
Interpretation of point forecasts with unknown directive

Patrick Schmidt†
Heidelberg Institute for Theoretical Studies, Heidelberg, Germany and
Goethe University Frankfurt, Frankfurt, Germany

Matthias Katzfuss
Texas A&M University, College Station, USA

Abstract.
Point forecasts can be interpreted as functionals (i.e., point summaries) of predictive distri-
butions. We consider the situation of unknown directives and show how to identify the func-
tional based on point forecasts and associated realizations. Focusing on state-dependent
quantiles and expectiles, we construct a generalized method of moments estimator for the
functional, along with tests of optimality and more specific hypotheses. Using simulations,
we demonstrate that our optimality test is better calibrated and more powerful than existing
solutions. In a data example, we show that the gross domestic product (GDP) Greenbook
forecasts of the U.S. Federal Reserve can be interpreted as state-dependent quantiles.

Keywords: functional, expectile, forecast optimality, generalized method of moments,
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1. Introduction

Forecasts are frequently the basis of crucial decisions. Yet, they are fraught with un-
certainty due to imperfections in the observation, understanding, and modeling of the
underlying mechanisms. To account for this uncertainty, it is increasingly recognized
that forecasts should be probabilistic in nature. If forecasts are issued in the form of
predictive distributions, it is straightforward to compute the action that maximizes the
expected utility, test for optimality, or compare them to other forecasts (see Gneiting
and Katzfuss, 2014, for a recent review of probabilistic forecasting).

However, point forecasts are still ubiquitous. Their interpretation requires assump-
tions on the decision process or directive that the forecasters used to generate the point
forecasts (Elliott and Timmermann, 2008; Engelberg et al., 2009; Manski, 2016). A
directive can be expressed through a functional (i.e., a real-valued summary) of the
predictive distribution. It is a widely used assumption that the reported functional is
the mean. However, there is often little justification for this choice. Knowing which
functional was used by the forecaster is important, as it allows for proper interpretation,
evaluation, testing, and comparison of point forecasts (Gneiting, 2011).

We consider point forecasts with an unknown directive, for which the forecaster only
implicitly reported a certain functional of the predictive distribution. This situation can
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arise with expert forecasts or response items in surveys. Another important example
for forecasts with unknown directives is output from complex computer models, which
are often tuned by multiple individuals to achieve forecasts that the individuals perceive
as optimal in a way that might neither be transparent nor explicitly defined. Such
forecasts would be most informative if the user knew the directive under which the
forecast was issued. Our goal here is to estimate the functional from a time series of point
forecasts and associated realizations, and to construct tests regarding the properties of
the functional. Once the functional has been estimated, the point forecasts can be
coherently interpreted, improved, and compared to other point or probability forecasts.

Past work on estimating a directive based on point forecasts and realizations has
focused on estimation of the loss function. Elliott et al. (2005) provide a generalized
method of moments (GMM) estimator of the loss function for constant preferences and
linear forecasting models. Patton and Timmermann (2007) apply this method to the
U.S. Federal Reserve’s gross domestic product (GDP) forecasts with a new class of loss
functions, which consists of quadratic splines that are flexible with respect to a state vari-
able. Recently, piecewise linear and piecewise quadratic loss functions have been used in
various economic applications (Christodoulakis and Mamatzakis, 2008; Capistrán, 2008;
Elliott et al., 2008; Krol, 2013; Pierdzioch et al., 2013; Wang and Lee, 2014; Fritsche
et al., 2015). Komunjer and Owyang (2012) derive related estimators for multivariate
forecasts and loss functions. Lieli and Stinchcombe (2013) discuss the recoverability
of the loss function if conditional distributions are observable. In a neuroscience ap-
plication, Körding and Wolpert (2004) estimate the loss function implicit in human
sensorimotor control by varying targets in an experimental task. Sims (2015) uses a
similar approach to infer the implicit loss function of the visual working memory. Guler
et al. (2017) propose Mincer-Zarnowitz quantile and expectile regressions to account for
asymmetric loss functions.

Here, we argue that the loss function is, in fact, not identifiable based solely on point
forecasts and realizations. Hence, we propose to formalize point forecasts via functionals
rather than loss functions. This allows for a more general definition of forecast optimality,
and we show the existence of identifying moment conditions under weaker conditions.
For estimation, we focus on state-dependent quantiles and expectiles, for which the level
of asymmetry can depend on the current state. We propose a GMM estimator and show
consistency and asymptotic normality under mild assumptions. We also discuss testing
of forecast optimality and other forecast properties.

Our approach generalizes the findings of Elliott et al. (2005) to state-dependent fore-
casts that are not required to be linear functions of the instrumental variables. In com-
parison to Patton and Timmermann (2007), who consider state-dependent loss functions,
our methods are more interpretable and fully theoretically justified. Further, our ap-
proach can be used for performance comparisons between point and probability forecasts
and for creating density forecasts from point forecasts.

In a data example we illustrate that our approach yields accessible and scientifically
relevant insights. Specifically, we show that the GDP Greenbook forecasts of the U.S.
Federal Reserve can be interpreted as state-dependent quantiles. In a Monte Carlo study,
our approach exhibits better calibrated and more powerful optimality tests than existing
solutions, and we demonstrate that our more general definition of optimality can be used
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to distinguish different state-dependent forecasting behavior.

