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Abstract

I study equilibrium bond pricing with risk-averse arbitrageurs and an effective

lower bound on nominal rates. The model exposes nonlinear interactions among

short-rate expectations, bond supply, and term premia that are absent from affi ne

models, and these features help it replicate the observed behavior of the yield

curve near the ELB, including evidence about unconventional monetary policy.

The impact of both short-rate expectations and bond supply are attenuated at

the ELB. However, in simulations of the recent ELB episode in the U.S., the

model implies that shocks to short-rate expectations influenced yields more than

shocks to investors’duration-risk exposures.
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1 Introduction

Over the last decade, fixed-income markets have witnessed a combination of two extra-

ordinary circumstances: massive changes in the quantity and structure of safe debt–

including large-scale purchases of such debt by central banks– and the decline of short-

term interest rates to their effective lower bound (ELB). This paper studies how these

two phenonmena interact in an equilibrium model of arbitrage-free bond pricing.

To see empirically that the ELB may be important for the relationship between

interest rates and debt supply, the top panel of Table 1 reports regressions of long-

term yields on the weighted-average maturity of outstanding Treasury debt (WAM)

and the one-year Treasury yield. The data are monthly, from 1971 through 2015.

Using interactive dummies, I allow the coeffi cients on both variables to change after

the ELB was reached in December 2008, but otherwise the regressions are identical

to those of Greenwood and Vayanos (2014) (whose sample ended in 2007). Indeed,

column 2 replicates the main result of that paper: long-term yields were significantly

positively related to the duration risk held by investors in the pre-ELB period. A

one-year increase in WAM pushed the 10-year yield up by 22 basis points in this

sample, and, consistent with longer-term bonds having greater duration exposure, the

coeffi cients were higher for longer maturities.

As column 3 shows, those coeffi cients all fall substantially and lose statistical sig-

nificance during the ELB period. Despite the relatively few observations at the ELB,

the t statistics reported in column 4 show that the declines in the coeffi cient values

are significant.1 The relationships between short- and long-term yields also change

at the ELB, as shown in columns 5 through 7. Prior to 2008, the coeffi cients on the

one-year yield were less than 1 and were monotonically decreasing in the maturity of

the dependent variable. At the ELB, the coeffi cients rise above 2, with the 10- and

15-year yields now being more sensitive than the 5-year yield is. Again, t tests show

that the differences across the two periods are statistically significant.2 The remaining

panels of the table show that the shifts in both sets of coeffi cients are robust to using

the maturity-weighted debt-to-GDP ratio in place of WAM and the two-year yield in

place of the one-year.

These results suggest important changes in the behavior of the yield curve and its

1The standard errors are calculated using the Newey and West (1987) procedure, with 36 lags,
again following Greenwood and Vayanos (2014).

2Gilchrist, Lopez-Salido, and Zakrajsek (2015) document similar changes in the relationship be-
tween shorter- and longer-term yields at the ELB.
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relationship to Treasury supply at the ELB. But what theoretical reasons do we have

to expect such changes? I argue that at least three nonlinear mechanisms may be at

work:

1. An increase in the quantity of longer-term bonds that investors hold raises the

duration risk of their portfolios by an amount that depends directly on interest-

rate volatility. Interest-rate volatility is lower when the short-rate distribution is

truncated. Thus, if term premia are increasing in the amount of durtation risk

held by investors, the effects of bond supply will be damped at the ELB.

2. At the ELB, near-term rate expectations are constrained and are unlikely to

move much in response to shocks. Consequently, changes in expectations will

have relatively larger effects on medium- and long-term yields.

3. Interest-rate volatility moves together with short-rate expectations at the ELB

because an increase in the length of time that the ELB is expected to bind

reduces near-term uncertainty about short rates.3 If term premia depend on this

uncertainty, changes in rate expectations will induce changes in term premia at

the ELB. Again, these effects will be larger for longer maturities.

