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Abstract

We study a bargaining model in which a buyer makes frequent offers to a privately

informed seller, while gradually learning about the seller’s type from “news.” We show

that the buyer’s ability to leverage this information to extract more surplus from the

seller is remarkably limited. In fact, the buyer gains nothing from the ability to nego-

tiate a better price despite the fact that a negotiation must take place in equilibrium.

During the negotiation, the buyer engages in a form of costly “experimentation” by

making offers that are sure to earn her negative payoffs if accepted, but speed up learn-

ing and improve her continuation payoff if rejected. We investigate the effects of market

power by comparing our results to a setting with competitive buyers. Both efficiency

and the seller’s payoff can decrease by introducing competition among buyers.
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1 Introduction

A central issue in the bargaining literature is whether trade will be (inefficiently) delayed.

What is often ignored, however, is that if trade is in fact delayed, new information may come

to light.1 Of course, the players’ anticipation of this information may itself affect the amount

of delay in the negotiation bargaining.

For example, consider a startup that has “catered” its innovation to a large firm with

the aim of being acquired (an increasingly common strategy in entrepreneurship—see Wang

(2015)). The longer the startup operates as an independent business, the more the large

firm expects to learn about the quality of the innovation, which can influence the offers that

it tenders. At the same time, delay is inefficient as the large firm can generate greater value

from the innovation due to economies of scale and its portfolio of complementary products.

We are interested in how the large firm’s ability to learn about the startup over time affects

its relative bargaining power, trading dynamics, and the amount of surplus realized from the

potential acquisition.

Alternatively, consider the due diligence process associated with a corporate acquisition or

commercial real estate transaction. This information gathering stage is inherently dynamic;

the acquirer/purchaser must decide how long to continue gathering information, thereby

delaying the transfer of ownership, as well as how to use the information acquired to maximize

the profitability of the transaction. How does the acquirer’s ability to conduct due diligence

and renegotiate the price influence the eventual terms of sale and the profitability of the

acquisition?

In this paper, we propose a framework to answer these questions. We study a model

of bargaining in which the uninformed party (the “buyer”) makes frequent offers to the

informed party (the “seller”) while simultaneously learning gradually about the seller’s type

from an observable news process. There is common knowledge of gains from trade, values

are interdependent, and the seller is privately informed about the quality of the tradable

asset (i.e., his type), which may be either high or low. Because of discounting, the efficient

outcome is immediate trade. We pose the model directly in continuous time, which captures

the idea that there are no institutional frictions in the bargaining protocol and facilitates a

tractable analysis. News is modeled as a Brownian diffusion process with type-dependent

drift.

We construct an equilibrium of the game and prove that it is the unique stationary

equilibrium. In it, the buyer’s ability to leverage her access to information in order to extract

more surplus from the seller is remarkably limited. In particular, the buyer’s equilibrium

1Fuchs and Skrzypacz (2010) is a notable exception, as we will discuss.
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payoff is identical to what she would achieve if she were unable to negotiate the price based

on new information. In addition, delay occurs if and only if there is an adverse-selection

problem. Otherwise, the Coasian incentive to speed up trade overwhelms the buyer’s desire

to learn the seller’s type and trade occurs immediately. The latter result extends existing

no-delay results found in bargaining models without news (Fudenberg et al., 1985; Gul et al.,

1986; Deneckere and Liang, 2006).

When trade is delayed the buyer engages in a form of costly “experimentation” by making

offers that are sure to earn her negative payoffs if accepted. That is, the buyer makes some

offers hoping that they will be rejected. Such rejections improve her information and expected

continuation payoff. Yet, the buyer exhausts all of the benefits from this experimentation

leaving her with precisely the same payoff she would obtain if she were unable to offer such

prices. Thus, despite the fact that a negotiation takes place and the buyer responds to good

(bad) news by adjusting her offer up (down), she is no better off by being able to do so. In

fact, the sole beneficiary of this experimentation is the low-type seller, who earns strictly

more than his value to the buyer.

We investigate the effects of market power by comparing our results to those of the

competitive-buyer model of Daley and Green (2012) (hereafter, DG12). We find novel differ-

ences in both the pattern of trade and the resulting efficiency. With a single buyer, trading

intensity with the low type is “smooth” at a rate proportional to dt, whereas trading inten-

sity in DG12involves atoms and local time. The resulting equilibrium belief dynamics are

also remarkably different. With a single buyer, the belief process follows an Ito Diffusion,

whereas it has a lower reflecting boundary and discontinuous sample-paths in DG12. Per-

haps most surprisingly, both efficiency and the seller’s payoff can decrease by introducing

competition among buyers.

Intuitively, the amount of delay is driven by the party that stands to gain from in-

formation revelation. With buyer competition, it is the high-value seller who gains from

information being revealed as buyers bid up the price after good news. Without this compe-

tition, the (single) buyer is the player who determines the amount of delay. Because of his

private information, the high-type seller is more optimistic about the realization of future

news than is the buyer, which causes him to delay trade when facing competitive buyers in

states where a single buyer would chose to trade immediately. This finding is most starkly

illustrated in the no-adverse-selection case: with a single buyer trade is immediate, whereas

it will be delayed with competitive buyers when the news process is sufficiently informative.

Our comparison of the single-buyer and competitive-buyer settings sheds new light on

the interpretation of the Coasian force. One common interpretation of the Coasian force is

that competition with one’s future self is sufficient to simulate the competitive outcome. Yet
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as we have just seen, the single and competitive buyer outcomes are distinct in the presence

of news. We therefore propose a different interpretation of the Coasian force: competition

with one’s future self renders attempts to screen through prices futile.

We formalize this finding by considering an auxiliary game, which we refer to as the “due

diligence problem,” in which the price is fixed at the high type seller’s reservation value

and the buyer’s strategy is a stopping rule corresponding to a date at which to execute the

transaction. We demonstrate the buyer’s payoff in the due diligence problem is equal to her

equilibrium payoff in the true game, while the low-type seller is strictly better off in the true

game.

We employ our reinterpretation of the Coasian force to solve several extensions of the

model. First, we consider an extension in which investigation is costly for the buyer. Second,

we consider an extension in which the news process includes a “lumpy” component. In both

cases, we construct the equilibrium by first solving for the buyer’s value function in the

analogous due diligence problemand then identifying the strategies and seller value function

consistent with this payoff. The advantage of our approach is that the solution to the due

diligence problem is independent of the seller’s payoff and therefore the equilibrium can be

constructed in relatively straightforward steps rather than through the usual, and sometimes

arduous, fixed-point analysis. More generally, we believe our reinterpretation of the Coasian

force may be instructive for solving other bargaining models with frequent offers.

Our work is related to Deneckere and Liang (2006) and Fuchs and Skrzypacz (2010)

(hereafter, DL06 and FS10), both of which investigate frequent-offer, bilateral bargaining

games. DL06 analyze an interdependent-value setting in the absence of news and show that

the equilibrium is characterized by “bursts” of trade followed by periods of delay.2 During a

period of delay, the buyer’s belief must be exactly such that the Coasian desire to speed up

trade is absent, which is non-generic. The addition of learning via a diffusion process, even

if arbitrarily noisy, means that the buyer’s belief cannot remain constant at such a belief

over any period of time. As a result, our findings are considerably different from theirs even

in the limit as the news becomes completely uninformative (see Section 6.3). FS10 study

the independent-value setting from the Coase conjecture literature, with the addition of a

Poisson arrival of a game-ending “event.” The primary interpretation given to the event is

the arrival of a new trader, but it can also be interpreted as the arrival of a signal which

reveals the informed party’s private information. A critical difference is that in FS10 this

information must alter the support of the uninformed party’s belief, unlike our Brownian

2Fuchs and Skrzypacz (2013) show that trade becomes “smooth” and the buyer fails to capture any rents
in the no-gap limit. In our model, there is a gap, the equilibrium features smooth trade prior to the end
when there is a burst, and the buyer does capture rents, though not from screening.
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news process. The possibility of the signal arrival in FS10 delays trade, but their results are

consistent with our interpretation of the Coasian force.

Our work is also related to Ortner (2017), who analyzes a continuous-time model of a

durable-good monopolist whose cost varies stochastically over time. A common feature is

that the stochastic component (costs in Ortner (2017), information in our paper) can create

an option value for the uninformed party to delay trade. Tsoy (2016, 2017) studies the effect

of public information in a alternating-offer bargaining model with a global games informa-

tion structure. Two recent papers, Ishii et al. (2017) and Ning (2017), explore the effect of

learning via public information within symmetric information bargaining environments. Fi-

nally, DeMarzo and He (2017) study leverage dynamics of a firm, when the manager cannot

commit not to issue more (or less) debt in the future. Our finding—that the buyer does

not benefit from screening through price offers—is analogous to their finding that the firm’s

shareholders cannot benefit from its leverage policy.3

2 The Model

There are two players, a seller and a buyer, and a single durable asset of type θ ∈ {L,H},
which is the seller’s private information. Let P0 ∈ (0, 1) denote the prior probability that

the buyer assigns to θ = H. The seller’s (opportunity) cost of parting with the asset is

Kθ, where we normalize KL = 0 < KH , and the buyer’s value for acquiring it is Vθ, with

VH ≥ VL. There is common knowledge of gains from trade: Vθ > Kθ for each θ.

The equilibrium bargaining dynamics will depend on whether or not a static adverse

selection problem can arise. As in DG12, we define the condition as follows:

Definition 1. The Static Lemons Condition (SLC) holds if and only if KH > VL.4

Until Section 7, we assume the SLC holds.

The game is played in continuous time, starting at t = 0 with an infinite horizon. At

every time t, the buyer makes a price offer to the seller. If the seller accepts an offer of

w at time t, the trade is executed and the game ends. The payoffs to the seller and the

buyer respectively are e−rt(w −Kθ) and e−rt(Vθ − w), where r > 0 is the common discount

rate. If trade never takes place, then both players receive a payoff of zero. Both players are

risk-neutral, expected-utility maximizers.

3A similar property arises with respect to the large shareholder’s trading strategy in the continuous time
limit of DeMarzo and Urošević (2006).

4The SLC is related to the Static Incentive Constraint of DL06, which is satisfied if and only if KH ≤
E[Vθ|P0]. Hence, the SLC implies that there exists at least some non-degenerate P0 such that this Static
Incentive Constraint fails.
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2.1 News Arrival

Prior to reaching an agreement, news about the seller’s asset is revealed via a Brownian

diffusion process. Regardless of type, the seller starts with an initial score X0, normalized

to 0. The news process then evolves according to

dXt = µθdt+ σdBt (1)

where B = {Bt,Ft, 0 ≤ t ≤ ∞} is standard Brownian motion on the canonical probability

space {Ω,F ,Q}. At each time t, the entire history of news, {Xs, 0 ≤ s ≤ t}, is publicly

observable. Without loss of generality, µH ≥ µL. The parameters µH , µL and σ are common

knowledge. Define the signal-to-noise ratio φ ≡ (µH − µL)/σ. When φ = 0, the news is

completely uninformative. Larger values of φ imply more informative news. In what follows,

we assume that φ > 0, unless otherwise stated.

A heuristic description of the timing is depicted in Figure 1.

dt

Buyer makes 
an offer

Seller accepts  
(and the game ends)

or rejects 

News about the seller 
is revealed

Buyer makes 
another offer

Figure 1: Heuristic Timeline of a Single “Period”

2.2 Equilibrium

Below we lay out the components of and requirements for equilibrium in turn, and collect

them in Definition 2.

Stationarity In keeping with the literature, we focus on behavior that is stationary, using

the uninformed party’s belief as the state variable.5 At every time t, if trade has not yet

occurred, the buyer assigns a probability, Pt ∈ [0, 1], to θ = H. Analytically, it is convenient

to track the belief in terms of its log-likelihood ratio, denoted Zt ≡ ln
(

Pt
1−Pt

)
∈ R (i.e., the

extended real numbers).6 This transformation from belief as a probability to a log-likelihood

5DL06 show that in discrete time, and without news, stationarity is a feature of all sequential equilibria
given our assumption of common knowledge of strict gains from trade (i.e., the generalization of the “gap”
case from independent-values models of Fudenberg et al. (1985) and Gul et al. (1986)).

6Degenerate beliefs z = ±∞ (i.e., p = 0, 1), are never reached in equilibrium and play no role in our
analysis. Any reference to a generic state z should be intepreted as z ∈ R unless otherwise indicated.
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ratio is injective, and therefore without loss. We will use z when referring to the state

variable as opposed to the stochastic process Z (i.e., if Zt = z, then the game is “in state z,

at time t”).

Formally, the belief process Z is adapted to the filtration (Ht)t≥0, where Ht is the σ-

algebra generated by {Xs, 0 ≤ s ≤ t}. X and Z are stochastic processes defined over the

probability space {Ω′,H,P}, where Ω′ = Ω × Θ, H = F × 2Θ and P = Q × ν, where ν is

the measure over Θ ≡ {L,H} defined implicitly by P0.

Stationarity requires that both the current offer and the evolution of the belief depend

only on the current belief.

Condition 1 (Stationarity). The buyer’s offer in state z is given by W (z), where W : R→ R
is a Borel-measurable function, and Z is a time-homogenous Ht-Markov process.7

The Seller’s Problem The seller takes the offer function, W , as given. A pure strategy

for the type-θ seller is then an Ht-adapted stopping time τθ(ω) : Ω′ → R+ ∪ {∞}.8 A

mixed strategy for the seller is a distribution over such times, which can be represented as

a stochastic process Sθ = {Sθt , 0 ≤ t ≤ ∞} also adapted to (Ht)t≥0. The process must

be right-continuous and satisfy 0 ≤ Sθt ≤ Sθt′ ≤ 1 for all t ≤ t′. Sθ(ω) is a CDF over the

type-θ seller’s acceptance time on R+∪{∞} along the sample path X(ω, θ). A discontinuous

increase in Sθ corresponds to acceptance with an atom.

Let T be the set of all H-adapted stopping times. Given any offer function W and belief

process Z, the type-θ seller faces a stopping problem.

sup
τ∈T

Eθ
[
e−rτ (W (Zτ )−Kθ)

]
(SPθ)

Recall that Sθ is a distribution over stopping times. Let Sθ = supp(Sθ). We say that Sθ

solves (SPθ) if all τ ∈ Sθ solve (SPθ).
9

Condition 2 (Seller Optimality). Given W and Z, Sθ solves (SPθ).

