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Abstract
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1 Introduction

It is a long tradition in macroeconomic modeling to attribute aggregate fluctuations to a handful

of shocks. In a celebrated paper, King and Rebelo (1993) showed that a large fraction of macroe-

conomic variations at business cycle frequencies can be accounted for by a single shock to the level

of technology. At lower frequencies, nearly all macroeconomic fluctuations are often attributed to

technology shocks (e.g., King et al. (1991)). More elaborate macroeconomic models also incorpo-

rate shocks to policies, preferences, and other primitives. Although these newer models have richer

features and theoretical foundations, it is fair to say that using a few “level” shocks to generate

cyclical fluctuations and co-movements is at the heart of macroeconomic modeling.

More recently, there is a nascent theoretical literature suggesting that higher-order shocks, and

more specifically, second-moment volatility shocks, can also be an important source of business

cycles.1 This alternative focus is motivated by the observation that realized volatility and expected

future volatility (or uncertainty) tend to be high during recessions. This countercyclical feature of

volatility is robust to whether the latent volatility variables are estimated or are replaced by proxy

variables. Additional evidence that second-moment variations may have first-order effects is given

in Fernandez-Villaderde and Rubio-Ramirez (2010), among others.

The need to model the dynamics of volatility has long been recognized. In a seminal paper,

Engle (1982) presents evidence of autoregressive conditional volatility (also known as ARCH effects)

in inflation data. Sims and Zha (2006) also conclude that time-varying volatility is an important

feature that empirical macroeconomic models should incorporate. From estimation of structural

models, Justiano and Primiceri (2008) find significant time-varying volatility in monetary policy

and technology shocks, while Fernandez-Villaverde et al. (2015) find that a two-standard deviation

shock to fiscal volatility can reduce output by up to 1.5 percentage points when the economy is at

the zero lower bound. Work along this line tends to assume that volatility is exogenous and that

its shocks are independent of the innovations to the level of the fundamentals.

Despite statistical and methodological progress made in modeling volatility, the source of volatil-

ity shocks as well as the interaction between the level and volatility dynamics remain open questions

to a large extent. While exogenous time-varying volatility in productivity shocks is a natural start-

ing point from a theoretical point of view, it may not necessarily be the most important source of

volatility in the data. Furthermore, exogenous volatility precludes volatility-in-mean effects that

allow for feedback between the first- and second-moment dynamics. But the stochastic volatility

estimates are typically countercyclical, suggesting that volatility is likely related to and possibly

1See, for example, Schmitt-Grohe and Uribe (2004), Kim et al. (2008),Bloom (2009), Fernández-Villaverde et al.
(2011), Fernandez-Villaverde et al. (2015), Jurado et al. (2015) and references there in.
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predictable by observed cyclical variables2, which is at odds with the assumed exogeneity of volatil-

ity.

While it may be tempting to criticize the limitations of the exogenous volatility assumption,

relaxing the assumption is not easy for a number of reasons. To begin with, economic theory

has focused on level shocks and does not provide much guidance about the source of volatility

fluctuations and how the volatility process is supposed to evolve. It is quite common to adapt

models designed for high-frequency financial data to macroeconomic data, even though the two data

types have distinctive time series properties. Furthermore, with time-varying volatility, there can be

many channels for generating equivalent first- and second-moment dynamics. Model identification

and validation is difficult as the volatility is latent even ex-post.

Perhaps more important from a practical standpoint is that modeling non-linearity and volatility

often requires computationally sophisticated methods. Non-linear VARs such as the one considered

in Pesaran and Shin (1998) are already quite computationally demanding. Though conceptually

simple, adding stochastic volatility to an otherwise standard VAR or dynamic stochastic general

equilibrium (DSGE) model entails a significant change in the estimation methodology. It is rela-

tively easy to assess the sensitivity of a homoskedastic model to alternative assumptions, but the

flexibility disappears once the volatility process has to be explicitly modeled.

In this paper, we propose a simple and easy-to-implement framework for studying the interac-

tion between the first- and second-moment dynamics. It preserves the traditional view that there

are relatively few level shocks in macroeconomic data. However, it allows second-moment shocks to

be a source of economic fluctuations and permits the second-moment factors to respond to the level

shocks. Specifically, Benigno et al. (2013) shows that time-varying volatility has a second-order

effect on the level of the endogenous variables. We demonstrate that if the data are generated ac-

cording to a DSGE model and are observed without error, then under some additional assumptions,

we can distinguish the “level” factors A from the “volatility” factors V . In practice, the V that we

recover is likely a composite of second-moment factors whose interpretation we remain agnostic on.

This limitation arises partly because there are likely shocks, some to second moments, that DSGE

models fail to capture. Furthermore, the construction of V depends on the level factors estimated

from a large panel of data, and these estimates are only consistent for the space spanned by the

true factors. In other words, we only identify the true factors up to a rotation. The exercise is

nonetheless of interest because it sheds light on the importance of the second-moment dynamics.

After all, if the level shocks are the sole source of economic fluctuations, then the second-moment

shocks should have no cyclical implications whatever their structural interpretation might be. We

find that not only are the effects of the second-moment shocks significant, but their presence tends

2See, for example, Justiano and Primiceri (2008) and Carriero et al. (2016) among others.

2



to reduce the importance of the level factors previously used in FAVARs.

Our objective is to separate the level and the volatility factors in the data, and to quantify their

individual contributions as well as the non-linear interactions. Previous macroeconomic analysis

typically incorporates volatility processes into fully specified structural models estimated from a

small number of variables (see Fernandez-Villaderde and Rubio-Ramirez (2010)). Estimation is

rather complicated and the results rely on correct specification of both the economic model and the

volatility processes that theory offers little guidance on. Our methodology requires the presence

of pervasive volatilities but is not tied to any particular economic model. Instead, it relies on

information contained in a monthly panel of 134 macroeconomic time series to recover the space

spanned by the volatility processes.3

Several patterns in the level and volatility factors are noteworthy. First, even though there

are eight factors, we suggest that only three are level factors. Our dominant volatility factor V1

is estimated to be countercyclical and persistent. It rises during the Great Recession considerably

and remains at an elevated level for many years, but it is weakly and negatively correlated with the

stochastic volatility directly estimated from our real-activity level factor. Second, our estimated V1

is only weakly correlated with measures of volatility/uncertainty constructed in previous studies

such as Baker et al. (2016) and Jurado et al. (2015). Instead, V1 is most correlated with the second

factor estimated from the squared data. There is also evidence of second moment shocks other

than volatility in the data and which need to be further understood.

To study their dynamic effects, we augment estimates of A1 and V1 to a VAR in housing starts,

federal funds rate, industrial production, and inflation. While the largest level factor in the data

is unambiguously a real activity factor, its effects on inflation depend on whether we explicitly

control for the presence of V1. The responses to a positive shock to V1 resemble those of a negative

“demand” shock, while the responses to a negative shock to A orthogonalized to V1 are reminiscent

of responses to a negative supply shock. In short, we find that the level and second moment

dynamics do interact. Volatility shocks appear only in higher-order approximations. Hence, their

effect is expected to be smaller than those of the level shocks. An innovation to V1 accounts for 5%

to 20% of the variations in the data at the horizons of 4-5 years. Though this contribution may

seem modest, volatility shocks are large in magnitude when they occur.

The rest of the paper is structured as follows. In the next section, we outline our framework.

Specifically, we show how higher-order approximations of DSGE models can be used to separate

“volatility” and “level” factors in theory. Section 3 then discusses how to recover the factors from

3Our emphasis is on the second-moment dynamics, hence distinct from the VAR proposed in Aruoba et al. (2017),
whose focus is non-linearities. While Jurado et al. (2015) also exploits a data rich environment, their uncertainty
measure concerns h step ahead volatility in the forecast errors. We evaluate the contemporaneous unconditional
volatility; no forecasting model is involved in our approach.
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the data. Section 4 presents the estimates and Section 5 uses impulse responses and variance

decompositions to understand the business cycle implications of these factors. Section 6 concludes.

2 Level vs. Second-Moment Factors

This section consists of two parts. Subsection 1 uses the one-sector stochastic growth model to

highlight the main issues involved in a simple setting. Subsection 2 uses the general second-order

solution of dynamic stochastic equilibrium (DSGE) models as a guide to understand what are the

common factors that can be expected from the level and square of the data.