To formalize and quantify these possibilities, I incorporate the ELB into a structural

model of bond pricing in the style of Vayanos and Vila (2009). In this type of model,

the marginal investors are arbitrageurs with limited risk-bearing capacity. When they

are given more long-term bonds to hold, the duration risk of their portfolios rises and

they demand higher risk premia– a phenomenon sometimes known as the “duration

channel” of bond supply. Many recent empirical studies on the effects of duration

shocks have explicitly pointed to this framework for motivation and interpretation,4

and other papers have extended and applied it in various ways.5 Although those models

have been useful for understanding the relationships between bond supply and bond

yields, they have almost exclusively been developed under the assumption that the

short-term interest rate follows a linear process. The three arguments just mentioned,

3Hattori, Schrimpf, and Sushko (2016) show that accomodative monetary-policy announcements
during the ELB period caused declines in implied interest-rate volatility across the term structure.

4E.g., Gagnon, Raskin, Remache, and Sack (2011), Joyce, Lasaosa, Stevens, and Tong (2011),
Swanson (2011), Krishnamurthy and Vissing-Jorgensen (2011), D’Amico and King (2013).

5E.g., Hamilton and Wu (2012), Greenwood and Vayanos (2014), King (2015), Altavilla, Carboni,
and Motto (2015), Greenwood, Hanson, and Vayanos (2015), Haddad and Sraer (2015), Hayashi
(2016), Malkhozov, Mueller, Vedolin, and Venter (2016).
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together with the evidence in Table 1, suggest that the nonlinearity associated with

the ELB may induce first-order changes in the yield curve’s behavior. The situation in

which the ELB binds is particularly important to consider because central banks have

typically sought to exploit the duration channel through long-term bond purchases

only after they have cut their traditional policy rates close to zero.

To model the ELB, I generalize the standard affi ne process for the short-term in-

terest rate in Vayanos and Vila (2009) and its followers to a "shadow rate" process,

following the use of that device in the recent empirical term-structure literature, such

as Kim and Singleton (2012), Krippner (2012), and Wu and Xia (2016).6 When the

shadow rate is below the ELB, shocks to its value correspond to changes in investor

beliefs about the length of time the ELB is expected to bind. Thus, they may capture

both explicit forward guidance about the short-term interest rate and the "signaling

channel" of asset purchases, through which expansions of the central bank’s balance

sheet might be viewed as a commitment to keep rates near zero for a longer time.7

When parameterized to match the unconditional moments of Treasury yields since

1971, the model delivers quantitatively accurate results in several respects. First, it

replicates the basic features of the yield curve when the short rate is close to zero.

Comparable models that ignore the ELB fail this test. Second, it reproduces the

patterns reported in Table 1: the effects of shocks to Treasury supply become weaker

at the ELB, and longer rates become "more sensitive" to shorter rates, with the latter

coeffi cients switching from declining to increasing across maturities. Finally, when the

model is subjected to shocks that approximate the Federal Reserve’s unconventional

monetary policy over the ELB period– bond-supply shocks that reduce the duration-

weighted quantity of government debt by 18% and shadow-rate shocks that keep the

short rate at the ELB for exactly seven years– it produces a cumulative yield-curve

impact similar to what event studies suggest and a hump shape of the reaction in

forward rates across maturities that matches the pattern observed in those studies.

All of these empirical successes depend crucially on the three nonlinear mechanisms

6Bauer and Rudebusch (2014) argue that the shadow-rate specification does a good job of captur-
ing yield-curve dynamics near the ELB, greatly outperforming traditional affi ne models. Notably,
however, this literature has so far been dominated by atheroetical term structure models. This paper
is among the first to incorporate a shadow-rate process into a structural model of the yield curve.

7Woodford (2012), Bauer and Rudebusch (2014), and Bhattarai, Eggertsson, and Gafarov (2015)
argue for the importance of the signaling channel. As noted by Swanson (2017), because many
announcements of asset purchases were accompanied by changes in the FOMC’s communications
about future short rates, it is impossible to distinguish empirically between the the effects of the
signaling channel and those of forward guidance.
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discussed above, which emerge endogenously in the model.

Having thus validated the model, I use it to address two quantitative questions.

First, I ask through which channel unconventional monetary-policy shocks had their

largest effects. The answer is that, given the magnitude of the observed shocks, changes

in the expected path of the short rate were responsible for at least half of the cumulative

downward shift in the yield curve during the ELB period. In addition, at longer

maturities, about one-third of the total decline in yields is explained by the term-

premium effects associated with reduced short-rate uncertainty at the ELB– a channel

of unconventional policy that has been overlooked by previous literature. The bond-

supply shocks account for less than 20% of the total decline in the ten-year yield, and

at shorter maturities their contribution is even smaller. In other words, the model

suggests that the duration channel of asset purchases was considerably less important

than implicit or explicit forward guidance about the path of short-term rates.