This manuscript is organized as follows. In Section 2, we introduce optimal forecasts
and discuss non-parametric identification. In Section 3, we introduce a parametric GMM
estimator in the time series setting, study its large sample behavior, and discuss tests of
optimality and more specific hypotheses. In Section 4, we apply the method to the GDP
Greenbook forecasts. In Section 5, we compare our methodology to the approach of
Patton and Timmermann (2007) using simulated data. Section 6 serves as a discussion.
Technical results and proofs are provided in the Appendix. Sections S1 through S4
contain additional details in an online Supplementary Material document.

2. Identification

In this section, we discuss non-parametric identification of the functional. Then, we
describe the relationship between functionals and loss functions, and argue that loss
functions cannot be identified.

Consider a real-valued random variable Y and a corresponding point forecast X,
which is based on the information available to the forecaster, as encoded by some σ-
algebra F . Commonly, a point forecast is interpreted as the mean of the conditional
distribution L(Y |F), i.e.,

X = E[Y |F ].

Here and throughout the paper, equality of random variables is understood to hold
almost surely. We proceed to a more general framework. Let α : P 7→ R be a functional
(Horowitz and Manski, 2006; Huber and Ronchetti, 2009, p. 9), i.e., a single-valued
mapping from some class of probability distributions to the real line. We use the short
notation α(Y |F) for α(L(Y |F)).

Definition 1 (optimal α-forecast). A random variable X is an optimal α-forecast
of Y with respect to the information set F if

X = α(Y |F).

Throughout, we call a functional α symmetric if, for every symmetric distribution P
with symmetry point c, it holds that c = α(P ). Prominent alternatives to the mean
functional are symmetric functionals, like the median, or asymmetric generalizations
such as quantiles and expectiles.

Now, crucially, we consider the situation in which the functional used by the fore-
caster and the conditional distributions L(Y |F) are unknown. In line with seminal
extant work on professional economic forecasters (Elliott et al., 2005; Patton and Tim-
mermann, 2007), we merely assume that the unknown conditional distribution consti-
tutes a predictive distribution consistent with some information set F .

We consider single-valued scalar functionals throughout, although the results extend
to the set-valued case under additional technical considerations. If R is a random variable
(or vector), the relation R ∈ F indicates that R is F-measurable. The partial derivative
of a function g(x, y) with respect to x is denoted as g(x)(x, y).
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2.1. Identifying moment conditions for functionals
It is well-known that an optimal mean-forecast relative to the information set F implies
an identifying moment condition (Diebold and Lopez, 1996):

X = E[Y |F ] ⇐⇒ E[(Y −X)W ] = 0 for all W ∈ F , (1)

where the components of the random vector W (henceforth called instruments) honor the
information F available to the forecaster when the prediction is issued. The relation (1)
allows testing whether a point forecast is an optimal mean-forecast. In the hypothetical
limit of an infinite supply of data and instruments, a non-rejection of the test is a
sufficient condition for mean-forecast optimality.

This property of optimal mean-forecasts can be generalized to optimal α-forecasts:
Let X be a forecast based on some information set F . For every sufficiently regular
functional α : P 7→ R, there exists a function V identifying the optimal α-forecast, i.e.,

X = α(Y |F) ⇐⇒ E[V (X,Y )W ] = 0 for all W ∈ F . (2)

For a formal statement and regularity conditions see Lemma 1 in Appendix A. The proof
applies recent results on identification functions (Steinwart et al., 2014) in the predic-
tion space setting (Gneiting et al., 2007; Gneiting and Ranjan, 2013; Strähl and Ziegel,
2017). We can find the identification function V of a functional α via loss functions as
described in Section 2.2 or by elementary considerations as examplified in Section 3.1.
The regularity conditions on the functional in Lemma 1 exclude some functionals (e.g.,
the mode) for their lack of continuity, and others (e.g., the variance) because they do
not induce convex level sets on the class of absolutely continuous distributions.

The moment conditions in (2) identify the functional only on the class of arising
conditional distributions L(Y |F). For example, the mean and the median are distinct
functionals in general, but if the considered distribution is symmetric, the two functionals
are identical and cannot be identified. In Section 3, we focus on optimal forecasts
in the form of either state-dependent quantiles or state-dependent expectiles, which
allows for unique identification without involving unduly strong assumptions on the
data-generating process.

2.2. Relationship between functionals and loss functions
Previous work (e.g., Elliott et al., 2005) defined optimal point forecasts via loss functions
L(x, y) as

X = arg minx∈RE[L(x, Y )|F ]. (3)

Under regularity conditions, Equation (3) specifies a well-defined optimal αL-forecast,
where

αL : P 7→ R, P 7→ arg minx∈REY∼P [L(x, Y )]

for a suitable class P of probability distributions. For example, the mean-functional
can be defined as minimizing expected quadratic loss, L(x, y) = (x − y)2, for probabil-
ity distributions with finite second moments. Some functionals, such as the expected
shortfall and the mode, cannot be defined via loss functions for broad classes of probabil-
ity distributions (Gneiting, 2011; Heinrich, 2014). Consequently, the optimal α-forecast
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from Definition 1 constitutes a more general optimality. The conditions for the existence
of the identifying moment conditions (2) are satisfied for any functional defined via a
continuous loss function; see Appendix A for details. In fact, every functional α with
identifying moment conditions (2) can be defined via a loss function under regularity
conditions on L(Y |F). In this case, the identification function V derives from the partial
derivative L(x)(x, y) of any loss function L that defines α (Steinwart et al., 2014, Thm. 8;
Fissler and Ziegel, 2016, Thm. 3.2). This fact can be used to find identification functions
for functionals defined via loss functions.