2.1 A Simple Example

Consider the one-sector stochastic growth model. Let zt be technology with homoskedastic inno-

vations ψt, and let čt and ǩt+1 be log-deviations of consumption and capital from the steady state,

respectively. It is well known that the linearized solution is

čt = bkǩt + bzzt (1a)

ǩt+1 = hkǩt + hzzt (1b)

zt+1 = ρzt + ψt+1. (1c)

Our point of departure is to modify the homoskedasticity assumption to allow for time-varying

volatility in the technology shocks, i.e., zt+1 = ρzt + utεt+1 where ut (which has a mean of ū)

governs the volatility of shocks to technology and εt+1 is an i.i.d. zero mean, unit variance shock

so that ψt+1 = utεt+1 is heteroskedastic. One can interpret changes in u2
t as volatility shocks.

Applying the second-order approximate solution method of Benigno et al. (2013) and letting

vt = u2
t yields

čt = bkǩt + bzzt +
1

2

[
bkkǩ

2
t + bzzz

2
t + bkzǩtzt + buuvt

]
+ constant, (2a)

ǩt+1 = hkǩt + hzzt +
1

2

[
hkkǩ

2
t + hzzz

2
t + hkzǩtzt + huuvt

]
+ constant, (2b)

zt+1 = ρzt + ψt+1. (2c)

There are now two independent but altogether three common sources of randomness: namely, zt

z2
t , and vt. As is evident even in the simple growth model, exogenous changes to the level and the

second-moment factors do not have the same effects on č and ǩ. While the effects of z2
t are expected

to be smaller than those of zt, the quadratic effects omitted from the linear solution can still be

important. Note the second-order approximation for zt is identical to the first-order approximation
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because zt is a conditionally linear process.4

Several observations are important to understand how we will disentangle the effects of the level

shocks from the volatility shocks. First, the factors in č and ǩ will, in general, be a combination of

the level factors (e.g., zt in the above example and the cross-product of zt with the endogenous state

variables) and volatility factors (e.g., vt in the above example). Thus, when common components

are extracted from a vector of macroeconomic variables, the extracted factors are likely a mix of

level shocks, nonlinear terms, and volatility shocks.

Second, if we square both sides of the second-order approximate solution and omit the higher-

order terms, we see that

č2
t = b2kǩ

2
t + b2zz

2
t + 2bkbzǩtzt + constant, (3a)

ǩ2
t+1 = h2

kǩ
2
t + h2

zz
2
t + 2hkhzǩtzt + constant, (3b)

z2
t+1 = ρ2z2

t + 2ρūztεt+1 + ū2ε2t+1 + vt. (3c)

The last two terms in the last equation follow from ψ2
t+1 = u2

t ε
2
t+1 ≈ ū2ε2t+1 + u2

t ε̄
2 = ū2ε2t+1 + u2

t .

The second term in the last equation is an approximation of 2ρutztεt+1 because E(zt) ≡ z̄ = 0

and E(εt) ≡ ε̄ = 0, 2ρutz̄εt+1 = 0 and 2ρutztε̄ = 0. Note that the squared data č2
t , ǩ

2
t+1 and z2

t+1

give information about z2
t and the cross-product terms but not about zt itself, while volatility vt

appears in the level and squared data. z2
t+1 give information about z2

t and the cross-product terms

but not about zt itself, while volatility vt appears in the level and squared data.

Third, z2
t is common to both čt and č2

t . This is also true of other endogenous variables. Thus,

the factors in č2 and ǩ2 can be a subset of the factors in č and ǩ. These three observations provide

a basis to separate the level shocks and the volatility shocks vt from the second-moment variations.

2.2 The Second-Order Solution

The stochastic growth model is useful for gaining intuition, but the presence of only one exogenous

state variable is restrictive. Consider the following description of a generic DSGE model:

0 = Et{Q(yt+1, pt+1, yt, pt)} (4a)

zt+1 = Λzt +Aψt+1 (4b)

ψt+1 = Utεt+1 (4c)

u2
t+1 = ū2 + Ξu2

t + Ωηt+1 (4d)

where yt is the vector of non-predetermined variables, pt = [k′t z′t]
′ is a vector of predetermined

(state) variables, zt is the vector of exogenous variables, kt is the vector of endogenous predetermined

4We implicitly assume that zt is observed by an econometrician because the series can be constructed from linear
combinations of endogenous variables. For example, in the one-sector growth model, the production function implies
zt = y̌t − αǩt where y̌t is the log deviation of output from its steady state.
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(state) variables. We continue to use “checks” on the above variables to indicate that the variables

are measuring deviations from steady-state. The shocks ηt and εt are mutually independent. ψt+1 =

Utεt+1 is the vector of shocks or rational expectation errors that is a product of i.i.d shocks εt
iid∼(0, I)

and volatility shocks collected into Ut, a diagonal matrix whose entries ut follow a VAR(1) structure.

The volatility innovations ηt
iid∼(0, I) have contemporaneous effects summarized by matrix Ω, see

equation (4d).5 Equation (4a) summarizes the optimality conditions for economic agents, as given

by vector function Q(·). Equation (4b) describes dynamic properties of the forcing variables.

If we ignore the time-varying volatility, the model can be solved using the method of King and

Watson (1998), Sims (2002), and Klein (2000), among others. The first-order solution is

y̌t = M(p̌t, ut) (5a)

p̌t+1 = W (p̌t, ut) +Wψψt+1 (5b)

where M and W are vector functions. Applying the method of Benigno et al. (2013) yields the

second-order approximate solution:

y̌t = Mpp̌t + 1
2(Iy ⊗ p̌′t)Mppp̌t + 1

2Muuu
2
t + constants (6a)

p̌t+1 = Wpp̌t + 1
2(Ip ⊗ p̌′t)Wppp̌t + 1

2Wuuu
2
t +Wψψt+1 + constants (6b)

where ⊗ denotes the Kronecker product.6 The approximation given in equation (6b) is relevant

only for endogenous state variables kt because the exogenous process zt is already conditionally

linear.

The representation given by equations (6a)-(6b) has several important features. First, the

dynamics have a factor structure. The common “factors” are the “level” of the state variables p̌t,

the shocks ψt+1, the “second moment” variables originating from the variances and covariances

of the state variables, as well as volatility u2
t . Hence, volatility shocks ηt have a direct effect on

“level” variables. Given the conditional linearity of zt and independence of the shocks, there is no

interaction term between volatility u2
t and the state variables pt in the second-order approximation.

Note also that ψt+1 directly affects only zt+1, not kt+1.

Second, the squared entries of y̌t or p̌t depend only on squares of “level” terms in equations

5As written in Benigno et al. (2013), ut can take on negative values without further restrictions. A more desirable
specification is write ψt+1 = exp(Ut)εt+1 and re-interpret (4d) as a log volatility equation.

6The matrices Mp,Mpp,Muu,Wp,Wpp,Wuu correspond to the first- and second-order derivatives of functions M

and W in equations (5a) and (5b). For example, Mpp = ∂2M(p,u)
∂p∂p′ . The constants depend on the volatility of zt

and curvature in the optimality conditions that render E(y̌t) = 0 and E(p̌t) = 0.
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(6a)-(6b). That is,

diag{y̌ty̌′t} = diag{Mpp̌tp̌
′
tM
′
p}+ constant (7a)

diag{p̌t+1p̌
′
t+1} = diag{Wpp̌tp̌

′
tW
′
p}+ diag{Wpp̌tψ

′
t+1W

′
ψ}

+diag{Wψψt+1p̌
′
tW
′
p}+ diag{Wψψt+1ψ

′
t+1W

′
ψ}+ constant. (7b)

Other terms when squared have orders greater than two and thus are ignored. The second and

third terms in the squared solution are interactions of the “level” variables (i.e. state variables

p̌t) and ψt+1 (the innovations to at). Importantly, these interaction terms are not present in the

second-order solution of y̌t and p̌t+1 given in (6a)-(6b).7 The last term in equation (7b) is a

combination of volatility in ut and εt+1 as in the scalar case since ψ2
t+1 = u2

t ε
2
t+1 = u2ε2t+1 + u2

t ε̄
2 +

higher order terms = u2ε2t+1 + u2
t + higher order terms.

Third, the “level” factors appear linearly and quadratically in equations (6a)-(6b). Furthermore,

the squared “level” terms appear in equations (6a)-(6b) and equations (7a)-(7b). Hence there is a

“cross-equation” restriction not only in terms of factors but also in terms of loadings on the factors.