7This implies that Z is a time-homogenous Markov process with respect to the seller’s information as
well. For any t, s, because the distribution of Zt+s given Ht depends only on Zt, the distribution of Zt+s
given Ht and θ depends only on Zt and θ, since X(·, θ) has stationary, independent increments. In addition,
while it is conventional to define stationarity as a restriction on strategies, which then has implications for
beliefs through the Belief Consistency condition, Condition 1 is clearer in our model. That is, an alternative
condition for Stationarity would replace the restriction on Z with a more notationally cumbersome, equivalent
restriction on seller strategies.

8That is, τθ does not specify how to handle off-path offers, which is addressed by Condition 5.
9That is, for any τθ ∈ Sθ, Eθ [e−rτθ (W (Zτθ )−Kθ)] = supτ∈T E

θ [e−rτ (W (Zτ )−Kθ)].
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Consistent Beliefs If trade has not occurred by time t, the buyer’s belief, Zt, is condi-

tioned on both the entire path of past news and on the fact that the seller has rejected all

past offers. It will be convenient to separate these two sources of information. Let f θt denote

the density of Xt conditional on θ, which for t > 0 is normally distributed with mean µθt and

variance σ2t.10 Let Sθt− ≡ lims↑t S
θ
s (which is well defined for t > 0 given that Sθ is bounded

and non-decreasing), and specify that Sθ0− = 0. Belief “at time t” should be interpreted to

mean before observing the seller’s decision at time t, which is why left limits are appropriate.

If SLt− · SHt− < 1 (i.e., given the sequence of offers up to t, there is positive probability that

the seller will not have accepted yet in equilibrium), then the probability the buyer assigns

to θ = H is defined by Bayes Rule as

P0f
H
t (Xt)(1− SHt−)

P0fHt (Xt)(1− SHt−) + (1− P0)fLt (Xt)(1− SLt−)
. (2)

Taking the log-likelihood ratio of (2) results in

Zt = ln

(
P0

1− P0

)
+ ln

(
fHt (Xt)

fLt (Xt)

)
︸ ︷︷ ︸

Ẑt

+ ln

(
1− SHt−
1− SLt−

)
︸ ︷︷ ︸

Qt

(3)

By working in log-likelihood space we are able to represent Bayesian updating as a linear

process, and the buyer’s belief as the sum of two components, Z = Ẑ + Q, as seen in (3).

Notice that the two component processes separate the two sources of information to the

buyer. Ẑ is the belief process for a Bayesian who updates only based on news starting

from Ẑ0 = Z0 = ln
(

P0

1−P0

)
. Q is the stochastic process that keeps track of the information

conveyed in equilibrium by the fact that the seller has rejected all past offers.

Condition 3 (Belief Consistency). For all t such that SLt− · SHt− < 1, Zt is given by (3).

Option for Immediate Trade The next condition is simple: if the buyer offers KH , then

both types accept with probability one. Since the buyer has all of the offering power, this

feature is easy to establish in any discrete-time analog.11

Condition 4 (Option for Immediate Trade). If W (Zt) = KH , then SLt = SHt = 1.

10Let fH0 = fL0 be the Dirac delta function.
11See Fudenberg and Tirole (1991, pp. 409). Ortner (2017) imposes a similar condition in a continuous-

time bargaining model.

7



The Buyer’s Problem Given Stationarity, the value functions for each player depend

only on the current state. Let Fθ(z) denote the expected payoff for the type-θ seller given

state z. That is, for any τ ∈ Sθ

Fθ(z) ≡ Eθ
z

[
e−rτ (W (Zτ )−Kθ)

]
,

where Eθz is the expectation with respect to the probability law of the process {Zt, 0 ≤ t ≤ ∞}
conditional on θ and Z0 = z. Similarly, let FB(z) denote the expected payoff to the seller in

any given state z:

FB(z) ≡ (1−p(z))EL
z

[∫ ∞
0

(VL −W (Zt))dS
L
t−

]
+p(z)EH

z

[∫ ∞
0

e−rt(VH −W (Zt))dS
H
t−

]
, (4)

where p(z) ≡ ez

1+ez
.

Taking the reservation values of each type seller as given, the buyer has essentially three

options in any state z. She can make an offer of KH and trade immediately. She can make

a non-serious offer that both types will reject and wait for more news. Or, she can make

an intermediate offer that will be rejected by the high type, but has positive probability of

acceptance by the low type.

Rather than write the buyer’s problem in terms of offers, it will be more convenient to

do so in terms of “quantities” (i.e., the probability of trade).12 Thus, the buyer’s problem

is to choose a stopping time, denoted by T , at which she trades for sure at price KH and

a process, denoted by Q, representing the intensity of trade with the low type prior to T .

The intensity of trade at time t < T , dQt, determines the belief conditional on rejection (in

accordance with (3) above), and therefore the price at time t must be the low type’s expected

payoff conditional on rejecting the offer (i.e., W (Zt) = FL(Zt) = FL(Ẑt + Qt)). We refer to

the pair (T,Q) as a policy. A policy is feasible if T is an Ft-measurable stopping rule and

Q is non-negative, non-decreasing process, Ft-measurable process. Let Φ denote the set of

feasible policies.

Condition 5 (Buyer Optimality). For any z, FB as defined by (4) satisfies:

FB(z) = sup
(Q,T )∈Φ

{
(1−p(z))EL

z

[∫ T

0

e−rt(VL − FL(Ẑt +Qt))e
−Qt−dQt + e−(rT+QT )(VL −KH)

]
+ p(z)EH

z

[
e−rT (VH −KH)

]}
(5)

12Formally dealing with continuation play following deviations from W posses well-known existence prob-
lems in a continuous-time setting (Simon and Stinchcombe, 1989) and would require a substantially more
complicated set of available strategies for the seller.
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Definition 2. An equilibrium of the model is a quadruple (W,SL, SH , Z) that satisfies

Conditions 1-5.

3 Equilibrium

The equilibrium of the game is characterized by a belief threshold, β, and, for all z < β,

a rate of trade with the low type. Specifically, when z ≥ β, the buyer offers W (z) = KH ,

which is accepted with probability one and hence trade is immediate. When z < β, the

buyer offers some W (z) < KH , which the high type rejects. The low type accepts at a

state-specific flow rate (i.e., proportional to time), meaning rejection is a (weakly) positive

signal that θ = H. Therefore, the buyer’s belief conditional on rejection, Z, has additional

upward drift, denoted q̇(z) ≥ 0.

The next definition gives a formal description of the equilibrium candidate parameterized

by (β, q̇).

Definition 3. For β ∈ R and measurable function q̇ : (−∞, β) → R+, let T (β) ≡ inf{t :

Zt ≥ β} and Σ(β, q̇) be the strategy profile and belief process:

Zt =

{
Ẑt +

∫ t
0
q̇(Zs)ds if t ≤ T (β)

arbitrary otherwise13
(6)

SHt =

{
0 if t < T (β)

1 otherwise
(7)

SLt =

{
1− e−

∫ t
0 q̇(Zs)ds if t < T (β)

1 otherwise
(8)

W (z) =

{
KH if z ≥ β

ELz [e−rT (β)]KH if z < β
(9)

In a candidate Σ(β, q̇) equilibrium, the high type seller plays a pure strategy τH = T (β)

whereas the low-type mixes over Ht-adapted stopping times.14 The offer in each state z < β

equals the low-type seller’s continuation value. If q̇(z) > 0, the equivalency is necessary, as

13According to Σ(β, q̇), if t > T (β), trade should commence by time t with probability one. Hence, the
evolution of Z—the belief conditional on rejection—in this event is the specification of the buyer’s off-path
beliefs. Because the buyer never offers more than KH , no matter how high Z becomes, the specification of
these off-path belief has no bearing on our results.

14While this mixing may appear rather involved, it can be accomplished by drawing single random variable
at t = 0. For instance, let ν ∼ exponential(1), independent from (B, θ). Let τ̂ = inf{t ≥ 0 : ν ≤

∫ t
0
q̇(Zs)ds}.

Then τL = τ̂ ∧ T (β) is distributed according to SL.
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the low type is mixing and must be indifferent. If q̇(z) = 0, the low type weakly prefers to

reject, so our specification of offers is without loss for this case.

Theorem 1. There exists a unique pair (β, q̇) such that Σ(β, q̇) is an equilibrium.

Theorem 1 is established by construction. In the next subsections, we derive necessary

conditions of any Σ-equilibrium to identify a unique candidate (β, q̇)-pair (verifying that

candidate is indeed an equilibrium is straightforward and left for the appendix). Before

doing so, we state our second main result.

Theorem 2. The equilibrium in Theorem 1 is unique.

The two key features of a Σ(β, q̇) profile are (1) a threshold β above which trade takes

place immediately at a price of KH , and (2) for z < β, trade takes place at a rate pro-

portional to time. It is not hard to prove that (1) must be true of any equilibrium, but

proving that (2) must hold in any equilibrium requires more work. We do so by employing

Lesbesgue’s Decomposition Theorem: since Q must be monotonic, it can be decomposed into

an absolutely continuous component and a singular component. Any singular component

corresponds to trade with the low type at a rate “faster” than dt, which can take the form

of an atom (i.e., a jumps in Z) or local time (e.g., a reflecting boundary). We then argue

that a singular component cannot be sustained in equilibrium. Appendix A.2 contains the

formal proof.

Although some of the details are technical, the intuition for the argument is actually

quite simple. If the equilibrium Q-process were to involve a singular component, then the

low type’s value function must have a right derivative of zero at the state where it ends

(either the “jump-to” point or the reflecting boundary). Denote this state by α. Note that

if the low type’s value function has slope zero at α, then the low type is no more expensive

to trade with just above α. But if a singular component is optimal at z = α and the low

type is no more expensive to trade with just above α, then the buyer must prefer trading at

an intensity greater than dt just above α. Hence, α cannot be the endpoint of the singular

component.

3.1 Necessary Conditions: Determining β and FB

Let V (z) ≡ Ez[Vθ]. For any state z ≥ β, the buyer’s value is FB(z) = V (z)−KH . For z < β,

given the buyer’s information, Z evolves according to

dZt =

(
φ2

2
(2p(z)− 1) + q̇(Zt)

)
dt+

φ2

2
dBt,
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and the buyer’s value function satisfies

rFB(z) = q̇(z)(1− p(z))(VL − FL(z)− FB(z))

+

(
φ2

2
(2p(z)− 1) + q̇(z)

)
F ′B(z) +

φ2

2
F ′′B(z). (10)

Collecting the q̇ terms gives

rFB(z) =
φ2

2
(2p(z)− 1)F ′B(z) +

φ2

2
F ′′B(z)︸ ︷︷ ︸

Evolution due to news

+ q̇(z)

(
(1− p(z))

(
VL − FL(z)− FB(z)

)
+ F ′B(z)

)
︸ ︷︷ ︸

Γ(z)≡Net benefit of screening at z

. (11)

The first term on the right-hand side of (11) is the evolution of the buyer’s value arising

from the news. To interpret the second term, let

J(z, z′) ≡ p(z′)− p(z)

p(z′)
(VL − FL(z′)) +

p(z)

p(z′)
FB(z′),

which represents the buyer’s payoff from moving the (post-rejection) belief to z′ starting

from some state z ≥ z′ and notice that Γ(z) = ∂
∂z′
J(z, z′)

∣∣
z′=z

.

In a Σ-equilibrium the belief does not jump, meaning z′ = z must be weakly optimal.

The necessary first-order condition is

Γ(z) ≤ 0. (12)

So either, Γ(z) = 0 or Γ(z) < 0. But if Γ(z) < 0 then, the buyer strictly prefers q̇(z) = 0. In

either case,

q̇(z)Γ(z) = 0. (13)

Therefore, (11) simplifies to

rFB(z) =
φ2

2
(2p(z)− 1)F ′B(z) +

φ2

2
F ′′B(z). (14)

11



The ODE has unique closed-form solution

FB(z) =
1

1 + ez
C1e

u1z +
1

1 + ez
C2e

u2z, (15)

where (u1, u2) = 1
2
(1 ±

√
1 + 8r/φ2) and C1, C2 are constants yet to be determined. The

boundary conditions are:

lim
z→−∞

|FB(z)| <∞ (16)

FB(β) = V (β)−KH . (17)

Because the buyer’s payoff is uniformly bounded between 0 and VH , (16) must hold (which

implies C2 = 0). When Zt hits β, trade is immediate regardless of θ. Hence, (17) is the

required value-matching condition. Finally, smooth pasting of FB is required at β:

F ′B(β) = V ′(β). (18)

To see why smooth pasting is required, consider the buyer at z = β. Given (17), if F ′B(β−) <

V ′(β), then a convex combination of FB(β − ε) and V (β + ε) −KH is strictly greater then

FB(β) = V (β)−KH . This implies that the buyer can improve his payoff by simply waiting

(i.e., make non-serious offers) for all z ∈ [β, β+δ) for sufficiently small δ. On the other hand,

if F ′B(β−) > V ′(β), then there exists an ε such that FB(β − ε) < V (β − ε) −KH , meaning

the buyer would do better to trade at KH immediately, in violation of Conditions 4-5.15

These necessary conditions yield a unique solution for β and FB, as we characterize in

Lemma 1. To do so, let z ≡ ln
(
KH−VL
VH−KH

)
(i.e., V (z) = KH).

Lemma 1. If Σ(β, q̇) is an equilibrium, then

(i) β = β∗ ≡ z + ln
(

u1
u1−1

)
,

(ii) For all z ≥ β, FB(z) = V (z)−KH , and

(iii) For all z < β, FB(z) is given by (15), with C1 = C∗1 ≡ KH−VL
u1−1

(
u1
u1−1

KH−VL
VH−KH

)−u1
and

C2 = C∗2 ≡ 0.

