The remaining argument

of the proof follows exactly the same as the one in Claim 6 and therefore is omitted.

Finally, we show that in equilibrium, λ∗H ≥ λ̂(F ∗H), implying that the signalling channel

always biases the equilibrium resolution policy further towards liquidation.

Corollary 3. λ∗H ≥ λ̂(F ∗H).

Proof. We first characterise λ̂(F ) = arg maxλ Ui(F, λ;πi) for F = F ∗H . We then show that

λ∗H ≥ λ̂(F ∗H).

To characterise λ̂(F ) for F = F ∗H , let us consider the following two cases.

1. F ∈ (c2(1), c2(λFB)]. In this case, there exists λ′(F ) > λFB, given by F = c2(λ′(F )),

such that pi(F, λ;πi) is strictly increasing in λ for λ < λ′(F ) and independent of λ for

λ ≥ λ′(F ). Therefore Ui(F, λ;πi) is strictly increasing in λ for all λ ≤ λFB and strictly

decreasing for all λ > λ′(F ). For λ ≤ λ′(F ), c2(λ) > F and

Ui(F, λ;πi) = δVi(λ) + (1− δ) (πif1 + (1− πi) [θF + (1− θ)c3(λ)]) (35)
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It follows that λ̂ is given by the first order condition to Eq. 35 L′(λ) = δ
δθ+1−θθX

if the solution is smaller than λ′(F ), otherwise λ̂(F ) = λ′(F ). Therefore in this case,

λ̂(F ) ∈ (λFB, λ′(F )].

2. F ∈ (c2(λFB), Z). In this case, both pi(F, λ) and Vi(λ) are strictly increasing in λ if and

only if λ < λFB. Therefore in this case, λ̂(F ) = λFB.

We can now show that λ∗H ≥ λ̂(F ∗H). If G(λFB) ≤ 0, then F ∗H > c2(λFB). In this case,

λ̂(F ∗H) is as described by Case 2 above, and λ∗H = λ̂(F ∗H) = λFB.

If G(λFB) > 0, F ∗H < c2(λFB) and λ∗H > λFB. In this case, λ̂(F ∗H) is as described by Case

1 above, and there can be two cases. (i) If λ∗H = λ̆H , where λ̆H is defined in the proof of

Proposition 1 and λ̆H = λ′(F ∗H). Therefore λ∗H = λ′(F ∗H) ≥ λ̂(F ∗H). (ii) If λ∗H = λ̃H , then it is

characterised by the first order conditions (following from the proof of Proposition 1) given by

∂u(λH)

∂λH
=
∂UH(F̂H(λH), λH ;πH)

∂λ
+
∂UH(F̂H(λH), λH ;πH)

∂F

∂F̂H(λH)

∂λH

=
∂UH(F̂H(λH), λH ;πH)

∂λ
+
∂UL(F̂H(λH), λH ;πH)

∂λ

∂UH(F̂H(λH), λH ;πH)/∂F

∂UL(F̂H(λH), λH ;πH)/∂F

When evaluated at (F ∗H , λ
∗
H), we have

∂UH(F ∗H , λ
∗
H ;πH)

∂λ
+
∂UL(F ∗H , λ

∗
H ;πH)

∂λ

∂UH(F ∗H , λ
∗
H ;πH)/∂F

∂UL(F ∗H , λ
∗
H ;πH)/∂F

= 0

Notice that,

∂UH(F ∗H , λ̂(F ∗H);πH)

∂λ︸ ︷︷ ︸
≤0

+
∂UL(F ∗H , λ̂(F ∗H);πH)

∂λ︸ ︷︷ ︸
<0

∂UH(F ∗H , λ̂(F ∗H);πH)/∂F

∂UL(F ∗H , λ̂(F ∗H);πH)/∂F︸ ︷︷ ︸
>0

< 0

where the
∂UH(F ∗H ,λ̂(F ∗H);πH)

∂λ ≤ 0 because λ̂(F ∗H) is as described in Case 1 above. Moreover,

∂UL(F ∗H ,λ̂(F ∗H);πH)
∂λ <

∂UH(F ∗H ,λ̂(F ∗H);πH)
∂λ , because for λ > λFB, ∂Ui(F,λ;πH)

∂λ is strictly increasing in

i, as

∂Ui(F, λ;πH)

∂λ
=
∂pH(F, λ)

∂λ
+ δ

[
∂Vi(λ)

∂λ
− ∂pi(F, λ)

∂λ

]
=
∂pH(F, λ)

∂λ
+ δ(1− πi)θ c′2(λ)︸ ︷︷ ︸

<0

following the proof of Lemma 3. Therefore in this case λ∗H = λ̃H > λ̂(F ∗H).
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B.5 Proof of Corollary 1

We characterise the comparative statics for the three cases discussed in Appendix B.4.