2.3. Nonidentifiability of loss functions
For a specific functional, there might be many loss functions defining it (Gneiting, 2011;
Ehm et al., 2016). It is therefore impossible to identify the shape of the loss, as all
these functions lead to the same functional-forecast and identical moment conditions.
For example, given any convex and differentiable function Φ, the Bregman loss function,
L(x, y) = Φ(y)−Φ(x)−Φ′(x)(y− x), induces an optimal mean-forecast (Savage, 1971).
Hence, loss functions are not identified, but functionals are identified to the extent that
they differ on the predictive distributions.

3. Parametric estimation and testing of state-dependent quantiles and expec-
tiles

We turn to parametric estimation of possibly varying functionals in the time series set-
ting. Consider a stochastic process {(Xt, Yt, Zt) : t = 1, 2, . . .} of forecasts, observations,
and state variables, for which we have a sample path {(xt, yt, zt) : t = 1, . . . , T}. Our
goal is to infer the functional that the point forecasts represent.

We assume that at each point in time an optimal α-forecast is issued, i.e.,

Xt = α(Yt|Ft) for t = 1, 2, . . . .

In the situation of an h-step ahead forecast, the available information is typically gen-
erated by lagged variables of the outcome Y and the vector-valued state variable Z, in
which case Ft = σ(Y1, . . . , Yt−h, Z1, . . . , Zt−h). For ease of notation, statements about all
time points are often denoted without subscripts. For example, we write X = α(Y |F)
instead of Xt = α(Yt|Ft) for t = 1, 2, . . . .

Extending Definition 1, we allow the functional α to depend on the current situa-
tion, represented by the F-measurable state variable Z. We call this a state-dependent
functional. Asymmetric and state-dependent point forecasts can arise for a variety of
reasons, including varying preferences of the forecaster, asymmetric information, and
non-linear transformation of data (see Section S1 for details).

In light of the results and discussion in Section 2, we assume that the true functional
is a state-dependent quantile, or that it is a state-dependent expectile of L(Y |F). By
restricting the class of feasible functionals to only quantiles (or expectiles), the func-
tionals induce distinct forecasts under minimal assumptions, which guarantees unique
identification even under state-dependence.
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3.1. State-dependent quantiles and expectiles
The τ -quantile functional qτ (P ) of a distribution P with continuous and strictly increas-
ing cumulative distribution function is the unique solution x to the equation P ((−∞, x]) =
τ. We can express this directly in terms of the identification function of the τ -quantile,
namely Vqτ (x, y) = 1(y ≤ x)− τ :

X = qτ (Y |F) ⇐⇒ E[(1(Y ≤ X)− τ)W ] = 0 for all W ∈ F .

While quantiles are asymmetric generalizations of the median, expectiles are analo-
gously defined as asymmetric generalizations of the mean. Specifically, the τ -expectile
eτ (P ) of a distribution P with finite mean was introduced in Newey and Powell (1987)
as the unique solution x to the equation

τ

1− τ
=

∫ x
−∞(x− y)dP (y)∫∞
x (y − x)dP (y)

.

This is equivalent to

X = eτ (Y |F) ⇐⇒ E[|1(Y ≤ X)− τ | (X − Y )W ] = 0 for all W ∈ F ,

which reveals the corresponding identification function, namely Veτ (x, y) = |1(x ≥ y)−
τ |(x− y).

Hence, quantiles and expectiles can be identified under weak assumptions on the
conditional distributions. We allow for additional flexibility and let the level τ of the
quantile or expectile depend on the state variable z via a parametric function m(z, θ).

Definition 2 (specification model). Let Θ be a subset of Rp and suppose that
the state variable z takes values in Rk. A specification model is a function m(z, θ) that
maps Rk ×Θ into the unit interval (0, 1).

We say that a specification model m(z, θ) is continuous (continuously differentiable) if
it is continuous (continuously differentiable) in θ ∈ Θ for every z.

Let us consider examples for such specification models in Table 1, where we assume
that z is real-valued. The special case of a constant model assumes that the forecaster
always states the θ-quantile or expectile and was implemented in previous work (Elliott
et al., 2005; Christodoulakis and Mamatzakis, 2008; Krol, 2013; Pierdzioch et al., 2013;
Fritsche et al., 2015). The break model generalizes the constant model to allow for
a structural break in the risk assessment at the threshold value t. The linear model
specifies the dependence of the quantile or expectile level on the state z, where the
logistic function Ψ(x) = (1 + exp(−x))−1 ensures that it lies in the unit interval. Lastly,
we suggest a method to detect periodic asymmetry in the forecasts. The periodic model
provides information about the base level θ1 and the magnitude θ2 and period θ3 of the
periodic asymmetry.