3.2 Necessary Conditions: Determining q̇ and FL

In the candidate equilibrium, the low type weakly prefers to reject W (z) when z < β. Hence,

his equilibrium payoff must be equal to the payoff he would obtain by always rejecting in

15See Shiryaev (1978, Sect. 3.8) for a more formal treatment of the necessity of smooth-pasting conditions
or Dixit (1993, Sect. 4.1) for a more intuitive exposition.
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these states, and waiting for KH to be offered: FL(z) = ELz [e−rT (β)]KH .16 So, for z ≥ β,

FL(z) = KH . From the low type’s perspective, for z < β, Z evolves according to

dZt =

(
q̇(Zt)−

φ2

2

)
dt+

φ2

2
dBt

and therefore FL satisfies

rFL(z) =

(
q̇(z)− φ2

2

)
F ′L(z) +

φ2

2
F ′′L(z). (19)

Solving for q̇(z) gives that

q̇(z) =
rFL(z) + φ2

2
F ′L(z)− φ2

2
F ′′L(z)

F ′L(z)
. (20)

Now, recall from (12) that Γ(z) ≤ 0, meaning the buyer weakly prefers not to trade

“faster” with the low type. The next lemma states that the buyer is actually indifferent over

all rates of trade.

Lemma 2. If Σ(β, q̇) is an equilibrium, then for all z < β

Γ(z) = 0. (21)

To understand why, notice that if Γ(z) < 0, then by (13), q̇(z) = 0. Without any

additional drift, Zt takes longer to reach β, reducing the low type’s continuation value,

which (we just argued) coincides with FL. This, in turn, raises Γ(z) and leads to a violation

of (12). The interpretation is that, if trade ever came to a halt, the low type’s continuation

value would become so low that he would be too cheap for the buyer resist trading faster.

Solving (21) for FL and using Lemma 1’s characterization of FB, gives that, for all z < β,

FL(z) = (1− p(z))−1F ′B(z) + VL − FB(z). (22)

= VL + C∗1(u1 − 1)eu1z (23)

Substituting (23) into (20) gives

q̇(z) =
rVLe

−u1z

C∗1u1(u1 − 1)
=
φ2VL
2C∗1

e−u1z > 0 (24)

16Eθz denotes the expectation with respect to the law of the process Z starting from Z0 = z and conditional
on θ, which we denote by Qθz.
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(a) Buyer Payoff (FB) (b) Low Type Payoff and Buyer’s
Offer (FL = W )

(c) Rate of Trade (q̇)

Figure 2: Illustation of equilibrium payoffs and the rate of trade as a function of the state variable,
p(z).

Lemma 3. If Σ(β∗, q̇) is an equilibrium, then for all z < β∗, FL(z) is given by (23) and

q̇(z) is given by (24).

Henceforth, we use (β, q̇) in reference to the pair that characterize the unique equilibrium

of the game. Figure 2 depicts the equilibrium buyer’s value function, low-type seller’s value

function (which is equal to the buyer’s offer), and rate of trade for beliefs below β.17

4 Bargaining Dynamics

Having constructed the equilibrium, we now examine several of the novel implications.

4.1 Who Benefits from the Negotiation?

One interesting feature of the equilibrium is that, although the buyer engages in a negotia-

tion, the she does not actually benefit from her ability to do so. To formalize this finding,

consider an alternative version of the model in which the buyer cannot negotiate the price.

Rather, the price is exogenously fixed at KH (the lowest price that a seller would surely

accept). The buyer still observes Ẑ, but the only decision that the buyer makes is when

(if ever) to complete the transaction. We refer to this auxiliary model as the due diligence

problem.18

17In all figures, beliefs are measured as probabilities (for example, b = p(β), etc.).
18It is not hard to provide conditions under which KH is the optimal first-stage offer in an extension of

the due diligence problem where the buyer first makes a take-it-or-leave-it offer, which, if accepted, endows
the buyer with the right to conduct due diligence and a perpetual option to purchase at the accepted offer
price. In particular, the optimal offer in the first-stage is KH provided that FB(Z0) > (1 − P0)(VL −KL)
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The due diligence problem reduces to a standard optimal stopping problem for the buyer.

Her belief updates only based on news, Z = Ẑ, and stopping corresponds to a payoff of

V (z)−KH . Hence, she chooses a stopping time, T , to maximize Ez[e−rT (V (ẐT )−KH)].

It is not difficult to establish that the unique solution of the due diligence problem is

a threshold policy: Td = inf{t : Zt ≥ βd}. Further, below βd, the buyer’s value function

satisfies the ODE in (14). Finally, the value-matching and smooth-pasting conditions (16)-

(18) are also required. Therefore, βd = β and we have the following result.

Proposition 1. In the unique equilibrium of the (true) bargaining game:

1. The buyer’s payoff is identical to her payoff in the due diligence problem.

2. The L-seller has a higher payoff than he would under the buyer’s optimal policy in the

due diligence problem.

Intuition might have suggested that the buyer will make use of the news in two ways:

(i) to ensure she is sufficiently confident that θ = H, before offering the price needed to

compensate a H-type seller, and (ii) to extract value out of the L-type seller with low prices

if she becomes sufficiently confident that θ = L. Our result is consistent with (i), but not

(ii). Even though the buyer does negotiate with the seller by making offers below KH and

there is probability that such a price will be accepted, the buyer’s equilibrium payoff, FB is

identical to what she would garner if she had no ability to screen using prices. This can be

viewed as the manifestation of the “Coasian” force in our model.

Starting from a low belief, the buyer would like to be able commit to a low offer for

at least some discrete interval of time. The rejection of this offer would, however, increase

the buyer’s belief at which point she would again be tempted to “experiment” by offering

a price that may be accepted by the low type as described above. Without any ability to

commit, she will indeed make this offer, which the low type foresees. This raises low-type

continuation value, which coincides with price. See Section 7 for further discussion on the

relation to the Coase Conjecture.

An immediate corollary of Proposition 1 is that total surplus is higher when the buyer

can negotiate the price. However, the additional surplus is captured entirely by the seller

despite the fact that the buyer makes all the offers.

(which holds provided that P0 is not too small and/or the gains from trade with the low type are not too
large).
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4.2 Experimentation

Another feature of the equilibrium is that for all z < β, the buyer makes offers that are both

strictly greater than VL and only accepted by the low type. Therefore, the buyer’s realized

payoff is negative whenever such an offer is accepted.19

Property 1. For all z < β, W (z) > VL and q̇(z) > 0.

Making these relatively high offers can be rationalized as a form of costly experimen-

tation. The buyer’s value function is strictly increasing, and therefore she values pushing

the belief up. Making an offer that the low type may accept, generates a potential benefit

(rejection raises the belief and, therefore, the buyer’s expected payoff), but also a poten-

tial cost (acceptance means the buyer overpays, and earns a negative payoff). As shown in

Proposition 1, these costs and benefits perfectly cancel each other out as the buyer exhausts

all of the potential gains from experimentation leaving her with precisely the same payoff

she would obtain if she were unable to experiment through price offers.

As the buyer becomes certain she is facing a low type, the implications of the buyer’s

willingness to engage in costly experimentation are even more extreme.

Property 2. As z → −∞ (i.e., p→ 0):

1. FB(z)→ 0,

2. FL(z),W (z)→ VL,

3. q̇(z)→ +∞.

The buyer’s value goes to zero as the probability that θ = L tends to 1. However, this is

not due to destruction of total surplus through inefficient delay. In fact, the rate of rate with

the low type grows arbitrarily large, and the low-type seller’s value tends to VL as z → −∞.

Hence, trade is fully efficient in this limit (see Property 3 below), but the entire surplus is

captured by the low type.

4.3 Efficiency

In the absence of trade, each player gets a payoff of zero. The (expected) surplus obtained

by the seller’s side of the game in state z is given by

ΠS(z) ≡ (1− p(z))(FL(z)−KL) + p(z)(FH(z)−KH).

19Unlike in DL06 and FS10.
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The buyer’s suplus in state z is simply FB(z). So, total surplus realized in state z is then

given by Π(z) ≡ ΠS(z) +FB(z). Due to common knowledge of gains from trade, the efficient

outcome is to trade immediately, resulting in a total potential (or first-best) surplus of

ΠFB(z) ≡ (1− p(z))(VL −KL) + p(z)(VH −KH).

Hence, ΠFB(z) − Π(z) ≥ 0 and any strictly positive difference is the efficiency loss due to

expected delays in trade. We define the normalized loss in efficiency as a function of z by

L(z) ≡ ΠFB(z)− Π(z)

ΠFB(z)
.

Property 3. L(z) = 0 if and only if z ≥ β, but L(z)→ 0 as z → −∞.

5 Buyer Competition

In this section, we explore the effect of competition among buyers by contrasting our findings

with DG12, which analyzes an analogous setting except with perfectly competitive buyers.20

In most economic settings, one expects a more competitive market to lead to more efficient

outcomes. However, when the uninformed side of the market can learn from news, we will

see that introducing competition can have exactly the opposite effect.

By way of terminology, we refer to the competitive outcome as the equilibrium with

multiple competing buyers from DG12, and the bilateral outcome as the unique Σ-equilibrium

with only a single buyer. Notionally, we use a subscript s ∈ {b(ilateral), c(competetive)} on

objects when referencing the respective outcomes.

When buyers are competitive (and the SLC holds), DG12 show that the unique equilib-

rium is characterized by a pair of beliefs αc < βc and the following three regions. For z > βc,

trade takes place immediately at a price V (z). For z < αc, buyers offer VL, the high type

rejects and the low type mixes. Conditional on a rejection at some z < αc, buyer’s belief

jumps to αc. For all z ∈ (αc, βc) trade occurs with probability zero and the buyers’ beliefs

evolve solely due to news. Finally, at z = αc, the low type trades at an intensity proportional

to the local time of the belief process.

Both equilibria involve a threshold belief above which trade is fully efficient and below

20Specifically, they replace the Option for Immediate Trade and Buyer Optimality equilibrium conditions
with Zero Profit and No Deals conditions. The first ensures that any trade that takes place earns zero
expected profit for a buyer. The second ensures that when trade does not take place, there does not exist an
offer that a buyer could make and earn positive profit. They also impose a modest refinement on off-path
beliefs.
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which there is positive probability of delay. However, unlike the smooth and strictly positive

trading intensity in the bilateral outcome, the trading intensity below the threshold in the

competitive outcome is “lumpy” (i.e., either zero or singular). Given the upper threshold

determines the set of states in which the outcome is fully efficient, the following proposition

has important efficiency implications.

Proposition 2. βc > βb.

The intuition behind this result is the following. In the competitive outcome, buyers

are willing to offer V (z) at any z such that the high-type seller is willing to accept. Thus,

it is the high-type seller that decides when to “stop,” which nets him V (z) − KH . In the

bilateral outcome, it is the buyer who decides when to “stop” (i.e., offer KH) which nets her

V (z)−KH .21 While the net payoff to player who determines when to stop in the respective

settings is the same, they have different expectations about the evolution of Ẑ. In particular,

the drift of Ẑ under the high-type seller’s filtration is strictly greater than under the buyer’s

filtration. Hence, the solution to the high-type’s stopping problem involves waiting longer

(i.e., a higher threshold). The intuition is further strengthened by the lower boundary, αc,

in the competitive outcome where the low-type seller “pushes” the belief process upward,

making the high-type even more willing to wait.

Clearly, Proposition 2 implies there exists a set of states (i.e., z ∈ (βb, βc)) such that

the bilateral outcome is fully efficient and the competitive outcome is not. By continuity,

the bilateral outcome remains more efficient just below βb. However, for low z, the ranking

reverses and the competitive outcome is more efficient as can be seen in Figure 3(a) and in

the following proposition.

Proposition 3. There exist a z1 ≤ z2, both in (−∞, βb), such that,

• Lc(z) ≥ Lb(z) for all z > z2 where the inequality is strict for all z ∈ (z2, βc), and

• Lc(z) < Lb(z) for all z < z1.

Intuitively, when the belief is low, trade is more efficient in the competitive outcome

because the low type is trading more rapidly (i.e., with an atom compared to with a rate in

the bilateral outcome), and when z is low it is the low type’s trading behavior that determines

efficiency.22

21Recall that the stopping threshold, βb, is the same as the solution to the buyer’s stopping problem in
which she is unable to screen (i.e., the due diligence problem).

22In Figure 3(a), z1 = z2. This feature appears to be general, but we have not attempted to prove it
formally.
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(a) Efficiency Loss (L) (b) Low Type Payoff (FL)

Figure 3: Comparison of loss in efficiency and low-type payoff across the bilateral and competitive
outcomes

In terms of player welfare, the comparison for the both the buyer and the high-type seller

is trivial. The buyer earns positive surplus (for all z) in the bilateral outcome, and zero

in the competitive one. Conversely, the high-type seller earns zero surplus in the bilateral

outcome (since the price never exceeds KH), but earns positive surplus in the competitive

outcome.

The comparison for the low-type seller is more nuanced. When the belief is low, he is

better off in the bilateral outcome than in the competitive, but the reverse when the belief

is high, as seen in Figure 3(b). As discussed in Section 4, in the bilateral setting, the buyer

offers prices above VL as form of experimentation, which benefits the low-type seller. There

is no scope for costly experimentation in the competitive setting, as buyer-profits are driven

to zero. In contrast, when the belief is high, the low-type seller enjoys buyer competition

since it raises the price to V instead of only KH .

6 News Quality

In this section we investigate the effect of news quality. First, we explore how an increase in

news quality affects equilibrium play and payoffs. Then we take the limit as news becomes

arbitrarily informative (i.e., φ→∞) and arbitrarily noisy (i.e., φ→ 0). Finally, we compare

the φ→ 0 limit to a model with no news analyzed by DL06.
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6.1 An Increase in News Quality

We first state the result and then provide intuition.

Proposition 4. As the quality of news, φ, increases:

(i) β increases.

(ii) The rate of trade, q̇, decreases for z < β− 2u1−1
u1(u1−1)

but increases for z ∈ (β− 2u1−1
u1(u1−1)

, β).

(iii) The buyer’s payoff increases for all z < β.

(iv) The low-type seller’s payoff increases for z < β− 1
u1−1

but decreases for z ∈ (β− 1
u1−1

, β).

(v) Total surplus increases for z < β − 1
u1

but decreases for z ∈ (β − 1
u1
, β).

Intuitively, as the quality of news increases, the buyer learns about the seller’s type faster,

and therefore finds it optimal to choose a higher belief threshold before exercising the option

for immediate trade. Thus, both β and FB increase with φ. These findings are illustrated in

Figure 4(a).

