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1 Introduction

The accelerated automation of tasks performed by labor raises concerns that new technologies will

make labor redundant (e.g., Brynjolfsson and McAfee, 2012, Akst, 2014, Autor, 2015). The recent

decline in the labor share in national income and the employment to population ratio in the U.S.

(e.g., Karabarbounis and Neiman, 2014, and Oberfield and Raval, 2014) are often interpreted as

evidence for the claims that, as digital technologies, robotics and artificial intelligence penetrate

the economy, workers will find it increasingly difficult to compete against machines, and their

compensation will experience a relative or even absolute decline. Yet, we lack a comprehensive

framework incorporating such effects, as well as potential countervailing forces.

The need for such a framework stems not only from the importance of understanding how and

when automation will transform the labor market, but also from the fact that similar claims have

been made, but have not always come true, about previous waves of new technologies. Keynes

famously foresaw the steady increase in per capita income during the 20th century from the in-

troduction of new technologies, but incorrectly predicted that this would create widespread tech-

nological unemployment as machines replaced human labor (Keynes, 1930). In 1965, economic

historian Robert Heilbroner confidently stated that “as machines continue to invade society, du-

plicating greater and greater numbers of social tasks, it is human labor itself—at least, as we now

think of ‘labor’—that is gradually rendered redundant”(quoted in Akst, 2014). Wassily Leontief

was equally pessimistic about the implications of new machines. By drawing an analogy with the

technologies of the early 20th century that made horses redundant, in an interview he speculated

that “Labor will become less and less important. . .More and more workers will be replaced by

machines. I do not see that new industries can employ everybody who wants a job”(The New York

Times, 1983).

This paper is a first step in developing a conceptual framework to study how machines replace

human labor and why this might (or might not) lead to lower employment and stagnant wages. Our

main conceptual innovation is to propose a framework in which tasks previously performed by labor

are automated, while at the same time other new technologies complement labor—specifically, in

our model this takes the form of the introduction of new tasks in which labor has a comparative

advantage. Herein lies our answer to Leontief’s analogy: the difference between human labor and

horses is that humans have a comparative advantage in new and more complex tasks. Horses did not.

If this comparative advantage is significant and the creation of new tasks continues, employment

and the labor share can remain stable in the long run even in the face of rapid automation.

The importance of new tasks is well illustrated by the technological and organizational changes

during the Second Industrial Revolution, which not only involved the replacement of the stagecoach

by the railroad, sailboats by steamboats, and of manual dock workers by cranes, but also the creation

of new labor-intensive tasks. These tasks generated jobs for engineers, machinists, repairmen,

conductors, back-office workers and managers involved with the introduction and operation of new

technologies (e.g., Landes, 1969, Chandler, 1977, and Mokyr, 1990).
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Today, as industrial robots, digital technologies, computer-controlled machines and artificial

intelligence replace labor, we are again witnessing the emergence of new tasks ranging from en-

gineering and programming functions to those performed by audio-visual specialists, executive

assistants, data administrators and analysts, meeting planners and social workers. Indeed, during

the last 35 years, new tasks and new job titles account for a large fraction of U.S. employment

growth. To document this fact, we use data from Lin (2011) to measure the share of new job

titles—jobs in which workers perform tasks that are different from tasks in previously existing

jobs—within each occupational category. In 2000, about 70% of computer software developers (an

occupational category employing one million people at the time) held new job titles. Similarly, in

1990 a “radiology technician” and in 1980 a “management analyst” were new job titles. Figure

1 shows that occupations with 10 percentage points more new job titles (which is approximately

the sample average in 1980) experienced 0.41% faster employment growth between 1980 and 2015.

This estimate implies that about 60% of the 50 million or so jobs added during this 35 year period

are associated with the additional employment growth in occupations with new job titles (relative

to occupations with no new job titles).1

0.2 0.4 0.6 0.80

0
−
5%

5%
10
%

Share of new job titles in 1980

E
m
p
lo
y
m
en
t
gr
ow

th
19
80
-2
01
5

Figure 1: Employment growth by occupation between 1980 and 2015 (annualized) and the share
of new job titles in 1980.

We start with a static model in which capital is fixed and technology is exogenous. There

are two types of technological changes: automation allows firms to substitute capital for tasks

1The relationship shown in Figure 1 controls for the demographic composition of employment in the occupation in
1980. In Appendix B, we show that the same relationship holds between the share of new job titles in 1990 (in 2000)
and employment growth from 1990 to 2015 (from 2000 to 2015), and that these patterns are present without any
controls and when we control for average education in the occupation and the structural changes in the U.S. economy
as well. The data for 1980, 1990 and 2000 are from the U.S. Census. The data for 2015 are from the American
Community Survey. Additional information on the data and our sample is provided in Appendix B.
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previously performed by labor, while the creation of new tasks enables the replacement of old

tasks by new variants in which labor has a higher productivity. Our static model provides a

rich but tractable framework that clarifies how automation and the creation of new tasks shape

the production possibilities of the economy and determine factor prices, factor shares in national

income, and employment. Automation always reduces the labor share and employment, and may

even reduce wages.2 Conversely, the creation of new tasks increases wages, employment and the

labor share. These comparative statics follow because factor prices are determined by the range of

tasks performed by capital and labor, and exogenous shifts in technology alter the range of tasks

performed by each factor (see also Acemoglu and Autor, 2011).

We then embed this framework in a dynamic economy in which capital accumulation is en-

dogenous, and we characterize restrictions under which the model delivers balanced growth with

automation and creation of new tasks—which we take to be a good approximation to economic

growth in the United States and the United Kingdom over the last two centuries. The key restric-

tions are that there is exponential productivity growth from the creation of new tasks and that

the two types of technological changes—automation and the creation of new tasks—advance at

equal rates. A critical difference from our static model is that capital accumulation responds to

permanent shifts in technology in order to keep the interest rate and hence the rental rate of capital

constant. As a result, the dynamic effects of technology on factor prices depend on the response of

capital accumulation as well. The response of capital ensures that the productivity gains from both

automation and the introduction of new tasks fully accrue to labor (the relatively inelastic factor).

Although the real wage in the long run increases because of this productivity effect, automation

still reduces the labor share and employment.

Our full model endogenizes the rates of improvement of these two types of technologies by

marrying our task-based framework with a directed technological change setup. This full version of

the model remains tractable and allows a complete characterization of balanced growth paths. If the

long-run rental rate of capital is very low relative to the wage, there will not be sufficient incentives

to create new tasks, and the long-run equilibrium involves full automation—akin to Leontief’s

“horse equilibrium.”Otherwise, the long-run equilibrium involves balanced growth based on equal

advancement of the two types of technologies. Under natural assumptions, this (interior) balanced

growth path is stable, so that when automation runs ahead of the creation of new tasks, market

forces induce a slowdown in subsequent automation and more rapid countervailing advances in the

creation of new tasks. This stability result highlights a crucial new force: a wave of automation

pushes down the effective cost of producing with labor, discouraging further efforts to automate

additional tasks and encouraging the creation of new tasks.

2The effects of automation in our model contrast with the implications of factor-augmenting technologies. As
we discuss in greater detail later and in particular in footnote 18, the effects of factor-augmenting technologies on
the labor share depend on the elasticity of substitution between capital and labor. In addition, capital-augmenting
technological improvements always increase the wage, while labor-augmenting ones also increase the wage provided
that the elasticity of substitution between capital and labor is greater than the capital share in national income. This
contrast underscores that it would be misleading to think of automation in terms of factor-augmenting technologies.
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The stability of the balanced growth path implies that periods in which automation runs ahead

of the creation of new tasks tend to trigger self-correcting forces, and as a result, the labor share

and employment stabilize and could return to their initial levels. Whether or not this is the case

depends on the reason why automation paced ahead in the first place. If this is caused by the

random arrival of a series of automation technologies, the long-run equilibrium takes us back to

the same initial levels of employment and labor share. If, on the other hand, automation surges

because of a change in the innovation possibilities frontier (making automation easier relative to

the creation of new tasks), the economy will tend towards a new balanced growth path with lower

levels of employment and labor share. In neither case does rapid automation necessarily bring

about the demise of labor.3

We also consider three extensions of our model. First, we introduce heterogeneity in skills, and

assume that skilled labor has a comparative advantage in new tasks, which we view as a natural

assumption.4 Because of this pattern of comparative advantage, automation directly takes jobs

away from unskilled labor and increases inequality, while new tasks directly benefit skilled workers

and at first increase inequality as well. Over the long-run, the standardization of new tasks help

low-skill workers. We characterizes the conditions under which standardization is sufficient to

restore stable inequality in the long run. This extension formalizes the idea that both automation

and the creation of new tasks increase inequality in the short run but standardization limits the

increase in inequality in the long run.

Our second extension modifies our baseline patent structure and reintroduces the creative de-

struction of the profits of previous innovators, which is absent in our main model, though it is

often assumed in the endogenous growth literature. The results in this case are similar, but the

conditions for uniqueness and stability of the balanced growth path are more demanding.

Finally, we study the efficiency properties of the process of automation and creation of new

technologies, and point to a new source of inefficiency leading to excessive automation: when

the wage rate is above the opportunity cost of labor (due to labor market frictions), firms will

choose automation to save on labor costs, while the social planner, taking into account the lower

opportunity cost of labor, would have chosen less automation.

Our paper can be viewed as a combination of task-based models of the labor market with di-

rected technological change models.5 Task-based models have been developed both in the economic

growth and labor literatures, dating back at least to Roy’s (1955) seminal work. The first important

recent contribution, Zeira (1998), proposed a model of economic growth based on capital-labor sub-

stitution. Zeira’s model is a special case of our framework. Acemoglu and Zilibotti (2000) developed

a simple task-based model with endogenous technology and applied it to the study of productivity

3Yet, it is also possible that some changes in parameters can shift us away from the region of stability to the full
automation equilibrium.

4This assumption builds on Schultz (1965) (see also Greenwood and Yorukoglu, 1997, Caselli, 1999, Galor and
Moav, 2000, Acemoglu, Gancia and Zilibotti, 2010, and Beaudry, Green and Sand, 2013).

5On directed technological change and related models, see Acemoglu (1998, 2002, 2003, 2007), Kiley (1999), Caselli
and Coleman (2006), Gancia (2003), Thoenig and Verdier (2003) and Gancia and Zilibotti (2010).
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differences across countries, illustrating the potential mismatch between new technologies and the

skills of developing economies (see also Zeira, 2006, Acemoglu, 2010). Autor, Levy and Murnane

(2003) suggested that the increase in inequality in the U.S. labor market reflects the automation

and computerization of routine tasks.6 Our static model is most similar to Acemoglu and Au-

tor (2011). Our full framework extends this model not only because of the dynamic equilibrium

incorporating capital accumulation and directed technological change, but also because tasks are

combined with a general elasticity of substitution, and because the equilibrium allocation of tasks

depends both on factor prices and the state of technology.7

Three papers from the economic growth literature that are related to our work are Acemoglu

(2003), Jones (2005), and Hemous and Olsen (2016). The first two papers develop growth models

in which the aggregate production function is endogenous and, in the long run, adapts to make

balanced growth possible. In Jones (2005), this occurs because of endogenous choices about dif-

ferent combinations of activities/technologies. In Acemoglu (2003), this long-run behavior is a

consequence of directed technological change in a model of factor-augmenting technologies. Our

task-based framework here is a significant departure from this model, especially since it enables us

to address questions related to automation, its impact on factor prices and its endogenous evolu-

tion. In addition, our framework provides a more robust economic force ensuring the stability of

the balanced growth path: while in models with factor-augmenting technologies stability requires

an elasticity of substitution between capital and labor that is less than 1 (so that the more abun-

dant factor commands a lower share of national income), we do not need such a condition in this

framework.8 Hemous and Olsen (2016) propose a model of automation and horizontal innovation

with endogenous technology, and use it to study the consequences of different types of technologies

on inequality. High wages (in their model for low-skill workers) encourage automation. But un-

like in our model, the unbalanced dynamics that this generates are not countered by other types

of innovations in the long run. Also worth noting is Kotlikoff and Sachs (2012) who develop an

overlapping generation model in which automation may have long-lasting effects. In their model,

automation reduces the earnings of current workers, and via this channel, depresses savings and

capital accumulation.

The rest of the paper is organized as follows. Section 2 presents our task-based framework

in the context of a static economy. Section 3 introduces capital accumulation and clarifies the

conditions for balanced growth in this economy. Section 4 presents our full model with endogenous

6Acemoglu and Autor (2011), Autor and Dorn (2013), Jaimovich and Siu (2014), Foote and Ryan (2014), Burstein
and Vogel (2012), and Burstein, Morales and Vogel (2014) provide various pieces of empirical evidence and quantitative
evaluations on the importance of the endogenous allocation of tasks to factors in recent labor market dynamics.

7Acemoglu and Autor’s model, like ours, is one in which a discrete number of labor types are allocated to a
continuum of tasks. Costinot and Vogel (2010) develop a complementary model in which there is a continuum of
skills and a continuum of tasks. See also the recent paper by Hawkins, Ryan and Oh (2015), which shows how a task-
based model is more successful than standard models in matching the co-movement of investment and employment
at the firm level.

8The role of technologies replacing tasks in this result can also be seen by noting that with factor-augmenting
technologies, the direction of innovation may be dominated by a strong market size effect (e.g., Acemoglu, 2002).
Instead, in our model, it is the difference between factor prices that regulates the future path of technological change,
generating a powerful force towards stability.
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technology and establishes, under some plausible conditions, the existence, uniqueness and stability

of a balanced growth path with two types of technologies advancing in tandem. Section 5 considers

the three extensions mentioned above. Section 6 concludes. Appendix A contains the proofs of

our main results, while Appendix B, which is not for publication, contains the remaining proofs,

additional results, and the details of the empirical analysis presented above.

2 Static Model

We start with a static version of our model with exogenous technology, which allows us to introduce

our main setup in the simplest fashion and characterize the impact of different types of technological

change on factor prices, employment and the labor share.

2.1 Environment

The economy produces a unique final good Y by combining a unit measure of tasks, y(i), with an

elasticity of substitution σ ∈ (0,∞):

Y = B̃

(∫ N

N−1
y(i)

σ−1
σ di

) σ
σ−1

, (1)

where B̃ > 0. All tasks and the final good are produced competitively. The fact that the limits of

integration run between N − 1 and N imposes that the measure of tasks used in production always

remains at 1. A new (more complex) task replaces or upgrades the lowest-index task. Thus, an

increase in N represents the upgrading of the quality (productivity) of the unit measure of tasks.9

Each task is produced by combining labor or capital with a task-specific intermediate q(i), which

embodies the technology used either for automation or for production with labor. To simplify the

exposition, we start by assuming that these intermediates are supplied competitively, and that they

can be produced using ψ units of the final good. Hence, they are also priced at ψ. In Section 4 we

relax this assumption and allow intermediate producers to make profits so as generate endogenous

incentives for innovation.

All tasks can be produced with labor. We model the technological constraints on automation

by assuming that there exists I ∈ [N − 1, N ] such that tasks i ≤ I are technologically automated in

the sense that it is feasible to produce them with capital. Although tasks i ≤ I are technologically

automated, whether they will be produced with capital or not depends on relative factor prices

as we describe below. Conversely, tasks i > I are not technologically automated, and must be

produced with labor.

The production function for tasks i > I takes the form

y(i) = B(ζ)
[
η

1
ζ q(i)

ζ−1
ζ + (1− η)

1
ζ (γ(i)l(i))

ζ−1
ζ

] ζ
ζ−1

, (2)

9This formulation imposes that once a new task is created at N it will be immediately utilized and replace the
lowest available task located at N − 1. This is ensured by Assumption 3 imposed below, and avoids the need for
additional notation at this point. We view newly-created tasks as higher productivity versions of existing tasks.
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where γ(i) denotes the productivity of labor in task i, ζ ∈ (0,∞) is the elasticity of substitution

between intermediates and labor, η ∈ (0, 1) is the share parameter of this constant elasticity of

substitution (CES) production function, and B(ζ) is a constant included to simplify the algebra.

In particular, we set B(ζ) = ψη(1− η)η−1η−η when ζ = 1, and B(ζ) = 1 otherwise.

Tasks i ≤ I can be produced using labor or capital, and their production function is identical to

(2) except for the presence of capital and labor as perfectly substitutable factors of production:10

y(i) = B(ζ)
[
η

1
ζ q(i)

ζ−1
ζ + (1− η)

1
ζ (k(i) + γ(i)l(i))

ζ−1
ζ

] ζ
ζ−1

. (3)

Throughout, we impose the following assumption:

Assumption 1 γ(i) is strictly increasing

Assumption 1 implies that labor has strict comparative advantage in tasks with a higher index,

and will guarantee that, in equilibrium, tasks with lower indices will be automated, while those

with higher indices will be produced with labor.

We model the demand side of the economy using a representative household with preferences

given by

u(C,L) =
(Ce−ν(L))1−θ − 1

1− θ
, (4)

where C is consumption, L denotes the labor supply of the representative household, and ν(L)

designates the utility cost of labor supply, which we assume to be continuously differentiable,

increasing and convex, and to satisfy ν ′′(L) + (θ − 1)(ν ′(L))2/θ > 0 (which ensures that u(C,L) is

concave). The functional form in (4) ensures balanced growth (see King, Plosser and Rebelo, 1988;

Boppart and Krusell, 2016). When we turn to the dynamic analysis in the next section, θ will be

the inverse of the intertemporal elasticity of substitution.

Finally, in the static model, the capital stock, K, is taken as given (it will be endogenized via

household saving decisions in Section 3).

2.2 Equilibrium in the Static Model

Given the set of technologies I and N , and the capital stock K, we now characterize the equilibrium

value of output, factor prices, employment, and the threshold task I∗.

In the text, we simplify the exposition by imposing:

Assumption 2 One of the following two conditions holds: (i) η → 0, or (ii) ζ = 1.

10A simplifying feature of the technology described in equation (3) is that capital has the same productivity in all
tasks. This assumption could be relaxed with no change to our results in the static model, but without other changes,
it would not allow balanced growth in the next section. Another simplifying assumption is that non-automated tasks
can be produced with just labor. Having these tasks combine labor and capital would have no impact on our main
results as we show in Appendix B.
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These two special cases ensure that the demand for labor and capital is homothetic. More

generally, our qualitative results are identical as long as the degree of non-homotheticity is not

too extreme, though in this case we no longer have closed-form expressions and this motivates our

choice of presenting these more general results in Appendix A.11

We proceed by characterizing the unit cost of producing each task as a function of factor prices

and the automation possibilities represented by I. Because tasks are produced competitively, their

price, p(i), will be equal to the minimum unit cost of production:

p(i) =





min

{
R,

W

γ(i)

}1−η

if i ≤ I,
(
W

γ(i)

)1−η

if i > I,

(5)

where W denotes the wage rate and R denotes the rental rate of capital.

In equation (5), the unit cost of production for tasks i > I is given by the effective cost of

labor, W/γ(i) (which takes into account that the productivity of labor in task i is γ(i)). The unit

cost of production for tasks i ≤ I, on the other hand, depends on min
{
R, Wγ(i)

}
reflecting the fact

that capital and labor are perfect substitutes in the production of automated tasks. In these tasks,

firms will choose whichever factor has a lower effective cost—R or W/γ(i).

Because labor has a strict comparative advantage in tasks with a higher index, there is a (unique)

threshold Ĩ such that
W

R
= γ(Ĩ). (6)

This threshold represents the task for which the costs of producing with capital and labor are equal.

For all tasks i ≤ Ĩ, we have R ≤ W/γ(i), and without any other constraints, these tasks will be

produced with capital. However, if Ĩ > I, firms cannot use capital all the way up to task Ĩ because

of the constraint imposed by the available automation technology. This implies that there exists a

unique equilibrium threshold task

I∗ = min{I, Ĩ}

such that all tasks i ≤ I∗ will be produced with capital, while all tasks i > I∗ will be produced

with labor.12

Figure 2 depicts the resulting allocation of tasks to factors and also shows how, as already

noted, the creation of new tasks replaces existing tasks from the bottom of the distribution.

As noted in footnote 9, we have simplified the exposition by imposing that new tasks created at

N immediately replace tasks located at N − 1, and it is therefore profitable to produce new tasks

11The source of non-homotheticity in the general model is the substitution between factors (capital or la-
bor) and intermediates (the q(i)’s). A strong substitution creates implausible features. For example, automa-
tion, which increases the price of capital, may end up raising the demand for labor more than the demand
for capital—as capital gets substituted by the intermediate inputs. Assumption 2′ in Appendix A imposes that(

γ(N−1)
γ(N)

)max{1,σ}
1(

γ(N)
γ(N−1)

)|1−ζ|
−1

> |σ − ζ|, which ensures that the degree of non-homotheticity is not too extreme

and automation always reduces the relative demand for labor.
12Without loss of generality, we impose that firms use capital when they are indifferent between using capital or

labor, which explains our convention of writing that all tasks i ≤ I∗ (rather than i < I∗) are produced using capital.
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Figure 2: The task space and a representation of the effect of introducing new tasks (middle
panel) and automating existing tasks (bottom panel).

with labor (and hence we have not distinguished N , N∗ and Ñ). In the static model, this will be

the case when the capital stock is not too large, which is imposed in the next assumption.

Assumption 3 We have K < K, where K is such that R = W
γ(N) .

This assumption ensures that R > W
γ(N) and consequently, new tasks will increase aggregate

output and will be adopted immediately. Outside of this region, new tasks would not be utilized,

which we view as the less interesting case. This assumption is relaxed in the next two sections

where the capital stock is endogenous.

We next derive the demand for factors in terms of the (endogenous) threshold I∗ and the

technology parameter N . We choose the final good as the numeraire. Equation (1) gives the

demand for task i as

y(i) = B̃σ−1Y p(i)−σ. (7)

Let us define σ̂ = σ(1 − η) + ζη and B = B̃
σ−1
σ̂−1 . Under Assumption 2, equations (2) and (3)

yield the demand for capital and labor in each task as

k(i) =

{
Bσ̂−1(1− η)Y R−σ̂ if i ≤ I∗,

0 if i > I∗.
and l(i) =





0 if i ≤ I∗,

Bσ̂−1(1− η)Y
1

γ(i)

(
W

γ(i)

)−σ̂

if i > I∗.

We can now define a static equilibrium as follows. Given a range of tasks [N−1, N ], automation

technology I ∈ (N − 1, N ], and a capital stock K, a static equilibrium is summarized by a set of

factor prices, W and R, threshold tasks, Ĩ and I∗, employment level, L, and aggregate output, Y ,

such that:

• Ĩ is determined by equation (6) and I∗ = min{I, Ĩ};
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• the capital and labor markets clear, so that

Bσ̂−1(1− η)Y (I∗ −N + 1)R−σ̂ = K, (8)

Bσ̂−1(1− η)Y

∫ N

I∗

1

γ(i)

(
W

γ(i)

)−σ̂

di = L; (9)

• factor prices satisfy the ideal price index condition,

(I∗ −N + 1)R1−σ̂ +

∫ N

I∗

(
W

γ(i)

)1−σ̂

di = B1−σ̂; (10)

• labor supply satisfies ν ′(L) =W/C. Since in equilibrium C = RK +WL, this condition can

be rearranged to yield the following increasing labor supply function:13

L = Ls
(
W

RK

)
. (11)

Proposition 1 (Equilibrium in the static model) Suppose that Assumptions 1, 2 and 3 hold.

Then a static equilibrium exists and is unique. In this static equilibrium, aggregate output is given

by

Y =
B

1− η


(I∗ −N + 1)

1
σ̂K

σ̂−1
σ̂ +

(∫ N

I∗
γ(i)σ̂−1di

) 1
σ̂

L
σ̂−1
σ̂




σ̂
σ̂−1

. (12)

Proof. See Appendix A.

Equation (12) shows that aggregate output is a CES aggregate of capital and labor, with the

elasticity between capital and labor being σ̂. The share parameters are endogenous and depend

on the state of the two types of technologies and the equilibrium choices of firms. An increase

in I∗—which corresponds to greater equilibrium automation—increases the share of capital and

reduces the share of labor in this aggregate production function, while the creation of new tasks

does the opposite.

Figure 3 illustrates the unique equilibrium described in Proposition 1. The equilibrium is given

by the intersection of two curves in the (ω, I) space, where ω = W
RK is the wage level normalized by

capital income; this ratio is a monotone transformation of the labor share and will play a central role

in the rest of our analysis.14 The upward-sloping curve represents the cost-minimizing allocation

of capital and labor to tasks represented by equation (6), with the constraint that the equilibrium

level of automation can never exceed I. The downward-sloping curve, ω(I∗, N,K), corresponds to

the relative demand for labor, which can be obtained directly from (8), (9) and (11) as

lnω +
1

σ̂
lnLs(ω) =

(
1

σ̂
− 1

)
lnK +

1

σ̂
ln

(∫ N
I∗ γ(i)

σ̂−1di

I∗ −N + 1

)
. (13)

13This representation clarifies that the equilibrium implications of our setup are identical to one in which an upward-
sloping quasi-labor supply determines the relationship between employment and wages (and does not necessarily
equate marginal cost of labor supply to the wage). This follows readily by taking (11) to represent this quasi-labor
supply relationship.

14The increasing labor supply relationship, (11), ensures that the labor share sL = WL
RK+WL

is increasing in ω.
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As we show in Appendix A, the relative demand curve always starts above the cost minimization

condition and ends up below it, so that the two curves necessarily intersect, defining a unique

equilibrium, as shown in Figure 3.

Figure 3: Static equilibrium. The left panel depicts the case in which I∗ = I < Ĩ so that
the allocation of factors is constrained by technology. The right panel depicts the case in which
I∗ = Ĩ < I so that the allocation of factors is not constrained by technology and is cost-minimizing.
The blue curves show the shifts following an increase in I to I ′, which reduce ω in the left panel,
but have no effect in the right panel.

The figure also distinguishes between the two cases highlighted above. In the left panel, we have

I∗ = I < Ĩ and the allocation of factors is constrained by technology, while the right panel plots

the case where I∗ = Ĩ < I and firms choose the cost-minimizing allocation given factor prices.

A special case of Proposition 1 is also worth highlighting, because it leads to a Cobb-Douglas

production function with an exponent depending on the degree of automation, which is particularly

tractable in certain applications.

Corollary 1 Suppose that σ = ζ = 1 and γ(i) = 1 for all i. Then aggregate output is

Y =
B

1− η
K1−N+I∗LN−I∗ .