3.2. GMM estimator
Let us now assume that the forecast X is an optimal quantile-forecast with state-
dependent level described by the specification model m(z, θ0),

Xt = qm(Zt,θ0)(Yt|Ft) for t = 1, 2, . . . . (4)
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Table 1. Specification models.
Name Model Θ
Constant m(z, θ) = θ (0, 1)
Break m(z, θ) = 1(z ≤ t)θ1 + 1(z > t)θ2 (0, 1)2

Linear m(z, θ) = Ψ(θ1 + zθ2) R2

Periodic m(z, θ) = Ψ(θ1 + θ2 sin(2πz/θ3)) R2 × R+

Crucially, we assume that Zt is Ft-measurable and it follows that

E[(1(Yt ≤ Xt)−m(Zt, θ0))Wt] = 0 for all Wt ∈ Ft for t = 1, 2, . . . .

We refer to g(θ) = (1(y ≤ x)−m(z, θ))w as the moment function. Given a sample path
of Ft-measurable instrumental variables wt = (wt,1, . . . , wt,q)

′, the empirical mean of the
moment function is given by

gT (θ) =
1

T

T∑
t=1

(1(yt ≤ xt)−m(zt, θ))wt. (5)

Then, the standard GMM estimator is obtained by minimizing the quadratic norm of
the empirical moment:

θ̂T = arg minθ∈Θ gT (θ)′Ŝ−1
T gT (θ), (6)

where the weighting matrix derives from a heteroskedasticity and auto-correlation consis-
tent (HAC) estimator ŜT of the covariance matrix of the moment function g, as proposed
by Newey and West (1987). Throughout this study, we use the standard two-step GMM

procedure proposed in Hansen (1982) to find Ŝ−1
T in (6).

If the specification model m is continuous, there exists an Ft-measurable instrumental
variable Wt such that the GMM estimator is consistent for the true parameter value
θ0 ∈ Θ. For a formal statement see Theorem 1 in Appendix B. The crucial point
is to establish unique identification of the parameter without restrictive assumptions
on the unobservable conditional distributions L(Y |F). Analogously, one can assume
an expectile forecast X = em(Z,θ0)(Y |F) and use the moment function g(θ) = (1(y ≤
x)−m(z, θ))(x− y)w, which also leads to a consistent estimator.

We thus establish the existence of a suitable instrument to achieve consistency with-
out assuming a linear forecasting model nor knowledge of the forecasting model’s pa-
rameters. Note that under the assumption of a linear forecasting model, Elliott et al.
(2005) obtain the stronger result that any subset of the used information identifies their
one-dimensional parameter. We discuss the choice of the instrumental variables w in
Section 3.3.

Once the identification of the system is established, standard GMM theory (Hansen,
1982) provides a range of useful asymptotic results. If the specification model m(z, θ) is
continuously differentiable, the GMM estimator is asymptotically normal,

√
T (θ̂T − θ0)→ Np(0, (G′S−1G)−1), as T →∞, (7)

where p is the dimension of the parameter vector, S is the covariance matrix of the
moment function, and G is the expectation of its partial derivative with respect to
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θ. We have G = E[m(θ)(Z, θ0)W ] and S = E[m(Z, θ0)2W ′W ] for quantiles, and

G = E[m(θ)(Z, θ0) (X − Y )W ] and S = E[m(Z, θ0)2 (X − Y )2W ′W ] for expectiles.
See Supplementary Section S2 for details.

3.3. Testing optimality with unknown directive
The so-called test of overidentifying restrictions (Hansen, 1982) can be used to test
forecast optimality. Specifically, if the dimension q of the instrument vector W is greater
than the dimension p of the parameter vector θ, it holds that

JT (θ̂T )→ χ2
q−p, as T →∞,

where JT (θ) = TgT (θ)′Ŝ−1
T gT (θ) is called the J-statistic.

We now discuss an important aspect of our optimality definition: A point forecast can
only be defined as optimal with respect to a specific functional and a specific information
set. The choice of instruments W in (5) determines the information set for which we
test. If a forecast is optimal with respect to F , it also satisfies the moment conditions
for any information set G ⊆ F , because

X = α(Y |F) ⇐⇒ E[V (X,Y )|F ] = 0 ⇒ E[V (X,Y )|G] = 0,

where V is the identification function of α. If a test with instruments W rejects optimal-
ity, the point forecast is not optimal with respect to any information set F that contains
the information set σ(W ) generated by W :

E[V (X,Y )|σ(W )] 6= 0 ⇒ X 6= α(Y |F).

Thus, the null hypothesis in the test of overidentifying restrictions is

H0 : There exists θ0 ∈ Θ such that X = qm(Z,θ0)(Y |F) with σ(W ) ⊆ F .

We use this in Section 5.1 to explore the size and power of optimality tests.
An optimal yet uninformed point forecast can only be rejected if appropriate in-

struments are available. Furthermore, a misspecified or non-optimal forecast can still
form an optimal forecast with respect to a smaller information set or a more flexible
class of functionals. For this reason, the choice of instruments and specification models
is a crucial part of inference based on our estimators and optimality tests. To obtain
power against forecasts that are optimal with respect to different specification models,
we propose to include the forecast as an instrument; see Section S4.