(a) Buyer Payoff (FB) (b) Low Type Payoff (FL) (c) Efficiency loss (L)

Figure 4: The effect of news quality on equilibrium payoffs and efficiency.

The effect of news quality on FL is more subtle because there are several opposing forces.

To understand them, recall that the low type’s equilibrium payoff is equal to the expected

discounted value of waiting until z = β, when KH is offered. Now, holding β and q̇ fixed,

a higher φ means an increase in the volatility of Ẑ which reduces the expected waiting cost

and therefore increases FL. On the other hand, a higher β (or lower q̇) increases the waiting

costs, thereby decreasing FL. For intuition about (iii), consider a discrete increase in news

quality from φ0 to φ1 and therefore by (i), β0 < β1. Clearly, the low type must be worse off

with the higher news quality for z ∈ (β0, β1). Continuity implies this ranking must persist
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for z just below β0. However, for low enough z, the volatility effect dominates as illustrated

in Figure 4(b).

These same opposing forces also affect the overall efficiency as illustrated in Figure 4(c).

On the one hand, a higher φ “speeds things up” and reduces L. On the other hand, because

β increases, there are states in which trade would be fully efficient under φ0, but is delayed

with positive probability under φ1. Thus, a higher φ leads to less efficient outcomes for z

near the upper threshold, while the first effect dominates and L decreases for low z.

6.2 Arbitrarily Informative News (φ→∞)

The following proposition characterizes the limit properties of the equilibrium as news qual-

ity becomes arbitrarily high. Let
pw→ and

u→ denote pointwise and uniform convergence,

respectively.

Proposition 5. As φ→∞:

(i) β →∞.

(ii) q̇
pw→∞, but for any x > 0, q̇(β − x)→ rVL

KH−VL
ex.

(iii) FB
u→ p(z)(VH −KH).

(iv) FL
pw→ VL.

(v) L u→ 0.

Property (i) says that the buyer waits until she is virtually sure that the seller is a

high type before offering KH . As φ → ∞, this learning happens so quickly that the delay

becomes trivial and the buyer captures all of the surplus from trading with the high type

seller (i.e., VH −KH). Intuition might suggest that a similar type of pattern should obtain

when trading with a low type. That is, one might have expected the buyer would wait until

she is virtually sure that the seller is of the low type before offering KL; this learning would

happen arbitrarily quickly as φ → ∞; and thereby the buyer would also extract all the

surplus from trading the low-type seller.

Recall from Section 4.1, however, that this intuition is incorrect. For any φ, as z → −∞:

q̇(z) → ∞, FB(z) → 0, FL(z) → VL and L(z) → 0, due to the Coasian force. Properties

(ii)-(v) demonstrate that this temptation to speed up trade with the low type overwhelms
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the motivation to learn about the seller’s type, even when this learning takes place arbitrarily

quickly.23

Properties (iii)-(v) are illustrated in Figure 5. The disparity between the strength of

convergence for FL and FB is due to the fact that, even for large φ, FL(z) = KH for all

z ≥ β, meaning the convergence of FL to VL is only pointwise.

(a) Buyer Payoff (FB) (b) Low Type Payoff (FL) (c) Efficiency loss (L)

Figure 5: Limiting payoffs and efficiency loss as φ→∞ and φ→ 0.

6.3 Arbitrarily Uninformative News (φ→ 0)

We now turn to the other extreme in which news tends to pure noise.

Proposition 6. As φ→ 0:

(i) β → z.

(ii) For all z < z, q̇(z)→∞, but q̇(z)→ 0.

(iii) FB
u→

{
0 if z < z

V (z)−KH if z ≥ z.

(iv) FL
pw→


VL if z < z

(1− e−1)VL + e−1KH if z = z

KH if z > z.

23This fact may partially be attributed to the order of limits. By analyzing a continuous-time model
directly, we have implicitly taken the period length to zero first (i.e., before taking φ → ∞). If we were to
interchange the order of limits (i.e., consider a discrete-time model with news and take the limit as φ→∞
before taking the period length to zero), then it is plausible that the intuition given above would prove
correct.
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(v) L pw→


p(z)(VH−KH)

ΠFB(z)
if z < z

p(z)(VH−KH)−(1−p(z))e−1(KH−VL)
ΠFB(z)

if z = z

0 if z > z.

To interpret these results, it is useful to draw a comparison to DL06. For convenience,

we restate their result below using our notation.

Result (DL06, Proposition 2). Consider a two-type, discrete-time model with no news (i.e.,

φ = 0), and suppose that SLC holds. In equilibrium, as the period length between offers goes

to zero,

(a) For all z > z, the buyer offers KH and the seller accepts w.p.1.

(b) For z < z, the buyer makes an offer of w0 =
V 2
L

CH
. The high type rejects and the low

type mixes such that the belief is z following a rejection.

(c) For z = z, there is delay of length 2τ , where τ satisfies VL = e−rτKH , after which the

buyer offers KH and the seller accepts w.p.1.

There are notable similarities between the result above and our findings in Proposition 6.

For z > z, the predictions are perfectly aligned; trade takes place immediately at a price

equal to the high-type’s cost. In addition, for z < z, in both settings there is a “burst” of

trade with the low type and delay ensues conditional on a rejection. The key differences are

the buyer’s offer when z < z and the amount of ensuing delay. In our case, the offer is VL

and the amount of ensuing delay is τ , whereas in DL06 the offer is w0 < VL and the amount

of ensuing delay is exactly twice as along.

A perhaps surprising implication is that the buyer is strictly worse off for all z < z in

our limit (continuous time, φ → 0) than in that of DL06 (discrete time, φ = 0, period

length → 0). An intuition for this result is as follows. In DL06, if the buyer delays trade

(by making unacceptable offers), the belief remains constant and when the buyer’s belief is

z, the temptation to speed up trade (i.e., the Coasian force) is absent because the buyer’s

continuation value from this state is zero. Hence, in DL06, the buyer can leverage an

endogenous form of commitment power: it is both feasible and sequentially rational for the

buyer to delay trade at z and for her belief to remain constant during such a delay. This

allows her to extract more surplus from the low type in states z < z.

In contrast, with even an arbitrarily small amount of Brownian news, the buyer’s belief

will instantaneously diverge from z almost surely. That is, the buyer cannot just “sit” at z,

and make non-serious offers for any amount of time, because she observes news and updates

her belief arbitrarily quickly, which strengthens the Coasian force and reduces her ability to

extract surplus in all states z < z.
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(a) Buyer Payoff (FB)
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(b) Low Type Payoff (FL)
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φ = 0.1
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(c) Efficiency loss (L)

Figure 6: Payoffs and efficiency comparison to DL06 with φ > 0 and as φ→ 0.

Another implication is that even a small amount of news can lead to a discontinuous

improvement in efficiency. Without news, in order to extract the extra surplus, the buyer

uses her (endogenous) commitment power at z, which implies more delay and hence more

inefficiency. These findings are illustrated in Figure 6.

7 When the SLC Fails and the Coase Conjecture

We now turn to equilibrium when the SLC fails. In this case, the unique equilibrium outcome

involves no delay.

Theorem 3. When the SLC fails, there is a unique equilibrium. In it, W (z) = KH and

trade is immediate for all z.

One intuition for the result comes via the connection to the due diligence problem from

Section 4. Recall that the buyer’s equilibrium payoff (in the true game) coincides with her

payoff in the due diligence problem. Without the SLC, however, the solution to the due

diligence problem is to “stop” (i.e., trade at price KH) immediately. Why? The buyer’s

reward from stopping in the due diligence problem is strictly positive and linear in her belief

p ∈ (0, 1), which is a martingale. Since she discounts future payoffs, she can do no better

than stopping immediately.

Strikingly, Theorem 3 holds regardless of the quality of the news process, φ. This can be

viewed as an extension of the Coase conjecture. Interpreted within our setting, Coase (1972)

conjectured that the buyer’s competition with her future self would lead to immediate trade

at a price KH when there is no news, φ = 0, and independent values, VH = VL > KH (which
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implies the SLC fails). Our results show that, without the SLC, the Coasian force swamps

the incentive to delay and learn from Brownian news.24

However, this result also brings a subtlety to the interpretation of the Coasian force.

Often, the force is interpreted as: competition with the future self simulates competition from

other buyers, leading to efficient trade. With news however, DG12 shows that the outcome

with competitive buyers features periods of delay, and therefore is not efficient, even when

the SLC fails (Proposition 5.3 therein). Moreover, as Section 5 makes clear, competition

with the future self does not simulate intra-temporal competition in the presence of news.

We believe this suggests a different interpretation of the Coasian force. Namely, the

inability to commit to prices means that the buyer (i.e., uninformed party) gains nothing

from the ability to screen using prices. In Coase’s setting (independent values, no news), it

then follows that trade will be immediate and efficient, just as it would be if competitive

buyers were introduced. In general however, the inability to profit by screening through

prices need not lead to a pattern of trade resembling the pattern from the competitive-

buyer environment. In fact, with news the bargaining outcome is more efficient than the

competitive outcome if i) the SLC fails, or ii) the SLC holds and the belief is sufficiently

optimistic (Proposition 3).

8 Extensions

In this section we consider two extensions of the model: costly information acquisition and

lumpy information arrival. We view these extensions as serving multiple purposes. First,

to illustrate how our interpretation of the Coasian force (described above) can be used for

constructing equilibrium. Second, to demonstrate robustness of our main results and provide

several additional insights.

8.1 Costly Investigation

In many applications, information is not freely generated. Rather the buyer must “inves-

tigate” by actively engaging in activities to unearth information. For example, during due

diligence, acquiring firms hire auditors, lawyers, and other consultants to investigate the

financial soundness of the target. Such activities require resources, which we now model

explicitly by introducing a flow cost, m > 0, incurred by the buyer while still engaged in the

negotiation with the seller. Costly investigation introduces the possibility that the buyer

24DL06 show that the Coase conjecture holds for the interdependent case (again, without news) if the
Static Incentive Constraint is satisfied (i.e., KH ≤ E[Vθ|P0]). FS10 show delay can arise if the news instead
has the potential to perfectly reveal θ in finite time.
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may prefer to terminate the negotiation, if she anticipates that it will take too long to reach

an agreement. We therefore endow the buyer with this strategic option, which if exercised,

generates a payoff of zero for both players.25

The Due Diligence Problem with Costly Investigation. To construct the equilib-

rium, we start by using our conjecture that the buyer will be unable to profit from the ability

to negotiate the price. Hence, we first solve for the buyer’s value function in the analog of

the due diligence problem. In the original due diligence problem (Section 4.1), the buyer

chooses a stopping time τ to maximize Ez[e−rτ (V (Ẑτ )−KH)]. With the addition of the flow

cost, the buyer’s problem becomes:

sup
τ

Ez
[
−
∫ τ

0

e−rtmdt+ e−rτ max
{
V (Ẑτ )−KH , 0

}]
. (25)

The integral term captures the cumulative investigation costs incurred, and the max operator

incorporates the idea that when the buyer “stops” she may be exercising the option to trade

at price KH or terminating the negotiation.

Lemma 4. The unique solution to (25) is of the form τ = inf
{
t : Ẑ 6∈ (αm, βm)

}
, with

−∞ < αm < z < βm <∞. For z ∈ (αm, βm) the buyer’s value function satisfies

rFB(z) = −m+
φ2

2

(
(2p(z)− 1)F ′B(z) + F ′′B(z)

)
,

where (αm, βm) and the constants in the buyer’s value function are characterized by the

boundary conditions

FB(αm) = 0 (26)

F ′B(αm) = 0 (27)

FB(βm) = V (βm)−KH (28)

F ′B(βm) = V ′(βm). (29)

As before, the buyer exercises the option to trade when her beliefs are sufficiently opti-

mistic (z ≥ βm), but with the investigation now being costly, the buyer chooses to terminate

the negotiation if her beliefs are sufficiently pessimistic (z ≤ αm).26

25Notice that the buyer would never exercise the option to terminate the bargaining in the model of Section
2 (i.e., with m = 0) as she can always guarantee herself a positive payoff by playing the optimal strategy
from the due diligence problem (Section 4.1).

26Note, as m→ 0, αm → −∞ and βm → βd, in line with Section 4.1.
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Equilibrium with Costly Investigation. Characterizing the equilibrium offers and ac-

ceptance rates that garner the buyer her due diligence payoff for z > αm is analogous to the

construction in the model with m = 0 (Sections 3.1-3.2). For z ≥ βm, trade is immediate

at a price KH . For z ∈ (αm, βm), there is zero net benefit to screening (Γ(z) = 0), implying

the offer and low-type continuation value is as in (22), which is accepted at the smooth rate

characterized by (20). For these beliefs, FB(z) > 0, so the buyer never walks away.

The new piece of the equilibrium construction is determining the behavior and low-type

payoffs for z ≤ αm (i.e., when FB(z) = 0). As before, FL(z) ≥ VL for any z, otherwise the

buyer would seek to trade with the low type at a higher intensity than the equilibrium called

for, generating a contradiction. Therefore, set W (z) = VL = FL(z) for all z ≤ αm, where

W (z) should be interpreted as the offer in state z conditional on the buyer not terminating

the negotiation. Given that the seller continuation payoff is constant below αm, the belief

must exit the region in zero time conditional on rejection. Hence, for z < αm the low type

accepts with probability p(αm)−p(z)
p(αm)(1−p(z)) , so that z jumps to αm conditional on rejection.

The last part of the construction is to characterize the behavior precisely at z = αm. We

first argue that the buyer must sometimes terminate the negotiation. If not, then (conditional

on rejection) the belief process would have a reflecting boundary at z = αm, and the implied

boundary condition is F ′L(α+
m) = 0. However, differentiating (22) gives that FL must satisfy

F ′L(α+
m) = (1 + eαm)F ′′B(α+

m) + (eαm − 1)F ′B(α+
m)︸ ︷︷ ︸

=0

. (30)

This implies F ′L(α+
m) > 0 by the convexity of the buyer’s value function in the “continuation”

region (αm, βm), which obviously contradicts the boundary condition implied by reflection.