The next two propositions give a complete characterization of comparative statics.15

Proposition 2 (Comparative statics) Suppose that Assumptions 1, 2 and 3 hold. Let εL > 0

denote the elasticity of the labor supply schedule Ls(ω); let εγ = d ln γ(I)
dI > 0 denote the semi-

elasticity of the comparative advantage schedule; and let

ΛI =
γ(I∗)σ̂−1

∫ N
I∗ γ(i)

σ̂−1di
+

1

I∗ −N + 1
and ΛN =

γ(N)σ̂−1

∫ N
I∗ γ(i)

σ̂−1di
+

1

I∗ −N + 1
.

• If I∗ = I < Ĩ—so that the allocation of tasks to factors is constrained by technology—then:

– the impact of technological change on relative factor prices is given by

d ln(W/R)

dI
=
d lnω

dI
=−

1

σ̂ + εL
ΛI < 0,

d ln(W/R)

dN
=
d lnω

dN
=

1

σ̂ + εL
ΛN > 0;

15In this proposition, we do not explicitly treat the case in which I∗ = I = Ĩ in order to save on space and notation,
since in this case left and right derivatives with respect to I are different.
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– and the impact of capital on relative factor prices is given by

d ln(W/R)

d lnK
=
d lnω

d lnK
+ 1 =

1 + εL
σ̂ + εL

> 0.

• If I∗ = Ĩ < I—so that the allocation of tasks to factors is cost-minimizing—then:

– the impact of technological change on relative factor prices is given by

d ln(W/R)

dI
=
d lnω

dI
= 0,

d ln(W/R)

dN
=
d lnω

dN
=

1

σfree + εL
ΛN > 0,

where

σfree = σ̂ +
1

εγ
ΛI > σ̂;

– and the impact of capital on relative factor prices is given by

d ln(W/R)

d lnK
=
d lnω

d lnK
+ 1 =

1 + εL
σfree + εL

> 0.

• In all cases, the labor share and employment move in the same direction as ω: dL
dN > 0 and,

when I∗ = I, dL
dI < 0.

Proof. See Appendix B.

The main implication of Proposition 2 is that the two types of technological change—automation

and the creation of new tasks—have polar implications. An increase in N—the creation of new

tasks—raises W/R, the labor share and employment. An increase in I—an improvement in au-

tomation technology—reduces W/R, the labor share and employment (unless I∗ = Ĩ < I and firms

are not constrained by technology in their automation choice). 16

The reason why automation reduces employment (when I∗ = I < Ĩ) is that automation raises

aggregate output per worker more than it raises wages (as we will see next, automation may even

reduce wages). Thus, the negative income effect on the labor supply resulting from greater aggregate

output dominates any substitution effect that might follow from the higher wages. On the other

hand, the creation of new tasks always increase employment—new tasks raise wages more than

aggregate output, increasing the labor supply. Although these exact results rely on the balanced

growth preferences in equation (4), similar forces operate in general and create a tendency for

automation to reduce employment and for new tasks to increase it.

Figure 3 illustrates the comparative statics: automation moves us along the relative labor

demand curve in the technology-constrained case shown in the left panel (and has no impact in

the right panel), while the creation of new tasks shifts out the relative labor demand curve in both

cases.

A final implication of Proposition 2 is that the “technology-constrained” elasticity of substitu-

tion between capital and labor, σ̂, which applies when I∗ = I < Ĩ, differs from the “technology-free”

16Throughout, by “automation” or “automation technology” we refer to I , and use “equilibrium automation” to
refer to I∗.
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elasticity, σfree , which applies when the decision of which tasks to automate is not constrained by

technology (i.e., when I∗ = Ĩ < I). This is because in the former case, as relative factor prices

change, the set of tasks performed by each factor remains fixed. In the latter case, as relative factor

prices change, firms reassign tasks to factors. This additional margin of adjustment implies that

σfree > σ̂.

Proposition 3 (Impact of technology on productivity, wages, and factor prices) Suppose

that Assumptions 1, 2 and 3 hold, and denote the changes in productivity—the change in aggregate

output holding capital and labor constant—by d lnY |K,L.

• If I∗ = I < Ĩ—so that the allocation of tasks to factors is constrained by technology—then
W
γ(I∗) > R > W

γ(N) , and

d ln Y |K,L =
Bσ̂−1

1− σ̂

((
W

γ(I∗)

)1−σ̂

−R1−σ̂

)
dI +

Bσ̂−1

1− σ̂

(
R1−σ̂ −

(
W

γ(N)

)1−σ̂
)
dN.

That is, both technologies increase productivity.

Moreover, let sL denote the share of labor in net output. The impact of technology on factor

prices in this case is given by:

d lnW =d ln Y |K,L + (1− sL)

(
1

σ̂ + εL
ΛNdN −

1

σ̂ + εL
ΛIdI

)
,

d lnR =d ln Y |K,L − sL

(
1

σ̂ + εL
ΛNdN −

1

σ̂ + εL
ΛIdI

)
.

That is, a higher N always increases the equilibrium wage but may reduce the rental rate

of capital, while a higher I always increases the rental rate of capital but may reduce the

equilibrium wage. In particular, there exists K̃ < ∞ such that an increase in I increases the

equilibrium wage when K > K̃ and reduces it when K < K̃.

• If I∗ = Ĩ < I—so that the allocation of tasks to factors is not constrained by technology—then
W
γ(I∗) = R > W

γ(N) , and

d ln Y |K,L =
Bσ̂−1

1− σ̂

(
R1−σ̂ −

(
W

γ(N)

)1−σ̂
)
dN.

That is, new tasks increase productivity, but additional automation technologies do not.

Moreover, the impact of technology on factor prices in this case is given by:

d lnW =d lnY |K,L + (1− sL)
1

σfree + εL
ΛNdN

d lnR =d lnY |K,L − sL
1

σfree + εL
ΛNdN.

That is, an increase in N (more new tasks) always increases the equilibrium wage but may

reduce the rental rate, while an increase in I (greater technological automation) has no effect

on factor prices.
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Proof. See Appendix B.

The most important result in Proposition 3 is that, when I∗ = I < Ĩ, automation—an increase

in I—always increases aggregate output, but has an ambiguous effect on the equilibrium wage. On

the one hand, there is a positive productivity effect captured by the term d lnY |K,L: by substituting

cheaper capital for expensive labor, automation raises productivity, and hence the demand for labor

in the tasks that are not yet automated.17 Countering this, there is a negative displacement effect

captured by the term 1
σ̂+εL

ΛI . This negative effect occurs because automation contracts the set

of tasks performed by labor. Because tasks are subject to diminishing returns in the aggregate

production function, (1), bunching workers into fewer tasks puts downward pressure on the wage.

As the equation for d ln Y |K,L reveals, the productivity gains depend on the cost savings from

automation, which are given by the difference between the effective wage at I∗, W
γ(I∗) , and the rental

rate, R. The displacement effect dominates the productivity effect when the gap between W
γ(I∗) and

R is small—which is guaranteed when K < K̃. In this case, the overall impact of automation on

wages is negative.

Finally, Proposition 3 shows that an increase inN always raises productivity and the equilibrium

wage (recall that Assumption 3 imposed that R > W
γ(N)). When the productivity gains from the

creation of new tasks are small, it can reduce the rental rate of capital as well.

The fact that automation may reduce the equilibrium wage while increasing productivity is

a key feature of the task-based framework developed here (see also Acemoglu and Autor, 2011).

In our model, automation shifts the range of tasks performed by capital and labor—it makes

the production process more capital intensive and less labor intensive, and it always reduces the

labor share and the wage-rental rate ratio, W/R. This reiterates that automation is very different

from factor-augmenting technological changes and has dissimilar implications. The effects of labor-

or capital-augmenting technology on the labor share and the wage-rental rate ratio depend on

the elasticity of substitution (between capital and labor). Also, capital-augmenting technological

improvements always increase the equilibrium wage, and labor-augmenting ones also do so provided

that the elasticity of substitution is greater than the share of capital in national income.18

3 Dynamics and Balanced Growth

In this section, we extend our model to a dynamic economy in which the evolution of the capital

stock is determined by the saving decisions of a representative household. We then investigate

17This discussion also clarifies that our productivity effect is similar to the productivity effect in models of offshoring,
such as Grossman and Rossi-Hansberg (2008), Rodriguez-Clare (2010) and Acemoglu, Gancia and Zilibotti (2015),
which results from the substitution of cheap foreign labor for domestic labor in certain tasks.

18For instance, with a constant returns to scale production function and two factors, capital and labor are
q−complements. Thus, capital-augmenting technologies always increases the marginal product of labor. To see
this, let F (AKK,ALL) be such a production function. Then W = FL, and

dW
dAK

= KFLK = −LFLL > 0 (because of

constant returns to scale).
Likewise, improvements in AL increase the equilibrium wage provided that the elasticity of substitution between

capital and labor is greater than the capital share, which is a fairly weak requirement (in other words, AL can reduce
the equilibrium wage only if the elasticity of substitution is very very low).
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the conditions under which the economy admits a balanced growth path (BGP), where aggregate

output, the capital stock and wages grow at a constant rate. We conclude by discussing the long-run

effects of automation on wages, the labor share and employment.

3.1 Balanced Growth

We assume that the representative household’s dynamic preferences are given by

∫ ∞

0
e−ρtu(C(t), L(t))dt, (14)

where u(C(t), L(t)) is as defined in equation (4) and ρ > 0 is the discount rate.

To ensure balanced growth, we impose more structure to the comparative advantage schedule.

Because balanced growth is driven by technology, and in this model sustained technological change

comes from the creation of new tasks, constant growth requires productivity gains from new tasks

to be exponential.19 Thus, in what follows we strengthen Assumption 1 to:

Assumption 1′ γ(i) satisfies:

γ(i) = eAi with A > 0. (15)

The path of technology, represented by {I(t), N(t)}, is exogenous, and we define

n(t) = N(t)− I(t)

as a summary measure of technology, and similarly let n∗(t) = N(t)− I∗(t) be a summary measure

of the state of technology used in equilibrium (since I∗(t) ≤ I(t), we have n∗(t) ≥ n(t)). New

automation technologies reduce n(t), while the introduction of new tasks increases it.
From equation (12), aggregate output net of intermediates, or simply “net output”, can be

written as a function of technology represented by n∗(t) and γ(I∗(t)) = eAI
∗(t), the capital stock,

K(t), and the level of employment, L(t), as

F
(
K(t), eAI

∗(t)L(t);n∗(t)
)
= B


(1 − n∗(t))

1
σ̂K(t)

σ̂−1
σ̂ +

(∫ n
∗(t)

0

γ(i)σ̂−1di

) 1
σ̂

(eAI
∗(t)L(t))

σ̂−1
σ̂




σ̂
σ̂−1

.

(16)

The resource constraint of the economy then takes the form

K̇(t) = F
(
K(t), eAI(t)L(t);n∗(t)

)
− C(t)− δK(t),

where δ is the depreciation rate of capital.

19Notice also that in this dynamic economy, as in our static model, the productivity of capital is the same in all
automated tasks. This does not, however, imply that any of the previously automated tasks can be used regardless
of N . As N increases, as emphasized by equation (1), the set of feasible tasks shifts to the right, and only tasks
above N − 1 remain compatible with and can be combined with those currently in use. Just to cite a few motivating
examples for this assumption: power looms of the 18th and 19th century are not compatible with modern textile
technology; first-generation calculators are not compatible with computers; many hand and mechanical tools are not
compatible with numerically controlled machinery; and bookkeeping methods from the 19th and 20th centuries are
not compatible with the modern, computerized office.
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We characterize the equilibrium in terms of the employment level L(t), and the normalized

variables k(t) = K(t)e−AI
∗(t), and c(t) = C(t)e

1−θ
θ
ν(L(t))−AI∗(t). As in our static model, R(t) denotes

the rental rate, and w(t) = W (t)e−AI
∗(t) is the normalized wage. These normalized variables

determine factor prices as:

R(t) =FK [k(t), L(t);n∗(t)]

=B(1− n∗(t))
1
σ̂


(1− n∗(t))

1
σ̂ +

(∫ n∗(t)

0
γ(i)σ̂−1di

) 1
σ̂ (L(t)

k(t)

) σ̂−1
σ̂




1
σ̂−1

and

w(t) =FL[k(t), L(t);n
∗(t)]

=B

(∫ n∗(t)

0
γ(i)σ̂−1di

) 1
σ̂


(1− n∗(t))

1
σ̂

(
k(t)

L(t)

) σ̂−1
σ̂

+

(∫ n∗(t)

0
γ(i)σ̂−1di

) 1
σ̂




1
σ̂−1

.

The equilibrium interest rate is R(t)− δ.

Given time paths for g(t) (the growth rate of eAI
∗(t)) and n(t), a dynamic equilibrium can

now be defined as a path for the threshold task n∗(t), (normalized) capital and consumption, and

employment, {k(t), c(t), L(t)}, that satisfies

• n∗(t) ≥ n(t), with n∗(t) = n(t) only if w(t) > R(t), and n∗(t) > n(t) only if w(t) = R(t);

• the Euler equation,

ċ(t)

c(t)
=

1

θ
(FK [k(t), L(t);n∗(t)]− δ − ρ)− g(t); (17)

• the endogenous labor supply condition,

ν ′(L(t))e
θ−1
θ
ν(L(t)) =

FL[k(t), L(t);n
∗(t)]

c(t)
; (18)

• the representative household’s transversality condition,

lim
t→∞

k(t)e−
∫ t

0
(FK [k(s),L(s);n∗(s)]−δ−g(s))ds = 0; (19)

• and the resource constraint,

k̇(t) = F (k(t), L(t);n∗(t))− c(t)e−
1−θ
θ
ν(L(t)) − (δ + g(t))k(t). (20)

We also define a balanced growth path (BGP) as a dynamic equilibrium in which the economy

grows at a constant positive rate, factor shares are constant, and the rental rate of capital R(t) is

constant.
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To characterize the growth dynamics implied by these equations, let us first consider a path

for technology such that g(t) → g and n(t) → n, consumption grows at the rate g and the Euler

equation holds R(t) = ρ + δ + θg. Suppose first that n∗(t) = n(t) = 0, in which case F becomes

linear and R(t) = B. Because the growth rate of consumption must converge to g as well, the Euler

equation (17) is satisfied in this case only if ρ is equal to

ρ = B − δ − θg. (21)

Lemma A2 in Appendix A shows that this critical value of the discount rate divides the parameter

space into two regions as shown in Figure 4. To the left of ρ, there exists a decreasing curve ñ(ρ)

defined over [ρmin, ρ] with ñ(ρ) = 0, and to the right of ρ, there exists an increasing curve n(ρ)

defined over [ρ, ρmax] with n(ρ) = 0, such that:20

Figure 4: Behavior of factor prices in different parts of the parameter space.

• for n < ñ(ρ), we have w(t)
γ(N(t)) > R(t) and new tasks would reduce aggregate output, so are

not adopted (recall that w(t) =W (t)e−AI
∗(t));

• for n > ñ(ρ), we have w(t)
γ(N(t)) < R(t) and in this case, new tasks raise aggregate output and

are immediately produced with labor;

• for n > n(ρ), we have w(t) > R(t), as a result, automated tasks raise aggregate output and

are immediately produced with capital; and

20The functions wN (n) and wI(n) depicted in this figure are introduced and explained below.
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• for n < n(ρ), we have w(t) < R(t) and additional automation would reduce aggregate output,

so small changes in automation technology do not affect n∗ and other equilibrium objects.

The next proposition provides the conditions under which a BGP exists, and characterizes the

BGP allocations in each case. In what follows, we no longer impose Assumption 3, since depending

on the value of ρ, the capital stock can become large and violate this assumption.

Proposition 4 (Dynamic equilibrium with exogenous technological change) Suppose that

Assumptions 1′ and 2 hold. The economy admits a BGP with positive growth if only if we are in

one of the following cases:

1. Full automation: ρ < ρ and N(t) = I(t) (and B > δ + ρ > 1−θ
θ (B − δ − ρ) + δ to ensure

the transversality condition). In this case, there is a unique and globally stable BGP. In this

BGP, n∗(t) = 0 (all tasks are produced with capital), and the labor share is zero.

2. Interior BGP with immediate automation: ρ ∈ (ρmin, ρmax), Ṅ(t) = İ(t) = ∆, and

n(t) = n > max{n(ρ), ñ(ρ)} (and ρ+(θ−1)A∆ > 0 to ensure the transversality condition). In

this case, there is a unique and globally stable BGP. In this BGP, n∗(t) = n and I∗(t) = I(t).

3. Interior BGP with eventual automation: ρ > ρ, Ṅ(t) = ∆ with İ(t) ≥ ∆, and n(t) <

n(ρ) (and ρ+ (θ − 1)A∆ > 0 to ensure the transversality condition). In this case, there is a

unique and globally stable BGP. In this BGP, n∗(t) = n(ρ) and I∗(t) = Ĩ(t) > I(t).

4. No automation: ρ > ρmax, and Ṅ(t) = ∆ (and ρ+ (θ − 1)A∆ > 0 to ensure the transver-

sality condition). In this case, there exists a unique and globally stable BGP. In this BGP,

n∗(t) = 1 (all tasks are produced with labor), and the capital share is zero.

Proof. See Appendix A.

The first type of BGP in Proposition 4 involves the automation of all tasks, in which case

aggregate output becomes linear in capital. This case was ruled out by Assumption 3 in our static

analysis, but as the proposition shows, when the discount rate, ρ, is sufficiently small, it can emerge

in the dynamic model. A BGP with no automation (case 4), where growth is driven entirely by

the creation of new tasks, is also possible if the discount rate is sufficiently large.

More important for our focus are the two interior BGPs where automation and the introduction

of new tasks go hand-in-hand, and as a result, n∗(t) is constant at some value between 0 and 1;

this implies that both capital and labor perform a fixed measure of tasks. In the more interesting

case where automated tasks are immediately produced with capital (case 2), the proposition also

highlights that this process needs to be “balanced” itself: the two types of technologies need to

advance at exactly the same rate so that n(t) = n.

Balanced growth with constant labor share emerges in this model because the net effect of

automation and the creation of new technologies proceeding at the same rate is to augment labor

while keeping constant the share of tasks performed by labor—as shown by equation (16). In this
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case, the gap between the two types of technologies, n(t), regulates the share parameters in the

resulting CES production function, while the levels of N(t) and I(t) determine the productivity

of labor in the set of tasks that it performs. When n(t) = n, technology becomes purely labor

augmenting on net because labor performs a fixed share of tasks, and labor becomes more productive

over time in producing the newly-created tasks.21

To illustrate the main implication of the proposition, let us focus on part 2 with İ = Ṅ = ∆

and n(t) = n ≥ n(ρ). Along such a path, n∗(t) = n and g(t) = A∆. Figure 5 presents the phase

diagram for the system of differential equations comprising the Euler equation (equation (17))

and the resource constraint (equation (20)). This system of differential equations determines the

structure of the dynamic equilibrium and is identical to that of the neoclassical growth model with

labor-augmenting technological change and endogenous labor supply (which makes the locus for

ċ = 0 downward-sloping because of the negative income effect on the labor supply).

Figure 5: Dynamic equilibrium when technology is exogenous and satisfies n(t) = n and g(t) =
A∆.

3.2 Long-Run Comparative Statics

We next study the log-run implications of an unanticipated and permanent decline in n(t), which

corresponds to automation running ahead of the creation of new tasks. Because in the short run

capital is fixed, the short-run implications of this change in technology are the same as in our

static analysis in the previous section. But the fact that capital adjusts implies different long-run

dynamics.

Consider an interior BGP in which N(t) − I(t) = n ∈ (0, 1). Along this path, the equilibrium

wage grows at the rate A∆. Define wI(n) = limt→∞W (t)/γ(I∗(t)) as the effective wage paid in

the least complex task produced with labor and wN (n) = limt→∞W (t)/γ(N(t)) as the effective

21This intuition connects Proposition 4 to Uzawa’s Theorem, which implies that balanced growth requires a rep-
resentation of the production function with purely labor-augmenting technological change (e.g., Acemoglu, 2009, or
Grossman, Helpman and Oberfield, 2016).
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wage paid in the most complex task produced with labor. Both of these functions are well-defined

and depend only on n. Figure 4 shows how these effective wages compare to the BGP value of the

rental rate of capital, ρ+ δ + θg.

The next proposition characterizes the long-run impact of automation on factor prices, employ-

ment and the labor share in the interior BGPs.

Proposition 5 (Long-run comparative statics) Suppose that Assumptions 1′ and 2 hold. Con-

sider a path for technology in which n(t) = n ∈ (0, 1), n > ñ(ρ), and g(t) = g (so that we are in

case 2 or 3 in Proposition 4). In the unique BGP we have that R(t) = ρ+ δ + θg, and

• for n < n(ρ), we have that n∗(t) = n(ρ), wI(n) = wI(n(ρ)) and wN (n) = wN (n(ρ)). In

this region, small changes in n do not affect the paths of effective wages, employment and the

labor share;

• for n > n(ρ), we have that n∗(t) = n, and wI(n) is increasing and wN (n) is decreasing in

n. Moreover, the asymptotic values for employment and the labor share are increasing in n.

Finally, if the increase in n is caused by an increase in I, the capital stock also increases.

Proof. See Appendix B.

We discuss this proposition for n > n(ρ), so that we are in the most interesting region of the

parameter space where I∗ = I and the level of automation is constrained by technology. The long-

run implications of automation now differ from its short-term impact. In the long run, automation

reduces employment and the labor share, but it always increases the wage because in the long

run capital per worker increases to keep the rental rate constant at ρ + δ + θg, making sure that

productivity gains accrue to the scarce factor, labor.22

Figure 6 illustrates the response of the economy to permanent changes in automation. It plots

two potential paths for all endogenous variables. The dotted line depicts the case where wI(n)

is large relative to R, so that there are significant productivity gains from automation. In this

case, an increase in automation raises the wage immediately, followed by further increases in the

long run. The solid line depicts the dynamics when wI(n) ≈ R, so that the productivity gains

from automation are very small. In this case, an increase in automation reduces the wage in the

short run and leaves it approximately unchanged in the long run. In contrast to the concerns that

highly productive automation technologies will reduce the wage and employment, our model thus

shows that it is precisely when automation fails to raise productivity significantly that it has a

more detrimental impact on wages and employment. In both cases, the duration of the period

22This result follows because wN (n) is decreasing in n, and thus a lower n implies a higher wage level. However,
because wI(n) is increasing in n, the wage increase is less than proportional to γ(I(t)). The result can also be
understood by noting that the ideal price index condition implies

d lnY |K,L = sLd lnW + (1− sL)d lnR.

In general, productivity gains from technological change accrue to both capital and labor. In the long run, however,
capital adjusts to keep the rental rate fixed at R = ρ+ δ + θg, and as a result, d lnW = 1

sL
d ln Y |K,L > 0, meaning

that productivity gains accrue only to the inelastic factor—labor.
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Figure 6: Dynamic behavior of wages (lnW ), the rental rate of capital (R), the labor share (sL),
and the capital stock following a permanent increase in automation.

with stagnant or depressed wages depends on θ, which determines the speed of capital adjustment

following an increase in the rental rate.

The remaining panels of the figure show that automation reduces employment and the labor

share, as stated in Proposition 5. If σ̂ < 1, the resulting capital accumulation mitigates the short-

run decline in the labor share but does not fully offset it (this is the case depicted in the figure). If

σ̂ > 1, capital accumulation further depresses the labor share—even though it raises the wage.

The long-run impact of a permanent increase in N(t) can also be obtained from the proposition.

In this case, new tasks increase the wage (because wI(n) is increasing in n), aggregate output,

employment, and the labor share, both in the short and the long run. Because the short-run impact

of new tasks on the rental rate of capital is ambiguous, so is the response of capital accumulation.

In light of these results, the recent decline in the labor share and the employment to population

ratio in the United States can be interpreted as a consequence of automation outpacing the creation

of new labor-intensive tasks. Faster automation relative to the creation of new tasks might be driven

by an acceleration in the rate at which I(t) advances, in which case we would have stagnant or

lower wages in the short run while capital adjusts to a new higher level. Alternatively, it might be

driven by a deceleration in the rate at which N(t) advances, in which case we would also have low

growth of aggregate output and wages. We return to the productivity implications of automation

once we introduce our full model with endogenous technological change in the next section.
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4 Full Model: Tasks and Endogenous Technologies

The previous section established, under some conditions, the existence of an interior BGP with

Ṅ = İ = ∆. This result raises a fundamental question: why should these two types of technologies

advance at the same rate? To answer this question we now develop our full model, which endogenizes

the pace at which automation and the creation of new tasks proceeds.

4.1 Endogenous and Directed Technological Change

To endogenize technological change, we deviate from our earlier assumption of a perfectly compet-

itive market for intermediates, and assume that (intellectual) property rights to each intermediate,

q(i), are held by a technology monopolist who can produce it at the marginal cost µψ in terms of

the final good, where µ ∈ (0, 1) and ψ > 0. We also assume that this technology can be copied by

a fringe of competitive firms, which can replicate any available intermediate at a higher marginal

cost of ψ, and that µ is such that the unconstrained monopoly price of an intermediate is greater

than ψ. This ensures that the unique equilibrium price for all types of intermediates is a limit price

of ψ, and yields a per unit profit of (1−µ)ψ > 0 for technology monopolists. These profits generate

incentives for creating new tasks and automation technologies.

In this section, we adopt a structure of intellectual property rights that abstracts from the

creative destruction of profits.23 We assume that developing a new intermediate that automates

or replaces an existing task is viewed as an infringement of the patent of the technology previously

used to produce that task. For that reason, a firm must compensate the technology monopolist

who owns the property rights over the production of the intermediate that it is replacing. We also

assume that this compensation takes place with the new inventors making a take-it-or-leave-it offer

to the holder of the existing patent.

Developing new intermediates that embody technology requires scientists.24 There is a fixed

supply of S scientists, which will be allocated to automation (SI(t) ≥ 0) or the creation of new

tasks (SN (t) ≥ 0), so that

SI(t) + SN (t) ≤ S.

When a scientist is employed in automation, she automates κI tasks per unit of time and receives

a wage W S
I (t). When she is employed in the creation of new tasks, she creates κN new tasks per

unit of time and receives a wage W S
N (t). We assume that automation and the creation of new tasks

proceed in the order of the task index i. Thus, the allocation of scientists determines the evolution

of both types of technology—summarized by I(t) and N(t)—as

İ(t) = κISI(t), and Ṅ(t) = κNSN (t). (22)

23The creative destruction of profits is present in other models of quality improvements such as Aghion and Howitt
(1992) and Grossman and Helpman (1991), and will be introduced in the context of our model in Section 5.