3.4. Specification tests for forecasting behavior
The estimation of specification models m(z, θ) provides a suitable framework for testing
specific hypotheses about forecasting behavior. In general, any restriction R(θ0) = 0
for the model m(z, θ), where R : Θ 7→ Rl is differentiable, can be tested using a Wald
statistic (e.g., Greene, 2012) of the form

WT (θ) = T ·R(θ)′(R(θ)(θ)ŜT (θ)R(θ)(θ)
′)−1R(θ),
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whereR(θ)(θ) = ∂R(θ)/∂θ is the gradient ofR evaluated at θ, andR(θ)(θ0)ŜT (θ0)R(θ)(θ0)′

is non-degenerate. If R(θ0) = 0, then

WT (θ̂T )→ χ2
l , as T →∞. (8)

For illustration, we discuss restrictions in the models introduced in Table 1. In the
linear model, we can test if the forecasting behavior is constant with respect to the state
z, which corresponds to the restriction θ2 = 0. The break model facilitates tests for the
hypothesis that there is no structural break, in which case θ1−θ2 = 0. This specification
test is closely related to the state-dependence test in Caunedo et al. (2013). Finally, we
can use the periodic model to test for the presence of periodic asymmetry, i.e., θ2 = 0.
In all of these examples, joint tests of optimality and of the restriction can be carried
out based on the asymptotic distribution in (8).

4. GDP growth forecasts as state-dependent quantiles

We present an application to the GDP Greenbook forecasts of the Federal Reserve. As
realized values we take the quarterly real GDP growth rate over the period 1969 to
2011 (T = 172 observations) as reported in the first release†. Standard tests based on
the mean functional reject optimality. Patton and Timmermann (2007) model the loss
function as a quadratic spline with three nodes whose shape is allowed to change with
the growth rate.

Here, we interpret the forecasts as state-dependent quantiles of the Federal Re-
serve’s (implicit) predictive distributions. To investigate whether the reported quantile
changes with the predicted GDP growth rate, we apply the linear specification model
m(x, θ) = Ψ(θ1 + xθ2) as described in Section 3.1. As instrumental variables w for the
GMM estimator, we use a constant, the forecast and the one-quarter-lagged value of the
outcome. In a test of overidentifying restrictions (Section 3.3), we obtain a J-statistic
of 1.63 with a p-value of 0.20. Consequently, there is no reason to reject optimality if we
allow for state-dependent quantile forecasts.

Compared to the spline loss function of Patton and Timmermann (2007), we use two
instead of six parameters, and our more powerful test (Section 5.1) does not reject the
hypothesis of an optimal forecast. The need for additional instruments due to the large
number of parameters in the spline approach is a concern for small sample sizes.

We obtain the estimate θ̂T = (−0.20, 0.18)′. As illustrated in Figure 1, the forecasts

can be interpreted as m(x, θ̂T )-quantiles that depend on the predicted growth rate x.
The Federal Reserve reports lower quantile levels during times of low growth, so forecasts
are more conservative during recessions. The covariance estimate implied by (7) is given
by

1

T
(G′T Ŝ

−1
T GT )−1 =

(
σ̂1,1 σ̂1,2

σ̂1,2 σ̂2,2

)
=

(
0.082 −0.015
−0.015 0.005

)
,

where GT is the sample moment of G evaluated at θ = θ̂T . As Ψ(·) is strictly monotone,

we can compute pointwise confidence intervals for θ̂1 + xθ̂2 and transform into confi-
dence intervals for m(x, θ̂) = Ψ(θ̂1 + xθ̂2), as illustrated in Figure 1. The Wald test as

†The results in this section are robust to using the second revision or the 2017Q1 vintage.
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Figure 1. The estimated specification model m(x, θ̂T ) plotted against the predicted growth rate
x, with pointwise confidence intervals at levels 0.6 and 0.9.

introduced in Section 3.4 for the hypothesis that θ2 = 0 (p-value = 0.01) suggests that
the underlying preferences are not only asymmetric but also flexible with respect to a
state variable.

When applying the lagged outcome yt−1 instead of the predicted value xt as state
variable the test of overidentifying restrictions rejects optimality. Consequently, the
data is not consistent with a forecaster simply overweighting the predictive content of
the current growth rate.

5. Simulation study

In this section, we demonstrate that our approach, while flexible, produces well calibrated
and powerful optimality tests. For ease of comparison to the related approach of Patton
and Timmermann (2007), we adopt their simulation setting. Each sample path y1, . . . , yT
is simulated from an AR(1)-GARCH(1,1)-model of the form

Yt = 1
2Yt−1 + σtεt for t = 1, 2, . . . , T ,

σ2
t = 1

10 + 4
5σ

2
t−1 + 1

10σ
2
t−1ε

2
t−1,

εt
iid∼ N (0, 1).

(9)

We generate 2,000 paths for seven sample sizes T ∈ {50, 100, 250, 500, 1000, 2000, 4000}.

5.1. Constant expectile-forecasts with varying information sets
We generate optimal expectile-forecasts at the constant level τ = 1/2.85. For a Gaussian
conditional distribution L(Y |F) = N (µ, σ), we obtain the asymmetric forecast

x = e1/2.85(N (µ, σ)) = µ+ σ e1/2.85(N (0, 1)) ≈ µ− 1
4σ.
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Figure 2. Size of optimality tests for the optimal full-information forecast in (10). The horizontal
line is at the nominal significance level of 0.05.