Hence, the buyer must sometimes terminate the negotiation at z = αm. Let ζ denote the

(random) date of termination and denote the termination rate by κ ≥ 0, which is sometimes

referred to as a “killing rate.”27 Because the buyer earns FB(α) = 0 by continuing the

negotiation, she is indifferent between remaining in the negotiation and exiting, so is willing

to mix. The implied boundary condition for the low type is now F ′L(α+
m) = κ(FL(αm)− 0) =

κVL.28 To satisfy (30), set κ =
(1+eαm )F ′′B(α+

m)

VL
, which completes the equilibrium construction.

Proposition 7. There exists an equilibrium of the bargaining game with costly investigation

(as characterized above) in which the buyer’s value function is equal to her value function in

the due diligence problem with costly investigation (as characterized in Lemma 4).

27Formally, ζ = inf{t ≥ 0 : κLt = ξ}, where Lt is the local time of Zt at αm and ξ ∼ exponential(1) and
independently distributed. See Harrison (2013, Section 9.3), for details on the construction of this process.

28See Harrison (2013, p.160). The buyer’s Robin condition is F ′B(α+
m) = κFB(αm) = 0, which is redundant

given (26) and (27).
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One interesting implication of this extension is its effect on seller welfare. The threshold

at which the buyer offers KH is strictly decreasing in m. Hence, there exists a cutoff belief

above which the low-type seller benefits from higher buyer investigation costs. However,

below that cutoff the low type seller is worse off when the buyer must pay more to investigate.

Intuitively, the higher investigation cost prompts the buyer to end the game more quickly—

be it by offering KH (which benefits the seller) or by walking away (which harms the seller).

When the belief is high, the former effect dominates and FL increases with m; when the

belief is low, the latter effect dominates and FL decreases with m.

8.2 Lumpy Information Arrivals

We now consider an extension where in addition to learning gradually from the news process

Xt, the buyer may also learn from “lumpy” information arrivals. Specifically, there is a

Poisson process with intensity λ > 0, and at its first arrival time, ν, the buyer (publicly)

learns θ, at which point trades occurs immediately at price Kθ.
29

The Due Diligence Problem with Lumpy Information. To construct the equilibrium,

we again start with our conjecture that the buyer will receive the same payoff as she would

in the analog of the due diligence problem. Hence, we first solve an updated version of that

game. In the original due diligence problem (Section 4.1), the buyer chooses a stopping time

τ to maximize Ez[e−rτ (V (Ẑτ ) −KH)]. With the addition of the perfectly revealing arrival,

the buyer’s problem becomes:

sup
τ

Ez
[
e−r(τ∧ν)

(
V (Ẑτ∧ν)−

[
KH1{τ<ν} +K(Ẑν)1{ν≤τ}

])]
(31)

where K(z) = Ez[Kθ]. To understand (31), notice that trade occurs at τ ∧ ν regardless of θ.

The only difference is that if τ < ν, then the buyer pays KH for both types whereas if ν ≤ τ

then she pays Kθ (since θ is revealed at ν, p(Ẑν) ∈ {0, 1}).

Lemma 5. The unique solution to (31) is of the form τ = T (βλ) = inf{t : Ẑ ≥ βλ)}, with

z < βλ <∞. For z < βλ the buyer’s value function satisfies

(r + λ)FB(z) = λ(V (z)−K(z)) +
φ2

2

(
(2p(z)− 1)F ′B(z) + F ′′B(z)

)
, (32)

where βλ and the constants in the buyer’s value function are characterized by the boundary

conditions (16)-(18) (with β replaced by βλ).

29The case in which λ = 0 is the model from Section 2. A type-dependent arrival rate would simply add
a drift of (λL − λH) to dẐ prior to an arrival.
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Not surprisingly, lumpy information arrivals benefit the buyer in the due diligence prob-

lem and induce her to wait longer before offering KH . That is, it is straightforward to show

that both βλ and FB are increasing in λ.

Equilibrium with Lumpy Information. Characterizing the equilibrium offers and ac-

ceptance rates that garner the buyer her due diligence payoff is analogous to the construction

in the model with λ = 0 (Sections 3.1-3.2). For z ≥ βλ, trade is immediate at a price KH .

For z < βλ, there is zero net benefit to screening (Γ(z) = 0), implying the offer and low-type

continuation value is as in (22). The low type’s acceptance rate is given by the analog of

(20):

q̇(z) =
(r + λ)FL(z) + φ2

2
F ′L(z)− φ2

2
F ′′L(z)

F ′L(z)
, (33)

which reflects that, because he earns nothing if his type is revealed, his discount rate effec-

tively increases to r + λ.

Proposition 8. There exists an equilibrium of the bargaining game with lumpy information

arrivals (as characterized above) in which the buyer’s value function is equal to her value

function in the due diligence problem with lumpy information arrivals (as characterized in

Lemma 5).

Lumpy information arrivals alter the price dynamics when the buyer is trading only with

the low type (i.e., for z < βλ). First, because the buyer has the option of waiting for θ to be

perfectly revealed, she is able to earn price concessions from the low-type seller in proportion

to the value of this option. For example,

lim
z→−∞

FB(z) =
λ

r + λ
VL > 0 and lim

z→−∞
FL(z) =

r

r + λ
VL < VL.

Hence, the buyer earns a positive profit if the low type accepts (i.e., VL − FL(z) > 0) when

the belief is low (below pe in Figure 7(a)), unlike in the λ = 0 case. This finding illustrates a

fundamental difference between the Brownian news and perfectly revealing arrivals. That is,

information that changes the support of the buyer’s beliefs allows her to extract concessions

from the low type whereas the Coasian force overwhelms her ability to do so with Brown-

ian news. Nevertheless, even with lumpy arrivals, a region of costly experimentation (see

Section 4.2) always persists (above pe in Figure 7(a)).

One manifestation of the buyer’s ability to extract concessions from the low type is that

her value function FB may be non-monotone in z (first decreasing then increasing). This
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Positive profit from acceptance Costly experimentation

(a) Buyer’s Offer (W (z) = FL(z))

Rejection is bad news Rejection is good news

(b) Buyer’s Payoff (FB)

Figure 7: Lumpy information arrival allows the buyer to extract surplus from trading with the
low-type seller for low beliefs (i.e., below pe in panel (a)) and can lead to an equilibrium buyer
value function that is decreasing for low beliefs (i.e., below pg in panel (b)).

occurs when the gains from trade with the low type are larger than the gains from trade

with the high type (VL−KL > VH −KH) and λ is sufficiently large. When FB is decreasing

(below pg in Figure 7(b)), a rejection, which moves her belief upward, is “bad news” from

the buyer’s perspective. To see this, recall that in equilibrium, the net benefit of screening,

Γ, is zero, which implies that

FB(z) < VL −W (z) ⇐⇒ F ′B(z) < 0.

Hence, the buyer’s value function is decreasing at z if and only if the buyer’s payoff from an

acceptance (VL−W (z)) is strictly higher than her expected payoff prior to making the offer

(FB(z)). Because FB is always positive, the region over which it is decreasing is a subset of

the region over which VL −W (z) > 0. That is, pg < pe.

Notice the contrast to the model with λ = 0 in which FB is everywhere increasing.

Intuitively, without lumpy arrivals the buyer loses money on all trades with the low type,

and hence the total surplus generated from such trades is irrelevant for her payoff because

she is not able to extract any of it. Because the buyer only profits on trades with the high

type, a rejection is always good news for z < β.
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9 Concluding Remarks

We have investigated a bilateral-bargaining model in which the seller’s private information

is gradually revealed to the buyer until agreement is reached. In equilibrium, the buyer’s

ability to leverage her access to information in order to extract more surplus from the seller is

remarkably limited. In particular, the buyer’s payoff is identical to what she would achieve

if she were unable to renegotiate the price based on new information. Both the trading

dynamics and efficiency differ from the competitive-buyer analog. Hence, insofar as the buyer

“competes with her future self,” this inter-temporal competition is not a perfect proxy for

intra-temporal competition.

Rather, the robust implication of the Coasian force is that competition with future self

renders the ability to screen through prices useless. We adopt this heuristic to solve several

extensions of the model including costly investigation and lumpy information arrival. In

both cases, the equilibrium can be constructed in a straightforward and “stepwise” fashion

by first solving a simple stopping problem for the uninformed player, which is independent of

the informed player’s value function. Our methodology appears to be useful for constructing

equilibria in bargaining models with frequent offers.
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A Appendix

A.1 Proofs for Theorem 1

Proof of Lemma 1. From Section 3.1, if β ∈ R, then FB, β, C1, C2 must satisfy (15)-(18).
First, from (15),

lim
z→−∞

FB(z) = lim
z→−∞

1

1 + ez
C1e

u1z +
1

1 + ez
C2e

u2z =


−∞ if C2 < 0
0 if C2 = 0
∞ if C2 > 0.

To satisfy (16), therefore, in any solution C2 = 0. This simplifies the remaining two equa-
tions, (17) and (18):

FB(β) =
C1e

u1β

1 + eβ
= V (β)−KH =

eβ

1 + eβ
(VH − VL) + VL −KH

F ′B(β) =
C1e

u1β
(
(u1 − 1)eβ + u1

)
(1 + eβ)2 = V ′(β) =

eβ

(1 + eβ)2 (VH − VL).

The unique solution to the two equations above is

β = β∗ ≡ z + ln

(
u1

u1 − 1

)
C1 = C∗1 ≡

KH − VL
u1 − 1

(
u1

u1 − 1

KH − VL
VH −KH

)−u1
.

If β = ∞, then FB(z) = 0 for all z ∈ R. But this violates Buyer Optimality (Condition
5) since the buyer could improve his payoff by offering KH (leading to payoff V (z)−KH by
Condition 4) for any z > z. Finally, if β = −∞, then FB(z) = V (z)−KH for all z ∈ R. But
this also violates Buyer Optimality as the buyer’s payoff is negative all z < z, and he would
improve his payoff by making a non-serious offers in these states.

Proof of Lemma 2. Fix β = β∗ and FB as given by Lemma 1. Given an arbitrary q̇ on
z < β, let Gq̇

L(z) be the expected payoff of a low type who rejects all offers until Zt ≥ β (i.e.,
EL
z [e−rT (β)]KH). Let q̇∗ denote expression for q̇ given in (24). Therefore, for all z < β,

1

1 + ez

(
VL −Gq̇∗

L (z)− FB(z)
)

+ F ′B(z) = 0.

From (12), Γ(z) ≤ 0 for all z < β. For the purpose of contradiction, suppose there exists
z0 < z1 < β such that Γ(z) < 0 for all z ∈ (z0, z1). To satisfy (13), then q̇(z) = 0 for all
z ∈ (z0, z1). Hence, Gq̇

L(z) < Gq̇∗

L (z) for all z ∈ (z0, z1), which implies that

1

1 + ez

(
VL −Gq̇

L(z)− FB(z)
)

+ F ′B(z) > 0, ∀z ∈ (z0, z1).

Finally, recall that in equilibrium, the low type always weakly prefers rejection in state z < β,
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so FL(z) = Gq̇
L(z). Hence, for all z ∈ (z0, z1),

Γ(z) =
1

1 + ez
(VL − FL(z)− FB(z)) + F ′B(z) > 0,

producing a contradiction. Finally, since for any absolutely continuous Q, Gq̇
L and FB are

continuous on (−∞, β), and in equilibrium FL(z) = Gq̇
L(z), Γ(z) is continuous. Hence, if

Σ(β, q̇) is an equilibrium, Γ(z) = 0 for all z < β.

Proof of Lemma 3. Immediate from Lemmas 1 and 2, and analysis in Section 3.2.

Proof of Theorem 1. Lemmas 1 and 3 show that there exists a unique candidate Σ(β, q̇).
Thus, to prove the theorem, we need only verify that this candidate satisfies the equilibrium
conditions. Conditions 1, 3, and 4 are satisfied by construction for any (β, q̇): 1 follows
immediately from (6), 3 can be verified by inserting (7) and (8) into (3), 4 is also immediate
from (7)-(9) since Sθt = 1 for all t ≥ T (β) = inf{s : Zs ≥ β} = inf{s : W (Zs) = KH}.

Next we verify Seller Optimality (Condition 2). Consider first the high type and note
from (7) that SH = {T (β)} and from (9) that W (z) ≤ KH . Therefore,

sup
τ∈T

EH
[
e−rτ (W (Zτ )−KH)

]
≤ 0 = FH(z),

where FH(z) is equal to the high-type’s payoff under the candidate equilibrium strategy,
T (β), which verifies that SH solves (SPH).

For the low type, recall that, by construction, FL(z) = ELz [e−rT (β)]KH . Let T (β) ≡
T ∩ {τ : τ ≤ T (β), ∀ω}, i.e., the set of all H-adapted stopping times such that τ ≤ T (β)
for all ω. Observe that ELz [e−rτW (Zτ )] ≤ FL(z) for any τ ∈ T \ T (β) since W is bounded
above by KH and delay is costly. That is, since KH is the largest possible offer, it is optimal
for the low type to accept it as soon as it is offered. Note further that SL ⊆ T (β). To prove
SL solves (SPL), we show that, in fact, for any τ ∈ T (β), EL

z [e−rτW (Zτ )] = FL(z), which
verifies that SL solves (SPL).

Let fL(t, z) ≡ e−rtW (z) and note that fL is C2 for all z 6= β. Conditional on θ = L and
t < T (β), Z evolves according to

dZt =

(
q̇(Zt)−

φ2

2

)
dt+ φdBt.

By Dynkin’s formula, for any τ ∈ T (β),

EL
z [fL(τ, Zτ )] = fL(0, z) + EL

z

[∫ τ

0

ALfL(s, Zs)ds

]
,

where AL is the characteristic operator for the process Yt = (t, Zt) under QL, i.e.,

ALf(t, z) =
∂f

∂t
+

(
q̇(z)− φ2

2

)
∂f

∂z
+

1

2
φ2∂

2f

∂z2
. (A.1)
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Applying AL to fL, we get that

ALfL(t, z) = e−rt
[
−rW (z) +

(
q̇(z)− φ2

2

)
W ′(z) +

φ2

2
W ′′(z)

]
= e−rt

[
−rFL(z) +

(
q̇(z)− φ2

2

)
F ′L(z) +

φ2

2
F ′′L(z)

]
= 0,

where the first equality follows from the fact the W (z) = FL(z) (by construction, see (9))
and the second equality from the fact that q̇ satisfies (20). Hence, for any τ ∈ T (β),
EL
z [fL(τ, Zτ )] = FL(z), as desired.