For subsequent analysis, it is useful to consider a representation in terms of mutually orthogonal

factors instead of the system of equations (6a)-(7b). The reason is that the state-variables p̌t are

potentially correlated.8 Hence we consider pt’s orthogonal components, denoted at. We then define

gt to be a vector of cross-products of entries in at (including its own product). Similarly, let vt

be the orthogonal components of u2
t .

9 Note that at and vt are contemporaneously uncorrelated

because a cross-product of p̌t and ǔ2
t is a negligible third-order term.

If we define x̌t ≡ [y̌′t p̌′t]
′ and x̌2

t ≡ diag{x̌tx̌′t}, we can re-write equations (6a)-(7b) as[
x̌2
t

x̌t

]
=

[
λ2g λ2v 0
λ1g λ1v λ1a

]gtvt
at

 (8)

where the λ parameters in the two equations can be interrelated. The point to note is that the

common factors in x̌t are a mixture of level factors at and second-moment factors (gt, vt). How-

ever, the level factors at do not appear in the equation for x̌2
t . That is, x̌2

t is contemporaneously

uncorrelated with at conditional on vt and gt. The next step is to exploit this structure to separate

the level and the second-moment factors.

Proposition 1 Let h be a vector of unique cross-products of the components of f = (g, v, a) Define

x̃ = Mhx̌ to be the residuals from projecting x̌ on h where Mh is the orthogonal projection matrix.

7Given the structure of Wψ, the second and third terms in equation (7b) are actually zero for the endogenous
state variables kt.

8This is not an issue for other “level” variables ψt+1 (shocks to exogenous variables) because it is conventional to
assume that these shocks are independent.

9vt actually includes u2
t and ε2t+1. One may be able to separate these shocks: ε2t+1 does not enter the “level” (i.e.

(6a)-(6b)) while u2
t does.
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Similarly, let x̃2 = Mhx̌
2 be the residuals from projecting x̌2 on h. Then(

x̃2
t

x̃t

)
=

(
λ2v 0
λ1v λ1a

)(
vt
at

)
. (9)

The idea behind Proposition 1 is that the factors f in x̌ are a mixture of level and second moment

variations. Its quadratic components are g, a · g, a · v, g · g, g · v, and v · v which we collect

into h. Importantly, h does not depend on a or v. A projection of x̌2 on h provides residuals x̃2

that are purged of the higher order variations of a and v, but preserve the variations of a and v

themselves, along with terms of higher order that are presumed negligible. Though the residuals x̃

from projecting x̌ on h are still a linear combination of a and v, the volatility factor v is already

recovered from x̃2. Hence x̃ allows recovery of the level factor a.

3 Econometric framework

The model variables denoted with a ‘check’ are not observed. In this section we discuss several

adjustments that are needed before we can make use of Proposition 1 in practice. We also present

details on how one can estimate factors.

3.1 From the Model Solution to the Data

To begin, we let uppercase denote empirical analog of the model variables. For t = 1, . . . , T , let

Xt = (X1t, . . . , XNt)
′ and X2

t = (X2
1t, . . . , X

2
Nt)
′ be N × 1 vectors of observables standardized to be

mean zero with unit variance. Let At and Vt be the latent common level and volatility factors that

we seek to recover, and Gt be a vector of cross-products of the components of At.

The theoretical setup provides a useful point of departure for isolating Vt, but it is limited in

several ways. First, there is no role for series-specific shocks in equation (8). Or, from the viewpoint

of Boivin and Giannoni (2006), the model variables x̌t and x̌2
t are assumed to have exact empirical

counterparts. To accommodate this, we introduce non-pervasive errors e1t to Xt and e2t to X2
t .

These can be errors omitted from the theoretical model, or may simply be measurement errors. We

leave the source of these errors agnostic.

Second, the theoretical model only allows volatility to the innovations of the fundamentals At,

omitting other sources of second-moment variations that could be empirically relevant. For example,

the idiosyncratic errors εit can have common time varying volatility σct so that eit = σctεit, εit ∼
(0, 1). If there were no level factors and Xit = eit, then for large N , 1

N

∑N
i=1X

2
it = 1

N

∑N
i=1 e

2
it

p−→σ2
ct.

Such a common volatility factor will appear in X2
t . The theoretical model also ignores time variation

in its loadings. For example, if Xit = (λ̄fi + λcAt)At + e1t, then λcAtAt is another source of common

second order variations. Hence it is reasonable to expect that the V that we recover will not be
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limited to volatility in the fundamentals as in economic models, and we leave their interpretations

agnostic. Our premise is that if second-moment variations have no business cycle implications,

they should not be in the data regardless of the name these variations are given. With these

considerations in mind, and under the maintained assumption that the level factors At have no

contemporaneous effect on X2 conditional on Gt and Vt, the data can be represented by

(
X2
it

Xit

)
=

(
Λi2,G Λi2,V 0
Λi1,G Λi1,V Λi1,A

)GtVt
At

+

(
ei2t
ei1t

)
. (10)

Notably, the factors in Xt are linear combinations, or a mixture, of the level factor (At) and second-

moment factors (Gt, Vt). The factors in X2
t are a mixture of volatility factor Vt and interaction of

the level factors Gt).

Let rA and rV be the number of level and volatility factors, respectively. Guided by Proposition

1, we propose to estimate A and V as follows:

Algorithm-AV

i Estimate rF factors F = (G,V,A) from X and let H be the rF (rF+1)
2 unique cross products

of F .

ii For each i = 1, . . . N , project Xi on H to obtain residual X̃i. Also project X2
i on H to obtain

residual X̃2
i .

iii Estimate V from X̃2.

iv Estimate rA factors from X̃ given an estimate of V from (iii); that is, project X̃ on V and

extract factors from the residual.

A one-dimensional V can be obtained from Step (iii) by averaging over X̃2, or rV factors can

be constructed from X̃2. Yalcin and Amemiya (2001) suggests that one might find a large number

of factors in the data if higher order factors are omitted from the linear factor model. We provide

a constructive result. We use the second order solution of a DSGE model to show that the omitted

higher other terms can allow recovery of V . One path forward is to estimate a non-linear factor

model. Chen et al. (2009) provide the theory for nonlinear principal components and suggests using

sieves estimation in implementation, but the empirical properties of the procedure are unknown.

Yalcin and Amemiya (2001) suggests a maximum-likelihood estimator for a large T small N setting

that incorporates the cross-restrictions in the first and second moment on the Λ matrices. We do

not impose such restrictions, but we exploit information in a data rich environment. Estimation of

factors is an important part of the algorithm, which is discussed in the next section.
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3.2 Estimation of Factors

For i = 1, . . . , N , the scaled data is Zi = Xi√
NT

where Xi is a T × 1 series standardized to have

mean-zero with unit variance. The scaling yields
∑

i

∑
t Z

2
it = 1, which is useful in what follows.

The factor analytic model for the scaled data Z = (Z1, Z2, . . . , ZN )

Z = F ∗Λ∗′ + e∗ (11)

We assume that Z has singular-value decomposition UDV T , U is a T × T unitary matrix of left

eigenvectors, D is a diagonal T ×N matrix of eigenvalues in descending order, and V is a N ×N
unitary matrix of right eigenvectors. If there are r factors, the best low rank approximation of

Z is given by UrDrV
T
r where Ur collects the first r left eigenvectors corresponding to the top

r × r submatrix of Dr. For any specified number of factors k, the principal components (PCA)

minimizes the unweighted sum of squared residuals SSRk(F,Λ) =
∑N

i=1

∑T
t=1(Zit−Λ′iFt)

2 to obtain

F̂ = UkD
1/2
k .10 Bai and Ng (2017) shows that

√
N(F̂t −M ′F ∗t ) ≈ N(0,ΣF ). In general, M is not

an identity matrix and F̂ is only an estimate of the space spanned by F . Nonetheless, it can be

used in many applications as though they were observed in empirical work. Bai and Ng (2002)

suggests to determine r by a criterion that can be written as

r̂ = min
k

log

(
1−

k∑
j=1

D2
jj

)
+ kg(N,T ) (12)

where g(N,T ) = N+T
NT log( NT

T+T ), D2
jj is the variance in Z explained by factor j, and SSRk =

1−
∑k

j=1D
2
jj .

Our analysis requires estimating factors in Z and Z2. Two issues arise. First, the squared

data can exaggerate the role of outliers, and principal components are known to be sensitive to

influential observations (also known as “noise corruption”). As robustness check, we also weight

the observations as in Boivin and Ng (2006), leading to a GLS type estimator of the factors. For

isolating A and V , the more important problem is that r̂ tends to accept too many ‘weak’ factors.