24An innovation possibilities frontier that uses just scientists, rather than variable factors as in the lab-equipment
specifications (see Acemoglu 2009), is convenient because it enables us to focus on the direction of technological
change—and not on the overall amount of technological change.
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Because we want to analyze the properties of the equilibrium locally, we make a final assumption

to ensure that the allocation of scientists varies smoothly when there is a small difference between

W S
I (t) and W

S
N (t) (rather than having discontinuous jumps). In particular, we assume that scien-

tists differ in the cost of effort: when working in automation, scientist j incurs a cost of χjIY (t), and

when working in the creation of new tasks, she incurs a cost of χjNY (t).25 Consequently, scientist j

will work in automation if
WS

I (t)−WS
N (t)

Y (t) > χjI−χ
j
N . We also assume that the distribution of χjI−χ

j
N

among scientists is given by a smooth and increasing distribution function G over a support [−υ, υ],

where we take υ to be small enough that χjI and χjN are always less than max
{
κNVN (t)
Y (t) , κIVI(t)Y (t)

}

and thus all scientists always work. For notational convenience, we also adopt the normalization

G(0) = κN
κI+κN

.

4.2 Equilibrium with Endogenous Technological Change

We first compute the present discounted value accruing to monopolists from automation and the

creation of new tasks. Let VI(t) denote the value of automating task i = I(t) (i.e., the task with the

highest index that has not yet been automated, or more formally i = I(t)+ ε for ε arbitrarily small

and positive). Likewise, VN (t) is the value of a new technology creating a new task at i = N(t).

To simplify the exposition, let us assume that in this equilibrium n(t) > max{n̄(ρ), ñ(ρ)}, so

that I∗(t) = I(t) and newly-automated tasks start being produced with capital immediately. The

flow profits that accrue to the technology monopolist that automated task i are

πI(t, i) = bY (t)R(t)ζ−σ̂, (23)

where b = (1−µ)Bσ̂−1ηψ1−ζ .26 Likewise, the flow profits that accrue to the technology monopolist

that created the labor-intensive task i are

πN (t, i) = bY (t)

(
W (t)

γ(i)

)ζ−σ̂
. (24)

The take-it-or-leave-it nature of offers implies that a firm that automates task I needs to com-

pensate the existing technology monopolist by paying her the present discounted value of the profits

that her inferior labor-intensive technology would generate if not replaced. This take-it-or-leave-it

offer is given by:27

b

∫ ∞

t
e−

∫ τ
0 (R(s)−δ)dsY (τ )

(
W (τ)

γ(I)

)ζ−σ̂
dτ.

Likewise, a firm that creates task N needs to compensate the existing technology monopolist

by paying her the present discounted value of the profits from the capital-intensive alternative

25The cost of effort is multiplied by Y (t) to capture the income effect on the costs of effort in a tractable manner.
26This expression follows because the demand for intermediates is q(i) = Bσ̂−1ηψ−ζY (t)R(t)ζ−σ̂, every intermediate

is priced at ψ and the technology monopolist makes a per unit profit of 1− µ.
27This expression is written by assuming that the patent-holder will also turn down subsequent less generous offers

in the future. Deriving it using dynamic programming and the one-step ahead deviation principle leads to the same
conclusion.
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technology. This take-it-or-leave-it offer is given by

b

∫ ∞

t
e−

∫ τ

0
(R(s)−δ)dsY (τ)R(τ )ζ−σ̂dτ .

In both cases, the patent-holders will immediately accept theses offers and reject less generous ones.

We can then compute the values of a new automation technology and a new task, respectively,

as

VI(t) = bY (t)

∫ ∞

t
e−

∫ τ
t
(R(s)−δ−gy(s))ds

(
R(τ )ζ−σ̂ −

(
w(τ )e

∫ τ
t
g(s)ds

)ζ−σ̂)
dτ , (25)

and

VN (t) = bY (t)

∫ ∞

t
e−

∫ τ
t
(R(s)−δ−gy(s))ds

((
w(τ )

γ(n(t))
e
∫ τ
t
g(s)ds

)ζ−σ̂
−R(τ)ζ−σ̂

)
dτ, (26)

where gy(t) is the growth rate of aggregate output at time t and as noted above, g(t) is the growth

rate of γ(N(t)).

To ensure that these value functions are well-behaved and non-negative, we impose the following

assumption for the rest of the paper:

Assumption 4 σ̂ > ζ.

This assumption ensures that innovations are directed towards technologies that allow firms to

produce tasks by using the cheaper (or more productive) factors, and consequently, that the present

discounted values from innovation are positive. This assumption is intuitive and reasonable: since

intermediates embody the technology that directly works with labor or capital, they should be

highly complementary with the relevant factor of production in the production of tasks.28

The expressions for the value functions, VI(t) and VN (t) in equations (25) and (26) are intuitive.

The value of developing new automation technologies depends on the gap between the cost of

producing with labor (given by the effective wage, w(τ )) and the rental rate of capital (recall

that σ̂ > ζ). When the wage is higher, VI(t) increases and technology monopolists have greater

incentives to introduce new automation technologies to substitute capital for the more expensive

labor. The expression for VN (t) has an analogous interpretation, and is greater when the gap

between the rental rate of capital and the cost of producing new tasks with labor (w(τ )/γ(n(t)))

is larger.29

28The profitability of introducing an intermediate that embodies a new technology depends on its demand. As a
factor (labor or capital) becomes cheaper, there are two effects on the demand for q(i). First, the decline in costs
allows firms to scale up their production, which increases the demand for the intermediate good. The extent of this
positive scale effect is regulated by the elasticity of substitution σ̂. Second, because the cheaper factor is substituted
for the intermediate it is combined with, the demand for that intermediate good falls. This countervailing substitution
effect is regulated by the elasticity of substitution ζ. The condition σ̂ > ζ guarantees that the former, positive effect
dominates, so that prospective technology monopolists have an incentive to introduce technologies that allow firms
to produce tasks with cheaper factors. When the opposite holds, i.e., ζ > σ̂, we have the paradoxical situation where
technologies that work with more expensive factors are more profitable. In this case, the present discounted values
from innovation are negative.

29There is an important difference between the value functions in (25) and (26) and those in models of directed
technological change building on factor-augmenting technologies (such as in Acemoglu, 1998, or 2002). In the latter
case, the direction of technological change is determined by the interplay of a market size effect favoring the more
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An equilibrium with endogenous technology is given by paths {K(t), N(t), I(t)} for capital and

technology (starting from initial values K(0), N(0), I(0)), paths {R(t),W (t),W S
I (t),W

S
N (t)} for

factor prices, paths {VN (t), VI(t)} for the value functions of technology monopolists, and paths

{SN (t), SI(t)} for the allocation of scientists such that all markets clear, all firms and prospec-

tive technology monopolists maximize profits, the representative household maximizes its utility.

Using the same normalizations as in the previous section, we can represent the equilibrium with

endogenous technology by a path of the tuple {c(t), k(t), n(t), L(t), SI (t), SN (t), VI(t), VN (t)} such

that

• consumption satisfies the Euler equation (17) and the labor supply satisfies equation (18);

• the transversality condition holds

lim
t→∞

(k(t) + Π(t))e−
∫ t
0 (ρ−(1−θ)g(s))ds = 0, (27)

where in addition to the capital stock, the present value of corporate profits Π(t) = I(t)VI(t)/Y (t)+

N(t)VN (t)/Y (t) is also part of the representative household’s assets;

• capital satisfies the resource constraint

k̇(t) =

[
1 +

η

1− η
(1− µ)

]
F (k(t), L(t);n∗(t))− c(t)e−

1−θ
θ
ν(L(t)) − (δ + g(t))k(t),

where recall that F (k(t), L(t);n∗(t)) is net output (aggregate output net of intermediates)

and η
1−η (1− µ)F (k(t), L(t);n∗(t)) is profits of technology monopolists from intermediates;

• competition among prospective technology monopolists to hire scientists implies thatW S
I (t) =

κIVI(t) and W
S
N (t) = κNVN (t). Thus,

SI(t) = SG

(
κIVI(t)

Y (t)
−
κNVN (t)

Y (t)

)
, SN (t) = S

[
1−G

(
κIVI(t)

Y (t)
−
κNVN (t)

Y (t)

)]
,

and n(t) evolves according to the differential equation

ṅ(t) = κNS − (κN + κI)G

(
κIVI(t)

Y (t)
−
κNVN (t)

Y (t)

)
S; (28)

• and the value functions that determine the allocation of scientists, VI(t) and VN (t), are given

by (25) and (26).

abundant factor and a price effect favoring the cheaper factor. The task-based framework here, combined with the
assumption on the structure of patents, makes the benefits of new technologies only a function of the factor prices—
in particular, the difference between the wage rate and the rental rate. This is because factor prices determine the
profitability of producing with capital relative to labor. Without technological constraints, this would determine the
set of tasks that the two factors perform. In the presence of technological constraints restricting which tasks can
be produced with which factor, factor prices determine the incentives for automation (to expand the set of tasks
produced by capital) and the creation of new tasks (to expand the set of tasks produced by labor).

We should also note that despite this difference, the general results on absolute weak bias of technology in Acemoglu
(2007) continue to hold here—in the sense that an increase in the abundance of a factor always makes technology
more biased towards that factor.
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As before, a BGP is given by an equilibrium in which the normalized variables c(t), k(t) and

L(t), and the rental rate R(t) are constant, except that now n(t) is determined endogenously. The

definition of the equilibrium shows that the profits from automation and the creation of new tasks

determine the evolution of n(t): whenever one of the two types of innovation is more profitable,

more scientists will be allocated to that activity.

Consider an allocation where n(t) = n ∈ (0, 1). Let us define the normalized value functions

vI(n) = limt→∞ VI(t)/Y (t) and vN (n) = limt→∞ VN (t)/Y (t), which only depend on n. Equation

(28) implies that ṅ(t) > 0 if and only if κNVN (t) > κIVI(t), and ṅ(t) < 0 if and only if κNVN (t) <

κIVI(t). Thus if κIvI(n) 6= κNvN (n), the economy converges to a corner with n(t) equal to 0 or 1,

and for an interior BGP with n ∈ (0, 1) we need

κIvI(n) = κNvN (n). (29)

The next proposition gives the main result of the paper, and characterizes different types of

BGPs with endogenous technology.

Proposition 6 (Equilibrium with endogenous technological change) Suppose that Assump-

tions 1′, 2, and 4 hold. There exists S such that, when S < S, we have:30

1 Full automation: For ρ < ρ, there is a BGP in which n(t) = 0 and thus all tasks are

produced with capital (this case also requires B > δ + ρ > 1−θ
θ (B − δ − ρ) + δ to ensure the

transversality condition).

For ρ > ρ, all BGPs feature n(t) = n > n(ρ). Moreover, there exist κ ≥ κ > 0 such that:

2 Unique interior BGP: if κI
κN

> κ there exists a unique BGP. In this BGP we have n∗(t) =

n(t) = n ∈ (n(ρ), 1) and κNvN (n) = κIvI(n). If, in addition, θ = 0, then the equilibrium is

unique everywhere and the BGP is globally (saddle-path) stable. If θ > 0, then the equilibrium

is unique in the neighborhood of the BGP and is asymptotically (saddle-path) stable;

3 Multiple BGPs: if κ > κI
κN

> κ, there are multiple BGPs;

4 No automation: If κ > κI
κN

, there exists a unique BGP. In this BGP n∗(t) = 1 and all

tasks are produced with labor. (When ρ > ρmax, we are always in this case).

Proof. See Appendix A.

This proposition provides a complete characterization of different types of BGPs. Figure 7

shows visually how different BGPs arise in parts of the parameter space.

30The condition S < S ensures that the growth rate of the economy is not too high. If the growth rate is above
the threshold implied by S, the creation of new tasks is discouraged (even if current wages are low) because firms
anticipate that the wage will grow rapidly, reducing the future profitability of creating new labor-intensive tasks.
This condition also allows us to use Taylor approximations of the value functions in our analysis of local stability.
Finally, in parts 2-4 this condition ensures that the transversality condition holds.
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Figure 7: Varieties of BGPs.

Further intuition can be gained by studying the behavior κIvI(n) and κNvN (n), which we do

in Figure 8. Lemma A3 shows that, for S small, the normalized value functions can be written as

vI(n) =
b
(
(ρ+ δ + θg)ζ−σ̂ − wI(n)

ζ−σ̂
)

ρ+ (θ − 1)g
vN (n) =

b
(
wN (n)

ζ−σ̂ − (ρ+ δ + θg)ζ−σ̂
)

ρ+ (θ − 1)g
.

The profitability of the two types of technologies depends on the effective wages, wI(n) and wN (n).

A lower value of n, which corresponds to additional automation, reduces wI(n)—in other words

wI(n) is increasing in n. This is because of comparative advantage: as more tasks are automated,

the equilibrium wage increases less than γ(I), and it becomes cheaper to produce the least complex

tasks with labor, and thus automation becomes less profitable. Because wI(n) is increasing in n,

so is vI(n) (recall that σ̂ > ζ). However, vN (n) is also increasing in n: wN (n) is decreasing in n

as the long-run wage increases with automation because of the productivity effect discussed in the

previous section. We will see next that the fact that vN (n) is increasing in n creates a force towards

multiplicity of BGPs, while the fact that vI(n) is increasing in n pushes towards uniqueness and

stability.

Panel A of Figure 8 illustrates the first part of Proposition 6 (which parallels the first part of

Proposition 4): when ρ < ρ, κIvI(0) is above κNvN (0) for n < ñ(ρ). In this region it is not optimal

to create new tasks. Consequently, there exists a BGP with full automation, meaning that all

tasks will be automated and produced with capital. Reminiscent of Leontief’s “horse equilibrium,”

in this BGP labor becomes redundant. Intuitively, as also shown in Figure 4, when ρ < ρ and

n < ñ(ρ), we have wN (n) > ρ+ δ+ θg, which implies that labor is too expensive relative to capital.

Utilizing and thus creating new tasks is not profitable. Economic growth in this BGP is driven by

capital accumulation (because when all tasks are automated, aggregate output is linear in capital).

Panel B of the figure illustrates the remaining three types of BGPs, which apply when ρ > ρ.

In this case, at n = 0 (or at any n ≤ n̄(ρ)), κIvI(n) is strictly below κNvN (n), and thus a full

automation BGP is not possible. The two curves can only intersect for n ∈ (n̄(ρ), 1], implying
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Figure 8: Asymptotic behavior of normalized values. In the left panel, κIvI(n) is everywhere
above κNvN (n) and the BGP involves full automation. In the right panel, if κI/κN is sufficiently
large, the two curves intersect and we have an interior BGP with both automation and creation of
new tasks. The right panel also shows the effect of an increase in the productivity of scientists in
automating tasks from κI to κ′I .

that in any BGP, newly automated tasks will be immediately produced with capital. As explained

above, both of these curves are increasing but their relative slopes depend on κI
κN

. When κI
κN

< κ,

κIvI(n) is not sufficiently steep relative to κNvN (n), and the two never intersect. This means that

even at n = 1, it is not profitable to create new automation technologies, and all tasks will be

produced with labor. In this BGP, capital becomes redundant, and growth is driven by endogenous

technological change increasing labor’s productivity as in the standard quality ladder models such

as Aghion and Howitt (1992) or Grossman and Helpman (1991).

Conversely, when κI
κN

> κ, the curve κIvI(n) is sufficiently steep relative to κNvN (n) so that the

two curves necessarily intersect and can only intersect once. Hence there exists a unique interior

BGP (interior in the sense that now the BGP level of n is strictly between 0 and 1, and thus some

tasks are produced with labor and some with capital).

Finally, when κ > κI
κN

> κ, the two curves will intersect, but will do so multiple times, leading

to multiple interior BGPs.

Proposition 6 also shows that for κI
κN

> κ, the unique interior BGP is globally stable provided

that the intertemporal elasticity of substitution is infinite (i.e., θ = 0), and locally stable otherwise

(i.e., when θ > 0). Because κIvI(n) starts below κNvN (n) at n̄(ρ) (reflecting the fact that at this

point, new automation technologies are not immediately adopted and thus the value of creating

these technologies is zero), the unique intersection must have the former curve being steeper than
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the former. At this point, a further increase in n always raises the value of automating an additional

task, vI(n), more than the value of creating a new task, vN (n). This ensures that increases in n

beyond its BGP value trigger further automation, while lower values of n encourage the creation

of new tasks, ensuring the stability of the unique BGP.

The asymptotic stability of the interior BGP implies that there are powerful market forces

pushing the economy towards balanced growth. An important consequence of this stability is that

technological shocks that reduce n (e.g., the arrival of a series of new automation technologies) will

set in motion self-correcting forces. Following such a change, there will be an adjustment process

restoring the level of employment and the labor share back to their initial values.

This does not, however, imply that all shocks will leave the long-run prospects of labor un-

changed. For one, this would not necessarily be the case in a situation with multiple steady states,

and moreover, certain changes in the environment (for example, a large increase in B or a decline in

ρ), can shift the economy from the region in which there is a unique interior BGP to the region with

full automation, with disastrous consequences for labor. In addition, the next corollary shows that,

if there is a change in the innovation possibilities frontier (in the κ’s) that makes it permanently

easier to develop new automation technologies, self-correcting forces still operate but will now only

move the economy to a new BGP with lower employment and a lower labor share.

Corollary 2 Suppose that ρ > ρ and κI
κN

> κ. A one-time permanent increase in κI/κN leads to

a BGP with lower n, employment and labor share.

This corollary follows by noting that an increase in κI/κN shifts the intersection of the curves

κIvI(n) and κNv(n) to the left as shown by the blue dotted curve in Figure 8, leading to a lower

value of n in the BGP. This triggers an adjustment process in which the labor share and employ-

ment decline over time, but ultimately settle to their new (interior) BGP values. The transition

process will involve a slower rate of increase of N and a more rapid rate of increase of I than the

BGP. Interestingly, if new tasks generate larger productivity gains than automation, this transition

process will also be associated with a slowdown in productivity growth because automation crowds

out resources that could be used to develop new tasks.31

In summary, Proposition 6 characterizes the different types of BGPs, and together with Corol-

lary 2, it delineates the types of changes in technology that trigger self-correcting dynamics. Starting

from the interior BGP, the effects of (small) increases in automation technology will reverse them-

selves over time, restoring employment and the labor share back to their initial values. Permanent

changes in the ability of society to create new automation technologies trigger self-correcting dy-

namics as well, but these will take us towards a new BGP with lower employment and labor share,

31Forgone productivity gains from from slower creation of new tasks will exceed the gains from automation, causing
a productivity slowdown during a transition to a higher level of automation, if ρ > ρP , where ρP is defined implicitly
as the solution to the equation

1

σ − 1
(wI(n)

1−σ − (ρP + δ + θg)1−σ) =
1

σ − 1
((ρP + δ + θg)1−σ − wN (n)1−σ).
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and may also involve slower productivity growth in the process.

5 Extensions

In this section we discuss three extensions. First we introduce heterogeneous skills, which allow us

to analyze the impact of technological changes on inequality. Second, we study a different structure

of intellectual property rights that introduces the creative destruction of profits. Finally, we discuss

the welfare implications of our model.

5.1 Automation, New Tasks and Inequality

To study how automation and the creation of new tasks impact inequality, we now introduce

heterogeneous skills. This extension is motivated by the observation that both automation and new

tasks could increase inequality: new tasks favor high-skill workers who tend to have a comparative

advantage in new and complex tasks, while automation substitutes capital for labor in lower-indexed

tasks where low-skill workers have their comparative advantage.

The assumption that high-skill workers have a comparative advantage in new tasks receives

support from the data. Figure 9 shows that occupations with more new job titles in 1980, 1990

and 2000 employed workers with greater average years of schooling.32
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Figure 9: Average years of schooling among workers and the share of new job titles in 1980, 1990,
and 2000. See Appendix B for data sources and detailed definitions.

To incorporate this feature, we assume that there are two types of workers: low-skill workers

32As in Figure 1, this figure partials out the demographic composition of employment in each occupation at the
beginning of the relevant period. See Appendix B for the same relationship without these controls as well as with
additional controls.
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with time-varying productivity γL(i, t) in task i, and high-skill workers with productivity γH(i).

We parametrize these productivities as follows:

Assumption 1′′ The productivities of high-skill and low-skill workers are given by

γH(i) =e
AH i γL(i, t) =e

ξAH iΓ(t− T (i)),

where Γ is increasing with limx→∞ Γ(x) = 1, ξ ∈ (0, 1], and T (i) denotes the time when task i was

first introduced.

Assumption 1′′ is similar to but extends Assumption 1′ in several dimensions. The ratio γH(i)
γL(i,t)

is increasing in i, which implies that high-skill workers have a comparative advantage in higher-

indexed tasks. But in addition, we also let the productivity of low-skill workers in a task increase

over time, as captured by the increasing function Γ. This captures the idea that as new tasks become

“standardized,” they can be more productively performed by less skilled workers (e.g., Acemoglu,

Gancia and Zilibotti, 2010), or that workers adapt to new technologies by acquiring human capital

through training, on-the-job learning and schooling (e.g., Schultz, 1965, Nelson and Phelps, 1966,

Galor and Moav, 2000, Beaudry, Green and Sand, 2013, and Goldin and Katz, 2008). Since the

function Γ limits to 1 over time, the parameter ξ determines whether this standardization effect

is complete or incomplete. When ξ < 1, the productivity of low-skill workers relative to high-skill

workers converges to γL(i, t)/γH(i) = γH(i)
ξ−1, and limits to zero as more and more advanced tasks

are introduced. In contrast, when ξ = 1, the relative productivity of low-skill workers converges to

1 for tasks that have been around for a long time.

The structure of comparative advantage ensures that there exists a threshold task M such that

high-skill labor performs tasks in [M,N ], low-skill labor performs tasks in (I∗,M), and capital

performs tasks in [N − 1, I∗]. In what follows, we denote the wages of high and low-skill labor by

WH and WL, respectively, and to simplify the discussion, we focus on the economy with exogenous

technology and assume that the supply of high-skill labor is fixed at H and the supply of low-skill

labor is fixed at L.

Proposition 7 (Automation, new tasks and inequality) Suppose Assumptions 1′′ and 2 hold.

Suppose also that technology evolves exogenously with Ṅ = İ = ∆ and n(t) = n > max{n(ρ), ñ(ρ)}

(and AH(1 − θ)∆ < ρ). Then, there exists a unique BGP. Depending on the value of ξ this BGP

takes one of the following forms:

1. If ξ < 1, in the unique BGP we have limt→∞WH(t)/WL(t) = ∞, the share of tasks performed

by low-skill workers converges to zero, and capital and high-skill workers perform constant

shares of tasks.

2. If ξ = 1, in the unique BGPWH(t) and WL(t) grow at the same rate as the economy, the wage

gap, WH(t)/WL(t), remains constant, and capital, low-skill and high-skill workers perform

constant shares of tasks. Moreover, limt→∞WH(t)/WL(t) is decreasing in n. Consequently,
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a permanent increase in N raises the wage gap WH(t)/WL(t) in the short run, but reduces

it in the long run, while a permanent increase in I raises the wage gap in both the short and

the long run.

Like all remaining proofs in the paper, the proof of this proposition is in Appendix B.

When ξ < 1, this extension confirms the pessimistic scenario about the implications of new

technologies for wage inequality and the employment prospects of low-skill workers—both automa-

tion and the creation of new tasks increase inequality, the former because it displaces low-skill

workers ahead of high-skill workers, and the latter because it directly benefits high-skill workers

who have a comparative advantage in newer, more complex tasks relative to low-skill workers. As

a result, low-skill workers are progressively squeezed into a smaller and smaller set of tasks, and

wage inequality grows without bound.

However, our extended model also identifies a countervailing force, which becomes particularly

potent when ξ = 1. Because new tasks become standardized, they can over time be as productively

used by low-skill workers. In this case, automation and the creation of new tasks still reduce the

relative earnings of low skill-workers in the short run, but their long-run implications are very

different. In the long run, inequality is decreasing in n (because a higher n translates into a greater

range of tasks for low-skill workers). Consequently, automation increases inequality both in the

short and the long run. The creation of new tasks, which leads to a permanently higher level of n,

increases inequality in the short run but reduces it in the long run. These observations suggest that

inequality may be high following a period of adjustment in which the labor share first declines (due

to increases in automation), and then recovers (due to the introduction and later standardization

of new tasks).

5.2 Creative Destruction of Profits

In this subsection, we modify our baseline assumption on intellectual property rights and revert

to the classical setup in the literature in which new technologies do not infringe the patents of

the products that they replace (Aghion and Howitt, 1992, and Grossman and Helpman, 1991).

This assumption introduces the creative destruction effects—the destruction of profits of previous

inventors by new innovators. We will see that this alternative structure has similar implications for

the BGP, but necessitates more demanding conditions to guarantee its uniqueness and stability.

Let us first define VN (t, i) and VI(t, i) as the time t values for technology monopolist with,

respectively, new task and automation technologies. These value functions satisfy the following

Bellman equations:

r(t)VN (t, i)− V̇N (t, i) =πN (t, i) r(t)VI(t, i)− V̇I(t, i) =πI(t, i).

Here πI(t, i) and πN (t, i) denote the flow profits from automating and creating new tasks, respec-

tively, which are given by the formulas in equations (23) and (24).

For a firm creating a new task i, let TN (i) denote the time at which it will be replaced by a

technology allowing the automation of this task. Likewise, let T I(i) denote the time at which an
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automated task i will be replaced by a new task using labor. Since firms anticipate these determin-

istic replacement dates, their value functions also satisfy the boundary conditions VN (T
N (i), i) = 0

and VI(T
I(i), i) = 0. Together with these boundary conditions, the Bellman equations solve for

V CD
N (t) = VN (N(t), t) = b

∫ TN (N(t))

t
e−

∫ τ
t
(R(s)−δ)dsY (τ )

(
W (τ)

γ(N(t))

)ζ−σ̂
dτ,

V CD
I (t) = VI(I(t), t) = b

∫ T I(I(t))

t
e−

∫ τ
t
(R(s)−δ)dsY (τ )

(
min

{
R(τ),

W (τ)

γ(I(t))

})ζ−σ̂
dτ.

For reasons that will become evident, we modify the innovation possibilities frontier to

İ(t) = κIι(n(t))SI(t), and Ṅ(t) = κNSN (t) (30)

Here, the function ι(n(t)) is included and assumed to be nondecreasing to capture the possibility

that automating tasks closer to the frontier (defined as the highest-indexed task available) may be

more difficult.

Let us again define the normalized value functions as vCDI (n) = limt→∞
V CD
I (t)

Y (t) and vCDN (n) =

limt→∞
V CD
N (t)
Y (t) . In a BGP, the normalized value functions only depend on n because newly-created

tasks are automated after a period of length TN (N(t)) − t = n
∆ , and newly-automated tasks are

replaced by new ones after a period of length T I(I(t)) − t = 1−n
∆ , where ∆ = κIκN ι(n)

κI ι(n)+κN
S is the

endogenous rate at which N and I grow. The endogenous value of n in an interior BGP satisfies

κIι(n)v
CD
I (n) = κNv

CD
N (n).