The last step in the proof is to verify Buyer Optimality (Condition 5). In order to do so,
we first characterize an upper bound on the buyer’s payoff in Lemma A.1 (below) and then
verify that FB achieves this bound. An immediate corollary of Lemma A.1 is that if there
exists a feasible (Q, T ) under which the buyer’s expected payoff satisfies the hypothesis of
the Lemma, then the policy is optimal. By construction, FB is the buyer’s payoff under the
policy Qt =

∫ t
0
q̇(Zs)ds, T = T (β). Observe that FB ∈ C1 and is C2 for all z 6= β, therefore,

it suffices to verify that FB satisfies (A.3)-(A.5).

Verification that FB satisfies (A.3)-(A.5):

• For z ≤ β. First, note that (A.5) holds with equality for all z < β by construction.
Hence, we need only verify (A.3) and (A.4). For (A.4), recall that

J(z, z′) ≡ p(z′)− p(z)

p(z′)
(VL − FL(z′)) +

p(z)

p(z′)
FB(z′).

To see that FB(z) ≥ supz′≥z{J(z, z′)}, note that

d

dz′
J(z, z′) =

C1e
(u1−1)z′

(
ez − ez′

)
(−1 + u1)u1

1 + ez
< 0, ∀z′ ∈ (z, β). (A.2)

Since J(z, z′) is decreasing in z′, we have that FB(z) = J(z, z) = supz′∈(z,β) J(z, z′).
Furthermore, J(z, z′) = V (z)−KH ≤ FB(z) for z′ ≥ β (the latter inequality is shown
below), which verifies that the first term is non-positive for all z′ > z.

To see that FB ≥ V −KH , as required by (A.3), note that

FB(β−x)−(V (β−x)−KH) =
e−u1x

(
ex + ex(1+u1)(u1 − 1)− u1e

u1x
)

(VH −KH)(KH − VL)

ex(u1 − 1)(VH −KH) + u1(KH − VL)

The denominator on the RHS is positive since VH > KH > VL. The numerator is
positive provided that for all x > 0, ex + ex(1+u1)(u1 − 1) − u1e

u1x ≥ 0, which can be
shown to hold for all u1 ≥ 1 (i.e., over the entire relevant parameter space).

• For z > β. First, note that FB = V −KH by construction so (A.3) holds with equality.
Hence, it remains to verify (A.4) and (A.5). Since FL(z) = KH for all z ≥ β, we get
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that

p(z′)− p(z)

p(z′)
(VL − FL(z′)) +

p(z)

p(z′)
FB(z′)

=
p(z′)− p(z)

p(z′)

(
VL −KH

)
+
p(z)

p(z′)

(
V (z′)−KH

)
=
p(z′)− p(z)

p(z′)

(
VL −KH

)
+
p(z)

p(z′)

(
p(z′)VH + (1− p(z′))VL −KH

)
= p(z)VH + (1− p(z)VL −KH

= V (z)−KH ,

and therefore (A.4) holds with equality for all z′ ≥ z. Verifying (A.5) is equivalent to
showing that for all z > β,

φ2

2

(
(2p(z)− 1)V ′(z) + V ′′(z)

)
− r(V (z)−KH) ≤ 0.

Noting that (2p(z)− 1)V ′(z) + V ′′(z) = 0 and β > z ⇒ V (z)−KH > 0 for all z > β
implies the above inequality and completes the proof.

Lemma A.1. Let FQ,T (z) denote the buyer’s payoff under an arbitrary feasible policy (Q, T ) ∈
Γ starting from Z0 = z. Let A denote the characteristic operator of Ẑt under QB. Suppose
that f ∈ C1, f ∈ C2 almost everywhere and satisfies

f(z) ≥ V (z)−KH for all z ∈ R, (A.3)

f(z) ≥ J(z, z′) for all z′ ≥ z ∈ R; (A.4)

0 ≥ (A− r)f(z) for almost all z ∈ R; (A.5)

then f ≥ FQ,T .

Proof. If f is the buyer’s value function, (A.3) says that the buyer cannot benefit by stopping
immediately (i.e., offering KH). (A.4) says that the buyer cannot benefit by enforcing a jump
from z to z′ and is a standard optimality condition in impulse control. The inequality in
(A.5) says that the buyer cannot benefit by making a non-serious offer and “wait for news”
and is a standard optimality condition in optimal stopping. That (A.3)-(A.5) combined with
the smoothness properties are sufficient for an upper bound on the buyer’s payoff follows
closely standard arguments (see e.g., Harrison (2013), Corollary 5.2, Proposition 7.2) and is
therefore omitted.
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A.2 Proofs for Theorem 2

Proof of Theorem 2. In Lemma A.4, we show that in any equilibrium there exists a β such
that the buyer offers KH (and the seller accepts w.p.1.) if and only if z ≥ β. Consider
equilibrium play for t < T (β), by Lesbesgue’s decomposition for monotonic functions (cf.
Proposition 5.4.5, Bogachev, 2013), we can decompose Q into two processes

Q = Qabs +Qsing

where Qabs is an absolutely continuous process and Qsing is non-decreasing process with
dQsing

t = 0 almost everywhere. We have already demonstrated that the equilibrium is
unique among those in which Q is absolutely continuous, therefore it is sufficient to rule out
equilibria with singular intervention.

To do so, first note that Qsing can further be decomposed into a continuous nondecreasing
process and a nondecreasing jump process. Thus, a singular intervention can take one of
two possible forms. Either, (i) a jump from some z0 to some z1 > z0 or (ii) intervening on
order greater than dt at some isolated z0. In Lemma A.8, we show that (i) cannot be part
of an equilibrium. Lemmas A.9 eliminates the possibility of (ii).

In order to prove Lemmas A.4, A.8, and A.9, (and thus Theorem 2), we will use the
following preliminary lemmas.

Lemma A.2. For all z, (i) FL(z) ≤ KH , and (iii) FL(z) = KH =⇒ FB(z) = V (z)−KH .

Proof. Since the buyer can ensure trade w.p.1. at a price of KH , any offer higher than KH

is suboptimal, which implies (i). For (ii), if FL(z) = KH then w(z) = KH , which from the
Option for Immediate Trade, implies FB(z) = V (z)−KH .

Lemma A.3. In any equilibrium, the buyer’s value function must satisfy

FB(z) ≥ V (z)−KH (A.6)

FB(z) ≥ max
z′≥z

J(z, z′). (A.7)

Further, if FB is C2 on any interval (z1, z2), then for all z ∈ (z1, z2)

(A− r)FB(z) ≤ 0, (A.8)

where A is the characteristic operator of Ẑ under QBz .

Proof. The buyer always has the option to offer KH and trade immediately implying (A.6).
If (A.7) is violated at z, then the buyer can profitably deviate by enforcing a jump to some
z′ ≥ z. Finally, if (A.8) is violated at such a z ∈ (z1, z2), then since FB is C2 on the interval,
there exits ε > 0 such that (A.8) is violated over the interval (z− ε, z+ ε). But then, starting
from any z ∈ (z − ε, z + ε), the buyer can profitably deviate by adopting a policy such that
Qτ = 0 for τ = inf{t : Zt /∈ (z − ε, z + ε)} and then resuming the original policy.
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Lemma A.4. In any equilibrium, there exists β <∞ such that FL(z) = w(z) = KH if and
only if z ≥ β.

Proof. First, note that for any z, there must exist some z′ > z such that FL(z′) = w(z′) = KH

and FB(z′) = V (z′) − KH . If not, then the high type never trades in states above z, the
probability of trade goes to zero as z →∞, and thus FB(z)→ 0, which violates (A.6).

Hence, there exists z1 <∞ such that FL(z1) = KH and FB(z1) = V (z1)−KH . To prove
the lemma (by contradiction), suppose that there is some z2 > z1 such that FL(z2) < KH .
Consider the policy which, starting from Zt = z1, the buyer chooses Qt = z2−z1 (by offering
FL(z2)) and then resumes the original policy. The buyer’s payoff under this policy is

J(z1, z2) ≡ p(z2)− p(z1)

p(z2)
(VL − FL(z2)) +

p(z1)

p(z2)
FB(z2)

≥ p(z2)− p(z1)

p(z2)
(VL − FL(z2)) +

p(z1)

p(z2)
(V (z2)−KH)

= V (z1)−
(
p(z2)− p(z1)

p(z2)
FL(z2) +

p(z1)

p(z2)
KH

)
> V (z1)−KH = FB(z1),

where the first inequality follows from (A.6) and the second by our hypothesis that FL(z2) <
KH . Notice that J(z1, z2) > FB(z1) violates (A.7), which yields the contradiction.

Three additional lemmas will be used in the proofs of Lemmas A.8 and A.9.

Lemma A.5. In any equilibrium, β > z and FB(z) ≥ Ez
[
e−rT (β)(V (β)−KH)

]
> 0.

Proof. For any z1 > z, the policy of not trading for z < z1 and immediately trading at price
KH for all z ≥ z1 is feasible for the buyer and, starting from any z, generates a payoff of
Ez
[
e−rT (z1)(V (z1)−KH)

]
> 0. Hence, the buyer’s equilibrium payoff must be at least as

large. Finally, if β < z, then FB(β) = V (β) − KH < 0 by definition of z, which we just
established cannot be true.

Lemma A.6. In any equilibrium, FL(z) = ELz
[
e−rT (β)KH

]
.

Proof. From Lemma A.4, we know that any equilibrium must feature a threshold β < ∞,
above which trade takes place immediately at a price of KH and below which trade only
occurs with the low type. For all z ≥ β, the lemma is immediate. Starting from z < β,
since β <∞, there is positive probability that the low-type rejects all offers until the state
reaches β. Therefore she must be weakly willing to reject the equilibrium offer in any state
z < β, meaning her equilibrium payoff in any state z < β must equal her payoff from playing
T (β).

Lemma A.7. In any equilibrium: (i) FL is non-decreasing, (ii) FL is continuous, and (iii)
FB is continuous.
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Proof. For (i), first suppose that Q (and therefore Z) has continuous sample paths. By
Lemma A.6 then, for any z1 < z2 < β,

FL(z1) = ELz1
[
e−rT (β)KH

]
= ELz1

[
e−rT (z2)

(
ELz2
[
e−rT (β)KH

])]
= ELz1

[
e−rT (z2)FL(z2)

]
≤ FL(z2).

Thus, if FL(z2) < FL(z1), there must exist a z0 < z2 such that the buyer enforces a jump
from z0 to some z3 > z2, with FL(z0) = FL(z3) > FL(z2). By an argument similar to the
one used in Lemma A.4, such a policy violates Buyer Optimality (i.e., the policy could be
improved upon by first enforcing a jump from z0 to z2 and then enforcing a jump to z3).

For (ii), suppose that FL is discontinuous at z1 ≤ β. Then by Lemma A.6, Z must also
be discontinuous at z1. The monotonicity of Q implies that Z can only have upward jumps,
so FL(z−1 ) = FL(z2) for some “jump-to” point z2 > z1. By (i), FL is non-decreasing, so

FL(z2) ≥ FL(z+
1 ) ≥ FL(z−1 ) = FL(z2),

contradicting a discontinuity of FL at z1.
For (iii), FB(z−0 ) < FB(z+

0 ) violates (A.7): starting from z0 − ε, the buyer can enforce a
jump to z0 + ε (i.e., trade with arbitrarily small probability at price which is bounded above
by KH), and therefore achieve a payoff arbitrarily close to FB(z+

0 ). Since FL is continuous,
if FB(z−0 ) > FB(z+

0 ), then FB(z−0 ) = J(z0, z1) for some z1 > z0 (i.e., Z must jump upward
as it approaches z0 from the left). But J is continuous in its first argument and therefore
FB(z+

0 ) < J(z0, z1) violating (A.7).

Lemma A.8. In any equilibrium, Q has continuous sample paths (i.e., there cannot exist
an atom of trade with only the low type).

Proof. Suppose that starting from Zt = z0, the buyer enforces a jump such that Zt+ = α > z0.
By Lemma A.6, it must be that FL(z0) = FL(α) and FL non-decreasing (Lemma A.7) then
implies that FL(z) = FL(z0) for all z ∈ (z0, α). Thus, conditional on rejection, the belief
jumps immediately to α starting from any z ∈ (z0, α). Moreover, there must exist a z1 > α
such that Z evolves continuously in the interval (α, z1) (otherwise Zt+ 6= α). Stationarity
also requires that α be a reflecting barrier for the belief process conditional on rejection
starting from any Zt ≥ α. We claim that these equilibrium dynamics require the following
properties.

(i) (A− r)FB(z) = 0 and Γ(z) ≤ 0 for all z ∈ (α, z1)

(ii) Γ(z) = 0 for all z ∈ (z0, α)

(iii) F ′L(α) = 0

(iv) FB is C2 at α.
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The properties in (i) follow from the arguments in Section 3.1. For the second, note that the
buyer’s payoff starting from any z ∈ (z0, α) is given by

FB(z) = J(z, α) ≡ p(α)− p(z)

p(α)
(VL − FL(α)) +

p(z)

p(α)
FB(α). (A.9)

Since, α ∈ supz′≥z J(z, α), the envelope theorem yields

F ′B(z) = J1(z, α). (A.10)

Solving (A.9) for FB(α) and plugging into (A.10) gives

F ′B(z) =
p′(z)

p(z)
(FB(z)− (VL − FL(α)) =

p′(z)

p(z)
(FB(z)− (VL − FL(z)),

which implies (ii). For (iii), note that F ′L(α−) = 0 is implied by FL(z) = FL(α) for all
z ∈ (z0, α) and FL(a+) = 0 is implied by the reflecting barrier. For (iv), note that C1 at α
follows from physical conditions. Namely, the Robin condition

F ′B(α+) =
p′(α)

p(α)

(
FB(α)− (VL − FL(α))

)
,

where p′(α)
p(α)

is the (unconditional) rate at which the seller accepts at α and the second term
on the right hand side is the difference between the buyer’s payoff following rejection versus
acceptance. Differentiating (A.9) and taking the limit as z ↑ α shows that the left and right
derivatives at α must be equal. For C2, if F ′′B(α+) < F ′′B(α−) then (A − r)FB(z) > 0 in a
neighborhood just below α, which violates (A.8). On the other hand, if F ′′B(α+) > F ′′B(α−)
then

Γ′(α+) =
p′′(α)

p(α)

(
FB(α)− (VL − FL(α))

)
− p′(α)

p(α)

(
F ′L(α+) + F ′B(α+)

)
+ F ′′B(α+)

=
p′′(α)

p(α)

(
FB(α)− (VL − FL(α)

)
− p′(α)

p(α)

(
F ′L(α−) + F ′B(α−)

)
+ F ′′B(α+)

= Γ′(α−) + F ′′B(α+)− F ′′B(α−),

> 0,

where the second equality uses (iii) and the final inequality contradicts that Γ(z) ≤ 0 estab-
lished in (i). Thus, we have established (i)-(iv).