Let It be the filtration generated by the time series, It = σ(Yt, Yt−1, . . .). A fully informed
forecast with the information set Ft = It−1 = σ(Yt−1, Yt−2, . . .) at time t−1, would issue

xt = 1
2yt−1 − 1

4σt. (10)

Applying the standard GMM two-step estimator with the linear specification model
using the lagged outcome yt−1 as state variable, we perform the overidentifying-restriction
tests of forecast optimality from Section 3.3 at significance level 5%. We compare the
tests from Section 4 based on linear state-dependent quantiles and expectiles to the flexi-
ble spline test introduced in Patton and Timmermann (2007).† Using one node only and
applying the Ft-measurable state variable yt−1 instead of yt, the spline test reduces to
the expectile linear state-dependent test and the asymptotic results of Section 3 apply.
As instruments wt we use a constant, the forecast, the lagged forecast error, the squared
lagged forecast error, and one additional lag of the final three variables.

In Figure 2, we see that the quantile- and expectile-based optimality tests are better
calibrated than the spline test. This addresses a known problem of the state-dependent
spline test, which “appears to require large samples (T ≥ 1000) before the test’s size is
close to its nominal value, and thus rejections obtained using this test must be interpreted
with caution” (Patton and Timmermann, 2007, p. 1183). In contrast to the spline-based
estimation, the state-dependent quantile and expectile models provide insightful point
estimates and confidence intervals even for moderate sample sizes.

For the power analysis, we construct a 2-step ahead forecast which is optimal with
respect to the lagged information set Ft = It−2 = σ(Yt−2, Yt−3, . . .). For the conditional
distribution we obtain µYt|Ft = µYt|It−2

= 1
4yt−2 and σ2

Yt|Ft = σ2
Yt|It−2

= 23
20σ

2
t−1 + 1

10 as

shown in Supplementary Section S3. This produces an optimal expectile-forecast with
respect to the information set It−2, which is not optimal with respect to the information

†One modification has been implemented: The nodes of the splines are located at zero and
the average positive and negative forecast errors, instead of the median positive and negative
forecast errors, as the medians are close to zero.
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Figure 3. Size and power of optimality tests for the 2-step ahead forecast. The solid lines
represent size for tests with lagged instruments (nominal level 0.05). The dashed lines represent
power for tests with non-lagged instruments.

set It−1 of variables observable when issuing the forecast. The setting allows us to
evaluate the power of the optimality test against information rigidities (Coibion and
Gorodnichenko, 2015). A well performing test accepts optimality for lagged instruments
based on Ft = It−2 according to the 5%-level of the test, and rejects optimality for
non-lagged instruments based on It−1. The results of this experiment are presented in
Figure 3. The quantile- and expectile-based optimality tests are better calibrated and
more powerful than the spline-based test, which is strongly oversized for small sample
sizes and unable to consistently detect the information rigidity even for large sample
sizes.

Hence, our tests are not only better calibrated, but also more powerful. The advan-
tage of the functional-based tests is even greater for more flexible models, where the
spline based test would require a large number of instruments. Applying fewer instru-
ments improves the finite sample performance of the quantile and expectile based tests
even more (based on additional experiments not shown here). However, for the sake of
comparability we have kept the instruments identical across the tests.

5.2. State-dependent quantile-forecasts under different specification models
We generate optimal state-dependent forecasts for the data generating process (9) under
the specification models proposed in Section 3.1: a quantile forecast that depends linearly
on the current time series value (linear : m(zt) = Ψ(yt−1 − 1)), one that is subject
to periodic deviations (periodic: m(zt) = Ψ(1 + sin(πt/8))), and one that is exposed
to a break (break : m(zt) = Ψ(1 − 2 · 1(t ≤ T/2))). To each forecast we apply the
overidentifying-restriction tests of forecast optimality from Section 3.3 at level 0.05 based
on the three specification models (linear, periodic, break). In the periodic model we
consider two parameters and fix the third (period) parameter as we use only three
instruments throughout: a constant, the forecast and the lagged outcome. In Table 2,
we see the results for forecasts and tests based on quantiles. Additional details and



Interpretation of point forecasts with unknown directive 13

Table 2. Rejection rates of optimality tests with sample size T
based on different specification models at level 0.05.

true model hypothesized model
linear periodic break

linear 0.06 0.72 0.88
T = 100 periodic 0.79 0.08 0.47

break 0.61 0.30 0.08
linear 0.06 0.99 1.00

T = 250 periodic 1.00 0.07 0.89
break 0.95 0.64 0.07
linear 0.05 1.00 1.00

T = 1000 periodic 1.00 0.05 1.00
break 1.00 1.00 0.06

analogous results for tests based on expectiles can be found in Supplementary Section
S4. Even for small sample sizes (T = 100) the tests are reasonably calibrated and quite
powerful with rejection rates between 60% and 90% (with the exception of the periodic
model, where the break forecast is rejected in 30% of the cases only). For larger sample
sizes (T ≥ 1000) the optimality tests are almost perfectly calibrated and have full power
against the other state-dependent optimal forecasts.

6. Discussion

For point forecasts with unknown directive, we posit that it is preferable to estimate and
test the functional quoted by the forecaster, rather than the loss function for reasons of
identifiability, interpretability, and ease and efficiency of implementation.

We have introduced state-dependent quantiles and expectiles and have shown that,
under optimal forecasts, the functional can be consistently estimated. The asymptotic
distributions of the GMM estimator and the overidentifying test statistic can be used
to construct flexible tests of forecast optimality and of specific model properties. It
is particularly noteworthy that state-dependent functionals allow for the treatment of
supposedly misspecified forecasts in a principled manner.