This matters since we need to project X on H, and overfitting is likely if H is high dimension. The

machine-learning literature suggests to handle both outliers and ‘weak’ factors by regularization.

Minimizing SSRk + λ(||F ||2F + ||Λ||2F ) yields regularized principal components (RPCA) defined

as F̄ = Ur(D
+
r )1/2 and Λ̄ = Vr(D

+
r )1/2 where D+

r = (Dr − λIr)+. The regularization tilts the

objective towards finding a low rank component of Z that has the smallest rank possible. It does so

10The literature on factor models is large. See, for example,Sargent and Sims (1977); Quah and Sargent (1993);
Forni et al. (2000); Stock and Watson (2002a,b); Bai and Ng (2002, 2006). More commonly used is the method
of asymptotic principal components (APCA) due to Connor and Korajczyk (1993) which gives F̂ =

√
TUr with

FTF
T

= Ir. The PCA estimator uses the normalization FTF = Dr instead of F ′F
T

= Ir. But the PCA factors are
perfectly correlated with the APCA factors. See Bai and Ng (2017).
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by shrinking the PCA estimates towards zero, and discards those with eigenvalues below a threshold

λ. Regularization suggests a new criterion for determining r (see Bai and Ng (2017)):

r̄ = min
k

log

(
1−

k∑
j=1

(Djj − λ)2

)
+ kg(N,T ). (13)

Adding a data-dependent term to the penalty gives a more conservative estimate of r. It should be

noted that the RPCA estimates that survive thresholding are perfectly correlated with the PCA

factors (since they are both spanned by Ur̄).

Algorithm-AV is simple, but comes at the expense of ignoring the non-linear dependence between

the A and G, for example.11 It is thus useful to verify the adequacy of the approximation. We

conduct a monte-carlo experiment to check the effectiveness of Algorithm-AV. Using the second-

order approximate solution as guide, a panel of T = 400 and N = 100 observations is simulated

as

Xit = Λ′1,AAt + Λ′1,GGt + Λ1,V Vt + ε1it = Λ′1Ft + ε1it (14a)

X2
it = Λ′2,GGt + Λ2,V Vt + ε2it = Λ′2St + ε2it (14b)

We assume r = 2 level factors: A1t = ρA1t−1 +
√
vte1t and A2t = e2t. Here, Gt = {A2

1t, A
2
2t, A1tA2t}.

Two volatility processes are considered: a chi-square process with one degree of freedom, and a

beta-distributed process with parameters 5 and 3. The errors e1t, e2t, ε1it, ε2it are independent

normally distributed with mean zero and unit variance. The Λ parameters are calibrated to mimic

the data. For example, in the chi-square distribution case, the level factors A explain about 66%,

the G factors explain 0.2%, the volatility factor V explains 5% of the variation of X. In the beta-

distribution case, the shares are 0.5, 0.02, and 0.09, respectively. The u series are simulated only

once, but all other errors are re-generated in the 1000 monte-carlo experiments.

The dimension of F is estimated by r̂F to be 4 and by r̄F to be 2.5 with the maximum number

of factors set to eight, both higher than the true value of two. On average, r̂S suggests five factors

in X2 while r̄S suggests three. In each replication, we use r̄F as rF to in Algorithm-AV. In the

chi-square distribution case, the dimensions of A and V are estimated to be two and one on average.

The average dimension of V is estimated to be 2.4 with a median of 2. In the beta-distribution case,

rA and rV are 1.3 and 1.5. Though we over-estimate the number of V s, the correlation between

the average V̂1 and V is 0.95 in the simulations.

11This is analogous to the drawback that At and At−1 are treated as separate factors in a factor model.
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4 Factors in X and X2

We estimate the factors using data from FRED-MD McCracken and Ng (2016), a macroeconomic

database consisting of a panel of 134 series over the sample 1960M1-2015M12. Consistent with

previous studies, many of the series are transformed by taking logs and/or first differencing before

the factors are estimated. Algorithm-AV uses regressions of X and X2 on H to obtain X̃ and X̃2.

The goodness of fit of these regressions are indicative of the importance H. The average R2 in

the X regressions is 0.119; the median is 0.033, and the maximum is 0.836. The three series with

the highest R2 are housing starts, total housing starts, and housing starts in the northeast. Thus,

the interaction of the level factors have strongest effects on the housing variables. The average

R2 in the X2 regressions is 0.201; the median is 0.146, and the maximum of 0.794. The highest

R2s are recorded for the price of commodities, followed by the price of non-durables and CPI-ex

shelter. Interestingly, the correlation between X2 and X̃2 is strongest for non-borrowed reserves

(0.998) and weakest for commodity prices (0.204). The correlation between X and X̃ is strongest

for non-borrowed reserves and weakest for housing starts.

Data Z Factors Components r̂ r̄ 4σ Spikes

X F (G,V,A) 8 3 (4): 74M12, 80M5, 08M12-09M1
X2 S (G,V ) 8 3 (8): 74M12, 80M4-M5, 08M9-09M1

X̃ A A 8 3 (1): 80M5

X̃2 V V 6 2 (1): 80M5

The common factors in X̃ are A and V , and the common factors in X̃2 are V , respectively. The

Bai and Ng (2002) criterion finds r̂F = 8 PCA factors, which is also the maximum number of factors

considered. Consistent with previous work using this data, the RPCA estimate of F1 loads heavily

on production and employment variables, F2 on term spreads, and F3 on prices. We set λ to 0.05.

In the data, D11 is 0.40 and explains about 0.16 of the variations in the data. After thresholding,

D+
11 = 0.35 and the explanatory power falls to 0.125. The smallest eigenvalue, D88 is 0.154 and

still survives thresholding. But according to the heavier penalty, r̄ is only three. Our analysis

attributes the five weak factors to interactions of the level factors and to second-moment factors.

There are also eight GLS factors. Though the first GLS factor still loads heavily on production and

employment variables, it also loads heavily on several housing sector variables. Furthermore, both

F2 and and F3 load heavily on interest rate variables. Recall that the PCA and RPCA factors are

both spanned by Ur, hence perfectly correlated. Without loss of generality, we only plot the RPCA

estimates. The top panel of Figure 1 plots the RPCA and GLS estimates of F1, standardized to be

mean zero with unit variance.12 The bivariate correlations between RPCA and GLS is 0.94. The
12Because the factor estimates are only identified up to sign, the normalization is chosen so that the series is

negative in the 1980 recession.
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estimate of F1 is strongly procyclical. During the 1973, 1978, and 2008 recessions, the estimates

are more than three standard deviations below the mean.

The factors in X2 are denoted S. The second panel of Figure 1 shows that S1 is cyclical and

highly volatile. During major recessions, it is as many as six standard deviations above the mean

of zero. The RPCA estimate (black line) has larger spikes than the GLS estimate. The correlation

between RPCA and GLS estimate of S1 is 0.77. While the RPCA estimate indicates that S1 is

strongly correlation with production variables, the GLS estimate of S1 loads more heavily on the

housing sector variables. Evidently, GLS weighting changes the loadings but not the estimated

number of factors. In what follows, we focus on the results for the RPCA estimates.

The level factors A and volatility factors V are new to this line of work. They are estimated

from X̃ and X̃2, which are purged of the quadratic effects of F . The PCA and RPCA estimates

are no longer perfectly correlated because r̂F > r̄F . Nonetheless, the two estimates of A1 have a

correlation of 0.72. Both load heavily on production and employment variables. The third panel of

Figure 1 shows the estimates of A1. They are low during the 1973, 1982, and 2001 recessions but

slightly below mean during 1990 and 2008 recessions, both thought to be of financial origins. While

PCA gives an A2 that loads on prices, the RPCA factor that loads on prices is A3. For RPCA, A2

loads on term spreads and housing sector variables.

The bottom panel of Figure 1 plots our V1 normalized to be positive during the 1980 recession.

The V1 series is clearly cyclical and has a spike in each of the recessions. Both the PCA and RPCA

estimate of V1 load heavily on the housing sector variables. The two series have a correlation of

0.76. The estimates of V2 load heavily on term spreads. In the rest of the section we attempt to

relate the estimated V1 to alternative measures of volatility/uncertainty.