We now claim that (i)-(iv) requires FB(α) ≤ 0, which contradicts Lemma A.5. First, (ii)-
(iv) imply Γ(α) = 0. Therefore to satisfy Γ(z) ≤ 0 for the neighborhood above α requires
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Γ′(α) ≤ 0. But,

Γ′(α) ≤ 0 ⇐⇒ −eα

(1 + eα)2
(VL − FL(α)− FB(α))− 1

1 + eα
F ′B(α) + F ′′B(α) ≤ 0

⇐⇒ (2p(α)− 1)F ′B(α) + F ′′B(α) ≤ eα

1 + eα
Γ(α)

⇐⇒ AFB(α) ≤ 0

⇐⇒ FB(α) ≤ 0,

where the first ⇐⇒ follows by differentiating Γ, the second is simple algebra, the third
follows from multiplying both sides of the second by φ2/2 and using Γ(α) = 0, and the fourth
from the fact that (A.8) holds at α.

Lemma A.9. There cannot exist an isolated point, α < β, at which singular intervention
occurs.

Proof. We first prove the FB must be C2 at any such α. Since there are no jumps and α
is an isolated singular point of intervention, the buyer’s policy is absolutely continuous in a
neighborhood of α. Hence, there exists a ε > 0 such that

(A− r)FB(z) = 0, ∀z ∈ Nε(α) \ α. (A.11)

By Lemma A.7, FL and FB are continuous. Therefore, if intervention at α is optimal, it
must be that

1

1 + eα
(VL − FL(α)− FB(α)) + F ′B(α+) = 0. (A.12)

To prove that FB must be C1 at α, suppose that F ′B(α−) < F ′B(α+) (i.e., FB has an upward
kink at α). Starting from Zt = α, consider an alternative policy that involves no intervention
until τε = inf{s ≥ t : Zs /∈ Nε(α)}. Let f(α) denote the payoff under this alternative policy
and let ∆ ≡ F ′B(α+) − F ′B(α−) > 0. An extension of Ito’s formula (see Harrison, 2013,
Proposition 4.12) gives

e−rτεFL(Zτε) = FB(α) +

∫ τε

0

e−rs(A− r)FB(Zs)I(Zs ∈ U)ds

+

∫ τε

0

e−rsφF ′B(Zs)dBs +
1

2
φ2∆l(τε, α).

Taking the expectation over sample paths, we get that

f(α) = FB(α) +
1

2
σ2∆E [l(τε, α)] = FB(α) +

1

2
σ2∆

∫ τε

0

p0(s, α)ds

> FB(α),

where p0(t, ·) is the density of Zt starting from Z0 = α. Thus, we have found an alternative
policy that generates a higher payoff for the buyer. Therefore, an upward kink in FB violates
buyer optimality.
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Next, suppose that F ′B(α−) > F ′B(α+) (i.e., FB has a downward kink at α). Then,

Γ(α−) =
1

1 + eα
(VL − FL(α)− FB(α)) + F ′B(α−)

>
1

1 + eα
(VL − FL(α)− FB(α)) + F ′B(α+)

= Γ(α+) = 0,

which violates (12) in a neighborhood below α. Intuitively, if the buyer can benefit from
pushing at α and there is a downward kink in the value function, then he can benefit from
pushing just below α. Thus, we have established that FB must be C1 at α.

For C2, since (A.8) holds with equality at z+
0 and FB is C1 at α, if F ′′B(z−0 ) > F ′′B(z+

0 )
then (A.8) is violated in a neighborhood below z0. Next suppose that F ′′B(z+

0 ) > F ′′B(z−0 ).
Then it must be that (A.8) holds strictly in a neighborhood below α, which violates (A.11).
We have thus established the smoothness of FB at α.

Now, recall that a singular intervention at α means that for t ≤ τε, Q
sing
t increases only

at times t such that Zt = α. Thus, Qsing
t is proportional to the local time of Zt at α (see

Harrison, 2013, Section 1.2), which we denote by lZα (t). And, for t ≤ τε, Z evolves according
to

Zt = Ẑt +Qabs
t + δlZα (t). (A.13)

Harrison and Shepp (1981) show that (A.13) has a (unique) solution if and only if |δ| ≤ 1,
in which case Z is distributed as skew brownian motion (SBM) with δ capturing the degree
of skewness. If δ = 1, then Z has a reflecting boundary at α, whereas for δ = 0 there is no
singular intervention at α and Z is a standard Ito diffusion. By Lemma A.6, SBM involves
a kink in the low type’s value function at α, namely

γF ′L(α+) = (1− γ)F ′L(α−), (A.14)

where γ = 1+δ
2

(see Kolb, 2016). There are three (exhaustive) cases to rule out.
First, suppose F ′L(α+) = F ′L(α−) = 0. Then we have Γ(α) = 0, F ′L(α) = 0, and (A.8)

holds in a neighborhood around α. Using an argument virtually identical to the one used in
the Proof of Lemma A.8 leads to the conclusion that FB(α) ≤ 0, which yields a contradiction.
Second, suppose F ′L(α+) = F ′L(α−) 6= 0. Then (A.14) requires γ = 1

2
. But then δ = 0,

contradicting that α is a point of singular intervention. Third, and finally, suppose F ′L(α+) 6=
F ′L(α−). By FL nondecreasing (Lemma A.7), F ′L(α+), F ′L(α−) ≥ 0. Further, (A.14) and γ ≥ 1

2

then imply that F ′L(α−) > F ′L(α+) > 0. In addition, we know that Γ(α) = 0, and therefore
Γ′(α−) ≥ 0 in order to maintain (12) in the neighborhood just below α. Next, immediate
calculation yields that Γ′ is strictly decreasing in F ′L. Therefore, if F ′L(α+) < F ′L(α−) implies
that Γ′(α+) > Γ′(α−) ≥ 0. Since Γ(α) = 0, this implies Γ(z) > 0 for z in the neighborhood
just above α, in violation of (12). Hence a contradiction arises in all cases, and there cannot
exist an isolated point of singular intervention.
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A.3 Remaining Proofs

Proof of Proposition 1. The first statement is immediate from the analysis in Sections 3.1
and 4.1; the buyer’s value function in both cases satisfy the same ODE and boundary
conditions. For the second statement, notice that the low types’ payoff in the due diligence
problem is ELz [e−rT̂ (β)KH ], where T̂ (β) = inf{t ≥ 0 : Ẑt ≥ β} ≥ T (β) = inf{t ≥ 0 : Zt ≥ β}
and hence ELz [e−rT̂ (β)KH ] ≤ ELz [e−rT (β)KH ] = FL(z).

Proof of Proposition 2. As shown in DG12 (see the proof of Lemma B.3 therein), βc > z∗H ,
where z∗H is the threshold belief at which a high-type seller would stop in a game where V (z)
is always offered and beliefs evolve only according to news. Using the closed form expressions
for z∗H (see (41) in DG12) and βb (see Lemma 1), it is straightforward to check that z∗H > βb,
which proves the lemma.

Proof of Proposition 3. First, Lb,Lc ≥ 0, Lb(z) > 0 if and only z < βb, and Lc(z) > 0 if and
only z < βc. By Proposition 2, βb < βc. Hence, by continuity of Lc and Lb, there exists
z2 < βb such that Lb(z) < Lc(z) for all z ∈ (z2, βc).

In the bilateral outcome, F b
H = 0, so Πb(z) = F b

B(z)+(1− p(z))F b
L(z). In the competitive

outcome, F c
B = 0, so Πc(z) = p(z)F c

H(z) + (1 − p(z))F c
L(z). Further, in the competitive

outcome, for all z < αc, both seller payoffs are constant: F c
L(z) = VL and F c

H(z) = A ∈
(0, VH −KH). Direct calculations then show:

lim
z→−∞

Lb(z) = lim
z→−∞

Lc(z) = 0.

Therefore, by L’Hospital’s rule:

lim
z→−∞

(
Lb(z)

Lc(z)

)
= lim

z→−∞

(
L′b(z)

L′c(z)

)
=

VH −KH

VH −KH − A
> 1.

Hence, there exists z1 > −∞ such that Lb(z) > Lc(z) for all z < z1.

Proof of Proposition 4. From the expression in Lemma 1, β is decreasing in u1, which recall

is defined as u1 ≡ 1
2

(
1 +

√
1 + 8r/φ

)
. Clearly u1 decreases with φ, which implies (i). For

(ii), using the expression in (24) we have that

d

du1

q̇(z) =
rVL

eu1z(u1 − 1)2u2
1(KH − VL)

ζu1
(
1 + u1(z − 2)− u2

1z + (u1 − 1)u1 ln(ζ)
)

where ζ ≡ u1(KH−VL)
(u1−1)(VH−KH)

= eβ > 0. The expression above is strictly positive (negative) for

z > (<)β− 2u1−1
u1(u1−1)

, which implies (ii). For (iii), it is sufficient to show that FB is decreasing
in u1 below β. To do so, plug in the expression for C1 = C∗1 into FB and differentiate with
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respect to u1 to get that

d

du1

FB(z) =
1

1 + ez
eu1z

(
∂C∗1
∂u1

+ zC∗1

)
=

1

1 + ez
eu1z

(
KH − VL
u1 − 1

)
ζ−u1(z − ln(ζ))

< 0,

where the inequality follows from noting that ln(ζ) = β. For (iv), note that for z < β,

d

du1

FL(z) = eu1z
(

(1 + (u1 − 1)z)C∗1 + (u1 − 1)
∂C∗1
∂u1

)
= eu1z

(
KH − VL
u1 − 1

)
ζ−u1 (1 + (u1 − 1)(z − ln(ζ)) .

Noting that eu1z
(
KH−VL
u1−1

)
ζ−u1 > 0, we have that FL(z) increases with u1 (decreases with φ)

for z ∈ (β − 1
u1−1

, β) and decreases in u1 (increasing in φ) for z < β − 1
u1−1

, which proves
(iv). For (v), note that Π(z) = FB(z) + (1− p(z))FL(z) and therefore

d

du1

Π(z) =
d

du1

FB(z) + (1− p(z))
d

du1

FL(z)

=
1

1 + ez
eu1z

(
KH − VL
u1 − 1

)
ζ−u1 (1 + u1(z − ln(ζ)))

Thus, Π increases with u1 (decreases with φ) for z ∈ (β − 1
u1
, β) and decreases with u1

(increases with φ) for z < β − 1
u1

. As a result, (v) immediately follows.

Proof of Proposition 5. First, note that taking the limit as φ → ∞ is equivalent to taking
the limit as u1 → 1 from above. For (i), using the expression for β in Lemma 1, we have
that

lim
u1→1

β = z + lim
u1→1

ln

(
u1

u1 − 1

)
=∞.

For (ii), using the expressions for q̇ and C∗1 from Lemmas 3 and 1,

q̇(z) =
rVLe

−u1z

C∗1u1(u1 − 1)
=
rVLe

−u1z
(

u1(KH−VL)
(u1−1)(VH−KH)

)u1
u1(KH − VL)

,

which, for all z < β, tends to ∞ as u1 → 1 from above. Incorporating the expression for β
yields:

q̇(β − x) =
rVLe

u1x

u1(KH − VL)
→ rVLe

x

KH − VL
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as u1 goes to 1. For (iii), from Lemma 1,

FB(z) =

 V (z)−KH if z ≥ β
eu1z(VH−KH)

(
u1(KH−VL)

(u1−1)(VH−KH )

)1−u1
(1+ez)u1

if z < β

As u1 → 1, β →∞, meaning for any z ∈ R,

lim
u1→1

FB(z) = lim
u1→1

eu1z(VH −KH)
(

u1(KH−VL)
(u1−1)(VH−KH)

)1−u1

(1 + ez)u1

=
ez

1 + ez
(VH −KH) = p(z)(VH −KH).

Further, since FB(z) is continuous in z and non-decreasing in φ (Proposition 4), the conver-
gence is uniform by Dini’s Theorem.30 For (iv), from Lemma 3,

FL(z) =

{
KH if z ≥ β

VL + eu1z(VH −KH)u1(KH − VL)
(
u1(KH−VL)

u1−1

)−u1
if z < β

As u1 → 1, β →∞, meaning for any z ∈ R,

lim
u1→1

FL(z) = VL + lim
u1→1

eu1z(VH −KH)u1(KH − VL)

(
u1(KH − VL)

u1 − 1

)−u1
= VL.

Finally, for (v),

0 ≤ L(z) =
ΠFB(z)− Π(z)

ΠFB(z)
=
p(z)(VH −KH)− FB(z) + (1− p(z))(VL − FL(z))

ΠFB(z)

≤ p(z)(VH −KH)− FB(z)

ΠFB(z)
, (A.15)

where the last inequality follows from FL(z) ≥ VL for all z (regardless of φ). By (iii), the
term in (A.15) uniformly converges to 0 as u1 → 1, implying L does as well.

Proof of Proposition 6. First, note that taking the limit as φ→ 0 is equivalent to taking the
limit as u1 →∞. For (i), using the expression for β in Lemma 1, we have that

lim
u1→∞

β = z + ln

(
lim
u1→∞

u1

u1 − 1

)
= z + ln(1) = z.