Second, I ask the model whether the relative effectiveness of the two shocks changes

in different environments. I find that bond-supply shocks are most powerful, relative

to shadow-rate shocks, when the shadow rate is deeply negative and the amount of

duration held by the market is high. In this situtation, the effi cacy of both types of

shocks is attenuated because of the damping effects associated with the ELB, but the

attenuation is greater for the shadow-rate shocks. A negative shadow rate and a high

quantity of market duration are precisely the conditions under which most Federal

Reserve asset purchases were conducted. Thus, even though those purchases appear to

have had only modest effects through the duration channel, their use could have been

consistent with the Fed optimizing across its policy tools in the ELB environment.

This paper is related to several others in the recent literature. As noted above,

a number of studies have used variants of the Vayanos-Vila (2009) framework to an-

alyze the effects of fluctuations in bond supply in a linear environment. Hamilton

and Wu (2012) briefly considered a version in which, once the short rate reached the

ELB, investors believed that it would stay there with an exogenously given probability.

However, because that probability was assumed to be constant, their model did not

contain a mechanism for signaling or forward guidance. In addition, away from the

ELB it priced bonds as if the ELB did not exist. Thus, their model lacked the key

nonlinearities and interactions that drive most of my results.

Greenwood, Hanson, and Vayanos (2015) note the hump-shaped pattern in forward

rates in response to unconventional-policy announcements and argue that expectations
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of future changes in bond supply likely account for that pattern. While my model

does not rule out their type of mechanism, it implies that the empirical hump in the

forward curve can alternatively be explained by the non-monotonic effects of changes

in short-rate expectations due to the ELB– a situation that cannot arise in their linear

model. It also implies that the effects of bond-supply shocks are relatively modest at

the ELB.

A final set of related papers are the empirical studies that have attempted to de-

compose the effects of unconventional policy into various channels. Krishnamurthy

and Vissing-Jorgensen (2011, 2013) argue, based on event studies, that the evidence

for the duration channel is weak, consistent with what my model implies. Swanson

(2017) conducts event studies on unconventional policy to isolate a component reflect-

ing short-rate expectations and a residual component that he essentially interprets as

reflecting the duration channel. Although he concludes that the latter is important

for long-term yields, his approach requires that factor loadings for interest rates in the

ELB preiod were similar to those in the pre-ELB period. My model effectively allows

for endogdous changes in loadings at the ELB and suggests that those changes could

be quite substantial.8

2 Theoretical Framework

2.1 Investor behavior and equilibrium yields

I begin with the same portfolio-choice problem that forms the basis of the models

in Vayanos and Vila (2009) and the several theoretical papers that have followed it.

Investors have access to a continuum of zero-coupon bonds with maturities 0 to T .

At each point in time t, they choose to hold a market-value quantity xt (τ) of each

maturity τ . Let P (τ)t represent the time-t price of a bond with remaining maturity τ .

In addition, investors have access to a risk-free security that pays the instantaneous

rate rt. Investors’time-t wealthWt is the sum of the market-value of the bond portfolio

8D’Amico, English, Lopez-Salido, and Nelson (2012) and Cahill, D’Amico, Li, and Sears (2013)
present event-study evidence that asset purchases may also operate through a scarcity or "local supply"
channel, whereby imperfect substitutability causes yields to fall by more for maturities where more
purchases occurred. My model is silent about this type of phenomenon.
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and the risk-free asset, and it thus evolves according to

dWt =

T∫
0

xt (τ)
dP

(τ)
t

P
(τ)
t

dτ + rt

Wt −
T∫
0

xt (τ) dτ

 (1)

Investors have mean-variance preferences, and thus, taking Wt as given, they choose

quantities xt (τ) to solve the problem

max
xt(τ)∀τ

Et [dWt]−
a

2
vart [dWt] (2)

subject to (1), where a is absolute risk aversion and Et and vart represent expectation

and variance conditional on the time-t state.