1. If G(λ̃H) < G(λFB) ≤ 0, λ∗H = λFB.

2. If G(λ̃H) ≤ 0 < G(λFB), λ∗H = λ̆H , where λ̆H is given by G(λ̆H) = 0. In this case,

∂λ∗H
∂πH

> 0, because
∂G(λ∗H)
∂λH

< 0 and

∂G(·)
∂πH

= (1− θ)(1− λ)X > 0 (36)

3. If 0 < G(λ̃H) < G(λFB), λ∗H = λ̃H , where λ̃H is given by Eq. 27. In this case,
∂λ∗H
∂πH

> 0,

because the LHS of Eq. 27 is decreasing in λH , and the RHS of Eq. 27 is decreasing in

πH . The derivative of the RHS of Eq. 27 w.r.t πH is equal to

− 1− [δ + (1− δ)θ]
[(1− πH)(1− θ)− (1− δ)θ]2

< 0 (37)

To summarise,
∂λ∗H
∂πH
≥ 0, where the inequality is strict if and only if G(λFB) > 0.

B.6 Proof of Lemma 6

This proposition follows immediately from Eq. 11 and the preceding discussion.

B.7 Proof of Proposition 2

Denote with Ui(λ) the expected payoff obtained by the high-type bank in the least cost separating

equilibrium, for a given resolution policy. In this equilibrium, the high-type bank chooses a

security to offer at t = 1 to maximise its expected payoff, while preventing mimicking from the

low type. Formally, Ui(λ) is equal to the value of the optimisation programme Eq. 7, given

λH = λ.

By definition of λ∗H as the optimiser of Eq. 7 , UH(λ∗H) = U∗H > UH(λH) for any λH 6= λ∗H .

Thus the screening effort γ∗ decreases as

γ∗(UH(λH), UFBL ) < γ∗(UH(λ∗H), UFBL ) ∀λH 6= λ∗H
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For efficiency, we only need to look at the bank’s expected payoff as the investors are always

indifferent. The expected payoff is lower when λ∗H is replaced with λH , i.e.

γ∗(UH(λH), UFBL )UH(λH) + [1− γ∗(UH(λH), UFBL )]UFBL − 1

2
kγ∗2(UH(λH), UFBL )

< γ∗(UH(λH), UFBL )UH(λ∗H) + [1− γ∗(UH(λH), UFBL )]UFBL − 1

2
kγ∗2(UH(λH), UFBL )

≤ γ∗(UH(λ∗H), UFBL )UH(λ∗H) + [1− γ∗(UH(λ∗H), UFBL )]UFBL − 1

2
kγ∗2(UH(λ∗H), UFBL )

The first inequality comes from UH(λH) < UH(λ∗H) and the second weak inequality follows

from the definition of optimal γ∗. Finally, λFBH is one of the possible λH 6= λ∗H if and only if

G(λFB) > 0, where G(λ) is given by Eq. 9.

B.8 Proof of Proposition 3

We first characterise the solution to Eq. 12 and 13. We then show that this solution subject to

a set of local incentive compatibility constraints (Eq. 13) indeed is the equilibrium by showing

that it satisfies global incentive compatibility (Claim 10).

It is immediate that for the lowest type i = 1, Fn1 is a pass-through security (or debt with

face value F1 = Z), and λn1 = λFB. It then follows from the proof of Lemma 5 that the optimal

security for all types i ≥ 2 is a risky debt with face value Fni ∈ ((1− d)Z + dL(λi), Z).

We next characterise the equilibrium security Fni and resolution policy λni for i ≥ 2.

Following the proof of Proposition 1, the (ICi) binds in equilibrium for all i ≥ 2. We can

then substitute the binding (ICi) into the objective function of type i to eliminate Fni , and

solve the resulting univariate optimisation problem. Let F̂i(λi, U
n
i−1) denote the Fi implied by

a binding (ICi), given that the equilibrium expected payoff to type i− 1 is equal to Uni−1. Let

ui(λi, U
n
i−1) denote the objective function of the resulting univariate optimisation problem. The

solution to the problem characterised by Eq. 7 is equal to λni = arg maxλi ui(λi) for all i ≥ 2,

where analogous to Eq. 18,

ui(λi, U
n
i−1) = (1− δ)pi(F̂i(λi, Uni−1), λi) + δVi(λi) (38)

There can be two cases for i ≥ 2:

(i) F̂i(λi, U
n
i−1) ∈ [c2(λi), Z) if and only if Gi(λi, U

n
i−1) ≤ 0, or

(ii) F̂i(λi, U
n
i−1) ∈ [c3(λi), c2(λi)) if and only if Gi(λi, U

n
i−1) > 0,
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where Gi(λ,U) is given by

Gi(λ,U) = c2(λ)− U − δπi−1Z − (1− πi) [(1− d)Z + dL(λ) + dθ(1− λ)X]

πi − δπi−1
(39)

and c2(λ) and c3(λ) are defined in Table 1

Case (i): Gi(λi, U
n
i−1) ≤ 0 and F̂i(λi, U

n
i−1) ∈ [c2(λi), Z)

In this case, the market value of the type i’s security is given by

pi(Fi, λi) = πiFi + (1− πi) [(1− d)Z + dL(λi) + dθ(1− λi)X] (40)

A binding (ICi) implies that

F̂i(λi, U
n
i−1) =

Uni−1 − δπi−1Z − (1− πi) [(1− d)Z + dL(λi) + dθ(1− λi)X]

πi − δπi−1
(41)

After some algebraic manipulation similar to those in the proof of Proposition 1, we have

∂u(λFB ,Uni−1)

∂λi
= 0 and

∂2u(λi,U
n
i−1)

∂λ2i
< 0. Therefore, for all λi and Uni−1 such that Gi(λi, U

n
i−1) ≤ 0,

ui(λi, U
n
i−1) is increasing in λi if and only if λi ≤ λFB.

Case (ii): F̂i(λi, U
n
i−1) ∈ [c3(λi), c2(λi))

In this case, the market value of the type i’s security is given by

pi(Fi, λi) = [πi + (1− πi)θ]Fi + (1− πi)(1− θ)[(1− d)Z + dL(λi)] (42)

A binding (IC) implies that

F̂i(λi, U
n
i−1) =

Uni−1 − δπi−1Z − δ(1− πi−1)θ[(1− d)Z + dL(λi) + d(1− λi)X]
− (1− πi)(1− θ)[(1− d)Z + dL(λi)]

[πi + (1− πi)θ]− δ[πi−1 + (1− πi−1)θ]
(43)

After some derivation similar to those in the proof of Proposition 1, we can show that there

exists λ̃i ∈ (λFB, 1], such that for all λi and Uni−1 such that Gi(λi, U
n
i−1) > 0, ui(λi, U

n
i−1) is

44



increasing in λi if and only if λi ≤ λ̃i, where λ̃i is given by

λ̃i


is defined by if [(1− πi)(1− θ)− θ(1− δ)] > 0

L′(λ̃i) = δ−[πi+(1−πi)θ]
(1−πi)(1−θ)−θ(1−δ)θX, and L′(1) < δ−[πi+(1−πi)θ]

(1−πi)(1−θ)−θ(1−δ)θX

= 1, otherwise

(44)

Notice that Gi(λi, U
n
i−1) (Eq. 39) is decreasing in λi for all λi. Following similar reasoning

as those in the proof of Proposition 1, the equilibrium resolution policy for type i ≥ 2 thus

satisfies the following conditions:

1. If Gi(λ̃i, U
n
i−1) < Gi(λ

FB, Uni−1) ≤ 0, then λni = λFB.

2. If Gi(λ̃i, U
n
i−1) ≤ 0 < Gi(λ

FB, Uni−1), then λni = λ̆i(U
n
i−1), where λ̆i(U

n
i−1) > λFB is given

by Gi(λ̆i(U
n
i−1), Uni−1) = 0.

3. If 0 < Gi(λ̃i, U
n
i−1) < Gi(λ

FB, Uni−1), then λni = λ̃i, where λ̃i > λFB is given by Eq. 44.

Notice that Points 2 and 3 imply that, if Gi(λ
FB, Uni−1) > 0, then λni = max{λ̆i(Uni−1), λ̃i}.

We now prove the first part of the proposition, that there exists a unique type j > 1, such

that λni = λFB for all i ≤ j and λni > λFB for all i > j. Recall that λn1 = λFB and Fn1 = Z. If

G2(λFB, Un1 ) > 0, then j = 1.

For G2(λFB, Un1 ) ≤ 0, notice that for any type i − 1 ≥ 2 such that Gi−1(λFB, Uni−2) ≤ 0,

λi−1 = λFB, and Uni−1 = δπi−1Z+(1−δ)πi−1F
n
i−1+(1−πi−1)[(1−d)Z+dL(λFB)+θd(1−λFB)X].