From (24), we have that q̇(z) = rVL
C∗1u1(u1−1)eu1z

. Therefore, to prove (ii) it suffices to show

that limu1→∞C
∗
1u1(u1 − 1)eu1z = 0 for z < z and limu1→∞C

∗
1u1(u1 − 1)eu1z =∞. Using the

30To apply Dini’s Theorem, the function’s domain must be compact. However, simply transform log-
likelihood states, z, back into probability states, p ∈ [0, 1], and, for all φ-values, extend the function to
p = 0, 1 to preserve continuity.
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closed form expression for C∗1 in Lemma 1, we have that

C∗1u1(u1 − 1)eu1z = (KH − VL)

(
u1 − 1

u1

)u1 (VH −KH

KH − VL
ez
)u1

u1

The first term on the right hand side is a constant. The second term limits to e−1 as
u1 →∞. Thus, the remaining terms determine the limiting properties. They can be written
as u1y

u1 , where y ≡ VH−KH
KH−VL

ez. Notice that z < z ⇒ y < 1 ⇒ u1y
u1 → 0, whereas

z = z ⇒ y = 1⇒ u1y
u1 = u1 →∞. This completes the proof of (ii).

For (iii), note that for all z ≤ z, 0 ≤ FB(z) ≤ C∗1e
u1z ≤ C∗1e

u1z. And further, C∗1e
u1z =

(KH − VL)
(
u1−1
u1

)u1
1

u1−1
→ 0 as u1 →∞. Thus, we have obtained uniform bound on FB(z)

below z, which converges to zero implying the first part of (iii). That FB(z)
u→ V (z)−KH

for z ≥ z follows from continuity of FB, FB(z) = V (z)−KH for z ≥ β, and β → z.
For (iv), the pointwise convergence above z is immediate. For z ≤ z,

0 ≤ FL(z)− VL = C∗1(u1 − 1)eu1z

= (KH − VL)

(
u1 − 1

u1

)u1 (VH −KH

KH − VL
ez
)u1

→ (KH − VL)e−1 lim
u1→∞

yu1 .

The remainder of (iv) follows from z < z ⇒ y < 1⇒ yu1 → 0 and z = z ⇒ y = 1⇒ yu1 → 1.
Finally, (v) is immediately implied by (iii) and (iv).

Proof of Theorem 3. In the proposed equilibrium candidate, for all z ∈ R, trade is immedi-
ate, W (z) = FL(z) = KH , and FB(z) = V (z)−KH . Hence, the equilibrium candidate is of
Σ(β, q̇) form in which β = −∞. As in the proof of Theorem 1, Conditions 1, 3, and 4 are by
construction of the Σ-profile. In the candidate, β = −∞, so verification of Seller Optimality
(Condition 2) is trivial: for all z, W (z) ≤ KH , so for θ ∈ {L,H}:

sup
τ∈T

Eθ
[
e−rτ (W (Zτ )−Kθ)

]
≤ KH −Kθ = Fθ(z).

Finally, the verification of Buyer Optimality (Condition 5) is identical to the one given for
the case of z > β∗ in the proof of Theorem 1.

To see that no other Σ-equilibrium exists, suppose first that Σ(β, q̇) was an equilibrium
with β ∈ R. The analysis from Section 3.1 again applies, and therefore FB, β, C1, C2 must
satisfy (15)-(18). Solving the system, as in Lemma 1, gives the unique solutions as

β = ln

(
KH − VL
VH −KH

)
+ ln

(
u1

u1 − 1

)
,

which is not in R when the SLC fails, contradicting the supposition. Finally, if β = ∞,
then FB(z) = 0 for all z ∈ R. But then the buyer would improve her payoff by offering KH

(leading to payoff V (z)−KH > 0) for any z. Hence, no other Σ-equilibrium exists.
The argument for why that there does not exist an equilibrium not of the Σ form follows
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closely the proof of Theorem (2) with two minor modifications. First, since z does not exist
when the Static Lemons Condition does not hold, the first statement in Lemma A.5 (i.e.,
that β > z) is vacuous and no longer required. Second, the proof of Lemmas A.6 and A.7
are immediate if β = −∞ and follow the same argument for any β >∞.

Proof of Lemma 4. We first construct the buyer’s value function under the candidate pol-
icy and show there is a unique (αm, βm) satisfying (26)-(29). We then apply a standard
verification argument to demonstrate the policy is indeed optimal.

For z ∈ (αm, βm), the buyer’s value under the candidate policy satisfies

(A− r)FB(z) = m,

which has a solution of the form

FB(z) = −m
r

+
1

1 + ez
(C1e

u1z + C2e
u2z) . (A.16)

For an arbitrary β, using the functional form of FB in (A.16), solve (28) and (29) for C1

and C2. These equations are linear so the solution is unique, denote it by C1(β) and C2(β).
Plugging the solution into (A.16), the resulting function, which is given by

fB(z; β) ≡ −m/r + (1 + ez)−1 (C1(β)eu1z + C2(β)eu2z) ,

has the following properties for arbitrary β (which are straightforward to verify).

(i) fB(·; β) is continuously differentiable, strictly convex, and has a unique global mini-
mum.

(ii) fB(z; β) is continuous and increasing in β for all z < β.

(iii) ∂
∂z
fB(z; β) > 0 for z close enough to β.

(iv) fB(z; β) > V (z)−KH for all z 6= β.

An immediate implication of (i) is that (for an arbitrary β) the unique candidate α such
that ∂

∂z
fB(α; β) = 0 (i.e., such that (27) is satisfied) is αsp(β) ≡ arg minz fB(z; β). Note that

αsp(β) < β by (i) and (iii). Further, (ii) implies that fB(αsp(β); β) is strictly increasing in
β. Hence, there is at most one value for βm satisfying fB(αsp(βm); βm) = 0 (i.e., such that
(26) is also satisfied).

To see that such a βm in fact exists, note that fB(z; z) = 0 (and hence fB(αsp(z), z) < 0),
while αsp(β) → β as β → ∞ and hence limβ→∞ fB(αsp(β), β) = VH − KH > 0. Thus, we
have shown there is a unique candidate pair (αm, βm), which satisfies (26)-(29). Further,
note that because fB(αm; βm) = 0 and fB(αm; βm) > V (αm) − KH , we have that αm < z.
And since fB(βm; βm) > fB(αm; βm) (since αm is a global minimum), we have that βm > z.

We next verify that the policy τ = inf
{
t : Ẑ 6∈ (αm, βm)

}
is indeed optimal. To do so,

note that by construction, the buyer’s value function under the candidate policy is C1 and
satisfies:

FB(z) =


0 z ≤ αm
fB(z; βm) z ∈ (αm, βm)
V (z)−KH z ≥ βm
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Using a standard verification theorem (e.g., Oksendal, 2007, Theorem 10.4.1) to verify
the policy is optimal, it suffices to check that (1) FB(z) ≥ g(z) ≡ max{V (z) − KH , 0}
for all z ∈ (αm, βm), and (2) that (A − r)FB − m ≤ 0 for all z /∈ (αm, βm). That (1)
holds follow immediately from (iv) above. For (2), first note that (A − r)FB = (A − r)g
for all z /∈ (αm, βm). Next, recall that αm < z and therefore g(z) = 0 for all z ≤ αm.
Thus, (A − r)FB − m = (A − r)g − m = −m for all z ≤ αm. For z ≥ βm, (A − r)FB =
φ2

2
((2p(z)− 1)V ′(z) + V ′′(z)) − r(V (z) − KH). Noting that (2p(z) − 1)V ′(z) + V ′′(z) = 0

and βm > z implies that (A− r)FB < 0, which is clearly sufficient for (2).

Proof of Proposition 7. That the buyer’s value function is equal to the one from the due
diligence problem in Lemma 4 follows the same logic as given in the proof of Proposition 1.
Verifying that the proposed candidate is an equilibrium then follows closely the proof of
Theorem 1. Conditions 1, 3, and 4 are again by construction. Seller Optimality (Condition
2) for θ = H is immediate. For θ = L, it is again by construction that FL(z) = ELz [e−rT (β)]KH

and therefore any τ ∈ T (β) achieves the same payoff (the only difference is the law of motion
of Z). To verify Buyer Optimality (Condition 5), we must first incorporate the option to
terminate into the buyer’s policy and modify conditions (A.3) and (A.5) of Lemma A.1 to
account for the cost of investigation as follows.

f(z) ≥ max{V (z)−KH , 0} for all z ∈ R, (A.3’)

m ≥ (A− r)f(z) for almost all z ∈ R; (A.5’)

With these modifications, any smooth function satisfying (A.3’), (A.4), and (A.5’) provides
an upper bound on FB (analogous to Lemma A.1). The proof of Lemma 4, demonstrates
that the buyer’s value function satisfies (A.3’) and (A.5’). Thus, all that remains is to check
(A.4). Following a similar argument to the one used in the proof of Theorem 1, recall that

J(z, z′) ≡ p(z′)−p(z)
p(z′)

(VL − FL(z′)) + p(z)
p(z′)

FB(z′) for any z ≤ z′.

If z, z′ ≤ αm then J(z, z′) = FB(z) = 0. If z, z′ ∈ [αm, βm), then using the functional
form for FB (from Lemma 4) and FL (implied by (22)) we get that

d

dz′
J(z, z′) = −e

−z′(ez
′ − ez)

1 + ez︸ ︷︷ ︸
(−)

×

C1e
u1z′(u1 − 1)u1︸ ︷︷ ︸

(+)

+ C2e
u2z′(u2 − 1)u2︸ ︷︷ ︸

(+)

 ,

where the (+) signs come from the fact that u1 > 1 and u2 < 0. Thus, to verify that J(z, z′)
is decreasing in z′, it is sufficient to show that C1 > 0 and C2 > 0. From the two boundary
conditions at α, we have that

C1 = −e
−αu1m (eα(u2 − 1) + u2)

r(u1 − u2)
> 0

C2 =
e−αu2m (eα(u1 − 1) + u1)

r(u1 − u2)
> 0,
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which verifies that J(z, z′) is decreasing in z′ for z, z′ ∈ [αm, βm). If z < αm < z′ < βm, then

J(z, z′) ≡ p(z′)− p(z)

p(z′)
(VL − FL(z′)) +

p(z)

p(z′)
FB(z′)

≤ p(z′)− p(z)

p(z′)
(VL − FL(z′)) +

p(z)

p(z′)
FB(z′) +

p(αm)− p(z)

p(αm)
(FL(z′)− FL(αm))

=
p(αm)− p(z)

p(αm)
(VL − FL(αm)) +

p(z)

p(αm)

(
p(z′)− p(αm)

p(z′)
(VL − FL(z′)) +

p(αm)

p(z′)
FB(z′)

)
=
p(αm)− p(z)

p(αm)
(VL − FL(αm)) +

p(z)

p(αm)
J(αm, z

′)

≤ p(αm)− p(z)

p(αm)
(VL − FL(αm)) +

p(z)

p(αm)
FB(αm) = J(z, αm) = FB(z) = 0,

where the first inequality comes from z′ > αm and FL(z′) ≥ FL(αm), the subsequent equality
is from algebra, and the remaining statements follow from the definition of J and established
properties of FB in the candidate equilibrium. Thus, we have shown that J(z, z′) ≤ FB(z)
for all z ≤ z′ < β. If z′ ≥ βm, then J(z, z′) = V (z) −KH ≤ FB(z) (from Lemma 4), which
completes the verification of (A.4)

Proof of Lemma 5. As in the proof of Lemma 4, we proceed by constructing the candidate
value function, demonstrate there is a unique βλ satisfying the boundary conditions, and
then verify the candidate policy is indeed optimal.

For z < βλ, the buyer’s value function satisfies (32), which has solution of the form

FB(z) =
λ

r + λ
(V (z)−K(z)) +

1

1 + ez
(
C1e

û1z + C2e
û2z
)

where (û1, û2) = 1
2

(
1±

√
1 + 8(λ+r)

φ2

)
. The boundary condition (16) requires C2 = 0, and

jointly solving (17)-(18) for C1 and βλ yields:

β∗λ = ln

(
û1

û1 − 1

(λ+ r)KH − rVL
r(VH −KH)

)
C∗1 =

(λ+ r)KH − rVL
(r + λ)(û1 − 1)

e−û1βλ .

Thus, there is a unique candidate solution. To verify that the policy τ = inf
{
t : Ẑ ≥ βλ

}
is

optimal, note that by construction, the buyer’s value function under the candidate policy is
C1 and satisfies:

FB(z) =

{
λ
r+λ

(V (z)−K(z)) + 1
1+ez

C∗1e
û1z z ≤ β∗λ

V (z)−KH z ≥ β∗λ

Analogous to the proof of Lemma 4, it suffices to check that (1) FB(z) ≥ V (z)−KH for
all z ≤ βλ, and (2) that (A− (r + λ))FB(z) + λ(V (z)−K(z)) ≤ 0 for all z ≥ βλ. To verify
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(1), make a change of variables from z to p (i.e., substitute ln
(

p
1−p

)
for z into both FB and

V ). Note that FB is convex in p, while V is linear. Given that both the slopes and values
match at p(βλ), FB must lie everywhere above to the left. For (2), since AFB = 0 for z > βλ,
it suffices to show that V (z) − KH ≥ λ

λ+r
(V (z) − K(z)) for all z ≥ βλ. Making the same

change of variables from z to p, observe that both V −KH and λ
λ+r

(V −K) are linear in p

and that V −KH > λ
λ+r

(V −K) for all p > p̂ ≡ (r+λ)KH−rVL
r(VH−VL)+λKH

. The final step is to observe

that ln
(

p̂
1−p̂

)
= βλ − ln

(
û1
û1−1

)
< βλ.

Proof of Proposition 8. The proof follows the same steps as Proposition 7 with the exception
of verifying Buyer Optimality (Condition 5). In order to do so, we must modify condition
A.5 of Lemma A.1 to account for the possibility of the fully revealing information arrival as
follows:

0 ≥ (A− (r + λ))f(z) +
λ

λ+ r
(V (z)−K(z)) for almost all z ∈ R. (A.5”)

With this modification, any smooth function satisfying (A.3), (A.4), and (A.5”) provides an
upper bound on FB (analogous to Lemma A.1). By construction (A.5”) holds with equality
for z < βλ. The proof of Lemma 5 (and the fact that the buyer’s value function in equilibrium
is the same as in the due diligence problem) shows that FB satisfies (A.5”) for z > βλ and
(A.3) for all z. Thus, all that remains is to check (A.4) and for this, the same argument as
given in the proof of Theorem 1 applies. In particular, d

dz′
J(z, z′) has the same form as given

in (A.2) where u1 is replaced by û1 and therefore is strictly negative for all z′ ∈ (z, βλ).
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