The next proposition focuses on interior BGPs and shows that, because of creative destruction,

we must impose additional assumptions on the function ι(n) to guarantee stability.

Proposition 8 (Equilibrium with creative destruction) Suppose that ρ > ρ, Assumptions

1′, 2 and 4 hold and there is creative destruction of profits. Then:

1. There exist ι and ι < ι such that if ι(0) < ι and ι(1) > ι, then there is at least one locally

stable interior BGP with n(t) = n ∈ (n(ρ), 1).

2. If ι(n) is constant, there is no stable interior BGP (with n(t) = n ∈ (n(ρ), 1)). Any stable

BGP involves n(t) → 0 or n(t) → 1.

The first part of the proposition follows from an analogous argument to that in the proof of

Proposition 6, with the only difference being that, because of the presence of the function ι(n) in

equation (30), the key condition that pins down n becomes κIι(n)v
CD
I (n) = κNv

CD
N (n).

The major difference with our previous analysis is that creative destruction introduces a new

source of instability. Unlike the previous case with no creative destruction, we now have that vCDI (n)

is decreasing in n. As more tasks are automated, the rental rate remains unchanged and newly-

automated tasks will be replaced less frequently (recall that newly-automated tasks are replaced
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after (1 − n)/∆ units of time). As a result, automating more tasks renders further automation

more profitable. Moreover, vCDN (n) continues to be increasing in n. This is for two reasons: first,

as before, the productivity effect ensures that the effective wage in new tasks, wN (n), is decreasing

in n; and second, because newly-created tasks are automated after n
∆ units of time, an increase

in n increases the present discounted value of profits from new tasks. These observations imply

that, if ι(n) were constant, the intersection between the curves κNv
CD
N (n) and κIι(n)v

CD
I (n) would

correspond to an unstable BGP.

Economically, the instability is a consequence of the fact that, in contrast to our baseline model

(and the socially planned economy which we describe in the next subsection), here innovation in-

centives depend on the total revenue that a technology generates rather than its incremental value

created (the difference between these revenues and the revenues that the replaced technology gen-

erated). In our baseline model, the key force ensuring stability is that incentives to automate are

shaped by the cost difference between producing a task with capital or with labor—by lowering

the effective wage at the next tasks to be automated, current automation reduces the incremental

value of additional automation. This force is absent when innovators destroy the profits of pre-

vious technology monopolists because they no longer care about the cost of production with the

technology that they are replacing.

5.3 Welfare

We study welfare from two complementary perspectives. First, in Appendix B we discuss the

socially optimal allocation in the presence of endogenous technology and characterize how this

allocation can be decentralized. One of the main insights from Proposition 6 is that the expected

path for factor prices determines the incentives to automate and create new tasks. We show that a

planner would also allocate scientists according to the same principle—guided by the cost savings

that each technology grants to firms. Although similar to the efficient allocation of scientists in

this regard, the decentralized equilibrium is typically inefficient because the technology monopolists

neither capture the full benefits from the new tasks they create nor internalize how their innovation

affects other existing and future technology monopolists.

The second perspective is more novel and relevant to current debates about automation reducing

employment and its policy implications. We examine whether an exogenous increase in automation

could reduce welfare. Even though automation expands productivity—a force which always raises

welfare—it also reduces employment. When the labor market is fully competitive as in our baseline

model, this reduction in employment has no first-order welfare cost for the representative household

(who sets the marginal cost of labor supply equal to the wage). Consequently, automation increases

overall welfare. Next suppose that there are labor market frictions. In particular, suppose that

there exists an upward-sloping quasi–labor supply schedule, Lqs(ω), which constrains the level of

employment, so that L ≤ Lqs(ω) (see Appendix B for a microfoundation). This quasi-labor supply

schedule then acts in a very similar fashion to the labor supply curve derived in (11) in Section

2, except that the marginal cost of labor supply is no longer equated to the wage. Crucially, the

34



reduction in employment resulting from automation now has a negative impact on welfare, and

this negative effect can exceed the positive impact following from the productivity gains, turning

automation, on net, into a negative for welfare.

The next proposition provides the conditions under which automation can reduce welfare in

the context of our static model with exogenous technology. Our focus on the static model is for

transparency. The same forces are present in the dynamic model and also in the full model with

endogenous technology.

Proposition 9 (Welfare implications of automation) Consider the static economy and sup-

pose that Assumptions 1, 2 and 3 hold, and that I∗ = I < Ĩ. Let W = u(C,L) denote the welfare

of representative household.

1. Consider the baseline model without labor market frictions, where the representative household

chooses the amount of labor without constraints and thus W
C = ν′(L). Then:

dW

dI
=
(
Ce−ν(L)

)1−θ Bσ̂−1

1− σ̂

((
W

γ(I)

)1−σ̂

−R1−σ̂

)
> 0,

dW

dN
=
(
Ce−ν(L)

)1−θ Bσ̂−1

1− σ̂

(
R1−σ̂ −

(
W

γ(N)

)1−σ̂
)
> 0.

2. Suppose that there are labor market frictions, so that employment is constrained by a quasi-

labor supply curve L ≤ Lqs(ω). Suppose also that the quasi-labor supply schedule Lqs(ω) is

increasing in ω, has an elasticity ε̃L > 0, and is binding in the sense that W
C > ν′(L). Then:

dW

dI
=
(
Ce−ν(L)

)1−θ
[
Bσ̂−1

1− σ̂

((
W

γ(I)

)1−σ̂

−R1−σ̂

)
− L

(
W

C
− ν ′(L)

)
ε̃L

σ̂ + ε̃L
ΛI

]
≶ 0.

dW

dN
=
(
Ce−ν(L)

)1−θ
[
Bσ̂−1

1− σ̂

(
R1−σ̂ −

(
W

γ(N)

)1−σ̂
)

+ L

(
W

C
− ν ′(L)

)
ε̃L

σ̂ + ε̃L
ΛN

]
> 0.

The first part of the proposition shows that both types of technological improvements increase

welfare when the labor market has no frictions. In this case, automation increases productivity

by substituting cheaper capital for human labor, and this leads to less work for workers, but since

they were previously choosing labor supply optimally, a small reduction in employment does not

have a first-order impact on welfare, and overall welfare increases. The implications of the creation

of new tasks are similar.

The situation is quite different in the presence of labor market frictions, however, as shown

in the second part. Automation again increases productivity and reduces employment. But now,

because workers are constrained in their labor supply choices, the lower employment that results

from automation has a first-order negative effect on their welfare. Consequently, automation can

reduce welfare if the productivity gains, captured by the first term, are not sufficiently large to

compensate for the second, negative term. Interestingly, in this case new tasks increase welfare

35



even more than before, because they not only raise productivity but also expand employment, and

by the same logic, the increase in labor supply has a welfare benefit for the workers (since they

were previously constrained in their employment).

An important implication of this analysis emphasized further in Appendix B is that when labor

market frictions are present and the direction of technological change is endogenized, there will

be a force towards excessive automation. In particular, in this case, assuming that labor market

frictions also constrain the social planner’s choices, the decentralized equilibrium involves too much

effort being devoted to improving automation relative to what she would like—because the social

planner recognizes that additional automation has a negative effect through employment.

6 Conclusion

As automation, robotics and AI technologies are advancing rapidly, concerns that new technologies

will render labor redundant have intensified. This paper develops a comprehensive framework in

which these forces can be analyzed and contrasted. At the center of our model is a task-based

framework. Automation is modeled as the (endogenous) expansion of the set of tasks that can be

performed by capital, replacing labor in tasks that it previously produced. The main new feature

of our framework is that, in addition to automation, there is another type of technological change

complementing labor. In our model, this takes the form of the introduction of new, more complex

versions of existing tasks, and it is assumed that labor has a comparative advantage in these new

tasks. We characterize the structure of equilibrium in such a model, showing how, given factor

prices, the allocation of tasks between capital and labor is determined both by available technology

and the endogenous choices of firms between producing with capital or labor.

One attractive feature of task-based models is that they highlight the link between factor prices

and the range of tasks allocated to factors: when the equilibrium range of tasks allocated to capital

increases (for example, as a result of automation), the wage relative to the rental rate and the labor

share decline, and the equilibrium wage rate may also fall. Conversely, as the equilibrium range of

tasks allocated to labor increases, the opposite result obtains. In our model, because the supply of

labor is elastic, automation tends to reduce employment, while the creation of new tasks increases

employment. These results highlight that, while both types of technological changes undergird

economic growth, they have very different implications for the factor distribution of income and

employment.

Our full model endogenizes the direction of research towards automation and the creation of

new tasks. If in the long run capital is very cheap relative to labor, automation technologies will

advance rapidly and labor will become redundant. However, when the long-run rental rate of capital

is not so low relative to labor, our framework generates a BGP in which both types of innovation

go hand-in-hand. Moreover in this case, under reasonable assumptions, the dynamic equilibrium is

unique and converges to the BGP. Underpinning this stability result is the impact of relative factor

prices on the direction of technological change. The task-based framework—differently from the
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standard models of directed technological change based on factor-augmenting technologies—implies

that as a factor becomes cheaper, this not only influences the range of tasks allocated to it, but also

generates incentives for the introduction of technologies that allow firms to utilize this factor more

intensively. These economic incentives then imply that by reducing the effective cost of labor in

the least complex tasks, automation discourages further automation and generates a self-correcting

force towards stability.

We show in addition that, though market forces ensure the stability of the BGP, they do not

necessarily generate the efficient composition of technology. If the elastic labor supply relation-

ship results from rents (so that there is a wedge between the wage and the opportunity cost of

labor), there is an important new distortion: because firms make automation decisions according

to the wage rate, not the lower opportunity cost of labor, there is a natural bias towards excessive

automation.

Several commentators are further concerned about the inequality implications of automation

and related new technologies. We study this question by extending our model so that high-skill

labor has a comparative advantage in new tasks relative to low-skill labor. In this case, both

automation (which squeezes out tasks previously performed by low-skill labor) and the creation of

new tasks (which directly benefits high-skill labor) increase inequality. Nevertheless, the long-term

implications of the creation of new tasks could be very different, because they are later standardized

and used by low-skill labor. If this standardization effect is sufficiently powerful, there exists a BGP

in which not only the factor distribution of income (between capital and labor) but also inequality

between the two skill types stays constant.

We consider our paper to be a first step towards a systematic investigation of different types

of technological changes that impact capital and labor differentially. Several areas of research

appear fruitful based on this first step. First, our model imposes that it is always the tasks at the

bottom that are automated; in reality, it may be those in the middle (e.g., Acemoglu and Autor,

2001). Incorporating the possibility of such “middling tasks” being automated is an important

generalization, though ensuring a pattern of productivity growth consistent with balanced growth

in this case is more challenging. Second, there may be technological barriers to the automation

of certain tasks and the creation of new tasks across industries (e.g., Polanyi, 1966, Autor, Levy

and Murnane, 2003). An interesting step is to construct realistic models in which the sectoral

composition of tasks performed by capital and labor as well as technology evolves endogenously and

is subject to industry-level technological constraints (e.g., on the feasibility or speed of automation).

Third, in this paper we have focused on the creation of new labor-intensive tasks as the type of

technological change that complements labor and plays a countervailing role against automation.

Another interesting area is to theoretically and empirically investigate different types of technologies

that may complement labor. Fourth, our analysis of the creation of new tasks and standardization

abstracted from the need for workers to acquire new skills to work in such tasks. In practice, the

acquisition of new skills may need to go hand-in-hand with workers shifting to newer tasks, and the

inability of the educational system to adapt to the requirements of these new tasks could become
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a bottleneck and prevent the rebound in the demand for labor following a wave of automation.

Finally, and perhaps most importantly, our model highlights the need for additional empirical

evidence on how automation impacts employment and wages (which we investigate in Acemoglu

and Restrepo, 2017a) and how the incentives for automation and the creation of new tasks respond

to policies, factor prices and supplies (some aspects of which are studied in Acemoglu and Restrepo,

2017b).

Appendix A: Proofs

General Model

The analysis in the text was carried out under Assumption 2, which imposed η → 0 or ζ = 1, and

significantly simplified some of the key expressions. Throughout the Appendix, we relax Assumption

2 and replace it with:

Assumption 2′ One of the following three conditions holds: (i) η → 0; (ii) ζ = 1; or (iii)

|σ − ζ| <

(
γ(N − 1)

γ(N)

)max{1,σ} 1
(

γ(N)
γ(N−1)

)|1−ζ|
− 1

. (A1)

All of our qualitative results remain true and will be proved under this more general assumption.

Intuitively, the conditions in Assumption 2 ensured homotheticity (see footnote 11). Assumption

2′ , on the other hand, requires that the departure from homotheticity is small relative to the inverse

of the productivity gains from new tasks (where γ(N)/γ(N−1) measures these productivity gains).

Task prices in this more general case are given by

p(i) =





cu
(
min

{
R,

W

γ(i)

})
=

[
ηψ1−ζ + (1− η)min

{
R, Wγ(i)

}1−ζ
] 1

1−ζ

if i ≤ I,

cu
(
W

γ(i)

)
=

[
ηψ1−ζ + (1− η)

(
W
γ(i)

)1−ζ] 1
1−ζ

if i > I.

(A2)

Here cu(·) is the unit cost of production for task i, derived from the task production functions, (2)

and (3). Naturally, this equation simplifies to (5) under Assumption 2.

From equations (5) and (7), equilibrium levels of task production are

y(i) =





Bσ̂−1Y cu
(
min

{
R,

W

γ(i)

})−σ

if i ≤ I,

Bσ̂−1Y cu
(
W

γ(i)

)−σ

if i > I.

Combining this with equations (2) and (3), we obtain the task-level demands for capital and

labor as

k(i) =

{
Bσ̂−1(1− η)Y cu(R)ζ−σR−ζ if i ≤ I∗,

0 if i > I∗.
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and

l(i) =





0 if i ≤ I∗,

Bσ̂−1(1− η)Y γ(i)ζ−1cu
(
W

γ(i)

)ζ−σ
W−ζ if i > I∗.

Aggregating the preceding two equations across tasks, we obtain the following capital and labor

market-clearing equations,

Bσ̂−1(1− η)Y (I∗ −N + 1)cu(R)ζ−σR−ζ = K, (A3)

and

Bσ̂−1(1− η)Y

∫ N

I∗
γ(i)ζ−1cu

(
W

γ(i)

)ζ−σ
W−ζdi = Ls

(
W

RK

)
. (A4)

Finally, from the choice of aggregate output as the numeraire, we obtain a generalized version

of the ideal price condition,

(I∗ −N + 1)cu(R)1−σ +

∫ N

I∗
cu
(
W

γ(i)

)1−σ

di = B1−σ̂, (A5)

which again simplifies to the ideal price index condition in the text, (10), under Assumption 2.

Proofs from Section 2

Proof of Proposition 1: We prove Proposition 1 under the more general Assumption 2′.

To prove the existence and uniqueness of the equilibrium, we proceed in three steps. First, we

show that I∗, N and K, determine unique equilibrium values for R,W and Y , thus allowing us to

define the function ω(I∗, N,K) representing the relative demand for labor, which was introduced

in the text. Second, we prove a lemma which ensures that ω(I∗, N,K) is decreasing in I∗ (and

increasing in N). Third, we show that min{I, Ĩ} is nondecreasing in ω and conclude that there is a

unique pair {ω∗, I∗} such that I∗ = min{I, Ĩ} and ω∗ = ω(I∗, N,K). This pair uniquely determines

the equilibrium relative factor prices and the range of tasks that get effectively automated.

Step 1: Consider I∗, N and K such that I∗ ∈ (N − 1, N). Then, R,W and Y satisfy the

system of equations given by capital and labor market-clearing, equations (A3) and (A4), and the

ideal price index, equation (A5).

Taking the ratio of (A3) and (A4), we obtain

∫ N
I∗ γ(i)

ζ−1cu
(
W
γ(i)

)ζ−σ
W−ζdi

Ls
(
W
RK

)
(I∗ −N + 1)cu(R)ζ−σR−ζ

=
1

K
. (A6)

In view of the fact that Ls is increasing and the function cu(x)ζ−σx−ζ is decreasing in x (as it can

be verified directly by differentiation), it follows that the left-hand side is decreasing in W and

increasing in R . Therefore, (A6) defines an upward-sloping relationship between W and R, which

we refer to as the relative demand curve (because it traces the combinations of wage and rental rate

consistent with the demand for labor relative to capital being equal to the supply of labor divided

by the capital stock).
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On the other hand, inspection of equation (A5) readily shows that this equation gives a

downward-sloping locus between R and W as shown in Figure A1, which we refer to as the ideal

price curve.

The unique intersection of the relative demand and ideal price curves determines the equilib-

rium factor prices for given I∗, N and K. Because the relative demand curve is upward sloping

and the ideal price index curve is downward sloping, there can be at most one intersection. To

prove that there always exists an intersection, observe that limx→0 c
u(x)ζ−σx−ζ = ∞, and that

limx→∞ cu(x)ζ−σx−ζ = 0. These observations imply that as W → 0, the numerator of (A6) limits

to infinity, and so must the denominator, i.e., R → 0. This proves that the relative demand curve

starts from the origin. Similarly, as W → ∞, the numerator of (A6) limits to zero, and so must the

denominator (i.e., R → ∞). This then implies that the relative demand curve goes to infinity as

R→ ∞. Thus, the upward-sloping relative demand curve necessarily starts below and ends above

the ideal price curve, which ensures that there always exists an intersection between these curves.

The unique intersection defines the equilibrium values of W and R, and therefore the function

ω(I∗, N,K) = W
RK .

Figure A1: Construction of the function ω(I∗, N,K).

Step 2: This step follows directly from the following lemma, which we prove in Appendix B.

Lemma A1 Suppose that Assumption 2′ holds, K < K and I∗ ≤ Ĩ. Then ω(I∗, N,K) is decreasing

in I∗ and is increasing in N .

Although the general proof for this lemma is long (and thus relegated to Appendix B), the

lemma is trivial under Assumption 2. In that case, equation (A6) yields:

ω(I∗, N,K)σ̂Ls(ω(I∗, N,K)) =

∫ N
I∗ γ(i)

σ̂−1di

I∗ −N + 1
K1−σ̂.

Taking logs, we obtain equation (13) in the main text, which implies that ω(I∗, N,K) is increasing

in N and decreasing in I∗.
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Step 3: We now show that I∗ = min{I, Ĩ} is uniquely defined. Because γ(Ĩ) = ωK, we have

that I∗ = min{I, Ĩ} is increasing in ω and has a vertical asymptote at I.

Consider the pair of equations ω = ω(I∗, N,K) and I∗ = min{I, Ĩ} plotted in Figure 3. Because

ω = ω(I∗, N,K) is decreasing in I∗ for I∗ ≤ Ĩ and I∗ = min{I, Ĩ} is increasing in ω, there exists

at most a unique (ω, I∗) satisfying these two equations (or a unique intersection in the figure).

To prove existence, we again verify the appropriate boundary conditions. Suppose that I∗ →

N − 1. Then from (A3), R → 0, while W > 0, and thus ω → ∞. This ensures that the curve

ω(I∗, N,K) starts above I∗ = min{I, Ĩ} in Figure 3. Since I∗ = min{I, Ĩ} has a vertical asymptote

at I < N , the two curves must intersect. This observation completes the proof of the existence and

uniqueness of the equilibrium.

When Assumption 2 holds we can explicitly solve for aggregate output. In this case, the market-

clearing conditions, (8) and (9), become

R =

(
Bσ̂−1(1− η)(I∗ −N + 1)

Y

K

) 1
σ̂

W =

(
Bσ̂−1(1− η)

∫ N

I∗
γ(i)σ̂−1di

Y

L

) 1
σ̂

,

which combined with (10) yields (12), completing the proof of Proposition 1. �

Proofs from Section 3

Lemma A2 (Derivation of Figure 4) Suppose that Assumptions 1′ and 2′ hold. Consider a

path of technology where n(t) → n and g(t) → g, consumption grows at the rate g and the Euler

equation (17) holds. Then, there exist ρmin < ρ < ρmax such that:

1. If ρ ∈ [ρmin, ρ], there is a decreasing function ñ(ρ) : [ρmin, ρ] → (0, 1] such that for all

n > ñ(ρ) we have wI(n) > ρ + δ + θg > wN (n) and ρ + δ + θg = wN (ñ(ρ)). Moreover,

ñ(ρmin) = 1 and ñ(ρ) = 0.

2. If ρ ∈ [ρ, ρmax], there is an increasing function n(ρ) : [ρ, ρmax] → (0, 1] such that for all

n > n(ρ), we have wI(n) > ρ + δ + θg > wN (n) and ρ + δ + θg = wI(n(ρ)). Moreover,

n(ρmax) = 1 and n(ρ) = 0.

3. If ρ > ρmax, for all n ∈ [0, 1] we have ρ + δ + θg > wI(n) ≥ wN (n), which implies that

automation is not profitable for any n ∈ [0, 1].

4. If ρ < ρmin, for all n ∈ [0, 1] we have wI(n) ≥ wN (n) > ρ + δ + θg, which implies that new

tasks do not increase aggregate output and will not be adopted for any n ∈ [0, 1].

Proof. Because consumption grows at the rate g and the Euler equation (17) holds, we have

R(t) = ρ+ δ + θg.
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The effective wages wI(n) and wN (n) are then determined by the generalized ideal price index

condition, (A5), as

B1−σ̂ =(1− n)cu(ρ+ δ + θg)1−σ +

∫ n

0
cu
(
wI(n)

γ(i)

)1−σ

di (A7)

=(1− n)cu(ρ+ δ + θg)1−σ +

∫ n

0
cu(γ(i)wN (n))

1−σdi.

Differentiating these expressions, we obtain

w′
I(n)

wI(n)
=

1

1− σ

(
cu(ρ+ δ + θg)1−σ − cu(wN (n))

1−σ
) 1∫ n

0 c
u′
(wN (n)γ(i))cu(wN (n)γ(i))−σwN (n)γ(i)di

w′
N (n)

wN (n)
=

1

1− σ

(
cu(ρ+ δ + θg)1−σ − cu(wI(n))

1−σ
) 1∫ n

0 c
u′
(wN (n)γ(i))cu(wN (n)γ(i))−σwN (n)γ(i)di

.

(A8)

To prove part 1, define ρmin as

ρmin + δ + θg = wN (1),

and define ρ > ρmin as

cu(ρ+ δ + θg)1−σ = B1−σ̂.

(When Assumption 2 holds we get ρ = B − δ − θg, as claimed in the main text).

To show that ρ > ρmin, note that

1

1− σ
cu(ρmin + δ + θg)1−σ =

1

1− σ

∫ 1

0
cu(ρmin + δ + θg)1−σdi

=
1

1− σ

∫ 1

0
cu(wN (1))

1−σdi

<
1

1− σ

∫ 1

0
cu(wN (1)γ(i))

1−σdi

=
1

1− σ
B1−σ̂

=
1

1− σ
cu(ρ+ δ + θg)1−σ .

Because the function 1
1−σ c

u(x)1−σ is increasing, we have ρ > ρmin.

Using the generalized ideal price index condition, (A5), we define ñ(ρ) implicitly as

B1−σ̂ = (1− ñ(ρ))cu(ρ+ δ + θg)1−σ +

∫ ñ(ρ)

0
cu(γ(i)(ρ+ δ + θg))1−σdi.

Differentiating this expression with respect to ρ shows that ñ(ρ) is decreasing. Moreover, ñ(ρmin) =

1 and ñ(ρ) = 0, so ñ(·) is well-defined for ρ ∈ [ρmin, ρ].

For n = ñ(ρ), we have wI(ñ(ρ)) > ρ + δ + θg = wN (ñ(ρ)). Thus, the formulas for w′
I(n) and

w′
N (N) show that, for ρ ∈ [ρmin, ρ] and starting at ñ(ρ), the curve wN (n) is decreasing in n and

the curve wI(n) is increasing in n. Thus, for all n > ñ(ρ), we have

wI(n) > wI(ñ(ρ)) > ρ+ δ + θg = wN (ñ(ρ)) > wN (n),
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as claimed. On the other hand, for all n < ñ(ρ), we have wN (n) > ρ+ δ + θg.

To prove part 2, define ρmax > ρ as

ρmax + δ + θg = wI(1).

To show that ρ < ρmax, a similar argument establishes

1

1− σ
cu(ρmax + δ + θg)1−σ =

1

1− σ

∫ 1

0
cu(ρmax + δ + θg)1−σdi

>
1

1− σ

∫ 1

0
cu(wI(1)/γ(i))

1−σdi

=
1

1− σ
cu(ρ+ δ + θg)1−σ .

Because the function 1
1−σ c

u(x)1−σ is increasing, we have ρ < ρmax.

Using (A7), we define the function n(ρ) implicitly as

B1−σ̂ = (1− n(ρ))cu(ρ+ δ + θg)1−σ +

∫ n(ρ)

0
cu((ρ+ δ + θg)/γ(i))1−σdi.

Differentiating this expression with respect to ρ shows that n(ρ) is increasing in ρ on [ρ, ρmax].

Moreover, n(ρmax) = 1 and n(ρ) = 0, so n(·) is well-defined for all ρ ≥ ρ.

For n = n(ρ), we have wI(ñ(ρ)) = ρ + δ + θg > wN (ñ(ρ)). Thus, the formulas for w′
I(n) and

w′
N (n) show that, for ρ ∈ [ρ, ρmax] and starting at n(ρ), wN (n) is decreasing in n and wI(n) is

increasing in n. Thus, for all n > n(ρ), we have

wI(n) > wI(n(ρ)) = ρ+ δ + θg > wN (n(ρ)) > wN (n),

as claimed. On the other hand, for all n < n(ρ), we have wI(n) < ρ + δ + θg. In this region we

have n∗ = n(ρ) > n, and not all automated tasks are produced with capital.

To prove part 3, note that for ρ > ρmax, we have

ρ+ δ + θg > wI(1) > wN (1).

The expressions for w′
I(n) and w

′
N (n) show that in this region, as n decreases, so does wI(n). Thus

ρ+ δ+ θg > wI(n) > wN (n), and for all these values we have n∗ = 1, and no task will be produced

with capital.

To prove part 4, note that for ρ < ρmin, we have

ρ+ δ + θg < wN (1) < wI(1).

The expressions for w′
I(n) and w

′
N (N) show that, in this region, as n decreases, both wN (n) wN (n)

increase. Thus ρ + δ + θg < wN (n) < wI(n) and for these values of ρ, new tasks do not raise

aggregate output.