The logic of Section 2.1 suggests that if there is a single factor in the first moment of the

data, then V1 should measure stochastic volatility in the innovations of that factor. To verify

this, we directly estimate the stochastic volatility in A1 instead of backing it out from X2 as

suggested in Algorithm-AV. Precisely, we first estimate an AR(4) for A1 and then fit a first-order

autoregressive stochastic volatility model to the residuals of the AR(4).13 As seen from the top panel

of Figure 2, the “directly estimated” volatility series is negatively correlated with our estimate of

V1 (ρ = −0.34). This result can be attributed to the fact that we have not one, but multiple factors

in the data, and we can only estimate a linear combination of them. Our estimate of V1 potentially

includes the common volatility to the idiosyncratic shocks which the theoretical framework cannot

accommodate. Hence, we think of V1 as a composite volatility factor.

With the above caveat in mind, how does our estimate of V1 relate to volatility/uncertainty

measures available in the literature? The first measure for comparison is the economic policy

13We use the package stochvol in R.
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uncertainty (EPU) index constructed by Baker et al. (2016). While economic policy uncertainty

is only a part of what can qualify as a second-order shock, EPU is an example of a higher-order

shock identified with a narrative approach and a number of other sources. We find that V1 and

EPU are moderately correlated (ρ = 0.40). The behavior of the series also differs across recessions

(the top panel of Figure 2). For example, both series soared during the Great Recession, but EPU

increased during the 2001 recession while V1 did not. Furthermore, V1 rose during the Volcker

recession while EPU move up only by a tad. In short, EPU and V1 have independent variations.

The second comparison is with the uncertainty series of Jurado et al. (2015) (henceforth JLN).

Their approach estimates stochastic volatility in the h step-ahead idiosyncratic forecast error for a

panel of macroeconomic series, then averaged to form an aggregate uncertainty series. While both

the present paper and JLN analyze stochastic volatility, the key difference is that JLN considers the

common variations in the expected volatility of a panel of macroeconomic series, while the present

paper focuses on the current volatility in the factors common to the level of N series. These are

conceptually distinct objects. Figure 2 shows that the two series are weakly correlated (ρ = 0.22).

Analysis of specific episodes also exposes important differences. For example, during the Great

Recession both series increased considerably. Yet, the JLN series increased a lot more and then

declined to zero by 2011 while V1 stayed elevated until mid 2015.

Given that V1 is a component of common variation in X2, and S are the common factors

in X2, might S be a good proxy for V1? We see from the bottom panel of Figure 2 that the

estimated V1 and S1 also have independent variations. The divergence during the Great Recession

is particularly notable: V1 rises two standard deviations, while S1 increases by more than four

standard deviations. The correlation between V1 and S1 is 0.29. What explains the low correlation

between the two series? In our approach, V is formed by purging G from S. Since the “level”

factors do not have a direct “level” effect on the second moments according to equation (10), the

low correlation between V1 and S1 suggests that a considerable fraction of the common variations

in X2 comes from G, i.e. non-linear functions of the level factors. Consistent with this logic, we

find that when we regress S1 on squares and interactions of {F1, F2, F3}, we obtain R2 of 0.75.

The bottom panel of Figure 2 also reveals that V1 closely tracks S2, the second factor extracted

from X2, with a correlation of 0.83. Since by construction S1 and S2 are uncorrelated, we conclude

that our particular rotation of factors S roughly separates the “volatility” factor into S2 and the

higher-order component due to non-linear effects of “level” factors into S1.
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5 FAVARsq Analysis

To understand the dynamic responses of macroeconomic variables to the level an second-moment

shocks, we augment a FAVAR with second-moment factors. This leads to a reduced-form FAVARsq(
Factorst

Yt

)
=

p∑
k=1

Ak

(
Factorst−k

Yt−k

)
+

(
ηFactorst

ηY t

)
. (15)

where Factors are common components in the data (e.g. F1, S1, A1 and V1). In this paper, the

reduced-form errors η are orthogonalized by Cholesky decomposition to obtain structural shocks.

We consider Yt =
(
HOUt IPt INFLt FFRt

)′
where HOU is housing starts of total new privately

owned (series 50), FFR is the Federal Feds Rate, and IP is industrial production (series 6). Annual

inflation is INFL=log(CPIAUSLt) − log(CPIAUSLt−12) where CPIAUCSL (series 113) is the

consumer price index. Although the original FAVAR in Bernanke et al. (2005) did not include

housing as an “outcome” variable in vector Yt, we add this variable for two reasons. First, housing

is key for understanding the Great Recession. Second, some of the estimated factors load heavily

on housing, but we do not know if if the housing sector variables respond to volatility shocks.

Without a fully specified model, we will not able to provide a complete structural interpretation

of F . But by letting the data speak, we can still shed more light on how the factors at different

levels interact. In what follows, we consider a series of models with different choices of Factors

to understand the role of V in economic fluctuations and its relation with the level factors. To

preserve space, we consider only factors F1, A1, S1, V1 estimated with RPCA and report results for

selected orderings as alternative orderings yield similar results.

Baseline Model: Factors=
(
F1

)
The largest factor F in the data is well documented to be a real activity factor. Our point of

reference is therefore the simplest FAVAR with Factors set equal to F1, the largest factor in X.14

The decomposition of variance is reported in Table 1. The effect of an F1 shock has large short-run

effects on IP and HOU but the effects decline after the initial peak. In contrast, the effects on

FFR and INFL grow over time. After 60 months, an F1 shock explains approximately 50% of

variation in FFR and approximately 30% of variation in INFL.

Model I: Factors=
(
A1 V1 F1

)
To isolate the effect of volatility shocks, we introduce the largest level factor A1 and the largest

volatility factor V1 to the set of Factors. By ordering A1 and V1 before F1, we examine the

importance of conventionally used F1 after conditioning on a volatility factor and a level factor.

14Results are similar when we consider a larger set of factors which includes F2, F3, etc.
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That is, we can isolate variation in F1 due to A1, V1 and other factors such A2, A3, ... and V2, V3, ...

as well as terms quadratic in A1, A2, .... Note that if we order F1 before A1 and V1, we will not be

able to do this decomposition.

Figure 3 plots the impulse responses (along with 68% bootstrap confidence intervals) of macroe-

conomic variables in the model to V1. We find that after a standard deviation increase in V1, housing

starts (HOU), fed funds rate (FFR), industrial production (IP), and inflation (INFL) all decline.

This pattern is qualitatively similar to what one may expect after a negative demand shock. Al-

though qualitatively the effects of a V1 shock on the model variables are all negative, there are

differences across variables. Housing starts (HOU) and industrial production (IP) decline on im-

pact after a shock to V1. In contrast, we observe little short-run effects on inflation. The fed funds

rate declines on impact and then continuously falls.

Figure 4 contrasts the responses to a one-standard deviation shock to F1 (black line) to a

one-standard deviation shock to A1 (blue line). After a shock to F1, housing starts, industrial

production, inflation and fed funds rate all decline. These dynamics are similar to what one

may expect after a negative demand shock. On the other hand, a level shock to A1 decreases

housing starts, industrial production, and the fed funds rate, but increases inflation. This pattern

is consistent with the dynamics one may observe after a negative supply shock. The differences in

the responses signal that the presence of the volatility factors can influence the “level” shocks that

are being identified. Indeed, given that F1 is positively correlated with A1 and negatively with V1,

our results support the premise of this paper that F1 is a mixture of level and volatility factors.

Hence the responses to a shock in F1 is likely a mixture of responses to “level” (supply-like) shocks

A1 and “volatility” (demand-like) shocks V1.

To assess the quantitative significance of the effects, Table 2 reports the decomposition of

variances. We see that a V1 shock generally has weaker effects on real activity, inflation, and

the fed funds rate in the short run relative to the responses at longer horizons. For example, V1

accounts for less than 1% of variation in INFL at the one-quarter horizon but 20% at the 4-5 year

horizons. V1 accounts for a modest fraction (4-9%) of variation for housing (HOU) and industrial

production (IP) at the same horizons. Compared to the baseline model without V1 in Table 1,

the effects of F1 are reduced. For example, F1 in the baseline model accounts for nearly 30% of

variation in inflation at the 5-year horizon but the contribution is closer to 15% in the model that

includes V1. For horizons longer than one year, the total contribution of shocks to A1, V1 and F1

is generally close to the total contribution of shocks to F1 in Table 1. Thus, we reach our first

important conclusion that factors F is a mix of a variety of shocks some of which may capture

innovations to volatility.