Since Mincer and Zarnowitz (1969) the standard test of optimality is the regression

yt = β0 + β1xt + ut

and the joint test that the coefficients in this model are equal to zero and one. Interest-
ingly, this regression model is equivalent to assuming the optimal forecast

X = β0 + β1E[Y |F ],

which yields the identification function V (x, y) = β0 +β1x− y, and applying the GMM-
estimator with the instruments w = (1, x).

In a simulation study, we have illustrated that an existing spline-based test is over-
sized and unlikely to detect information rigidities, while the new estimators yield well
calibrated and powerful tests. We further have shown that the GDP forecasts of the
Federal Reserve are optimal when viewed as state-dependent quantiles that change with
the predicted growth rate.
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An important potential application of the new approach is the comparison of a point
forecast with unknown directive to other point or probabilistic forecasts. In this sit-
uation, the functional represented by the point forecast could be extracted from the
probabilistic forecast, and the resulting sets of point forecasts can be compared via any
consistent loss function (see Giacomini and White, 2006; Gneiting, 2011).
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A. Identification of functionals

Consider the probability space (Ω,A,P), where the elements of the sample space Ω are tuples
that comprise the realization Y , the point forecast X, and instruments W . We assume that the
information set F is a sub-σ-algebra of A. If no measure is explicitly mentioned, statements like
almost surely refer to P. For random variables R1 and R2, we simply write R1 = R2 instead
of R1 = R2 almost surely. In particular, statements like X = α(Y |F) denote P-almost sure
properties.

The terminology on functionals follows Steinwart et al. (2014). Specifically, topological state-
ments on the space of probability distributions P are with respect to the metric induced by the
L1-norm.

Regularity Conditions A. There exists a convex set P of probability measures with bounded
Lebesgue densities such that

(i) L(Y |F) ∈ P almost surely, and

(ii) the functional α : P 7→ R is continuous, locally nonconstant, and has convex level sets.

The conditions A(ii) are met by any functional defined via a continuous, non-trivial loss
function. In particular, continuity follows from the Maximum Theorem (Ok, 2007, p. 229), and
functionals defined by loss functions have convex level sets (Osband, 1985; Gneiting, 2011).

Lemma 1 (Identification). Let X be a forecast for Y based on some information σ-algebra
F , and let α : P 7→ R be a functional. Under Regularity Conditions A, there exists a function V
identifying the optimal α-forecast, i.e.,

X = α(Y |F) ⇐⇒ E[V (X,Y )W ] = 0 for all W ∈ F .

Proof. By Theorem 8 in Steinwart et al. (2014), there exists an identification function V ,
such that V (t, y) exists for λ× λ-almost all (t, y), where λ is the Lebesgue measure, and for all
P ∈ P it holds that t = α(P ) ⇐⇒ EY∼P [V (t, Y )] = 0. In particular,

X = α(Y |F) ⇐⇒ E[V (X,Y )|F ] = 0,
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as L(Y |F) ∈ P almost surely. As L(Y |F) is absolutely continuous and X constant given F , the
identification function V (X,Y ) exists almost surely.

Any F-measurable variable W remains constant under conditional integration. Unconditional
integration reveals the moment conditions

E[V (X,Y )W ] = 0 for all W ∈ F .

We show by contradiction that this is also a sufficient condition for E[V (X,Y )|F ] = 0. As-
sume without loss of generality that E[V (X,Y )|F ] > 0 with positive probability, then the F-
measurable random variable Z := 1(E[V (X,Y )|F ] > 0) satisfies E[V (X,Y )Z] > 0, contradicting
E[V (X,Y )W ] = 0 for all W ∈ F .

B. Consistency of the GMM estimator

We work in the dynamic prediction space setting of Strähl and Ziegel (2017), using the notation
introduced in Section 3. The proof covers both the quantile and the expectile parameterization.
We define u = (x, y, z) and denote the identification function V (m(z, θ), x, y) by V (u, θ), where
V (u, θ) = 1(y ≤ x)−m(z, θ) for quantiles and V (u, θ) = (1(y ≤ x)−m(z, θ))(x−y) for expectiles
respectively. Then, g(u,w, θ) = V (u, θ)w and by Lemma 1, E[V (U, θ0)|F ] = 0.

Regularity Conditions B.

(i) L(Y |F) ∈ P almost surely, where P is the class of absolutely continuous distributions with
strictly positive densities and finite first moments.

(ii) The state variable Z is F-measurable.

(iii) The parameter space Θ ⊆ Rp is compact.

(iv) The specification model m(z, θ) is continuous on Θ for all z.

(v) The alternative models differ from the true model, i.e., m(Z, θ0) 6= m(Z, θ) for all θ ∈ Θ
with θ 6= θ0.

(vi) The stochastic process {Ut | t ∈ N} is ergodic (in means) and strictly stationary.†
(vii) The absolute forecast error has a finite first moment.

(viii) ŜT → S, where S is positive definite.

Condition B(i) ensures that the state-dependent quantiles and expectiles fulfill Regularity
Conditions of Lemma 1 for fixed z. Expectiles do not require strictly positive densities. Quantiles
do not require finite first moments.

Theorem 1 (Consistency). Let Xt be an optimal state-dependent quantile forecast, i.e.,
Xt = qm(Zt,θ0)(Yt|Ft) for t = 1, 2, . . . . Under Regularity Conditions B, there exists an Ft-
measurable instrumental variable Wt such that the GMM estimator defined in (6) is consistent
for the true parameter θ0 ∈ Θ:

θ̂T → θ0, as T →∞.
Analogously, the expectile based estimator is consistent if the point forecast is a state-dependent
expectile, Xt = em(Zt,θ0)(Yt|Ft).