Proof of Proposition 4: We prove this proposition under the more general Assumption 2′ .
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We start by deriving necessary conditions on N(t) and I(t) such that the economy admits a

BGP, and then show that these are also sufficient for establishing the existence of a unique and

globally stable BGP.

The capital market-clearing condition implies that:

cu(R(t))σ−ζR(t)ζ
K(t)

Y (t)
= Bσ̂−1(1− η)(1 − n∗(t)).

Because in BGP the rental rate of capital, R(t), and the capital to aggregate output ratio, K(t)
Y (t) ,

are constant, we must have n∗(t) = n, or in other words, labor and capital must perform constant

shares of tasks.

Lemma A2 shows that we have four possibilities corresponding to the four cases in Proposition

4, each of which we now discuss in turn.

1. All tasks are automated: n∗(t) = n = 0. Because in this case capital performs all

tasks, Lemma A2 implies that we must have ρ < ρ and I(t) = N(t). In this part of the parameter

space, net output is given by AKK, and the economy grows at the rate AK−δ−ρ
θ . The transversality

condition, (19), is satisfied if and only if AK − δ > AK−δ−ρ
θ —or r > g. Moreover, positive growth

imposes AK > δ+ ρ. The generalized ideal price index condition, equation (A5), then implies that

R = cu−1(B
1−σ̂
1−σ ), and thus AK = cu−1(B

1−σ̂
1−σ ). Under Assumption 2, this last expression further

simplifies to AK = B as claimed in the text.

We now show that these necessary conditions are sufficient to generate balanced growth. Sup-

pose ρ < ρ and I(t) = N(t) so that n∗(t) = 0. Because all tasks are produced with capital, we

also have FL = 0, and thus the representative household supplies zero labor. Consequently, the

dynamic equilibrium can be characterized as the solution to the system of differential equations

Ċ(t)

C(t)
=
1

θ
(AK − δ − ρ)

K̇(t) =(AK − δ)K(t)− C(t)eν(0)
θ−1
θ ,

together with the initial condition, K(0) > 0 and the trasversality condition, (19). We next show

that there is a unique solution to the system, and this solution converges to the full automation

BGP described in the proposition.

Define c̃ = C
K . The behavior of c̃ is governed by the differential equation,

˙̃c(t)

c̃(t)
=

1

θ
(AK − δ − ρ)− (AK − δ) + c̃(t)eν(0)

θ−1
θ .

This differential equation has a stable rest point at zero and an unstable rest point at cB =(
Ak − δ − 1

θ (AK − δ − ρ)
)
eν(0)

1−θ
θ > 0. There are therefore three possible equilibrium paths for

c̃(t): (i) it immediately jumps to cB and stays there; (ii) it starts at [0, cB) and converges to zero;

(iii) it starts at (cB ,∞) and diverges. The second and third possibilities violate, respectively, the

transversality condition (19) (because the capital stock would grow at the rate Ak−δ, implying r =

g), and the resource constraint (when c̃(t) = ∞). The first possibility, on the other hand, satisfies
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the transversality condition (since asymptotically it involves r > g), and yields an equilibrium path.

In this path the economy converges to a unique BGP in which C(t) and K(t) grow at a constant

rate AK−δ−ρ
θ , thus also establishing uniqueness and global stability.

2. Interior equilibrium in which automated tasks are immediately produced with

capital: n∗(t) = n(t) = n ∈ (0, 1). Because capital performs all automated tasks, Lemma A2

implies that n > max{n(ρ), ñ(ρ)} and Ṅ(t) = İ(t). Moreover, because in this candidate BGP

R(t) is constant, the general form of the generalized ideal price index condition, (A5), implies

that W (t)/γ(I(t)) must be constant too, and this is only possible if İ(t) = ∆. Consequently, the

growth rate of aggregate output is A∆. Finally, the transversality condition, (19), is satisfied given

the condition ρ + (θ − 1)A∆ > 0 in this part of the proposition. Lemma A2 then verifies that

n∗(t) = n > n(ρ). Substituting the market-clearing conditions for capital and labor, (A3) and

(A4), into (1), (2) and (3) and then subtracting the costs of intermediates, we obtain net output as

F (k, L;n). (When Assumption 2 holds, F (k, L;n) is given by the CES aggregate in equation (16)).

F (k, L;n) exhibits constant returns to scale, and because factor markets are competitive, we also

have R(t) = FK(k(t), L(t);n) and w(t) = FL(k(t), L(t);n).

To establish uniqueness, let wB denote the BGP value of the wage rate, kB the BGP value of

the normalized capital stock, cB the BGP value of normalized consumption, LB the BGP value

of employment, and RB the BGP value of the rental rate of capital. These variables are, by

definition, all constant. Then, the Euler equation, (17), implies RB = ρ + δ + θg, and because

RB = FK(kB , LB ;n), we must also have kB
LB

= φ, where φ is the unique solution to

FK(φ, 1;n) = ρ+ δ + θg.

Lemma B1 in Appendix B shows that, for n > max{n(ρ), ñ(ρ)}, F (φ, 1;n) satisfies the following

Inada conditions,

lim
φ→0

FK(φ, 1;n) >ρ+ δ + θg lim
φ→∞

FK(φ, 1;n) <ρ+ δ + θg,

which ensure that φ is well-defined. Combining the labor supply condition, (18), with the resource

constraint, (20), we obtain (F (φ, 1;n)− (δ + g)φ)LB = FL(φ,1)
ν′(LB) . The left-hand side of this equation

is linear and increasing in L (the concavity of F in k implies that F (φ, 1;n) > φFK(φ, 1;n) >

(δ+g)φ), while the right-hand side is decreasing in L. This ensures that there exists a unique value

LB > 0 that satisfies this equation, and also pins down the value of the normalized capital stock

as kB = φLB. Finally, cB is uniquely determined from the resource constraint, (20), as

cB = (F (φ, 1;n)− (δ + g)φ)LBe
ν(LB) 1−θ

θ .

Note also that there cannot be any BGP with LB = 0, since this would imply cB = 0 from the

resource constraint, (20). But then we would have ν′(0)e
θ−1
θ
ν(0) < FL(φ,1;n)

cB
, which contradicts the

labor supply optimality condition, (18). Hence, the only possible BGP is one in which k(t) = kB ,

c(t) = cB and L(t) = LB > 0. Moreover, in view of the fact that ρ + (θ − 1)A∆ > 0, this
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candidate BGP satisfies the transversality condition (19), and is indeed the unique BGP. The

proof of the global stability of this unique BGP is similar to the analysis of global stability of the

neoclassical growth model with endogenous labor supply, and for completeness, we provide the

details in Appendix B.

3. Interior equilibrium in which automated tasks are eventually but not imme-

diately produced with capital: n∗(t) = n(ρ) > n(t). Because capital does not immediately

perform all automated tasks, Lemma A2 implies that n(t) < n(ρ) and ρ > ρ. Moreover, because

R(t) is constant, the ideal price index condition, (A5), implies thatW (t)/γ(I∗(t)) must be constant

too. Thus, to generate constant growth of wages we must have İ∗(t) = ∆ ≤ I(t), so that the growth

rate of the economy is given by A∆. Because n∗(t) = n(ρ), this also implies that Ṅ(t) = ∆. Finally,

the transversality condition, (19), is satisfied in view of the fact that this part of the proposition

imposes ρ+(θ−1)A∆ > 0. The uniqueness and global stability of the BGP follow from an identical

arguments to part 2, with the only modification that n(ρ) plays the role of n in the preceding proof.

4. All tasks are always produced with labor: n∗(t) = 1. Because labor performs all tasks,

Lemma A2 now implies ρ > ρmax and n(t) ≥ 1, while the ideal price index condition, (A5), imposes

that W (t)/γ(N(t)) must be constant. Thus, to generate a constant wage, aggregate output and

capital growth, we must have Ṅ(t) = ∆, with ρ + (θ − 1)∆ > 0 (where the last condition again

ensures transversality). To show sufficiency of these conditions for balanced growth, let wB denote

the BGP value of the normalized wage, which is defined by

∫ 1

0
cu(wB/γ(i))

1−σ = B1−σ̂.

Consequently, net output is given by F (k, L;n) = wBγ(N(t) − 1)L(t), and thus depends linearly

on labor and is independent of capital. This implies K(t) = 0 and C(t) = wBγ(N(t)− 1)L(t). The

representative household’s labor supply condition, (18), implies that in this BGP

ν′(L(t)) =
wBγ(N(t)− 1)

C(t)
=

1

L(t)
,

which uniquely defines a BGP employment level LB. Because this allocation also satisfies the

transversality condition (in view of the fact that ρ + (θ − 1)A∆ > 0), it defines a unique BGP.

Its global stability follows by noting that starting with any positive capital stock, K(0) > 0, the

representative household chooses zero investment and converges to this path. �

Proofs from Section 4

All of the results in this section apply and will be proved, under Assumption 2′ .

Lemma A3 (Asymptotic behavior of the normalized value functions) Suppose that Assump-

tions 1′ , 2′ and 4. Let g = A κIκN
κI+κN

S denote the growth rate of the economy in a BGP. Then there

exists a threshold S̃ such that for S < S̃, we have ρ+ (θ − 1)g > 0, and

• if n ≥ max{n, ñ}, both vN (n) and vI(n) are positive and increasing in n;
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• if n ≤ n(ρ) (and ρ > ρ), we have κNvN (n) > κIvI(n) = O(g) (meaning that it goes to zero

as g → 0);

• If n < ñ(ρ) (and ρ < ρ), we have κIvI(n) > 0 > κNvN (n). Moreover, in this region, vI(n) is

decreasing and vN (n) is increasing in n.

Proof. See Appendix B.

Proof of Proposition 6: We first show that all the scenarios described in the proposition are

BGPs with endogenous technology. We then turn to analyzing the stability of interior BGPs.

Part 1: Characterization of the BGPs with endogenous technology.

Suppose that S < S̃ so that Lemma A3 applies. We consider the two cases described in the

proposition separately.

1. ρ < ρ: Suppose that n < ñ(ρ). As depicted in the left panel of Figure 8 and shown in Lemma

A3, in this region vI(n) is positive and decreasing in n, and vN (n) is negative and increasing in

n. Thus, the only possible BGP in this region must be one with n(t) = 0. No interior BGP exists

with n ∈ (0, ñ(ρ)). Proposition 4 shows that for ρ < ρ, a path for technology with n(t) = 0 yields

balanced growth. Moreover, along this path all tasks are produced with capital, which implies that

VI(t) = VN (t) = 0. Thus, a path for technology in which n(t) = 0 is consistent with the equilibrium

allocation of scientists. The resulting BGP is an equilibrium with endogenous technology.

2. ρ > ρ: Suppose n(t) ≤ n(ρ). Then, we have n∗(t) = n(ρ) and therefore vN (n) = vN (n(ρ))

and vI(n) = vI(n(ρ)). Moreover, Lemma A3 implies that κNvN (n(ρ)) > κIvI(n(ρ)) and vI(n(ρ)) =

O(g) with g small (again because S < S̃). Therefore, in this region this region we always have

that all scientists will be employed to create new tasks, and thus ṅ > 0 (and is uniformly bounded

away from zero). But this contradicts n(t) < n(ρ). Suppose, instead, that n(t) > n(ρ). Then,

Proposition 4 shows that the economy admits a BGP only if n(t) = n. Thus, a necessary and

sufficient condition for an interior BGP is (29) in the text. Consequently, each interior BGP

corresponds to a solution to this equation in (n(ρ), 1). Lemma A3 shows that at n, κNvN (n) is

above κIvI(n), and κIvI(n) = O(g). Moreover, when κI
κN

= 0, the entire curve κNvN (n) is above

κIvI(n). As this ratio increases, the curve κIvI(n) rotates up, and eventually crosses κNvN (n)

at a point to the right of n(ρ). This defines the threshold κ. Above this threshold, there exists

another threshold κ such that if κI
κN

> κ, there is a unique intersection of κIvI(n) and κNvN (n).

(Note that one could have κ = κ). By continuity, there exists Ŝ such that, the thresholds κ and

κ are defined for all S < Ŝ (recall that g = A κIκN
κI+κN

S). It then follows that for S < min{S̃, Ŝ}

and κI
κN

> κ, there exists a unique BGP, which is interior and satisfies n(t) = n∗(t) = nB ∈ (n, 1).

For S < min{S̃, Ŝ} and κ < κI
κN

< κ (provided that κ < κ), the economy admits multiple BGPs

with endogenous technology. Finally, for S < min{S̃, Ŝ} and κI
κN

< κ, the only potential BGP is

the corner one with n(t) = 1 as in part 4 of Proposition 4. Because κNvN (1) > κIvI(1), this path

for technology is consistent with the equilibrium allocation of scientists and provides a BGP with

endogenous technology.

Part 2: Stability analysis.
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The stability analysis applies to the case in which ρ > ρ, S < min{S̃, Ŝ} and κI
κN

> κ. In this

case, the economy admits a unique BGP defined by nB ∈ (n(ρ), 1). We denote by cB , kB and LB

the values of (normalized) consumption and capital, and employment in this BGP.

Proof of global stability when θ = 0: Because θ = 0, we also have R = ρ + δ, and capital

adjusts immediately and its equilibrium stock only depends on n, which becomes the unique state

variable of the model.

Let v = κIvI −κNvN . Now starting from any n(0), an equilibrium with endogenous technology

is given by the path of (n, v) such that the evolution of the state variable is given by

ṅ = κNS − (κN + κI)G (v)S;

and the evolution of the difference of the normalized value functions, v, satisfies the forward-looking

differential equation

ρv − v̇ = bκI

(
cu (ρ+ δ)ζ−σ − cu (wI)

ζ−σ
)
− bκN

(
cu (wN )

ζ−σ − cu (ρ+ δ)ζ−σ
)
+O(g)

together with the transversality condition (27) holds.

When g = 0, the locus for v̇ = 0 crosses zero from below at a unique point (recall that we are in

the parameter region where there is a unique BGP). By continuity there exists a threshold S̆ such

that, for S < S̆, the locus for v̇ = 0 crosses zero from below at a unique point nB , which denotes

the BGP value for n(t) derived from (29).

Figure A2: Phase diagram and global saddle path stability when θ = 0. The figure plots the locus
for v̇ = 0 and the locus for ṅ = 0. The unique BGP is located at their interception.

We now analyze the stability properties of the system and show that the BGP is globally saddle-

path stable. Figure A2 presents the phase diagram of the system in (v, n). The locus for v̇ = 0

crosses v = 0 at nB from below only once. This follows from the fact that κIvI(n) cuts κNvN (n)

from below at nB as shown in Figure 8. The laws of motion of the two variables, v and n, take the

form shown in the phase diagram.33 This implies the existence of the unique stable arm, and also

33This can also be verified locally from the fact that the behavior of n and v near the BGP can be approximated by
the linear system ṅ = −(κN +κI)G

′(0)Sv and v̇ = ρv−Q, where Q > 0 denotes the derivative of −MκIc
u (wI)

ζ−σ +
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establishes that there are no equilibrium paths that are not along this stable arm. In particular,

all paths above the stable arm feature v̇ > 0 and eventually n → 0 and v → ∞, and since vN is

positive, vI → ∞. But this violates the transversality condition, (27). Similarly, all paths below

the stable arm feature v̇ < 0 and eventually n → 1 and v → −∞, and thus vN → ∞, once again

violating the transversality condition.

Proof of local stability of the unique BGP when θ > 0: Appendix B shows that there

exists a threshold Š such that the BGP in this case is locally stable for S < Š, and thus the

conclusions of the proposition follow setting S = min{S̃, Ŝ, S̆, Š}. �
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Appendix B (Not-For-Publication): Omitted Proofs and Additional
Results

Details of the Empirical Analysis

This section provides information about the data used in constructing Figures 1 and 9. We also

provide a regression analysis documenting the robustness of the patterns illustrated in these figures.

Data: We use data on employment counts for 304 occupational categories that we can track

consistently over time, from 1980 until 2015. Our occupational categories roughly match the

330 categories proposed by David Dorn (see http://www.ddorn.net/data.htm). We aggregate

some of these categories to account for merged occupational codes in recent waves of the American

Community Survey. The details of our approach can be found in the replication files that accompany

this paper.

We use data from the Census for 1980, 1990, and 2000, as well as the American Community

Survey for 2010 and 2015 (Ruggles et al. 2017). Using these data, we compute for each of our

304 occupational categories the total employment count and the demographic characteristics of its

workers, including their gender, age, education, race and whether they are foreign born (we focus

on workers between 16 and 64 years of age). We also compute the share of jobs in each occupational

category that are in manufacturing, the primary sector (agriculture, forestry, fisheries and mining),

and services (retail trade, finance, business and repair services, personal services, entertainment

services, professional services, and public administration).

Our measure of new job titles comes from Lin (2011), who computes the total amount of job

titles and new job titles in each occupational category for 1980, 1990 and 2000.34 Lin identifies new

job titles by comparing changes across waves of the Dictionary of Occupational Titles, and also by

comparing the 1990 Census Index of Occupations with its 2000 counterpart. Importantly, Lin uses

official documentation to avoid labeling as new those jobs that were simply reclassified or divided

because of reasons unrelated to the type of work people performed (i.e., because of administrative

changes in U.S. statistical agencies). Instead, Lin’s measure counts a job as new if workers perform

a different set of tasks in this job than in any previously existing jobs. The data on new and total

job titles can be matched consistently to 303 of our occupations in 1980 and 1990, and to all of our

occupations in 2000.

Detailed Analysis for Figure 1: In addition to Figure 1 in the main text, in Figure B1 we

pool the 1980-2015 changes together with the 1990-2015 and 2000-2015 changes. In this case, the

share of new job titles refers to this variable measured at the beginning of each time window (i.e.,

1980, 1990 or 2000). A very similar positive relationship is visible in the figure.

We further document this relationship and probe its robustness by estimating the following

regression:

∆ lnEit = βNit + δt + ΦtXit + uit. (B1)

34The data are available from Jeffrey Lin’s website https://sites.google.com/site/jeffrlin/newwork
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Figure B1: Employment growth by occupation over different time periods (annualized), plotted
against the share of new job titles at the beginning of each period in each occupation.

Here, the dependent variable is the (annualized) growth in employment in occupation i. The key

explanatory variable is Nit—the share of new job titles in occupational category i at the beginning

of the period.

We start in Table B1 with the 1980-2015 change as in Figure 1. In this case, there is only one

observation per occupation, and we report standard errors that are robust against heteroscedastic-

ity.

Column 1 shows the raw correlation without any covariates, which is positive and statistically

significant.

Column 2 includes the initial level of employment and total number of job titles in each occupa-

tion. This leads to a larger and more precisely estimated coefficient on the share of new job titles:

3.953 (standard error = 1.080). Column 3, which is our baseline specification shown in Figure 1,

in addition controls for the demographic composition of employment in each occupation—in par-

ticular, allowing for differential growth by average age, fraction male, share foreign-born, fraction

black and fraction Hispanic in the occupation in 1980. Now the coefficient on the share of new job

titles is 4.153 (standard error = 1.143). Using this estimate, we compute that if there had been no

additional employment growth in occupations with more new job titles in 1980, total employment

growth between 1980 and 2015 would have been 24% rather than 60%. This is the basis of our

claim in the text that about 60% of employment growth between 1980 and 2015 is associated with

faster employment growth in occupations with more new job titles.

In column 3, we do not control for average education in the occupation, since, as we discuss

further below, occupations with more new job titles attract more educated workers, making this

variable a “bad control.”Nevertheless, column 4 shows that controlling for it does not alter the qual-
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Table B1: Long-differences estimates of employment growth in occupational categories with a
higher baseline share of new job titles.

Dependent variable:
percent change in employment growth between 1980-2015 (annualized).
(1) (2) (3) (4) (5) (6)

Share of new job titles in 1980 2.602∗∗ 3.953∗∗∗ 4.153∗∗∗ 3.425∗∗∗ 3.254∗∗∗ 3.334∗∗∗

(1.264) (1.080) (1.143) (1.059) (1.014) (1.146)
log of employment in 1980 -0.001 -0.002 -0.002 -0.003∗∗ -0.003∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)
log of job titles in 1980 -0.705∗∗∗ -0.647∗∗∗ -0.484∗∗∗ -0.272∗ -0.128

(0.112) (0.120) (0.114) (0.156) (0.121)
Average age of workers in 1980 -0.055 -0.063 -0.022 -0.042

(0.044) (0.044) (0.042) (0.038)
Share of male workers in 1980 -1.035∗ -0.484 0.270 0.151

(0.540) (0.533) (0.601) (0.547)
Share of foreign workers in 1980 2.725 -8.628∗ 1.455 2.887

(4.838) (4.685) (4.786) (4.759)
Share of black workers in 1980 -2.904 1.531 -2.044 -2.350

(2.931) (2.635) (2.367) (2.706)
Share of Hispanic workers in 1980 -3.964 17.642∗∗∗ 2.959 1.887

(5.913) (5.888) (5.873) (5.872)
Average years of education in 1980 0.562∗∗∗

(0.101)
Share of manufacturing jobs in 1980 -1.756∗∗ -2.342∗∗∗

(0.698) (0.696)
Share of primary sector jobs in 1980 -0.012 -0.393

(0.699) (0.904)
Share of service sector jobs in 1980 2.160∗∗∗ 1.831∗∗∗

(0.575) (0.584)
R-squared 0.01 0.18 0.20 0.27 0.32 0.31
Observations 303 303 303 303 303 303
Covariates and estimation:

Total job titles and occupation size X X X X X

Demographics X X X X

Educational level X

Sectoral composition X X

Robust regression X

Notes: The table presents long-difference estimates of the relationship between the share of new job titles in an

occupational category in 1980 and subsequent employment growth between 1980-2015 (annualized). The table

also reports the coefficients estimated for the covariates included in each model. Finally, in column 6 we present

robust-regression estimates following Li (1985). Standard errors that are robust against heteroscedasticity are

presented in parentheses.

itative relationship between share of new job titles and employment growth, though the coefficient

now declines modestly to 3.425 (standard error = 1.059).

In column 5 we add share of manufacturing, primary sector and service job titles in each

occupation in 1980 to the specification of column 3. These variables enable us to control for the

general structural change in the economy away from manufacturing and primary sector jobs towards

service jobs. This also leads to a somewhat lower estimate, which still remains precisely estimated:

3.254 (standard error = 1.014). Finally, in column 6, we estimate a robust regression down-weighing

outliers and excessively influential observations (following Li, 1985). The results are very similar.

In Table B2, we estimate the same models now exploiting variation in the share of new job titles

at the beginning of each decade between 1980 and 2000. Panel A looks at a sample consisting of

stacked differences for 1980-2015, 1990-2015 and 2000-2015. Panel B is for 1980-2010, 1990-2010
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and 2000-2010. Finally, Panel C focuses on decadal changes, 1980-1990, 1990-2000 and 2000-2010.

In each case, the share of new job titles refers to this variable measured at the beginning of the

period for the relevant time window. In addition, we control for a full set of period dummies and the

standard errors are now robust against heteroscedasticity and serial correlation at the occupation

level. The results are very similar to those reported in Table B1 in all cases.

Table B2: Stacked-differences estimates of employment growth in occupational categories with a
higher baseline share of new job titles.

Dependent variable:
percent change in employment growth (annualized).

(1) (2) (3) (4) (5) (6)

Panel A: stacked differences for 1980-2015, 1990-2015, and 2000-2015.
Share of new job titles at t 4.284∗∗∗ 4.399∗∗∗ 4.448∗∗∗ 3.499∗∗∗ 3.562∗∗∗ 3.150∗∗∗

(0.894) (0.881) (0.909) (0.954) (1.021) (0.696)
R-squared 0.05 0.16 0.18 0.23 0.29 0.30
Observations 910 910 910 910 910 910

Panel B: stacked differences for 1980-2010, 1990-2010, and 2000-2010.
Share of new job titles at t 4.297∗∗∗ 4.490∗∗∗ 4.593∗∗∗ 3.428∗∗∗ 3.537∗∗∗ 3.310∗∗∗

(1.009) (0.968) (1.003) (1.047) (1.122) (0.712)
R-squared 0.04 0.17 0.20 0.25 0.34 0.36
Observations 910 910 910 910 910 910

Panel C: stacked differences for 1980-1990, 1990-2000, and 2000-2010.
Share of new job titles at t 3.809∗∗ 4.223∗∗ 4.277∗∗ 3.088∗ 3.224∗ 3.406∗∗∗

(1.804) (1.683) (1.737) (1.849) (1.839) (0.866)
R-squared 0.04 0.13 0.16 0.19 0.23 0.35
Observations 910 910 910 910 910 910
Covariates and estimation:

Decadal dummies X X X X X X

Total job titles and occupation size X X X X X

Demographics X X X X

Educational level X

Sectoral composition X X

Robust regression X

Notes: The table presents stacked-differences estimates of the relationship between the share of new job titles in

an occupational category and subsequent employment growth (annualized). In Panel A, we stack the data for the

periods from 1980-2015, 1990-2015 and 2000-2015. In Panel B, we stack the data for the periods from 1980-2010,

1990-2010 and 2000-2010. In Panel C, we stack the data for the three decades 1980-1990, 1990-2000 and 2000-2010.

All models include a full set of decadal effects. In addition, we introduce the covariates indicated at the bottom

rows, but do not report their coefficients. In column 2 we control for the log of total job titles and employment

in each occupational category. In column 3 we also control for the demographic characteristics of workers in each

occupation (average age, gender, place of birth, and race). In column 4 we further add average years of schooling

in the occupation. In column 5 we control for the sectoral composition of jobs in each occupation (share of jobs in

manufacturing, the primary sector, and services). All these covariates are allowed to have time-varying coefficients.

Finally, in column 6 we present robust-regression estimates following Li (1985). Standard errors that are robust

against heteroscedasticity and serial correlation within occupations are presented in parentheses.

Detailed Analysis for Figure 9: We now briefly present regression evidence documenting

that the pattern shown in Figure 9 is robust. In particular, we report estimates of the following

equation

Hit = βNit + δt + ΦtXit + uit, (B2)

where the left-and side variable is the average years of schooling (or the share of workers with

college) among workers employed in occupation i at time t, while Nit is again the share of new
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job titles in occupational category i at time t. The regressions always include period dummies

and standard errors are robust against heteroscedasticity and serial correlation at the occupation

level. The five columns in Table B3 correspond to columns 1-3 and 5-6 of Table B1 (because the

left-hand side variable is average years of schooling, we do not control for it on the right-hand

side). The results show that in all specifications there is a significant positive association between

the share of new job titles in an occupation and the average years of schooling of workers in the

subsequent decades. The relationship shown in Figure 9 corresponds to column 3, where we control

for differential demographic trends.