The first-order conditions for this problem can be written as

Et

[
dp

(τ)
t

]
= rt + a

T∫
0

xt (τ ′) covt
[
dp

(τ)
t , dp

(τ ′)
t

]
dτ ′ (3)

for all τ , where p(τ)t = logP
(τ)
t , covt denotes the covariance conditional on the time-t

state, and τ ′ indexes the integration across maturities. Note that, under risk-neutrality

(a = 0), all bonds have the same expected return, equal to the risk-free rate. Otherwise,

the risk premium demanded for each bond is proportional to the covariance of that

bond’s price with the return on the whole portfolio of bonds.

The model is closed by assuming that the government exogenously supplies a time-

varying quantity of bonds st(τ) at each maturity. A solution to the model is a set

of state-contingent bond prices that clear the market. Specifically, market clearing

requires

st (τ) = xt (τ) (4)

at each maturity τ and at each point in time t. Prices adjust to make (3) and (4)

hold jointly in all states of the world. Solving the model is thus tantamount to solving

for the conditional expectations and covariances in equation (3). Since the investors

optimize without constraints on their portfolio weights, the equilibrium is arbitrage

free.

The exogenous state variables in the model are rt and st (τ). I assume that the

short rate and the par value of debt outstanding (st (τ) /P
(τ)
t ) are constant “within”
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periods. That is, they jump discretely at regular intervals, normalized to unit length.

This implies that dP
(τ)
h

P
(τ)
h

= p
(τ−1)
t+1 −p

(τ)
t for all h ∈ [t, t+1).9 Since the yield on a τ -period

bond has the usual relationship to its price, y(τ)t = −p(τ)t /τ , it is then straightforward

to show that yields are given by:

y
(τ)
t =

1

τ

τ∑
h=0

Et [rt+h] + a
1

τ
Et


τ−1∑
h=0

T∫
0

τ ′st+h (τ ′) covt+h
[
y
(τ−h−1)
t+h+1 , y

(τ ′)
t+h+1

]
dτ ′

 (5)

The first term on the left-hand side of (5) is the expectations component of yields;

the second term is the term premium. The basic intuition for how asset purchases

(or other fluctuations in bond supply) affect yields in this model is that they change

the weights st (τ ′) on the covariance terms in the term premium. A shock that shifts

st (τ) toward lower-covariance assets– typically, those with shorter duration– will re-

duce yields through that term in period t. Note also that today’s term premium

depends not just on today’s bond supply st, but also on the expected future values of

supply st+h. Thus, if bond-supply shocks are persistent, they will also affect the ex-

pected value of the integral term in subsequent periods, leading to a further reduction

in time-t yields.

Finally, it will also be instructive to examine forward rates. The one-period forward

rate τ periods ahead is given by

f
(1,τ)
t ≡ τy

(τ)
t − (τ − 1)y

(τ−1)
t (6)

2.2 The short rate

I assume that rt follows the “shadow rate”process

rt = max [r̂t, b] (7)

where b is the lower bound on the short rate and

r̂t = µr̂(1− φr̂) + φr̂r̂t−1 + er̂t er̂t ∼ Niid (0, σr̂) (8)

9The discretization makes little quantitative difference, and it becomes irrelevant as the length of
the time interval goes to zero. It can be justified by the observation that monetary policy and debt
issuance do not, in reality, adjust in infinitesimal increments in continuous time but rather move by
sizeable amounts following periodic policy decisions.

8



for some parameters µr̂, φr̂, and σr̂. This is the discrete-time (single-factor) equivalent

of the process used in the empirical shadow-rate literature mentioned in the introduc-

tion. As noted there, that literature generally shows that the shadow-rate specification

performs well in describing the reduced-form dynamics of the yield curve at the ELB.