†Strict stationarity means that the distribution of (Ut, Ut+1, . . . , Ut+s) does not depend on t

for any s, and (mean) ergodicity implies that 1
T

∑T
t=1 a(Ut) converges in probability to E[a(Ut)]

for measurable functions a(·) with E[|a(Ut)|] <∞ (Newey and McFadden, 1986).
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Lemma 2 (Uniqueness). Given B(i), B(ii) and B(v), it holds for all t = 1, 2, . . . that

E[V (Ut, θ)|Ft] = 0 ⇐⇒ θ = θ0.

Proof. We first consider quantiles. Under B(i) the state-dependent quantile is well-defined
and fulfills Regularity Conditions A for fixed z. By Lemma 1, it follows that E[V (U, θ0)|F ] = 0.

For any θ ∈ Θ with θ 6= θ0 it holds that

E[V (U, θ)|F ] = E[m(Z, θ)− 1(X > Y )|F ]

= m(Z, θ)− E[1(qm(Z,θ0)(Y |F) > Y )|F ]

= m(Z, θ)−m(Z, θ0) 6= 0,

because competing models differ almost surely and Z ∈ F by B(ii) and B(v).
Analogously, expectiles are well-defined under B(i) for fixed z and by Lemma 1 it follows that

E[V (U, θ0)|F ] = 0. The moment condition is

E[1(X > Y )(X − Y )−m(Z, θ)(X − Y )(1− 2 · 1(X < Y ))|F ] = 0.

Under B(ii) and defining P = Y |F , we separate the integral at point Y = x, to obtain∫ x

−∞
(x− y)dP (y)−m(z, θ)

(∫ x

−∞
(x− y)dP (y)−

∫ ∞
x

(x− y)dP (y)

)
= 0,

which is equivalent to

(1−m(z, θ))

∫ x

−∞
(x− y)dP (y) = m(z, θ)

∫ ∞
x

(y − x)dP (y). (11)

The m(z, θ)-expectile for the distribution P is the unique solution of (11) (Newey and Pow-
ell, 1987). If θ 6= θ0, it follows by B(v) that m(Z, θ) 6= m(Z, θ0), which implies that X 6=
em(Z,θ)(Y |F). Consequently, moment condition (11) does not hold.

Proof (Theorem 1). We verify that there exist instruments W such that the conditions of
Theorem 2.6 of Newey and McFadden (1986, pp. 2132–2133) are satisfied, which directly implies
consistency.

From Lemma 2, it follows that f(θ) := E[V (U, θ)|F ] is the constant zero function if and only
if θ = θ0. Let θ 6= θ0 and A := 1(m(Z, θ0) > m(Z, θ)). For fixed θ, it holds that A ∈ F , because
by B(ii) Z is F-measurable. The same holds true for its complement Ac, as F is a σ-algebra. By
B(v), m(Z, θ0) 6= m(Z, θ) for all θ ∈ Θ with θ 6= θ0. It follows that either A or Ac have positive
weight. We define W := (1(A),−1(Ac)). As m(Z, θ0) > m(Z, θ) ⇐⇒ X > qm(Z,θ)(Y |F) ⇐⇒
E[V (U, θ)|F ] > 0, it follows that f(θ) > 0 ⇐⇒ 1(A) = 1. We have found a random vector
W ∈ F such that for θ 6= θ0

E[g(U, θ)] = E[E[V (U, θ)W |F ]] = E[f(θ)W ] 6= 0,

as f(θ)W > 0 elementwise by definition. Consequently, there exits an F-measurable instru-
mental vector W such that the unique identification property i) of Newey and McFadden (1986,
Thm. 2.6) holds. By B(vi), W is ergodic and stationary, as a measurable function of the ergodic
and stationary variable Z.

As S is positive definite by B(viii), its inverse S−1 exists and is also positive definite. It
follows directly that, S−1E[g(U, θ)] = 0 ⇐⇒ E[g(U, θ)] = 0.

As the parameter space Θ is compact by B(iii), and the applied functional is in our pa-
rameterized class, it follows that θ0 ∈ Θ and ii) of Newey and McFadden (1986, Thm. 2.6) is
satisfied.
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The continuity of g(u,w, θ) in θ (Newey and McFadden, 1986, Thm. 2.6 iii)) follows directly
from B(iv): For quantiles, it holds that g(u,w, θ) = (1(x > y)−m(z, θ))w, hence g is continuous
in the parameter θ, as a composition of continuous functions. For expectiles, it holds that
g(u,w, θ) = [1(x > y)−m(z, θ)(1− 2 · 1(x < y))](x− y)w, which again is a continuous function
in θ.

Finally, supθ∈Θ ‖g(u,w, θ)‖ ≤ ‖w‖ < ∞ for quantiles and supθ∈Θ ‖g(u,w, θ)‖ ≤ ‖w‖ ‖(x −
y)‖ ≤ |x−y| for expectiles, which implies E[supθ∈Θ ‖g(U,W, θ)‖] <∞ by B(vii). Thus, Condition
iv) of Newey and McFadden (1986, Thm. 2.6) is satisfied, and the GMM estimator is consistent.
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