Bernanke et al. (2005) shows that using the factors F enhances identification of monetary policy
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shocks in VARs as the factors can provide a better summary of the information set available to

central bankers. We explore if decomposing F into A and V can further enhance identification

and allow potentially differential responses of monetary policy to level and volatility shocks. The

responses of recursively identified monetary policy shocks from our FAVARsq appear to be only

slightly different from the baseline (FAVAR) model. Monetary policy shocks account for similar

fractions of fluctuations in housing, inflation and industrial production whether the central bank’s

information set is proxied with (F ) or (A, V, F ). These findings are consistent with the view that

the central bank reacts to changes in inflation and output regardless of where these changes come

from. In other words, the reaction of the Federal Reserve System to a one percentage point increase

in inflation due to a volatility shock is similar to the reaction of the Fed to a one percentage point

increase in inflation due to e.g. a supply-side shock.

Model II: Factors=
(
A1 V1 S1

)
:

Our analysis of the second-order approximate solution of a generic DSGE model suggests that

dynamics of macroeconomic aggregates can be influenced by non-linear effects and second-moment

shocks. In Model I, we have attempted to assess the contribution of volatility shocks. In the

next exercise, we try to quantify the contribution of non-linear effects. Specifically, we note that,

according to the second-order approximate solution, variation in X2 comes from V (volatility

factors) and G (squares and interactions of level factors). Thus when we extract S from X2, we

should recover a rotation of V and G. Since we have an estimate of V , we can obtain a rotation of

G. More precisely, orthogonalizing the shocks in S with respect to those in V should isolate second-

moment variation that is not directly due to stochastic volatility in the fundamentals. Therefore,

the orthogonalized shocks to S can be broadly interpreted as a composite of non-linear effects on

the level of macroeconomic variables.

We consider a FAVARsq by adding S1 to Model I. By putting S1 last in the list of factors, we

orthogonalize innovations in S1 to innovations in A1 and V1. The impulse response functions are

shown in Figure 5. Shocks to S1 have effects qualitatively similar to V1: real activity contracts,

and the shocks trigger modest short-run responses in the Fed-Funds rate rate and inflation. The

decomposition of variances are reported in Table 3. A shock to S1 has a non-trivial short-run

impact on housing starts, and its effect on the Fed-funds rate and inflation are comparable to that

of the F1 shock at long horizons. Compared to the results in Table 2, we see that adding S1 to the

FAVARsq does not change the significance of V1 much. Our simple framework suggests that some

of the variations in X are potentially due to non-linear interaction effects (i.e., G in our notation).

They are also consistent with the finding in Bai and Ng (2008) that the estimates of S and of F 2

both have predictive power for inflation and some measures of real economic activity.
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Model III: Factors=
(
A1 V1 JLN EPU

)
As we have discussed above, the volatility factor identified in our framework is only weakly

related to alternative measures of volatility such as the economic policy uncertainty (EPU) index

constructed by Baker et al. (2016) or the volatility (JLN) index constructed by Jurado et al. (2015).

However, the innovations to these indices could be more interrelated. It is conceivable that various

measures of second-moment shocks influence the same set of macroeconomic variables in a similar

way so that little is lost by focusing on one of the measures of second-moment shocks. To investigate

these hypotheses, we include both EPU and JLN in Factors of our FAVARsq. Because V1 can be

contemporaneously correlated with JLN and EPU, we consider two orderings: i) V1 before JLN

and EPU; and ii) V1 after JLN and EPU. We find that the estimated responses in this model are

close to those for Model I, and the alternative ordering makes little difference for the responses.

In a similar spirit, the variance decompositions for V1 (Table 4) are also close to the results for

Model I and are insensitive to the ordering. In addition, the contribution of the level factor A1 is

unaffected by inclusion of JLN and EPU.

This exercise demonstrates that the contributions of V1, JLN and EPU vary across shocks,

variables and horizons, thus underscoring that different measures of volatility capture different

channels of macroeconomic fluctuations. For example, JLN accounts for a large share of variation

in housing starts (HOU) at long horizons while V1 and EPU contribute about 1.4% and 0.7%

respectively. On the other hand, V1 is more important for explaining variation in inflation and the

fed funds rate at longer horizons than either JLN or EPU. Generally, we find that EPU tends to

contribute less than either V1 or JLN. The collective contribution of volatility shocks V1, JLN, and

EPU to variation of the macroeconomic variables ranges from approximately 30% for HOU and

FFR to about 10% for IP.

In summary, what we have shown is the following. First, from Model 1, the importance of the

level factors is reduced once V1 is controlled for. A V1 shock has features of a negative demand

shock, similar to an F1 shock. An A1 shock has features of a negative supply shock. Second,

Model II demonstrates that the second-moment variations are uncorrelated with V1, which could

be understood as variations due to non-linear effects. Third, Model III shows that our volatility

factor is distinct from measures of uncertainty with V1 being more important in explaining inflation

and the fed-funds rate than other measures of uncertainty/volatility. Together, the results show

that V1 has significant dynamic effects on the economic activity, but unlike the main channel

postulated by theory, we only find a weak correlation between V1 and the stochastic volatility of

A1. Furthermore, there is evidence of potentially important second-moment variations other than

V1.
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6 Concluding remarks

Identifying the sources of fluctuations in aggregate data has been a long-standing agenda in macroe-

conomics. Although the conventional approach in this area is to use only shocks to levels of fun-

damentals, recent advances in theoretical and empirical macroeconomics suggest that higher-order

shocks (volatility, uncertainty, etc.) could be an important determinant too. Structural attempts

to separate these two distinct forces have to overcome identification and computational challenges

and, even if successful, the results are conditional on correct specification of the model.

This paper contributes to the effort by developing a novel FAVARsq framework that allows

macroeconomic fluctuations to be determined by these two distinct types of factors. Apart from

being computationally attractive, this framework can be suitable in other applications provided

that we have a large panel of data that have common level and second moment variations, and our

identifying restriction is satisfied. Examples are asset prices, sectoral and international data.

Our analysis of three FAVARsq leads us to three important conclusions. First, the largest

“volatility” factor V1 is countercyclical, persistent, and accounts for a modest but tangible share of

variation in macroeconomic variables especially at longer horizons. There is evidence that some of

its variations have indeed been attributed to F1, the first factor in X. Second, while the common

variations in X2 are influenced by V1, the interaction of the level factors can have non-trivial cyclical

implications. In the VAR considered, the effects on inflation and interest rate are the strongest.

Third, our V1 has variations that are independent of measures of uncertainty as well as stochastic

volatility directly estimated from the largest level factor. The data thus suggest multiple sources

of second-moment variations.

While we make progress in isolating the “volatility” factors from “level” factors, further restric-

tions are needed to give more precise interpretations to the volatility factor. For example, our V1 is

likely a composite of volatility from different sources, some of which may have no role in theoretical

macroeconomic models. The interaction between the first- and second-order dynamics is worthy of

more theorizing in light of the evidence for non-trivial second-moment variations.
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Table 1: Decomposition of Variances: Baseline Model; shock to F1.

h F1 HOU IP INFL FFR

1 1.000 0.104 0.701 0.004 0.085
6 0.802 0.089 0.668 0.065 0.368
12 0.732 0.056 0.656 0.161 0.504
24 0.674 0.043 0.650 0.269 0.597
60 0.651 0.056 0.646 0.283 0.506

Note: The table reports variance decomposition for FAVAR with Factors=
(
F1

)′
. The factor is estimated

with robust principal components. HOU is housing pertmits, FFR is the Federal Funds Rate, IP is industrial
production, INFL is the CPI inflation rate. See Section 5 for more details.