This implies that

Gi(λ
FB, Uni−1) = (1− d)Z + dL(λFB) + d(1− λFB)X

−
(1− δ)πi−1F

n
i−1 + (πi − πi−1)

[
(1− d)Z + L(λFB) + dθ(1− λFB)X

]
πi − δπi−1

> (1− d)Z + dL(λFB) + d(1− λFB)X − Fni−1 = Gi−1(λFB, Uni−2) (45)

where the last equality follows becauseGi−1(λFB, Uni−2) ≤ 0 implies that Fni−1 = F̂i−1(λFB, Uni−2)

as given by Eq. 41 (Case i). The inequality follows because Fni−1 > (1 − d)Z + dL(λFB) +

dθ(1−λFB)X. This implies that there exists j, such that for all types i ≤ j, Gi(λFB, Uni−1) ≤ 0

and λni = λFB, and Gj+1(λFB, Unj ) > 0.

Having shown that Gi(λ
FB, Uni−1) ≤ 0 for all i ≤ j, we now show by contradiction that

Gi(λ
FB, Uni−1) > 0 for all i > j. Notice that Eq. 45 implies thatGj+1(λFB, Unj ) > Gj(λ

FB, Unj−1) =
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0. Suppose that there exists k > j + 1 such that Gk(λ
FB, Unk−1) ≤ 0. This implies that

λnj+1 > λFB = λnk , and Fnj+1 < c2(λnj+1) < c2(λnk) ≤ Fnk , where c2(λ) is defined in Table 1. This

violates incentive compatibility as the type j + 1 can profitably deviate to (Fnk , λ
n
k):

Unj+1 = pj+1(Fnj+1, λ
n
j+1) + δ

[
Vj+1(λnj+1)− pj+1(Fnj+1, λ

n
j+1)

]
= (1− δ)[πj+1 + (1− πj+1)θ]Fnj+1 + δπj+1Z + δ(1− πj+1)θc2(λnj+1)

+ (1− πj+1)(1− θ)c3(λnj+1)

< (1− δ)πj+1F
n
k + δπj+1Z + (1− πj+1)

[
θc2(λnj+1) + (1− θ)c3(λnj+1)

]
< (1− δ)πj+1F

n
k + δπj+1Z + (1− πj+1) [θc2(λnk) + (1− θ)c3(λnk)]

< pk(F
n
k , λ

n
k) + δ [Vj+1(λnk)− pj+1(Fnk , λ

n
k)]

Finally, we show that λni is increasing in i for all i > j. Recall that, for i > j, λni =

max{λ̆i(Uni−1), λ̃i}. If λni−1 = λ̃i−1, then it is immediate that λni ≥ λni−1, since λ̃i (Eq. 44) is

increasing in πi, where the inequality is strict whenever λ̃i−1 < 1. If λni−1 = λ̆i−1(Uni−2), then

Uni−1 = δπi−1Z + (1− δ)πi−1F
n
i−1 + (1− πi−1)[(1− d)Z + dL(λ̆i−1(·)) + dθ(1− λ̆i−1(·))X]. This

implies that

Gi(λ̆i−1(·), Uni−1) = (1− d)Z + dL(λ̆i−1(·)) + d(1− λ̆i−1(·))X

−
(1− δ)πi−1F

n
i−1 + (πi − πi−1)[(1− d)Z + dL(λ̆i−1(·)) + dθ(1− λ̆i−1(·))X]

πi − δπi−1

> (1− d)Z + dL(λ̆i−1(·)) + d(1− λ̆i−1(·))X − Fni−1 = Gi−1(λ̆i−1(·), Uni−2) = 0

where the inequality follows because Fni−1 = (1−d)Z+dL(λ̆i−1(·))+d(1−λ̆i−1(·))X > (1−d)Z+

dL(λ̆i−1(·)) + dθ(1− λ̆i−1(·))X. This then implies that λni ≥ λ̆i(Uni−1) > λ̆i−1(Uni−2) = λni−1. To

summarise, for all i > j, λni ≥ λni−1, where the inequality is strict whenever λni−1 < 1.

Having now characterize the solution to Eq. 12 and 13, we now show that this solution

indeed characterises the least cost separating equilibrium.

Claim 10. The optimisation programme subject to global incentive compatibility, defined as

Uni ≥ pk(Fnk , λnk) + δ [Vi(λ
n
k)− pi(Fnk , λnk)] ∀i, k ∈ {1, 2, ..., n}

is equivalent to the optimisation programme subject to local incentive compatibility (ICi) defined
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by Eq. 13.

Proof. It is immediate that global incentive compatibility implies local incentive compatibility.