Table B3: Estimates of the education level of workers in occupational categories with a higher
baseline share of new job titles.

Dependent variable:
educational attainment of workers within each occupational category.

(1) (2) (3) (4) (5)

Panel A: Average years of education among workers.
Share of new job titles at t 3.144∗∗∗ 3.082∗∗∗ 1.685∗∗∗ 1.324∗∗∗ 1.221∗∗∗

(0.522) (0.543) (0.363) (0.335) (0.304)
R-squared 0.05 0.17 0.67 0.71 0.75
Observations 910 910 910 910 910

Panel B: Share of workers with a college degree.
Share of new job titles at t 0.420∗∗∗ 0.414∗∗∗ 0.215∗∗∗ 0.160∗∗ 0.131∗∗

(0.085) (0.088) (0.068) (0.065) (0.053)
R-squared 0.03 0.12 0.55 0.60 0.64
Observations 910 910 910 910 910
Covariates and estimation:

Decadal dummies X X X X X

Total job titles and occupation size X X X X

Demographics X X X

Sectoral composition X X

Robust regression X

Notes: The table presents estimates of the relationship between the share of new job titles in an occupational

category and the educational level of its workers. In these estimates, we pool data from 1980, 1990 and 2000. In

Panel A, we use the average years of schooling among workers in an occupational category as the dependent variable.

In Panel B, we use the share of workers with college degree as dependent variable. All models include a full set

of decadal effects. In addition, we introduce the covariates indicated at the bottom rows, but do not report their

coefficients. In column 2 we control for the log of total job titles and employment in each occupational category. In

column 3 we also control for the demographic characteristics of workers in each occupation (average age, gender,

place of birth, and race). In column 4 we also control for the sectoral composition of jobs in each occupation (share

of jobs in manufacturing, the primary sector, and services). All these covariates are allowed to have time-varying

coefficients. Finally, in column 5 we present robust-regression estimates following Li (1985). Standard errors that

are robust against heteroscedasticity and serial correlation within occupations are presented in parentheses
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Remaining Proofs from Section 2

We start with the proof of Lemma A1.

Proof of Lemma A1. The assumption that K < K and I∗ ≤ Ĩ implies that:

W

γ(N)
< R ≤

W

γ(I∗)
. (B3)

We first show that ω(I∗, N,K) is (strictly) decreasing in I∗. To do so, we compute ω∗
I(I

∗, N,K)

and show that Assumption 2
′
is sufficient to ensure it is negative.

Log-differentiating equations (A3) and (A4), we have

εK
d lnR

dI∗
=
d ln Y

dI∗
+

1

I∗ −N + 1
, (B4)

εL
d lnW

dI∗
=
d ln Y

dI∗
− ξ(I∗), (B5)

where

εK =ζ + (σ − ζ)ςK ,

εL =

∫ N

I∗
ξ(i)(ζ + (σ − ζ)ςL(i))di,

and ςK ∈ [0, 1] is the share of capital in tasks produced with capital, ςL(i) ∈ [0, 1] is the share of

labor in task i, and ξ(i) ∈ [0, 1] is the share of total payments to labor earned by workers in task i

(in particular, we have
∫ N
I∗ ξ(i)di = 1).

Differentiating equation (A5), we get

1

1− σ

cu(W/γ(I∗))1−σ − cu(R)1−σ

B1−σ
= sK

d lnR

dI∗
+ sL

d lnW

dI∗
. (B6)

where sK = RK
Y ∈ [0, 1] and sL = WL

Y ∈ [0, 1] are respectively the capital and the labor shares in

national income.

Solving the system of equations determined by (B4), (B5), and (B6) yields

ωI∗(I
∗, N,K)

ω(I∗, N,K)
=
d lnW

dI∗
−
d lnR

dI∗
,

=−
sL + sK

εKsL + εLsK

(
1

I∗ −N + 1
+ ξ(I∗)

)

+
εK − εL

εKsL + εLsK

1

1− σ

cu(W/γ(I∗))1−σ − cu(R)1−σ

B1−σ
.

Therefore, ω(I∗, N,K) is (strictly) decreasing in I∗ if and only if

(εK − εL)
1

1− σ

cu(W/γ(I∗))1−σ − cu(R)1−σ

B1−σ
< (sL + sk)

(
1

I∗ −N + 1
+ ξ(I∗)

)
.

Let ςmax = maxi∈[I∗,N ]{ςL(i)} and ςmin = mini∈[I∗,N ]{ςL(i)}. Inequality (B3) implies that ςK ∈

[ςmin, ςmax]. Thus:

εK − εL = (σ − ζ)

(
ςK −

∫ N

I∗
ξ(i)ςL(i)di

)
< |σ − ζ|(ςmax − ςmin).
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In addition, sL + sK > ςmin, because the share of capital or labor in every task is at least ςmin.

Thus, the inequality

|σ − ζ|
ςmax − ςmin

ςmin

1

1− σ

cu(W/γ(I∗))1−σ − cu(R)1−σ

B1−σ
<

1

I∗ −N + 1
+ ξ(I∗) (B7)

suffices to ensure that ω(I∗, N,K) is (strictly) decreasing in I∗.

We now show that Assumption 2′ implies (B7).

If η → 0, then ςmax = ςmin = 1 and (B7) holds. Likewise, if ζ = 1, ςmax = ςmin = 1 − η and

(B7) holds. To complete the proof we show that (B7) holds under (A1). This follows from the

following sequence of inequalities:

• If ζ < 1,

ςmax − ςmin
ςmin

=

(W/γ(I∗))1−ζ

ηψ1−ζ+(1−η)(W/γ(I∗))1−ζ
− (W/γ(N))1−ζ

ηψ1−ζ+(1−η)(W/γ(N))1−ζ

(W/γ(N))1−ζ

ηψ1−ζ+(1−η)(W/γ(N))1−ζ

,

=
((W/γ(I∗))1−ζ − (W/γ(N))1−ζ)ηψ1−ζ

(W/γ(N))1−ζ(ηψ1−ζ + (1− η)(W/γ(I∗))1−ζ)
,

<
(W/γ(I∗))1−ζ − (W/γ(N))1−ζ

(W/γ(N))1−ζ
,

=

(
γ(N)

γ(I∗)

)1−ζ

− 1,

<

(
γ(N)

γ(N − 1)

)1−ζ

− 1.

If, on the other hand, if ζ > 1,

ςmax − ςmin
ςmin

=

(W/γ(N))1−ζ

ηψ1−ζ+(1−η)(W/γ(N))1−ζ
− (W/γ(I∗))1−ζ

ηψ1−ζ+(1−η)(W/γ(I∗))1−ζ

(W/γ(I∗))1−ζ

ηψ1−ζ+(1−η)(W/γ(I∗))1−ζ

,

=
((W/γ(N))1−ζ − (W/γ(I∗))1−ζ)ηψ1−ζ

(W/γ(I∗))1−ζ(ηψ1−ζ + (1− η)(W/γ(N))1−ζ)
,

<
(W/γ(N))1−ζ − (W/γ(I∗))1−ζ

(W/γ(I∗))1−ζ
,

=

(
γ(I∗)

γ(N)

)1−ζ

− 1,

<

(
γ(N − 1)

γ(N)

)1−ζ

− 1.

Thus,

ςmax − ςmin
ςmin

<

(
γ(N)

γ(N − 1)

)|1−ζ|

− 1. (B8)
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• The function f(x) = 1
1−σx

1−σ is concave. Because W
γ(I∗) ≥ R, we also have

1

1− σ

cu(W/γ(I∗))1−σ − cu(R)1−σ

B1−σ
<
cu(R)−σ(cu(W/γ(I∗))− cu(R))

B1−σ
,

<
cu(R)1−σ

B1−σ

cu(W/γ(I∗))

cu(R)
,

<
cu(R)1−σ

B1−σ

γ(N)

γ(N − 1)
.

In the last line we used the fact that:

cu(W/γ(I∗))

cu(R)
<
cu(W/γ(N − 1))

cu(W/γ(N))
≤

γ(N)

γ(N − 1)
,

which follows from observing that cu(x)/x is decreasing in x.

Finally, the ideal price index condition in equation (A5) implies that

cu(R)1−σ

B1−σ
<

cu(R)1−σ

(I∗ −N + 1)cu(R)1−σ
<

1

I∗ −N + 1
+ ξ(I∗).

This inequality implies

1

1− σ

cu(W/γ(I∗))1−σ − cu(R)1−σ

B1−σ
<

(
1

I∗ −N + 1
+ ξ(I∗)

)
γ(N)

γ(N − 1)
. (B9)

• Multiplying inequalities (A1), (B8), and (B9), we obtain the sufficient condition (B7). This

shows that Assumption 2
′
implies (B7), and ensures that ωI(I

∗, N,K) is negative.

We now show that ω(I∗, N,K) is (strictly) increasing in N . To do so, we compute ωN (I
∗, N,K)

and show that Assumption 2
′
is sufficient to ensure it is positive.

Log-differentiating equations (A3), (A4), and (A5), and solving for the change in wages and

rental rates, we have

ωN (I
∗, N,K)

ω(I∗, N,K)
=
d lnW

dN
−
d lnR

dN
,

=
sL + sK

εKλL + εLλK

(
1

I∗ −N + 1
+ ξ(N)

)

+
εK − εL

εKsL + εLsK

1

1− σ

cu(R)1−σ − cu(W/γ(N))1−σ

B1−σ
.

Therefore, ω(I∗, N,K) is (strictly) increasing in N if and only if

(εL − εK)
1

1− σ

cu(R)1−σ − cu(W/γ(N))1−σ

B1−σ
< (sL + sK)

(
1

I∗ −N + 1
+ ξ(N)

)
.

Inequality (B3) implies that ςK ∈ [ςmin, ςmax]. Thus

εL − εK = (σ − ζ)

(∫ N

I∗
ξ(i)ςL(i)di − ςK

)
< |σ − ζ|(ςmax − ςmin).
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In addition, sL + sK > ςmin, because the share of capital or labor in every task is at least ςmin.

Thus,the inequality

|σ − ζ|
ςmax − ςmin

ςmin

1

1− σ

cu(R)1−σ − cu(W/γ(N))1−σ

B1−σ
<

(
1

I∗ −N + 1
+ ξ(N)

)
(B11)

suffices to ensure that ω(I∗, N,K) is (strictly) increasing in N .

We now show that Assumption 2′ implies (B11).

If η → 0 then ςmax = ςmin = 1 and (B11) holds. Likewise, if ζ = 1, ςmax = ςmin = 1 − η and

(B11) holds. To complete the proof we show that (B11) holds under (A1). This follows from the

next three steps:

• Following the same steps as before, we have that (B8) holds.

• The function f(x) = 1
1−σx

1−σ is concave. Because W
γ(N) < R,

1

1− σ

cu(R)1−σ − cu(W/γ(N))1−σ

B1−σ
<
cu(W/γ(N))−σ(cu(R)− cu(W/γ(N)))

B1−σ
,

<
cu(R)1−σ

B1−σ

cu(R)σ

cu(W/γ(N))σ
,

<
cu(R)1−σ

B1−σ

(
γ(N)

γ(N − 1)

)σ
,

where the last inequality follows because cu(x)/x is decreasing and thus

cu(R)

cu(W/γ(N))
<
cu(W/γ(N − 1))

cu(W/γ(N))
≤

γ(N)

γ(N − 1)
.

• Finally, the ideal price index condition in equation (A5) implies

cu(R)1−σ

B1−σ
<

cu(R)1−σ

(I∗ −N + 1)cu(R)1−σ
<

1

I∗ −N + 1
+ ξ(N).

This inequality implies

1

1− σ

cu(W/γ(I∗))1−σ − cu(R)1−σ

B1−σ
<

(
1

I∗ −N + 1
+ ξ(N)

)(
γ(N)

γ(N − 1)

)σ
. (B12)

• Multiplying inequalities (A1), (B8), and (B12), we obtain the sufficient condition (B11). This

shows that Assumption 2
′
implies (B11), and ensures that ωN (I

∗, N,K) is positive.

Proof of Proposition 2: We first formulate a more general version of this proposition, which

holds under Assumption 2′, and then derive the tighter characterization presented in the text

(under Assumption 2). In this proof, ∂ω
∂I∗ ,

∂ω
∂N and ∂ω

∂K denote the partial derivatives of the function

ω(I∗, N,K) with respect to its arguments.
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Proposition B1 (Comparative statics in the general model) Suppose that Assumptions 1,

2′ and 3 hold. Let εL > 0 denote the elasticity of the labor supply schedule Ls(ω) with respect to ω;

let εγ = d lnγ(I)
dI > 0 denote the semi-elasticity of the comparative advantage schedule.

• If I∗ = I < Ĩ—so that the allocation of tasks to factors is constrained by technology—then:

– the impact of technological change on relative factor prices is given by

d ln(W/R)

dI
=
d lnω

dI
=

1

ω

∂ω

∂I∗
< 0,

d ln(W/R)

dN
=
d lnω

dN
=

1

ω

∂ω

∂N
> 0

– the impact of capital on relative factor prices is given by

d ln(W/R)

d lnK
=
d lnω

d lnK
+ 1 =

1 + εL
σcons + εL

> 0,

where σcons ∈ (0,∞) is the elasticity of substitution between labor and capital that applies

when technology constraints the allocation of factors to tasks. This elasticity is given by

a weighted average of σ and ζ.

• If I∗ = Ĩ < I—so that the allocation of tasks to factors is cost-minimizing—then

– the impact of technological change on relative factor prices is given by

d ln(W/R)

dI
=
d lnω

dI
= 0,

d ln(W/R)

dN
=
d lnω

dN
=
σcons + εL
σfree + εL

1

ω

∂ω

∂N
> 0,

– and the impact of capital on relative factor prices is given by

d ln(W/R)

d lnK
=
d lnω

d lnK
+ 1 =

(
1 + εL

σfree + εL

)
> 0,

where

σfree = (σcons + εL)

(
1−

1

ω

∂ω

∂I∗
1

εγ

)
− εL > σ̂;

• In both parts of the proposition, the labor share and employment move in the same direction

as ω.

• Finally, under Assumption 2, we have

1

ω

∂ω

∂I∗
=−

1

σ̂ + εL
ΛI

1

ω

∂ω

∂N
=

1

σ̂ + εL
ΛN ,

and the elasticities of substitution are

σcons =σ̂ σfree =σ̂ +
1

εγ
ΛI .
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Note: In this proposition, we do not explicitly treat the case in which I∗ = I = Ĩ in order

to save on space and notation, since in this case left and right derivatives with respect to I are

different.

Proof. We first establish the comparative statics of ω with respect to I, N and K when both

I∗ = I < Ĩ and I∗ = Ĩ < I.

Comparative statics for K: The curve I∗ = min{I, Ĩ} does not depend onK, all comparative

statics are determined by the effect of capital on ω(I∗, N,K). An increase in K shifts up the relative

demand locus in Figure A1 (this does not affect the ideal price index condition, which simplifies the

analysis in this case), and thus increases W and reduces R . The impact on ω = W
RK depends on

whether the initial effect on W/R has elasticity greater than one (since K is in the denominator).

Notice that the function ω(I∗, N,K) already incorporates the equilibrium labor supply response.

To distinguish this supply response from the elasticity of substitution determined by factor de-

mands, we define ωL(I∗, N,K,L) as the static equilibrium for a fixed level of the labor supply

L.

The definition of σcons implies that ∂ωL

∂K
K
ωL = 1

σcons
− 1 and −∂ωL

∂L
L
ωL = 1

σcons
. Thus, when

I∗ = I < Ĩ, we have

d ln(W/R) = d lnω + 1 =

(
1

σcons
− 1

)
d lnK −

1

σcons
εLd lnω + d lnK =

1 + εL
σcons + εL

d lnK,

where we have used the fact that ω(I∗, N,K) = ωL(I∗, N,K,Ls(ω)). This establishes the claims

about the comparative statics with respect to K when I∗ = I < Ĩ.

For the case where I∗ = Ĩ < I, we have that the change in K also changes the threshold task

I∗ = Ĩ. In particular, dI∗ = 1
εγ
d lnω. Thus,

d ln(W/R) =
1 + εL

σcons + εL
d lnK+

1

ω

∂ω

∂I∗
1

εγ
d ln(W/R) =

1 + εL
σcons + εL

1

1− 1
ω
∂ω
∂I

1
εγ

d lnK =
1 + εL

σfree + εL
d lnK,

where we define σfree as in the proposition.

Comparative statics with respect to I: The relative demand locus ω = ω(I∗, N,K) does

not directly depend on I . Thus, the comparative statics are entirely determined by the effect of

changes in I on the I∗ = min{I, Ĩ} schedule depicted in Figure 3. When I∗ = Ĩ < I, small changes

in I have no effect as claimed in the proposition. Suppose next that I∗ = I < Ĩ . In this case,

an increase in I shifts the curve I∗ = min{I, Ĩ} to the right in Figure 3. Lemma A1 implies that

ω(I∗, N,K) is decreasing in I∗. Thus, the shift in I increases I∗ and reduces ω—as stated in the

proposition. Moreover, because I∗ = I, we have

d ln(W/R)

dI
=
d lnω

dI∗
=

1

ω

∂ω

∂I∗
< 0,

where ∂ω
∂I∗ denotes the partial derivative of ω(I∗, N,K) with respect to I∗.

Comparative statics for N : From Lemma A1, changes in N only shift the relative demand

curve up in Figure 3. Hence, when I∗ = I < Ĩ, we have

d ln(W/R)

dN
=
d lnω

dN
=

1

ω

∂ω

∂N
> 0,
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where ∂ω
∂N denotes the partial derivative of ω(I∗, N,K) with respect to N .

Turning next to the case where I∗ = Ĩ < I, note that the threshold task is given by γ(I∗) = ωK.

Therefore, dI∗ = 1
εγ
d lnω (where recall that εγ is the semi-elasticity of the γ function as defined in

the proposition). Therefore, d ln(W/R)dN = d lnω
dN , and we can compute this total derivative as claimed

in proposition:

d lnω

dN
=

1

ω

∂ω

∂N
+

1

ω

∂ω

∂I∗
1

εγ

d lnω

dN
=

1
ω
∂ω
∂N

1− 1
ω
∂ω
∂I∗

1
εγ

=
σ cons + εL
σfree + εL

1

ω

∂ω

∂N
.

To conclude the proposition, we specialize to the case in which Assumption 2 holds. The

expressions for the partial derivative ∂ω
∂I∗ ,

∂ω
∂N and σ̂ presented in the proposition follow directly

from differentiating equation (13) in the main text. Finally, the definition of σfree in the proposition

implies that in this case,

σfree = (σ̂ + εL)

(
1−

1

ω

∂ω

∂I∗
1

εγ

)
− εL = σ̂ +

1

εγ
ΛI ,

which proofs the claims in Proposition 2 in the main text.

Proof of Proposition 3: The formulas provided for d lnY |K,L in this proposition hold under

Assumption 2, and we impose this assumption in this proof.

We start by deriving the formulas for d ln Y |K,L in the case in which technology binds and

I∗ = I < Ĩ. To do so, we first consider a change in dN and totally differentiate equation (12) in

the main text:

d lnY |K,L =
B

(1− η)Y

[
Y (1− η)

B

] 1
σ̂ 1

σ̂ − 1


γ(N)σ̂−1

(∫ N
I∗ γ(i)

σ̂−1di

L

) 1−σ̂
σ̂

−

(
I∗ −N + 1

K

) 1−σ̂
σ̂


 dN

=
B

(1− η)Y

[
Y (1− η)

B

] 1
σ̂ 1

σ̂ − 1


γ(N)σ̂−1

(
B1−σ̂W σ̂

(1− η)Y

) 1−σ̂
σ̂

−

(
B1−σ̂Rσ̂

(1− η)Y

) 1−σ̂
σ̂


 dN

=Bσ̂−1 1

1− σ̂

(
R1−σ̂ −

(
W

γ(N)

)1−σ̂
)
dN.

Likewise, following a change in dI∗, we have

d lnY |K,L =
B

(1− η)Y

[
Y (1− η)

B

] 1
σ̂ 1

σ̂ − 1



(
I∗ −N + 1

K

) 1−σ̂
σ̂

− γ(I)σ̂−1

(∫ N
I∗ γ(i)

σ̂−1di

L

) 1−σ̂
σ̂


 dI

=
B

(1− η)Y

[
Y (1− η)

B

] 1
σ̂ 1

σ̂ − 1



(
B1−σ̂Rσ̂

(1− η)Y

)1−σ̂
σ̂

− γ(I)σ̂−1

(
B1−σ̂W σ̂

(1− η)Y

) 1−σ̂
σ̂


 dI

=Bσ̂−1 1

1− σ̂

((
W

γ(I)

)1−σ̂

−R1−σ̂

)
dI.

We now derive the formulas for the impact of technology on factor prices. Let sL denote the

labor share in net output. Because WL+RK = (1− η)Y , we obtain

sLd lnW + (1− sL)d lnR = d ln Y |K,L . (B13)
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Moreover, Proposition 2 implies

d lnW − d lnR =
1

σ̂ + εL
ΛNdN −

1

σ̂ + εL
ΛIdI. (B14)

Solving the system of equations given by (B13) and (B14), we obtain the formulas for d lnW and

d lnR in the proposition.

To establish the existence of the threshold K̃, we substitute 1− sL = (I∗ −N +1)Bσ̂−1R1−σ̂—

this is the share of capital in output net of intermediates—in the formula for d lnW
dI given in the

proposition. We find that automation reduces wages if and only if:

1

1− σ̂

[(
W

R

1

γ(I∗)

)1−σ̂

− 1

]
< (I∗ −N + 1)ΛI .

Let K be the level of capital at which W
γ(I∗) = R. For K > K, we have that W

γ(I∗) ≥ R, and

thus I∗ = I < Ĩ. At K, the above inequality holds. Also, the left-hand side of the above inequality

is a continuous and increasing function of W/R. This implies that there exists a threshold K̃ > K

such that, the above inequality holds for K ∈ (K, K̃) but is reversed for K > K̃.

Consider next the case where I∗ = Ĩ < I. In this case we have:

d lnY |K,L = Bσ̂−1 1

1− σ̂

(
R1−σ̂ −

(
W

γ(N)

)1−σ̂
)
dN +Bσ̂−1 1

1− σ̂



(
W

γ(Ĩ)

)1−σ̂

−R1−σ̂


 dI∗

= Bσ̂−1 1

1− σ̂

(
R1−σ̂ −

(
W

γ(N)

)1−σ̂
)
dN.

Thus, changes in I∗ do not affect aggregate output because the marginal firm at Ĩ is indifferent

between producing with capital or producing with labor. On the other hand, because I is not

binding, changes in I do not affect aggregate output.

We derive the formulas for the impact of technology on factor prices as before, except that

equation (B14) now becomes

d lnW − d lnR =
1

σfree + εL
ΛNdN.

�

Remaining Proofs from Section 3

We start by providing an additional lemma showing that, for a path of technology in which g(t) = g

and n > max{n, ñ(ρ)}, the resulting production function F (k, L;n) satisfies the Inada conditions

required in a BGP.

Lemma B1 (Inada conditions) Suppose that Assumptions 1′ and 2 hold. Consider a path of

technology in which n(t) → n and g(t) → g. Let F (k, L;n) denote net output introduced in the

proof of Proposition 4. If ρ ∈ (ρmin, ρmax) and n > max{n(ρ), ñ(ρ)} we have that F satisfies the

Inada conditions

lim
φ→0

FK(φ, 1;n) >ρ+ δ + θg lim
φ→∞

FK(φ, 1;n) <ρ+ δ + θg.
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Proof. Let φ = k
L . Let MPK(φ) = FK(φ, 1;n) and w(φ) = FL(φ, 1;n) denote the rental rate of

capital and the wage at this ratio, respectively.

When n > max{n(ρ), ñ(ρ)}, these factor prices satisfy the system of equations given by the

ratio of the market-clearing conditions (A3) and (A4),

φ =
(1− n)cu(MPK(φ))ζ−σMPK(φ)−ζ∫ n
0 γ(i)

ζ−1cu(w(φ)/γ(i))ζ−σw(φ)−ζ
,

together with the generalized ideal price index condition (A5), which we can rewrite succinctly as:

B1−σ̂ = (1− n)cu(MPK(φ))1−σ +

∫ n

0
cu(w(φ)/γ(i))1−σdi. (B15)

We start by considering the limit case in which φ = 0. The factor-demand equation requires

that either (i) MPK(φ) = ∞, or (ii) w(φ) = 0. In the first case, we have MPK(φ) > ρ + δ + θg

as claimed. In the second case we have:

cu(0) =

{
0 if ζ ≥ 1
cu0 if ζ < 1.

We show that in both cases MPK(0) > ρ+ δ + θg:

1. Suppose that ζ ≥ 1. For the ideal price index condition in (B15) to hold, we require σ < 1

(otherwise the right-hand side diverges). Moreover, the ideal price index condition in (B15)

implies that MPK(0) is implicitly given by:

(1− n)cu(MPK(0))1−σ = B1−σ̂.

First, suppose that ρ ≤ ρ. We have that

cu(MPK(0))1−σ > (1− n)cu(MPK(0))1−σ = B1−σ̂ = cu(ρ+ δ + θg)1−σ .

Here we have used the fact that n > 0 and the definition of ρ introduced in Lemma A2.

Because σ < 1, the above inequality implies MPK(0) > ρ+ δ + θg ≥ ρ+ δ + θg as claimed.

Finally, suppose that ρ > ρ. Because n > n(ρ), we have:

(1− n(ρ))cu(MPK(0))1−σ > (1− n)cu(MPK(0))1−σ

= B1−σ̂

= (1− n(ρ))cu(ρ+ δ + θg)1−σ +

∫ n(ρ)

0
cu((ρ+ δ + θg)/γ(i))1−σdi

> (1− n(ρ))cu(ρ+ δ + θg)1−σ .

Here we have also used the definition of n(ρ) introduced in Lemma A2. Because σ < 1, the

above inequality impliesMPK(0) > ρ+δ+θg as claimed (recall that in this region n(ρ) < 1).
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2. Suppose that ζ < 1. We have that 0 < cu0 < cu(x) for all x > 0. The ideal price index

condition in (B15) implies that MPK(0) is implicitly given by:

(1− n)cu(MPK(0))1−σ + ncu0
1−σ = B1−σ̂.

When σ < 1, we have the following series of inequalities:

(1− n(ρ))cu(MPK(0))1−σ + n(ρ)cu0
1−σ > (1− n)cu(MPK(0))1−σ + ncu0

1−σ

= B1−σ̂

= (1− n(ρ))cu(ρ+ δ + θg)1−σ

+

∫ n(ρ)

0
cu((ρ+ δ + θg)/γ(i))1−σdi

> (1− n(ρ))cu(ρ+ δ + θg)1−σ + n(ρ)cu0
1−σ.