Table 2: Decomposition of Variances: Model I

Ordering A1 V1 F1 HOU IP INFL FFR

h Shock A1

1 1.000 0.015 0.517 0.003 0.543 0.006 0.006
6 0.906 0.020 0.354 0.006 0.447 0.005 0.010
12 0.905 0.031 0.369 0.005 0.448 0.004 0.064
24 0.886 0.028 0.339 0.012 0.439 0.025 0.135
60 0.817 0.056 0.323 0.047 0.430 0.037 0.116

h Shock V1

1 0.000 0.985 0.057 0.083 0.010 0.000 0.054
6 0.015 0.830 0.074 0.048 0.032 0.028 0.068
12 0.017 0.706 0.069 0.029 0.032 0.097 0.120
24 0.016 0.559 0.071 0.040 0.037 0.187 0.168
60 0.015 0.472 0.109 0.087 0.049 0.194 0.142

h Shock F1

1 0.000 0.000 0.427 0.108 0.198 0.030 0.161
6 0.036 0.025 0.398 0.092 0.251 0.122 0.476
12 0.033 0.035 0.331 0.067 0.245 0.173 0.462
24 0.039 0.029 0.298 0.052 0.243 0.159 0.411
60 0.055 0.022 0.264 0.049 0.237 0.131 0.322

Note: The table reports variance decomposition for FAVARsq with Factors=
(
A1 V1 F1

)′
. F1 is the first

factor in extracted from X. V1 is the first volatility factor net of quadratic variations in the level factors. A1

is the first level factor. V1 and A1 are extracted as described in Section 2. The factors are estimated with
robust principal component analysis. HOU is housing starts, FFR is the Federal Funds Rate, IP is industrial
production, INFL is the CPI inflation rate. See Section 5 for more details.
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Table 3: Decomposition of Variances: Model II

Ordering A1 V1 S1 HOU IP INFL FFR

h Shock to A1

1 1.000 0.016 0.025 0.005 0.529 0.006 0.004
6 0.946 0.016 0.056 0.003 0.464 0.003 0.014
12 0.943 0.025 0.090 0.002 0.462 0.008 0.076
24 0.922 0.022 0.086 0.009 0.453 0.044 0.149
60 0.850 0.051 0.099 0.039 0.444 0.058 0.124

h Shock to V1

1 0.000 0.984 0.078 0.086 0.009 0.000 0.054
6 0.019 0.834 0.048 0.046 0.035 0.021 0.069
12 0.021 0.715 0.042 0.027 0.035 0.086 0.122
24 0.020 0.558 0.057 0.038 0.039 0.173 0.164
60 0.019 0.471 0.097 0.088 0.051 0.176 0.131

h Shock to S1

1 0.000 0.000 0.898 0.097 0.094 0.002 0.015
6 0.005 0.004 0.785 0.146 0.138 0.122 0.161
12 0.005 0.004 0.688 0.129 0.134 0.180 0.177
24 0.011 0.009 0.621 0.117 0.132 0.184 0.209
60 0.032 0.010 0.550 0.101 0.132 0.190 0.243

Note: The table reports variance decomposition for FAVARsq with Factors=
(
A1 V1 S1

)′
. V1 is the first

“volatility” factor net of quadratic variations in the level factors. A1 is the first level factor. V1 and A1 are
extracted as described in Section 2. S1 is the first factor extracted from squared data X2. The factors are
estimated with robust principal component analysis. HOU is housing pertmits, FFR is the Federal Funds
Rate, IP is industrial production, INFL is the CPI inflation rate. See Section 5 for more details.
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Table 4: Decomposition of Variances: Model III

h A1 V1 JLN EPU HOU IP INFL FFR

ordering (A1, V1, JLN , EPU , HOU, IP, INFL, FFR )

Shock to V1

1 0.000 0.986 0.027 0.003 0.094 0.010 0.000 0.050
6 0.012 0.790 0.015 0.011 0.060 0.037 0.029 0.084
12 0.012 0.658 0.013 0.024 0.033 0.036 0.111 0.149
24 0.012 0.492 0.012 0.036 0.018 0.037 0.205 0.196
60 0.013 0.369 0.045 0.036 0.014 0.043 0.233 0.184

Shock JLN

1 0.000 0.000 0.943 0.010 0.012 0.004 0.013 0.008
6 0.008 0.011 0.858 0.038 0.154 0.054 0.021 0.010
12 0.008 0.010 0.807 0.052 0.265 0.066 0.011 0.011
24 0.013 0.071 0.738 0.070 0.397 0.072 0.007 0.014
60 0.054 0.202 0.597 0.103 0.502 0.072 0.056 0.126

Shock EPU

1 0.000 0.000 0.000 0.985 0.000 0.000 0.000 0.002
6 0.012 0.030 0.019 0.922 0.011 0.014 0.001 0.004
12 0.018 0.056 0.020 0.883 0.013 0.020 0.001 0.007
24 0.021 0.066 0.021 0.833 0.010 0.022 0.005 0.017
60 0.019 0.051 0.019 0.780 0.007 0.022 0.023 0.029

ordering (A1, JLN , EPU, V1 , HOU, IP, INFL, FFR)

Shock V1

1 0.000 0.957 0.000 0.000 0.104 0.012 0.000 0.041
6 0.011 0.763 0.070 0.020 0.087 0.050 0.023 0.084
12 0.011 0.639 0.068 0.042 0.058 0.050 0.103 0.155
24 0.011 0.484 0.052 0.060 0.035 0.049 0.200 0.208
60 0.016 0.355 0.080 0.061 0.023 0.055 0.254 0.226

Shock JLN

1 0.000 0.028 0.970 0.011 0.003 0.002 0.013 0.015
6 0.010 0.044 0.806 0.033 0.129 0.042 0.027 0.011
12 0.010 0.036 0.756 0.042 0.241 0.054 0.019 0.007
24 0.015 0.086 0.700 0.055 0.381 0.061 0.014 0.005
60 0.051 0.221 0.565 0.086 0.494 0.062 0.040 0.091

Shock EPU

1 0.000 0.001 0.000 0.987 0.000 0.000 0.000 0.003
6 0.011 0.025 0.017 0.918 0.009 0.013 0.001 0.003
12 0.017 0.049 0.017 0.875 0.011 0.019 0.001 0.005
24 0.020 0.060 0.019 0.824 0.009 0.021 0.003 0.013
60 0.019 0.047 0.017 0.771 0.006 0.020 0.018 0.024

Note: The table reports variance decomposition for FAVARsq with Factors=
(
A1 V1 JLN EPU

)′
and Factors=

(
A1 JLN EPU V1

)′
. V1 is a “volatility” factor. A1 is a “level” factor. The factors

are estimated with robust principal components following the procedure described in Section 2. JLN is
the volatility index constructed by Jurado et al. (2015). EPU is the economic policy uncertainty index
constructed by Baker et al. (2016). HOU is housing starts, FFR is the Federal Funds Rate, IP is industrial
production, INFL is the CPI inflation rate. See Section 5 for more details.24



F
ig

u
re

1:
F

ac
to

r
E

st
im

at
es

19
60

19
70

19
80

19
90

20
00

20
10

-505
F

1

19
60

19
70

19
80

19
90

20
00

20
10

-505
A

1

19
60

19
70

19
80

19
90

20
00

20
10

-202
V

1

19
60

19
70

19
80

19
90

20
00

20
10

-202468
S

1

pc
a

gl
s

rp
ca

N
o
te

:
T

h
e

fi
g
u
re

re
p

o
rt

s
th

e
ti

m
e

se
ri

es
o
f

es
ti

m
a
te

d
fa

ct
o
rs

.
F
1

is
th

e
fi
rs

t
fa

ct
o
r

ex
tr

a
ct

ed
fr

o
m

th
e

le
v
el

s
o
f

d
a
ta

se
ri

es
X

.
S
1

is
th

e
fi
rs

t
fa

ct
o
r

ex
tr

a
ct

ed
fr

o
m

th
e

sq
u
a
re

s
o
f

d
a
ta

se
ri

es
X

2
.
V
1

a
n
d
A

1
a
re

fa
ct

o
rs

ex
tr

a
ct

ed
a
s

d
es

cr
ib

ed
in

P
ro

p
o
si

ti
o
n

1
.
V
1

is
th

e
fi
rs

t
v
o
la

ti
li
ty

fa
ct

o
r.
A

1
is

th
e

fi
rs

t
le

v
el

fa
ct

o
r.

F
a
ct

o
rs

a
re

ex
tr

a
ct

ed
u
si

n
g

p
ri

n
ci

p
a
l

co
m

p
o
n
en

t
a
n
a
ly

si
s

(P
C

A
;

b
la

ck
li
n
e)

,
ro

b
u
st

p
ri

n
ci

p
a
l

co
m

p
o
n
en

t
a
n
a
ly

si
s

(R
P

C
A

;
re

d
li
n
e)

,
a
n
d

G
L

S
p
ri

n
ci

p
a
l

co
m

p
o
n
en

t
a
n
a
ly

si
s

(G
L

S
;

b
lu

e
li
n
e)

.
S
ee

S
ec

ti
o
n

4
fo

r
m

o
re

d
et

a
il
s.