It remains to show that the solution to Eq. 12 and 13 indeed satisfies the global incentive

compatability constraint. Following the proof of Proposition 1, the (ICi) binds in equilibrium

for all i ≥ 2. Consider any k ≥ i. The binding local (ICi) implies

pi(F
n
i , λ

n
i )

by (ICi) = pi+1(Fni+1, λ
n
i+1) + δ

([
Vi(λ

n
i+1)− pi(Fni+1, λ

n
i+1)

]
− [Vi(λ

n
i )− pi(Fni , λni )]

)
by (ICi+1) = pi+2(Fni+2, λ

n
i+2) + δ

([
Vi+1(λni+2)− pi+1(Fni+2, λ

n
i+2)

]
−
[
Vi+1(λni+1)− pi+1(Fni+1, λ

n
i+1)

])
+ δ

([
Vi(λ

n
i+1)− pi(Fni+1, λ

n
i+1)

]
− [Vi(λ

n
i )− pi(Fni , λni )]

)
by (ICs) = pk(F

n
k , λ

n
k) + δ

k−1∑
s=i

[
Vs(λ

n
s+1)− ps(Fns+1, λ

n
s+1)

]
− [Vs(λ

n
s )− ps(Fns , λns )] (46)

This implies Uni = pi(F
n
i , λ

n
i )+δ [Vi(λ

n
i )− pi(Fni , λni )] ≥ pk(Fnk , λnk)+δ [Vi(λ

n
k)− pi(Fnk , λnk)] for

all k ≥ i if

k−1∑
s=i

[
Vs(λ

n
s+1)− ps(Fns+1, λ

n
s+1)

]
− [Vs(λ

n
s )− ps(Fns , λns )]

≥ [Vi(λ
n
k)− pi(Fnk , λnk)]− [Vi(λ

n
i )− pi(Fni , λni )]

=
k−1∑
s=i

[
Vi(λ

n
s+1)− pi(Fns+1, λ

n
s+1)

]
− [Vi(λ

n
s )− pi(Fns , λns )]

which is implied by

[
Vs(λ

n
s+1)− ps(Fns+1, λ

n
s+1)

]
− [Vs(λ

n
s )− ps(Fns , λns )]

≥
[
Vi(λ

n
s+1)− pi(Fns+1, λ

n
s+1)

]
− [Vi(λ

n
s )− pi(Fns , λns )] ∀s ≥ i

⇔ − Fns+1 + Fns −
[
c2(λns+1)− Fns+1

]+
+ [c2(λns )− Fns ]+ ≥ 0 (47)

Similarly, Eq. 46 implies Unk = pk(F
n
k , λ

n
k)+δ [Vk(λ

n
k)− pk(Fnk , λnk)] ≥ pi(Fni , λni )+δ [Vk(λ

n
i )− pk(Fni , λni )]
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for all k ≥ i if

k−1∑
s=i

[
Vs(λ

n
s+1)− ps(Fns+1, λ

n
s+1)

]
− [Vs(λ

n
s )− ps(Fns , λns )]

≤ [Vk(λ
n
k)− pk(Fnk , λnk)]− [Vk(λ

n
i )− pk(Fni , λni )]

=
k−1∑
s=i

[
Vk(λ

n
s+1)− pk(Fns+1, λ

n
s+1)

]
− [Vk(λ

n
s )− pk(Fns , λns )]

which is implied by

[
Vs(λ

n
s+1)− ps(Fns+1, λ

n
s+1)

]
− [Vs(λ

n
s )− ps(Fns , λns )]

≤
[
Vk(λ

n
s+1)− pk(Fns+1, λ

n
s+1)

]
− [Vk(λ

n
s )− pk(Fns , λns )] ∀k ≥ s

⇔ − Fns+1 + Fns −
[
c2(λns+1)− Fns+1

]+
+ [c2(λns )− Fns ]+ ≥ 0 ⇔ Eq. 47

Therefore it suffices to show that Eq. 47 is true for all s. Following the proof of Proposition

3, there can be three cases.

(i) s+ 1 ≤ j. In this case, λns+1 = λns , and Eq. 47 ⇔ Fns+1 < Fns .

(ii) s ≤ j < s+ 1. In this case, λns+1 > λns , and Eq. 47 ⇔ −c2(λns+1) + Fns ≥ 0, which is true

as −c2(λns+1) + Fns > −c2(λns ) + Fns ≥ 0.

(iii) s = 1 > j. In this case, λns+1 > λns , and Eq. 47 ⇔ −c2(λns+1) + c2(λns ) ≥ 0.
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