Here, we have used the fact that n > n(ρ) and 0 < cu0 < cu(x) for all x > 0, and the

definition of n(ρ) introduced in Lemma A2. Because σ < 1, the above inequality implies

MPK(0) > ρ+ δ + θg as claimed (recall that in this region n(ρ) < 1).

When σ > 1, the previous inequalities are reversed, and thus

(1− n(ρ))cu(MPK(0))1−σ + n(ρ)cu0
1−σ < (1− n(ρ))cu(ρ+ δ + θg)1−σ + n(ρ)cu0

1−σ.

Because σ > 1, the above inequality implies MPK(0) > ρ+ δ + θg as claimed.

We next consider the limit case in which φ = ∞. With a slight abuse of notation, we define

MPK(∞) = limφ→∞MPK(φ) and w(∞) = limφ→∞w(φ). The factor-demand equation requires

that either (i) MPK(∞) = 0, or (ii) w(∞) = ∞. In the first case, MPK(∞) < ρ+ δ + θg. In the

second case, we have

cu(∞) =

{
∞ if ζ ≤ 1
cu∞ if ζ > 1.

We show that in both cases MPK(∞) < ρ+ δ + θg.

1. Suppose that ζ ≤ 1. For the ideal price index condition in (B15) to hold, we require σ > 1

(otherwise the right-hand side diverges). Moreover, the ideal price index condition in (B15)

implies that MPK(∞) is implicitly given by

(1− n)cu(MPK(∞))1−σ = B1−σ̂.

First, suppose that ρ ≥ ρ. Then

cu(MPK(∞))1−σ > (1− n)cu(MPK(∞))1−σ = B1−σ̂ = cu(ρ+ δ + θg)1−σ .

Here we have used the fact that n > 0 and the definition of ρ introduced in Lemma A2.

Because σ > 1, the above inequality implies MPK(∞) < ρ+ δ+ θg ≤ ρ+ δ+ θg as claimed.
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Finally, suppose that ρ < ρ. Because n > ñ(ρ), we have

(1− ñ(ρ))cu(MPK(∞))1−σ > (1− n)cu(MPK(∞))1−σ

= B1−σ̂

= (1− ñ(ρ))cu(ρ+ δ + θg)1−σ +

∫ ñ(ρ)

0
cu((ρ+ δ + θg)γ(i))1−σdi

> (1− ñ(ρ))cu(ρ+ δ + θg)1−σ .

Here we have also used the definition of ñ(ρ) introduced in Lemma A2. Because σ > 1,

the above inequality implies MPK(∞) < ρ + δ + θg as claimed (recall that in this region

1 > ñ(ρ)).

2. Suppose that ζ > 1. We have that 0 < cu(x) < cu∞ for all x < ∞. The ideal price index

condition in (B15) implies that MPK(∞) is implicitly given by

(1− n)cu(MPK(∞))1−σ + ncu∞
1−σ = B1−σ̂.

When σ < 1, we also have

(1− ñ(ρ))cu(MPK(∞))1−σ + ñ(ρ)cu∞
1−σ < (1− n)cu(MPK(∞))1−σ + ncu∞

1−σ

= B1−σ̂

= (1− ñ(ρ))cu(ρ+ δ + θg)1−σ

+

∫ ñ(ρ)

0
cu((ρ+ δ + θg)γ(i))1−σdi

< (1− ñ(ρ))cu(ρ+ δ + θg)1−σ + ñ(ρ)cu∞
1−σ.

Here, we have used the fact that n > ñ(ρ) and 0 < cu(x) < cu∞ for all x < ∞, and the

definition of ñ(ρ) introduced in Lemma A2. Because σ < 1, this series of inequalities implies

MPK(∞) < ρ+ δ + θg as claimed (recall that in this region ñ(ρ) < 1).

When σ > 1, the previous inequalities are reversed, and

(1− ñ(ρ))cu(MPK(∞))1−σ + ñ(ρ)cu∞
1−σ > (1− ñ(ρ))cu(ρ+ δ + θg)1−σ + ñ(ρ)cu∞

1−σ.

Because σ > 1, this inequality implies MPK(∞) < ρ+ δ + θg, completing the proof.

Proof of Global Stability for Part 2 of Proposition 4: Here we provide the details of

global stability of the interior equilibrium where all automated tasks are immediately produced

with capital (part 2 of Proposition 4). In particular, we show that the BGP given by k(t) = kB ,

c(t) = cB and L(t) = LB is globally stable.
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For a given level of capital and consumption, we can define the equilibrium labor supply schedule,

LE(k, c), implicitly as the solution to the first-order condition

ν ′(LE(k, c))eν(L
E(k,c)) θ−1

θ =
FL(k, L

E(k, c))

c
.

The left-hand side of this equation is increasing in LE. Thus, the optimal labor supply LE(k, c) is

increasing in k (because of the substitution effect) and is decreasing in c (because of the income

effect). In addition, because FL is homogeneous of degree zero, one can verify that L
k > LEk > 0, so

that labor responds less than one-to-one to an increase in capital.

Any dynamic equilibrium must solve the system of differential equations

ċ(t)

c(t)
=
1

θ
(FK(k(t), LE(k(t), c(t));n) − δ − ρ)− g

k̇(t) =F (k(t), LE(k(t), c(t));n) − (δ + g)k(t) − c(t)eν(L
E(k(t),c(t))) θ−1

θ ,

together with the transversality condition in equation (19).

We analyze this system in the (c, k) space. We always have one of the two cases portrayed in

Figure B2; either limc→0 L
E(k, c) = L or limc→0 L

E(k, c) = ∞.

Figure B2: The left panel shows the phase diagram of the equilibrium system when
limc→0 L

E(k, c) = L. The right panel shows the phase diagram of the equilibrium system when
limc→0 L

E(k, c) = ∞.

The locus for k̇ = 0 yields a curve that defines the maximum level of consumption that can be

sustained at each level of capital. This level is determined implicitly by

F (k, LE(k, c);n) − (δ + g)k = ceν(L
E(k,c)) θ−1

θ .

The locus for ċ = 0 is given by k = φLE(k, c), which defines a decreasing curve between c and

k. Depending on whether ν′(L) has a vertical asymptote or not, as c → 0, this locus converges to

k = φL (left panel in figure B2) or k = ∞ (right panel in figure B2).

Importantly, we always have that, as c→ 0, the locus for k̇ = 0 is above the locus for ċ = 0. This

is clearly the case when limc→0L
E(k, c) = L. To show this when limc→0 L

E(k, c) = ∞, consider a

point (c0, k0) in the locus for k̇ = 0. We have

FK

(
1,
LE(k0, c0)

k0

)
< F

(
1,
LE(k0, c0)

k0

)
= δ + g +O(c0)
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Thus, for c0 → 0, the condition ρ+ (θ − 1)g > 0 implies

FK

(
1,
LE(k0, c0)

k0

)
< ρ+ δ + θg.

This inequality implies that LE(k0,c0)
k0

< 1
φ , which is equivalent to the point (c0, k0) being in the

northeast region of the locus for ċ = 0.

As shown in Appendix A, both when limc→0 L
E(k, c) = L or limc→0 L

E(k, c) = ∞, we have a

unique interior equilibrium at (cB , kB). Moreover, because as c→ 0 the locus for ċ = 0 is below the

locus for k̇ = 0, we must have that the locus for ċ = 0 always cuts the locus for k̇ = 0 from above

at (cB , kB). Thus, as shown in the phase diagrams in Figure B2, the unique interior equilibrium at

(cB , kB) is saddle-path stable.

One could also establish local saddle-path stability as follows. Around the interior BGP, the

system of differential equations that determines the equilibrium can be linearized as (suppressing

the arguments of the derivatives of the production function)

k̇(t) =

(
ρ+ (θ − 1)g +

1

θ
FLL

E
k

)
(k(t)− kB) +

(
−eν(LB) θ−1

θ +
1

θ
FLL

E
c

)
(c(t) − cB)

ċ(t) =
cB
θ
(FKK + FKLL

E
k )(k(t)− kB) +

cB
θ
FKLL

E
c (c(t)− cB).

The characteristic matrix of the system is therefore given by

Mexog =

(
ρ+ (θ − 1)g + 1

θFLL
E
k −eν(LB) θ−1

θ + 1
θFLL

E
c

cB
θ (FKK + FKLL

E
k )

cB
θ FKLL

E
c

)
.

To analyze the properties of this matrix, we will use two facts: (i) FLL
E
k + cBFKLL

E
c = 0 and

(ii) FKK + FKLL
E
k < 0. First, (i) follows by implicitly differentiating the optimality condition for

labor, which yields:

LEk =
1
cFLk

eν(L)
θ−1
θ

(
ν ′′(L) + θ−1

θ ν ′2
)
− 1

cFLL
LEc =−

1
c2
FL

eν(L)
θ−1
θ

(
ν ′′(L) + θ−1

θ ν′2
)
− 1

cFLL
.

Next, (ii) follows by noting that, because LEk <
LE

k , we have

FKK + FKLL
E
k < FKK + FKL

LE

k
= 0.

Using these facts, we can compute the trace of Mexog as

Tr(Mexog) = ρ+ (θ − 1)g +
1

θ
FLL

E
k +

cB
θ
FKLL

E
c = ρ+ (θ − 1)g > 0.

In addition, the determinant of Mexog is given by:

Det(Mexog) =
cB
θ
FKLL

E
c

(
ρ+ (θ − 1)g +

1

θ
FLL

E
k

)

−
cB
θ
(FKK + FKLL

E
k )

(
1

θ
FLL

E
c − eν(LB) θ−1

θ

)
< 0 (B16)
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The inequality follows by noting that FKLL
E
c < 0, ρ+ (θ − 1)g + 1

θFLL
E
k > 0, FKK + FKLL

E
k < 0,

and 1
θFLL

E
c − eν(L)

θ−1
θ < 0.

(The negative determinant is equivalent to the fact established above that the curve for ċ = 0

cuts the curve for k̇ = 0 from above. Moreover, the algebra here shows that, at the intersection

(cB , kB), the locus for k̇ is increasing).

The sign of the trace and the determinant imply that the matrix has one positive and real

eigenvalue and one negative and real eigenvalue. Theorem 7.19 in Acemoglu (2009) shows that,

locally, the economy with exogenous technology is saddle-path stable as wanted.

To show the global stability of the unique BGP (cB , kB), we need to rule out two types of

paths: the candidate paths that converge to zero capital, which we will show are not feasible, and

the candidate paths that converge to zero consumption, which we will show are not optimal.

To rule out the paths that converge to zero capital, note that such paths converge to an allocation

with k(t) = 0 and c(t) > c. Here c ≥ 0 is the maximum level of consumption that can be sustained

when k = 0, which is given by:

F (0, LE(0, c)) = ceν(L
E(0,c)) θ−1

θ .

To rule out the paths that converge to zero consumption, we show that they violate the transver-

sality condition in equation (19). In all these paths we have c(t) → 0. There are two possible paths

for capital. Either capital converges to k—even at zero consumption the economy only sustains a

finite amount of capital—, or capital grows with no bound. In the first case, note that:

FK

(
1,
LE(k, c)

k

)
≤ F

(
1,
LE(k, c)

k

)
= δ + g.

Thus, the transversality condition in (19) does not hold. In the second case, we have that capital

grows at an asymptotic rate of F
(
1, L

E(k,c)
k

)
− δ− g. This is greater than or equal to the discount

rate used in the transversality condition in equation (19), which is FK

(
1, L

E(k,c)
k

)
− δ − g. Thus,

the transversality condition does not hold in this case either. �

Proof of Proposition 5: We prove the proposition in the more general case in which As-

sumption 2′ holds.

Proposition 4 shows that for this path of technology the economy admits a unique BGP.

If n < n(ρ), we have that in the BGP n∗(t) = n(ρ) > n. Thus, small changes in n do not affect

the BGP equations; n does not affect effective wages, employment, or the labor share.

If n > n(ρ), we have that in the BGP n∗(t) = n. In this case, the behavior of the effective wages

follows from the formulas for w′
I(n) and w

′
N (N) in equation (A8), whose signs can be determined

from Lemma A2.

To characterize the behavior of employment, note that we can rewrite the first-order condition

for the BGP level of employment in equation (18) as

1

Lν ′(L)e
θ−1
θ
ν(L(t))

=
c

wL
=

1

sL

ρ+ (θ − 1)g

ρ+ δ + θg
+

δ + g

ρ+ δ + θg
.
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It follows that, asymptotically, there is an increasing relationship between employment and the labor

share (recall that the joint concavity of the utility function requires ν ′(L)e
θ−1
θ
ν(L(t)) to increase in

L). Thus, the BGP level of employment is given by the increasing function LLR(ω), whose elasticity

we denote by εLRL .

To characterize the behavior of the labor share we use Lemma A1. This lemma was derived for

the static model when the labor supply was given by Ls(ω), but we can use it here to describe the

asymptotic behavior of the economy when the supply of labor is given by LLR(ω) .

We consider two cases. First, suppose that σconst ≤ 1. Let kI(n) denote the BGP value for

K(t)/γ(I(t)). Recall that the function ω(I∗, N,K) yields the value of ω = W
RK when the level of

technology is given by I∗, N , and the stock of capital is given by K. Thus, the definition of wI(n)

and kI(n) implies that:

ω(0, n, kI(n)) =
wI(n)

(ρ+ δ + θg)kI (n)
.

Differentiating this expression, we obtain

k′I(n) =
w′
I(n)

1
Rk − ∂ω

∂N

ω
k

1+εLR
L

σconst+εLR
L

.

Using this expression for k′I(n), it follows that the total effect of technology on ω is given by

dω

dn
=
∂ω

∂N
+
∂ω

∂K
k′I(n)

=
∂ω

∂N

(
σconst + εLRL
1 + εLRL

)
+
w′
I(n)

Rk

(
1− σconst

1 + εLRL

)
.

Because ∂ω
∂N > 0 and w′

I(n) > 0, we have that, whenever σconst ≤ 1, ω is increasing in n. More-

over, because the BGP level of employment is given by the increasing function LLR(ω), n raises

employment too.

Next suppose that σconst > 1. Let kN (n) denote the BGP value for K(t)/γ(N(t)). Using an

analogous reasoning as before, we get

ω(−n, 0, kN (n)) =
wN (n)

(ρ+ δ + θg)kN (n)
.

Differentiating this expression, we have

k′N (n) =
w′
N (n)

1
Rk + ∂ω

∂I∗

ω
k

1+εLR
L

σconst+εLR
L

< 0.

Using this expression for k′N (n), it follows that the total effect of technology on ω is given by

dω

dn
=−

∂ω

∂I∗
+
∂ω

∂K
k′N (n)

= −
∂ω

∂I∗

(
σ const + εLRL

1 + εLRL

)
+
w′
N (n)

Rk

(
1− σconst

1 + εLRL

)
.
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Because ∂ω
∂I∗ < 0 and w′

N (n) < 0, we have that, whenever σconst ≥ 1, ω is increasing in n. More-

over, because the BGP level of employment is given by the increasing function LLR(ω), n raises

employment too.

The previous observations show that automation reduces the labor share in the long run. In

addition, we have shown that k′N (n) < 0, which implies that in response to automation, capital

increases above its trend. The induced capital accumulation implies that the impact of automation

on the labor share worsens over time if σconst > 1 and eases if σconst < 1.

When Assumption 2 holds the capital share is given by (1 − n)
(
R(t)
B

)1−σ̂
. In this case, n

reduces the capital share and thus increases the labor share. This expression also shows that when

the rental rate returns to its BGP level, the induced capital accumulation will cause a further

decline in the labor share when σ̂ > 1 and a partial offset when σ̂ < 1. �

Remaining Proofs from Section 4

Proof of Lemma A3: In a BGP we have that the economy grows at the rate g = A κIκN
κI+κN

S.

Suppose that n ≥ max{n, ñ}. In this case, we can write the value functions in the BGP as

vN (n) = b

∫ ∞

0
e−(ρ−(1−θ)g)τ

[
cu (wN (n)e

gτ )ζ−σ − cu (ρ+ δ + θg)ζ−σ
]
dτ ,

vI(n) = b

∫ ∞

0
e−(ρ−(1−θ)g)τ

[
cu (ρ+ δ + θg)ζ−σ − cu (wI(n)e

gτ )ζ−σ
]
dτ.

Thus, the value functions only depend on the unit cost of labor wN (n) and wI(n), and on the rental

rate, which is equal to ρ+ δ + θg in the BGP.

Now consider Taylor expansions of both of these expressions (which are continuously differen-

tiable) around S = 0—so that the growth rate of the economy is small. Thus,

vN (n) =
b

ρ

[
cu (wN (n))

ζ−σ − cu (ρ+ δ + θg)ζ−σ
]
+O(g), (B17)

vI(n) =
b

ρ

[
cu (ρ+ δ + θg)ζ−σ − cu (wI(n))

ζ−σ
]
+O(g).

Because O(g) → 0 as S → 0, we can approximate the above integrals when S is small with the

explicit expressions evaluated at g = 0.

Differentiating the value functions in (B17) establishes that they are both strictly increasing in

n. This follows from the result established in Proposition 5 that, in this region, wI(n) increases in

n and wN (n) decreases in n. Moreover, as S → 0, both vN (n) and vI(n) are positive. Thus, there

exists S̃1 such that for S < S̃1, both vN (n) and vI(n) are positive ans strictly increasing in n.

Now suppose that n ≤ n(ρ) (this case requires that ρ > ρ). In this region we have n∗(t) = n.

Therefore, newly automated tasks are not immediately produced with capital, and thus

vI(n) = b

∫ ∞

0
e−(ρ−(1−θ)g)τ

[
cu
(
min

{
ρ+ δ + θg,

wI(n(ρ))

γ(n(ρ)− n)
egτ
})ζ−σ

−cu
(

wI(n(ρ))

γ(n(ρ)− n)
egτ
)ζ−σ]

dτ.
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The min operator min
{
ρ+ δ + θg, wI(n(ρ))

γ(n(ρ)−n)e
gτ
}

captures the fact that a task that is automated

at time t will only generate profits in the future starting at a time τ > t such that I∗(τ) = I(t). At

this point in time, wI(n(ρ))
γ(n(ρ)−n)e

gτ = ρ + δ + θg, and it becomes profitable to use capital to produce

the automated task.

In addition, wI(n(ρ)) = ρ + δ + θg. Thus, limg→0 vI(n) = 0 and we have vI(n) = O(g) for all

n ≤ n(ρ). On the other hand vN (n) remains bounded away from zero as S → 0. Thus, there exists

S̃2 > 0 such that for S < S̃2 , κNvN (n) > κIvI(n) > 0 as claimed, and vI(n) = O(g).

Finally, consider the case where n < ñ(ρ) (this case requires that ρ < ρ). Because wN (n)e
gτ >

ρ+ δ+ θg and wI(n)e
gτ > ρ+ δ+ θg for all τ ≥ 0, it follows that, in this region, vI(n) > 0 > vN (n)

as claimed. Moreover, the derivatives for wI(n) and wN (n) in equation (A8) imply that, in this

region, both wI(n) and wN (n) are decreasing in n. Thus, in this region, vI(n) is decreasing and

vN (n) is increasing in n.

To complete the proof of this lemma, we simply take S̃ = min{S̃1, S̃2} if θ ≥ 1, and S̃ =

min{S̃1, S̃2,
ρ(κI+κN )

(1−θ)AκIκN
} if θ < 1. This choice also ensures that ρ+ (θ − 1)g > 0 as required in the

Lemma. �

Proof of local stability for the unique BGP when θ > 0: The local stability analysis

applies to the case where ρ > ρ̄ and S < min{S̃, Ŝ} and κI
κN

> κ. In this case, the economy admits

a unique BGP.

When ρ > ρ̄ and S < min{S̃, Ŝ}, we can simplify the characterization of equilibrium. In

particular, in this case, starting with initial conditions n(0) ≥ 0 and k(0) > 0, the equilibrium with

endogenous technology can be summarized by paths for {c(t), k(t), n(t), v(t), SI (t)} such that:

1. The normalized consumption satisfies the Euler equation:

ċ

c
=

1

θ
(FK(k, L;n)− δ − ρ) +O(g).

2. The endogenous labor supply is given by LE(k, c;n), and is defined implicitly by:

cν ′ν(L)
θ−1
θ ≥ FL(k, L;n),

with equality if LE(k, c;n) > 0.

3. The capital stock satisfies the resource constraint:

k̇ = F (k, L;n) +X(k, L;n) − δk − ceν(L)
θ−1
θ +O(g).

Here, X(k, L;n) = b(1 − n∗)ycu(FK)ζ−σ + by
∫ n∗

0 cu
(
FL

γ(i)

)ζ−σ
di are the profits from the

intermediate sales.

4. The transversality condition

lim
t→∞

(k(t) + π(t))e−
∫ t
0 FK(k(s),L(s);n(s))−δ−O(g))ds = 0

holds, where π(t) = I(t)vI(t) +N(t)vN (t) are (the normalized) corporate profits.
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5. Technology evolves endogenously according to:

ṅ = κNS − (κI + κN )G(v)S.

6. The value function, v = κIvI − κNvN , satisfies

(FK − δ − g)v − v̇ = bκIπI(k, L;n)− bκNπN (k, L;n) +O(g). (B18)

Around g = 0, the above system of differential equations is Lipschitz continuous (on their right-

hand side, the equations for ċ, k̇, ṅ and v̇ have bounded derivatives around the BGP {cB , kB , nB , vB};

this can be seen from the matrix containing these derivatives Mendog, which we present below).

Thus, from the theorem of the continuous dependence of trajectories of a dynamical system on

parameters (e.g., Walter, 1998, page 146, Theorem VI), there exists a neighborhood of g = 0 and

a threshold S1 such that for S < S1, the trajectories that solve the above system have the same

direction as the trajectories of the system evaluated at g = 0. In particular, for S < S1, the BGP

is locally saddle-path stable if and only if it is also locally saddle path stable in the limit in which

g = 0.

The previous argument shows that, to analyze the local stability of the BGP when S < S1, it

is sufficient to analyze the limit case in which g = 0. In what follows we focus on this limit.

As in the proof of Proposition 4, the Euler equation and the resource constraint can be linearized

around the BGP (denoted with the subscript B) as follows:

ċ =
cB
θ
(FKn + FKLL

E
n )(n− nB) +

cB
θ
FKLL

E
c (c− cB) +

cB
θ
(FKK + FKLL

E
k )(k − kB)

k̇ =

(
Fn +

1

θ
FLL

E
n +Xn +XLL

E
n

)
(n− nB) +

(
1

θ
FLL

E
c − eν(L)

θ−1
θ +XLL

E
c

)
(c− cB)

+

(
FK +

1

θ
FLL

E
k − δ +Xk +XLL

E
k

)
(k − kB).

Let us denote by Xk,XL and Xn the partial derivatives of the function X(k, L;n) with respect

to each of its arguments.

We now show that, under Assumption 4 (which requires σ > ζ), we have Xk > 0 and XL > 0—

that is, the demand for intermediates is increasing in K and L (which also implies that capital and

labor are complements to intermediates). We first show this for XL. Let us rewrite X as

X =
b

Bσ̂−1(1 − η)
kRζ + by

∫ n

0
cu
(
FL
γ(i)

)ζ−σ
di,

which implies

XL =
b

Bσ̂−1(1− η)
kζRζ−1FKL

+ byL

∫ n

0
cu
(
FL
γ(i)

)ζ−σ
di+ (ζ − σ)by

∫ n

0
cu
(
FL
γ(i)

)ζ−σ
ςL(i)

FLL
FL

di > 0.
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Here, ςL(i) is the share of labor in the production of task i. The above inequality follows from the

fact that yL > 0, FKL > 0, and FLL < 0.

We now show that Xk > 0. Differentiating the labor market-clearing condition yields

yk
y

=(σ − ζ)

∫ n
0 c

u
(
FL

γ(i)

)ζ−σ
γ(i)ζ−1ςL(i)

FKL

FL
di

∫ n
0 c

u
(
FL

γ(i)

)ζ−σ
γ(i)ζ−1di

+ ζ
FKL
FL

+
LEk
LE

>(σ − ζ)

∫ n
0 c

u
(
FL

γ(i)

)ζ−σ
γ(i)ζ−1ςL(i)

FKL

FL
di

∫ n
0 c

u
(
FL

γ(i)

)ζ−σ
γ(i)ζ−1di

.

An application of Chebyshev’s inequality then implies

yk
y
> (σ − ζ)

∫ n
0 c

u
(
FL

γ(i)

)ζ−σ
ςL(i)

FKL

FL
di

∫ n
0 c

u
(
FL

γ(i)

)ζ−σ
di

. (B19)

(Chebyshev’s inequality applies because when ζ > 1, both γ(i)ζ−1 and ςL(i) are increasing in i,

and when ζ < 1, both are decreasing in i.)

Therefore,

Xk =b(1− n)ykc
u(FK)ζ−σ + (ζ − σ)b(1− n∗)ycu(FK)ζ−σςK

FKK
FK

+ byk

∫ n

0
cu
(
FL
γ(i)

)ζ−σ
di+ by(ζ − σ)

∫ n

0
cu
(
FL
γ(i)

)ζ−σ
ςL(i)

FKL
FL

di > 0,

where ςK denotes the share of capital in the production of automated tasks. The inequality then

follows from the fact that yk > 0 and FKK < 0 (recall that σ > ζ under Assumption 4), and the

inequality in equation (B19) derived above.

(When Assumption 2 holds, X = η
1−ηF (k, L;n), and it is clear that Xk > 0 and XL > 0).

Let Qn, Qk and Qc > 0 denote the derivatives of the right-hand side of (B18) with respect to

n, k and c. We can then write the Jacobian of the system of differential equations in terms of the

derivatives {Qn, Qk, Qc}, the derivatives {Xn,Xk,XL}, and the derivatives of the function F as

follows:




0 −(κI + κN )G′(0)S 0 0
−Qn ρ −Qc −Qk

c
∗

θ
(FKn + FKLL

E
n ) 0 c

∗

θ
FKLL

E
c

c
∗

θ
(FKK + FKLL

E

k
)

Fn + 1
θ
FLL

E
n +Xn +XLL

E
n 0 1

θ
FLL

E
c − eν(L) θ−1

θ +XLL
E
c ρ+ 1

θ
FLL

E

k
+Xk +XLL

E

k


 .

Denote this matrix by Mendog, and its eigenvalues by λ1, λ2, λ3, and λ4. These eigenvalues

satisfy the following properties:

• The trace satisfies

Tr(Mendog) = λ1 + λ2 + λ3 + λ4 = 2ρ+Xk +XLL
E
k > 0.