25



F
ig

u
re

2:
C

om
p

ar
is

on
of

fa
ct

or
s

19
60

19
70

19
80

19
90

20
00

20
10

-3-2-1012345 19
60

19
70

19
80

19
90

20
00

20
10

-3-2-1012345

N
o
te

:
T

h
e

fi
g
u
re

re
p

o
rt

s
es

ti
m

a
te

s
o
f

th
e

fi
rs

t
fa

ct
o
r
S
1

a
n
d

th
e

se
co

n
d

fa
ct

o
r
S
2

ex
tr

a
ct

ed
fr

o
m

th
e

sq
u
a
re

s
o
f

d
a
ta

se
ri

es
X

2
,

a
n
d

th
e

v
o
la

ti
li
ty

fa
ct

o
r

(V
1
)

es
ti

m
a
te

d
a
cc

o
rd

in
g

to
th

e
fr

a
m

ew
o
rk

o
u
tl

in
ed

in
S
ec

ti
o
n

2
.

A
ls

o
p
lo

tt
ed

is
S
V
1
,

th
e

st
o
ch

a
st

ic
v
o
la

ti
li
ty

es
ti

m
a
te

d
o
n
A

1
,

th
e
J
L
N

u
n
ce

rt
a
in

ty
in

d
ex

co
n
st

ru
ct

ed
b
y

J
u
ra

d
o

et
a
l.

(2
0
1
5
),

a
n
d

th
e
E
P
U

ec
o
n
o
m

ic
p

o
li
cy

u
n
ce

rt
a
in

ty
in

d
ex

co
n
st

ru
ct

ed
b
y

B
a
k
er

et
a
l.

(2
0
1
6
).

E
st

im
a
te

d
fa

ct
o
rs

a
re

b
a
se

d
o
n

ro
b
u
st

p
ri

n
ci

p
a
l

co
m

p
o
n
en

t
a
n
a
ly

si
s.

S
ee

S
ec

ti
o
n

4
fo

r
m

o
re

d
et

a
il
s.

26



F
ig

u
re

3:
M

o
d

el
I:

O
rd

er
in

g
(A

1
,V

1
,F

1
):

S
h

o
ck

to
V

1

0
5

10
15

20
-0

.0
3

-0
.0

2

-0
.0

10

0.
01

0.
02

R
es

p
o

n
se

 o
f 

H
o

u
si

n
g

 s
ta

rt
s

0
5

10
15

20
-1

5

-1
0-505

10
-4

R
es

p
o

n
se

 o
f 

In
d

u
s.

P
ro

d
u

ct
io

n

0
5

10
15

20
-0

.3
5

-0
.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

50

0.
05

R
es

p
o

n
se

 o
f 

In
fl

at
io

n

0
5

10
15

20
-0

.3
5

-0
.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

50
R

es
p

o
n

se
 o

f 
F

ed
-F

u
n

d
s 

R
at

e

68
%

 C
I

N
o
te

:
T

h
e

fi
g
u
re

re
p

o
rt

s
im

p
u
ls

e
re

sp
o
n
se

s
to

a
o
n
e-

st
a
n
d
a
rd

d
ev

ia
ti

o
n

sh
o
ck

to
v
o
la

ti
li
ty

th
e

fa
ct

o
r
V
1

in
F
A

V
A

R
sq

(M
o
d
el

I)
.

T
h
e

le
v
el

fa
ct

o
rs

(A
)

a
n
d

v
o
la

ti
li
ty

fa
ct

o
rs

(V
)

a
re

a
s

o
u
tl

in
ed

in
S
ec

ti
o
n

2
.
F
1

is
th

e
fi
rs

t
fa

ct
o
r

ex
tr

a
ct

ed
fr

o
m

th
e

le
v
el

s
o
f

d
a
ta

se
ri

es
X

.
E

st
im

a
te

d
fa

ct
o
rs

a
re

b
a
se

d
o
n

ro
b
u
st

p
ri

n
ci

p
a
l

co
m

p
o
n
en

t
a
n
a
ly

si
s.

S
ee

S
ec

ti
o
n

5
fo

r
m

o
re

d
et

a
il
s.

27



F
ig

u
re

4:
M

o
d

el
I:

O
rd

er
in

g
(A

1
,V

1
,F

1
):

S
h

o
ck

s
to
A

1
a
n

d
F

1

0
5

10
15

20
-0

.0
3

-0
.0

2

-0
.0

10

0.
01

0.
02

R
es

p
o

n
se

 o
f 

H
o

u
si

n
g

 s
ta

rt
s

0
5

10
15

20
-5-4-3-2-101

10
-3

R
es

p
o

n
se

 o
f 

In
d

u
s.

P
ro

d
u

ct
io

n

68
%

 C
I

68
%

 C
I

0
5

10
15

20
-0

.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

50

0.
050.

1
R

es
p

o
n

se
 o

f 
In

fl
at

io
n

0
5

10
15

20
-0

.6

-0
.5

-0
.4

-0
.3

-0
.2

-0
.10

0.
1

R
es

p
o

n
se

 o
f 

F
ed

-F
u

n
d

s 
R

at
e

N
o
te

:
T

h
e

fi
g
u
re

re
p

o
rt

s
im

p
u
ls

e
re

sp
o
n
se

s
to

a
o
n
e-

st
a
n
d
a
rd

d
ev

ia
ti

o
n

sh
o
ck

to
v
o
la

ti
li
ty

th
e

fa
ct

o
r
V
1

in
F
A

V
A

R
sq

(M
o
d
el

I)
.

T
h
e

“
le

v
el

”
fa

ct
o
rs

(A
)

a
n
d

“
v
o
la

ti
li
ty

”
fa

ct
o
rs

(V
)

a
re

co
n
st

ru
ct

ed
a
s

o
u
tl

in
ed

in
S
ec

ti
o
n

2
.
V
1

is
th

e
fi
rs

t
v
o
la

ti
li
ty

fa
ct

o
r.
A

1
is

th
e

fi
rs

t
le

v
el

fa
ct

o
r.
F
1

is
th

e
fi
rs

t
fa

ct
o
r

ex
tr

a
ct

ed
fr

o
m

th
e

le
v
el

s
o
f

d
a
ta

se
ri

es
X

.
A

ll
fa

ct
o
rs

a
re

ex
tr

a
ct

ed
u
si

n
g

ro
b
u
st

p
ri

n
ci

p
a
l

co
m

p
o
n
en

t
a
n
a
ly

si
s.

S
ee

S
ec

ti
o
n

5
fo

r
m

o
re

d
et

a
il
s.

28



F
ig

u
re

5:
M

o
d

el
II

:
(A

1
,V

1
,S

1
):

sh
o
ck

s
to
V

1
an

d
S

1

0
5

10
15

20
-0

.0
4

-0
.0

3

-0
.0

2

-0
.0

10

0.
01

0.
02

R
es

p
o

n
se

 o
f 

H
o

u
si

n
g

 s
ta

rt
s

0
5

10
15

20
-2

.5-2

-1
.5-1

-0
.50

0.
5

10
-3

R
es

p
o

n
se

 o
f 

In
d

u
s.

P
ro

d
u

ct
io

n

68
%

 C
I

68
%

 C
I

0
5

10
15

20
-0

.3
5

-0
.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

50

0.
05

R
es

p
o

n
se

 o
f 

In
fl

at
io

n

0
5

10
15

20
-0

.4

-0
.3

5

-0
.3

-0
.2

5

-0
.2

-0
.1

5

-0
.1

-0
.0

50
R

es
p

o
n

se
 o

f 
F

ed
-F

u
n

d
s 

R
at

e

N
o
te

:
T

h
e

fi
g
u
re

re
p

o
rt

s
im

p
u
ls

e
re

sp
o
n
se

s
to

a
o
n
e-

st
a
n
d
a
rd

d
ev

ia
ti

o
n

sh
o
ck

to
v
o
la

ti
li
ty

th
e

fa
ct

o
r
V
1

a
n
d
S
1

in
F
A

V
A

R
sq

(M
o
d
el

II
).

T
h
e

“
le

v
el

”
fa

ct
o
rs

(A
)

a
n
d

“
v
o
la

ti
li
ty

”
fa

ct
o
rs

(V
)

a
re

co
n
st

ru
ct

ed
a
s

o
u
tl

in
ed

in
S
ec

ti
o
n

3
.

F
a
ct

o
r
S
1

is
th

e
fi
rs

t
fa

ct
o
r

ex
tr

a
ct

ed
fr

o
m

sq
u
a
re

s
o
f

th
e

d
a
ta
X

2
.

A
ll

fa
ct

o
rs

a
re

ex
tr

a
ct

ed
u
si

n
g

ro
b
u
st

p
ri

n
ci

p
a
l

co
m

p
o
n
en

t
a
n
a
ly

si
s.

S
ee

S
ec

ti
o
n

5
fo

r
m

o
re

d
et

a
il
s.

29