The last inequality follows from the fact that XL > 0 and LEk > 0
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• The determinant satisfies

Det(Mendog) =(κI + κN )G
′(0)S×

[
cB
θ

(
1

θ
FLL

E
c − eν(L)

θ−1
θ +XLL

E
c

)(
Qn(FKK + FKLL

E
k )−Qk(FKn + FKLL

E
n )
)

+
cB
θ

(
ρ+

1

θ
FLL

E
k +Xk +XLL

E
k

)(
Qc(FKn + FKLL

E
n )−QnFKLL

E
c

)

+
cB
θ

(
Fn +

1

θ
FLL

E
n +Xn +XLL

E
n

)(
QkFKLL

E
c −Qc(FKK + FKLL

E
k )
)]
.

The expression for the determinant can be further simplified by noting that Qc(FKK +

FKLL
E
k ) = QkFKLL

E
c . To show this, note that the impact of k, c on Q—the relative in-

centives for automation—depends on the ratio k/LE(k, c;n). For a given value of n, this

ratio determines factor prices and hence Q. Let φ = k
LE(k,c;n)

. Then

Qk = Qφ

(
1

L
−

k

L2
LEk

)
Qc = −Qφ

k

L2
LEc .

These equations then imply

Qc = −Qk
kLEc

L− kLEk
= QkFKLL

E
c

1
kLE

k
−L
k FKL

= QkFKLL
E
c

1

FKK + FKLLEk
,

which gives the desired identity

Replacing this expression for Qc in the determinant, we get

Det(Mendog) =(κI + κN )G
′(0)S×

[
cB
θ

(
1

θ
FLL

E
c − eν(L)

θ−1
θ +XLL

E
c

)(
Qn(FKK + FKLL

E
k )−Qk(FKn + FKLL

E
n )
)

+
cB
θ
FKLL

E
c

(
ρ+

1

θ
FLL

E
k +Xk +XLL

E
k

)(
Qk

FKn + FKLL
E
n

FKK + FKLLEk
−Qn

)]
.

Because κIvI(n) cuts (i.e., is steeper than) κNvN (n) from below, we have

Qn −Qk
FKn + FKLL

E
n

FKK + FKLL
E
k

> 0.

(Note that this expression is equivalent to the derivative of the profit function Q with respect to n

when the capital adjusts to keep the interest rate constant. This derivative is positive when κIvI(n)

cuts κNvN (n) from below). Because FKK + FKLL
E
k < 0 (as shown in the proof of Proposition 4),

we also have that

Qn(FKK + FKLL
E
k )−Qk(FKn + FKLL

E
n ) < 0.

Thus, both terms in the determinant are positive and Det(Mendog) > 0 (recall that LEc < 0 and

LEk > 0, and XL,Xk > 0). Because Det(Mendog) = λ1λ2λ3λ4, this implies that the four eigenvalues

have either zero, two or four negative real parts.
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Let us define Z(Mendog) = λ1λ2λ3 + λ2λ3λ4 + λ3λ4λ1 + λ4λ1λ2. We also have

Z(Mendog) = ρDet(Mexog) +O(S).

From equation (B16), we know Det(Mexog) < 0 and this determinant does not depend on S. Thus,

there exists S2 > 0 such that for S < S2, Z(Mendog) < 0. This implies that we cannot have four

eigenvalues with positive real parts.35

But we also have that Tr(Mendog) > 0 as shown above, and thus not all four eigenvalues can

have negative real parts.

These observations show that when S < S2, Mendog has exactly two eigenvalues with negative

real parts. Theorem 7.19 in Acemoglu (2009) shows that, in the limit case in which g → 0, the

economy with endogenous technology is saddle-path stable. Let Š = min{S1, S2}. Thus, for S < Š,

the unique BGP is locally stable. �

Proofs from Section 5

Proof of Proposition 7: We prove this proposition under Assumption 2. Consider an exogenous

path for technology in which Ṅ = İ = ∆ (with ρ + (θ − 1)AH∆ > 0) and suppose that n(t) >

max{n(ρ), ñ(ρ)}. This implies that in any candidate BGP I∗(t) = I(t) and n∗(t) = n(t).

Define M ∈ [I,N ] as in the main text. Two equations determine M . First, because firms are

indifferent between producing task M with low-skill or high-skill workers, we have

WH(t)

WL(t)
=

γH(M(t))

γL(M(t), t)
=

γH(M(t))1−ξ

Γ(t− T (M(t)))
.

In addition, the relative demand for high-skill and low-skill labor yields

L

H

∫ N(t)
M(t) γH(i)

σ̂−1di
∫M(t)
I(t) γL(i, t)

σ̂−1di
=

(
WH(t)

WL(t)

)σ̂
.

Combining these two equations, we obtain the equilibrium condition

L

H

∫ N(t)
M(t) γH(i)

σ̂−1di
∫M(t)
I(t) γL(i, t)

σ̂−1di
=

(
γH(M(t))1−ξ

Γ(t− T (M(t)))

)σ̂
.

Let m(t) = M(t) − I(t) and n = N(t) − I(t). Using the formula for γL(i, t) and the change of

variables i = N − i′ to rewrite the integrals in the previous equations we get that m(t) is uniquely

35This is independent of whether these eigenvalues are real or complex. For example, if we had two positive real
eigenvalues, λ1, λ2 > 0, and a conjugate pair of complex eigenvalues with positive real part, λ and λ, then

Z(Mendog) = 2ℜ(λ)λ1λ2 + |λ|2(λ1 + λ2),

which cannot be negative. If we had two conjugate pairs of eigenvalues with positive real parts, λ1, λ1 and λ2, λ2,
then

Z(Mendog) = 2ℜ(λ1)|λ2|
2 + 2ℜ(λ2)|λ1|

2
,

which again cannot be negative.

B-26



pinned down by

L

H

∫ n−m(t)
0 γH(i)

1−σ̂di
∫ n
n−m(t) γH(i)

ξ(1−σ̂)Γ
(
i
∆

)σ̂−1
di

=
γH(N(t))1−ξ

γH(n−m(t))σ(1−ξ)Γ
(
n−m(t)

∆

)σ̂ . (B20)

This expression also uses the fact that, because both Ṅ = İ = ∆, we have t − T (i) = N(t)−i
∆ .

The left-hand side of equation (B20)—the relative demand curve—is decreasing in m(t), converges

to zero as m(t) → n, and converges to infinity as m(t) → 0. Moreover, the right-hand side—the

comparative advantage schedule—is increasing in m(t). Thus, this equation uniquely determines

m(t) as a function of N(t) and n.

To prove the first part of the proposition, consider the case in which ξ < 1. Taking the limit as

t → ∞, we have that the right-hand side of equation (B20) converges to infinity. To maintain the

equality, we must have m(t) → 0, which implies that asymptotically M(t) = I(t) and no tasks are

allocated to low-skill workers. Moreover, we have that inequality grows without bound, since

WH(t)

WL(t)
→

γH(N(t))1−ξ

γ(n)1−ξΓ
(
n
∆

) → ∞.

To prove the second part of the proposition, consider the case where ξ = 1. We now show that

there is a BGP in which m(t) = m and WH(t)
WL(t)

is constant. Equation (B20) shows that, in this case,

m only depends on n as claimed. Moreover, the wage gap is also constant over time and given by

WH(t)

WL(t)
=

1

Γ
(
n−m
∆

) .

Now, consider an increase in n, and let s = n −m denote the measure of tasks performed by

high-skill workers. Holding s constant, the left-hand side of equation (B20) is decreasing in n.

Because the left-hand side of equation (B20) is increasing in s and its right-hand side is decreasing

in s, we must have that s is also increasing in n. This implies that, as stated in the proposition,

the wage gap, which is a decreasing function of s, declines with n. �

Proof of Proposition 8: We prove this result under the more general Assumption 2′.

From the Bellman equations provided in the main text, it follows that along a BGP we have

vN (n) = b

∫ n
∆

0
e−(ρ−(1−θ)g)τ cu (wN (n)e

gτ )ζ−σ dτ ,

vI(n) = b

∫ 1−n
∆

0
e−(ρ−(1−θ)g)τ cu (ρ+ δ + θg)ζ−σ dτ.

Here ∆ = κIκN ι(n
D)

κI ι(nD)+κN
S is the endogenous rate at which both technologies grow in a BGP and

g = A∆. As before, a BGP requires that n satisfies

κIι(n)vI(n) = κNvN (n).

Using these formulas, the proof of the proposition follows from the properties of the effective wages

derived in Proposition 5. Following the same steps as in the proof of Proposition 6, we also obtain
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that the equilibrium in this case is locally stable whenever κIι(n)vI(n) cuts κNvN (n) from below.

�

We now turn to Proposition 9. We prove a similar statement in the more general case in which

Assumption 2′ holds. In particular, we show that:

Proposition B2 (Welfare implications of automation in the general model) Consider the

static economy and suppose that Assumptions 1, 2′ and 3 hold, and that I∗ = I < Ĩ. Let

W = u(C,L) denote the welfare of households and let F (K,L; I,N) denote the net output when the

amount of labor supplied is L and capital is K.

1. Consider the baseline model without labor market frictions, so that the representative house-

hold chooses the amount of labor without constraints, and thus W
C = ν ′(L). Then:

dW

dI
=
(
Ce−ν(L)

)1−θ FI
F

> 0,

dW

dN
=
(
Ce−ν(L)

)1−θ FN
F

> 0.

2. Suppose that there are labor market frictions, so that employment is constrained by a quasi-

labor supply curve L ≤ Lqs(ω). Suppose also that the quasi-labor supply schedule Lqs(ω) is

increasing in ω, has an elasticity ε̃L > 0, and is binding in the sense that W
C > ν′(L). Then:

dW

dI
=
(
Ce−ν(L)

)1−θ [FI
F

+ L

(
W

C
− ν ′(L)

)
ε̃L
ω

∂ω

∂I∗

]
≶ 0.

dW

dN
=
(
Ce−ν(L)

)1−θ [FN
F

+ L

(
W

C
− ν′(L)

)
ε̃L
ω

∂ω

∂N

]
> 0.

Proof. The unconstrained allocation of employment solves

W = max
L≥0

u(F (K,L; I,N), L).

Thus, the envelope theorem implies

WI = uCFI =
(
Ce−ν(L)

)1−θ FI
F

> 0

(recall that FI > 0 because we assumed I∗ = I) and also

WN = uCFN =
(
Ce−ν(L)

)1−θ FN
F

> 0

(recall that FN > 0 because we imposed Assumption 3).

Now suppose that L ≤ Lqs(ω). The allocation of employment now solves:

W = max
L≥0

u(F (K,L; I,N), L) + λ(Lqs(ω)− L),

where λ = ucFL + uL = cuc

(
FL

c − ν′(L)
)
> 0 is the multiplier on the employment constraint (by

assumption this constraint is binding). Using the envelope theorem,

WI = uCFI + λL′
qs(ω)

∂ω

∂I∗
=
(
Ce−ν(L)

)1−θ [FI
F

+ L

(
W

C
− ν ′(L)

)
ε̃L
ω

∂ω

∂I∗

]
≶ 0,
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and

WN = uCFN + λL′
qs(ω)

∂ω

∂N
=
(
Ce−ν(L)

)1−θ [FN
F

+ L

(
W

C
− ν ′(L)

)
ε̃L
ω

∂ω

∂N

]
> 0.

The expressions presented in Proposition 9 follow from the previous two equations because when

Assumption 2 holds, we also have

FI
F

=
Bσ̂−1

1− σ̂

((
W

γ(I)

)1−σ̂

−R1−σ̂

)
ε̃L
ω

∂ω

∂I
=−

ε̃L
σ̂ + ε̃L

ΛI

FN
F

=
Bσ̂−1

1− σ̂

(
R1−σ̂ −

(
W

γ(N)

)1−σ̂
)

ε̃L
ω

∂ω

∂N
=

ε̃L
σ̂ + ε̃L

ΛN .

Properties of the constraint efficient allocation:

We now derive the constrained efficient allocation both when the labor market is frictionless

and when there is a friction as the one introduced in Proposition 9. We focus on the case in which

Assumption 2 holds, although similar insights apply in general.

First the planner removes markups. This implies that net output is given by

F p(K,L; I∗, N) =µ
η

η−1B


(I∗ −N + 1)

1
σ̂K

σ̂−1
σ̂ +

(∫ N

I∗
γ(i)σ̂−1di

) 1
σ̂

L
σ̂−1
σ̂




σ̂
σ̂−1

,

= µ
η

η−1F (K,L; I∗, N).

Using this expression, we can write the planner’s problem as:

max
C(t),L(t),SI (t),SN (t)

∫ ∞

0
e−ρt

[C(t)e−ν(L(t))]1−θ − 1

1− θ
dt

Subject to

K̇(t) = µ
η

η−1F (K,L; I∗, N)− δK(t)− C(t).

Let µN (t) denote the marginal value of new tasks (increasing N) in terms of the final good.

Let µI(t) denote the marginal value of automation (increasing I) in terms of the final good. These

marginal values are the social counterparts to VN (t) and VI(t) in the decentralized economy. As-

suming that the planner operates in the region where I∗(t) = I(t), we can write these marginal

values as

µN (t) =(1− η)µη(1−σ̂)
∫ ∞

t
e−

∫ τ

t
(R(s)−δ)ds σ̂

1− σ̂
Y (τ)

(
R(τ)1−σ̂ − γ(n(τ))σ̂−1w(τ )1−σ̂

)
dτ ,

µI(t) =(1− η)µη(1−σ̂)
∫ ∞

t
e−

∫ τ
t
(R(s)−δ)ds σ̂

1− σ̂
Y (τ)

(
w(τ )1−σ̂ −R(τ )1−σ̂

)
dτ .

With some abuse of notation and to maximize the parallel with the decentralized expressions for

VN and VI , we are using R(t) to denote the marginal product of capital µ
η

η−1FK and w(t) to denote

the (normalized) marginal product of labor µ
η

η−1FLe
−AI∗(t).
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These observations show that the efficient allocation satisfies similar conditions to the decen-

tralized economy in our main model in Section 4. The only difference is that now, the allocation

of scientists is guided by µN (t) and µI(t) and satisfies:

SI(t) = SG

(
κIµI(t)− κNµN (t)

Y (t)

)
, SN (t) = S

[
1−G

(
κIµI(t)− κNµN (t)

Y (t)

)]
,

so that in the efficient allocation, n(t) changes endogenously according to:

ṅ(t) = κNS − (κN + κI)G

(
κIµI(t)− κNµN (t)

Y (t)

)
S.

One of the key insights from Proposition 6 is that the expected path for factor prices determines

the incentives to automate and create new tasks. The equations for µN and µI show that a planner

would also allocate scientists to developing both types of technologies following a similar principle;

guided by the cost savings that each technology grants to firms. However, the fact that µN 6= VN

and µI 6= VI shows that the decentralized allocation is not necessarily efficient. The inefficiency

arises because technology monopolists do not earn the full gains that their technology generates,

nor internalize how their innovations affect other existing and future technology monopolists.

We now show that labor market frictions change the planner’s incentives to allocate scientists.

By contrast, conditional on the wage level, such frictions do not change the market incentives to

automate or create new tasks.

Without frictions, the efficient level of labor satisfies

(
µ

η
η−1FL − cν ′(L)

)
µK ≤ 0,

with equality if L > 0.

Now suppose that there is an exogenous constraint on labor that requires L ≤ Lqs(ω). Let µL

be the multiplier of this constraint. We have that:

µL =

{ (
µ

η
η−1FL − cν ′(L)

)
µK > 0 if L = Lqs(ω)

0 if L < Lqs(ω)

Because the planner takes into account the first-order effects from changes in the employment level,

the values for µN and µI change to:

µN (t) = (1− η)µη(1−σ̂)
∫ ∞

t
e−

∫ τ

t
(R(s)−δ)ds

[
σ̂

1− σ̂
Y (τ)

(
R(τ)1−σ̂ − γ(n(τ))σ̂−1w(τ )1−σ̂

)

+
(
µ

η
η−1FL − cν ′(L)

)
L

ε̃L
σ̂ + ε̃L

ΛN

]
dτ,

µI(t) = (1− η)µη(1−σ̂)
∫ ∞

t
e−

∫ τ

t
(R(s)−δ)ds

[
σ̂

1− σ̂
Y (τ)

(
w(τ )1−σ̂ −R(τ )1−σ̂

)

−
(
µ

η
η−1FL − cν ′(L)

)
L

ε̃L
σ̂ + ε̃L

ΛI

]
dτ .

Thus, when the level of employment is below its unconstrained optimum, the planner values the

introduction of new tasks more because they raise the marginal product of labor and ease the
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constraint on total employment. Likewise, the planner values automation less because she recognizes

that by reducing employment automation has a first-order cost on workers. Importantly, the market

does not recognize the first-order costs from automation or the first-order benefits from introducing

new tasks. As the expressions for VN and VI show, only factor prices—not the extent of frictions

in the labor market— determine the incentives to introduce these technologies.

When New Tasks Also Use Capital

In our baseline model, new tasks use only labor. This simplifying assumption facilitated our

analysis, but is not crucial or even important for our results. Here we outline a version of the

model where new tasks also use capital and show that all of our results continue to hold in this

case. Suppose, in particular, that the production function for non-automated tasks is

y(i) =

[
ηq(i)

ζ−1
ζ + (1− η)

(
Bν(γ(i)l(i))

νk(i)1−ν
) ζ−1

ζ

] ζ
ζ−1

, (B21)

where k(i) is the capital used in the production of the task (jointly with labor), ν ∈ (0, 1), and

Bν = ν−ν(1− ν)−(1−ν) is a constant that is re-scaled to simplify the algebra.

Automated tasks i ≤ I can be produced using labor or capital, and their production function

takes the form

y(i) =

[
ηq(i)

ζ−1
ζ + (1− η)

(
kA(i) +Bν(γ(i)l(i))

νk(i)1−ν
) ζ−1

ζ

] ζ
ζ−1

. (B22)

Here kA(i) is the amount of capital used in an automated task, while k(i) is the amount of capital

used to produce a task with labor. Comparing these production functions to those in our baseline

model (2) and (3), we readily see that the only difference is the requirement that labor has to

be combined with capital in all tasks (while automated tasks continue not to use any labor).

Note also that when ν → 1, we recover the model in the main text as a special case. It can be

shown using a very similar analysis to that in our main model that most of the results continue

to hold with minimal modifications. For example, there will exist a threshold Ĩ such that tasks

below I∗ = min{I, Ĩ} will be produced using capital and the remaining more complex tasks will

be produced using labor. Specifically, whenever R ∈ argmin
{
R,R1−ν

(
W
γ(i)

)ν}
and i ≤ I, the

relevant task is produced using capital, and otherwise it is produced using labor. Since γ(i) is

strictly increasing, this implies that there exists a threshold Ĩ at which, if technologically feasible,

firms would be indifferent between using capital and labor. Namely, at task Ĩ, we have R =W/γ(Ĩ),

or
W

R
= γ(Ĩ).

This threshold represents the index up to which using capital to produce a task yields the cost-

minimizing allocation of factors. However, if Ĩ > I, firms will not be able to use capital all the way

up to task Ĩ because of the constraint imposed by the available automation technology. For this

reason, the equilibrium threshold below which tasks are produced using capital is given by

I∗ = min{I, Ĩ},
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meaning that I∗ = Ĩ < I when it is technologically feasible to produce task Ĩ with capital, and

I∗ = I < Ĩ otherwise.

The demand curves for capital and labor are similar, with the only modification that the demand

for capital also comes from non-automated tasks. In particular, the market-clearing conditions

become:

K =Y (1− ν)(1− η)

∫ N

I∗
R(1−ν)(1−ζ)−1

(
W

γ(i)

)ν(1−ζ)
cu
(
R1−ν

(
W

γ(i)

)ν)ζ−σ
di (B23)

+ Y (1− η)(I∗ −N + 1)cu(R)ζ−σR−ζ .

L =Y ν(1− η)

∫ N

I∗

1

γ(i)
R(1−ν)(1−ζ)

(
W

γ(i)

)ν(1−ζ)−1

cu
(
R1−ν

(
W

γ(i)

)ν)ζ−σ
di. (B24)

Following the same steps as in the text, we can then establish analogous results. This requires the

more demanding Assumption 2′′, which guarantees that the demand for factors above is homothetic:

Assumption 2′′: One of the following three conditions holds:

• η → 0;

• ζ → 1;

• or σ − ζ → 0.

Proposition B3 (Equilibrium in the static model when ν ∈ (0, 1)) Suppose that Assumption

1′′ holds. Then, for any range of tasks [N−1, N ], automation technology I ∈ (N−1, N ], and capital

stock K, there exists a unique equilibrium characterized by factor prices, W and R, and threshold

tasks, Ĩ and I∗, such that: (i) Ĩ is determined by equation (6) and I∗ = min{I, Ĩ}; (ii) all tasks

i ≤ I∗ are produced using capital and all tasks i > I∗ are produced combining labor and capital; (iii)

the capital and labor market-clearing conditions, equations (B23) and (B24), are satisfied; and (iv)

factor prices satisfy the ideal price index condition:

(I∗ −N + 1)cu(R)1−σ +

∫ N

I∗
cu
(
R1−ν

(
W

γ(i)

)ν)1−σ

di = 1. (B25)

Proof. The proof follows the same steps as Proposition 1.

Comparative statics in this case are also identical to those in the baseline model (as summarized

in Proposition 2) and we omit them to avoid repetition. The dynamic extension of this more general

model is also very similar, and in fact, Proposition 4 applies identically, and is also omitted. One

can also define ρ, n(ρ) and ñ(ρ) in an analogous nway as we did in the proof of Lemma A2. To

highlight the parallels, we just present the equivalent of Proposition 6.

Proposition B4 (Equilibrium with endogenous technology when ν ∈ (0, 1)) Suppose that

Assumptions 1′, 2′′, and 4 hold. Then, there exists S such that, when S < S, we have:

1 (Full automation) For ρ < ρ, there is a BGP in which n(t) = 0 and all tasks are produced

with capital.
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For ρ > ρ, all BGPs feature n(t) = n > n(ρ). Moreover, there exist κ > κ > 0 such that:

2 (Unique interior BGP) if κI
κN

> κ there exists a unique BGP. In this BGP we have

n(t) = n ∈ (n(ρ), 1) and κNvN (n) = κIvI(n). If, in addition, θ = 0, then the equilibrium is

unique everywhere and the BGP is globally (saddle-path) stable. If θ > 0, then the equilibrium

is unique in the neighborhood of the BGP and is asymptotically (saddle-path) stable;

3 (Multiple BGPs) if κ > κI
κN

> κ, there are multiple BGPs;

4 (No automation) If κ > κI
κN

, there exists a unique BGP. In this BGP n(t) = 1 and all tasks

are produced with labor.

Proof. The proof of this result closely follows that of Proposition 6, especially exploiting the fact

that the behavior of profits of automation and the creation of new tasks behave identically to those

in the baseline model, and thus the value functions behave identically also.

Microfoundations for the Quasi-Labor Supply Function

We provide various micro-foundations for the quasi-labor supply expression used in the main text,

Ls
(
W
RK

)
.

Efficiency wages: Our first micro-foundation relies on an efficiency wage story. Suppose that,

when a firm hires a worker to perform a task, the worker could shirk and, instead of working, use

her time and effort to divert resources away from the firm.

Each firm monitors its employees, but it is only able to detect those who shirk at the flow rate q.

If the worker is caught shirking, the firm does not pay wages and retains its resources. Otherwise,

the worker earns her wage and a fraction of the resources that she diverted away from the firm.

In particular, assume that each firm holds a sum RK of liquid assets that the worker could

divert, and that if uncaught, a worker who shirks earns a fraction u(i) of this income. We assume

that the sum of money that the worker may be able to divert is RK to simplify the algebra. In

general, we obtain a similar quasi-supply curve for labor so long as these funds are proportional to

total income Y = R K +WL.

In this formulation, u(i) measures how untrustworthy worker i is, and we assume that this

information is observed by firms. u(i) is distributed with support [0,∞) and has a cumulative

density function G. Moreover, we assume there is a mass L of workers. A worker of type u(i) does

not shirk if and only if:

W ≥ (1− q)[W + u(i)RK] →
W

RK

q

1− q
≥ u(i).

Thus, when the market wage is W , firms can only afford to hire workers who are sufficiently

trustworthy. The employment level is therefore given by:

Ls = G

(
W

RK

q

1− q

)
L.
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When q = 1—so that there is no monitoring problem—, we have G
(
W
RK

q
1−q

)
= 1, and the supply

of labor is fixed at L for all wages W ≥ 0. However, when q < 1—so that there is a monitoring

problem—, we have Ls < L. Even though all workers would rather work than stay unemployed,

the monitoring problem implies that not all of them can be hired at the market wage. Notice that,

though it is privately too costly to hire workers with u(i) > W
RK

q
1−q , these workers strictly prefer

employment to unemployment.

Alternatively, one could also have a case in which firms do not observe u(i), which is private

information. This also requires that firms do not learn about workers. To achieve that, we assume

that workers draw a new value of u(i) at each point in time.

When the marginal value of labor is W , firms are willing to hire workers so long as the market

wage W̃ satisfies:

(W − W̃ )G

(
W̃

RK

q

1− q

)
− (1− q)

(
W̃ +RK

∫ ∞

W̃
RK

q
1−q

udG(u)

)
≥ 0.

This condition guarantees that the firm makes positive profits from hiring an additional worker,

whose type is not known.

Competition among firms implies that the equilibrium wage at each point in time satisfies:

(W − W̃ )G

(
W̃

RK

q

1− q

)
− (1− q)

(
W̃ +RK

∫ ∞

W̃
RK

q
1−q

udG(u)

)
= 0.

This curve yields an increasing mapping from W
RK to W̃

RK , which we denote by

W̃

RK
= h

(
W

RK

)
.

Therefore, the effective labor supply in this economy, or the quasi-supply of labor, is given by

Ls = G

(
W̃

RK

q

1− q

)
= G

(
h

(
W

RK

)
q

1− q

)
L.

As in the previous model, even though the opportunity cost of labor is zero, the economy only

manages to use a fraction of its total labor.

Minimum wages: Following Acemoglu (2003), another way in which we could obtain a quasi-

labor supply curve is if there is a binding minimum wage. Suppose that the government imposes

a (binding) minimum wage W̃ and indexes it to the income level (or equivalently the level of

consumption):

W̃ = ̺ · (RK +WL),

with ̺ > 0. Here, RK + WL represents the total income in the economy (net of intermediate

goods’ costs).

Suppose that the minimum wage binds. Then:

L =
1

̺
sL,

which defines the quasi-labor supply in this economy as an increasing function of the labor share.
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