Obviously, a special case that produces an affi ne specification for the short rate is

b = −∞. This will be a useful case for comparison, because it is the specification used
in the previous theoretical literature on the duration channel.10

Since the shadow rate follows a Gaussian AR(1) process, the conditional distribution

of future shadow rates h periods ahead is normal, with mean and variance given by

the standard prediction equations

Et [r̂t+h] = µr̂(1− φhr̂ )− φhr̂ r̂t (9)

vart [r̂t+h] = σ2r̂

h∑
j=1

φ
2(j−1)
r̂ (10)

In an affi ne model, where r̂t = rt in all states of the world, these equations also describe

the conditional distribution of future short rates. To begin to get a sense of why the

shadow-rate model delivers qualitatively different results than the affi ne model, note

that, once the ELB is imposed, the short rate at any period in the future is distributed

truncated normal if r̂t+h > b and is simply equal to b otherwise. Therefore, the mean

and variance of rt+h, conditional on information at time t, are given by

Et [rt+h] = (1− Φ
(h)
t )
(
Et [r̂t+h] + ϕ

(h)
t

√
var [r̂t+h]

)
+ Φ

(h)
t b (11)

10Although the ELB is imposed a priori here, it is trivial to extend the model to endogenize it
by allowing investors to hold an elastic supply of cash (paying zero nominal return) in addition to
the risk-free asset. Alternative short-rate processes that impose the ELB also exist. For example,
in Monfort, Pegoraro, Renne, and Roussellet (forthcoming), once the ELB is reached, the short rate
stays there with some time-varying probability. At least qualitatively, such differences in specification
are unimportant. The crucial features are that short-rate volatility is low at the ELB and that the
ELB is “sticky,”in the sense that the short rate tends to stay there for some time once it reaches it.
Any model that generates these properties (which are amply evident in the data) will produce results
along the lines of those presented below.
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vart [rt+h] = (1− Φ
(h)
t )vart [r̂t+h]

1− ϕ
(h)
t

1− Φ
(h)
t

(
Et [r̂t+h]− b√
vart [r̂t+h]

)
−
(

ϕ
(h)
t

1− Φ
(h)
t

)2
+Φ

(h)
t (Et [rt+h]− b)2 (12)

where ϕ(h)t and Φ
(h)
t are the standard-normal PDF and CDF, respectively, evalu-

ated at the point b−Et[r̂t+h]√
vart[r̂t+h]

. It immediately follows that Et [rt+h] ≥Et [r̂t+h] and

vart [rt+h] ≤vart [r̂t+h], with equality if and only if b = −∞. In general, short-rate

expectations are pushed up by the proximity of the ELB, and short-rate volatilities are

damped.

Figure 1 depicts these conditional moments of the forward short rate, across differ-

ent values of r̂t. Keeping all other parameters the same, I compare the outcome when

b = 17 basis points (solid lines) to the outcome when b = −∞ (dashed lines).11 The

vertical lines indicate the location of the ELB in the first case. The forward moments

are shown for horizons of 2, 5, 10, and 15 years.

As shown in Panel A, when b = −∞, the forward expected short rate Et[rt+h] is an
affi ne function of r̂t, with the slope of that function decreasing in h. When b is finite,

Et[rt+h] approaches this function as r̂t moves far above b. This is intuitive, since, as

the ELB gets farther away, it should have less influence on asset prices and the model

should behave approximately linearly. However, going in the other direction, expected

future short rates asymptote to b as r̂t → −∞. Because of this, when b is finite, the
derivatives of Et[rt+h] with respect to r̂t decrease and eventually go to zero. In other

words shocks to r̂t have smaller effects on expected future short rates, particularly at

relatively short horizons, when r̂t < b.

Similarly, when b = −∞, the conditional variance of the short rate is a constant
value for all values of r̂t at any given horizons. This is depicted by the horizontal dashed

lines in Panel B. Again, with finite b, the conditional short-rate variances approach

these values as r̂t gets much larger than b. However, as r̂t falls below b, the conditional

variance of the future short rate drops notably. The reason for this is intuitive– when

the shadow rate is far below the ELB, the actual short rate will almost certainly be

11The other parameter values are those shown in the top row of Table 2 in Section 3; the details of
the calibration are discussed there. I note that the comparison in Figure 1 is intended to isolate the
consequences of imposing the ELB holding everything else fixed. When fitting such models to the
data, of course, all of the parameters will generally differ between affi ne and shadow-rate specifications,
so the quantitative discrepancies between the solid and the dashed lines could be different than those
shown.
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equal to the ELB for a long time and therefore will display little variation.

Returning to equation (5) with these observations in mind, we can see heuristically

how the ELB will matter for the propagation of shocks. First, shocks to r̂t will have

generally weaker effects on the expectations component of yields when r̂t < b. More-

over, these shocks may have larger effects on the expectations component of medium

or long-term yields than on shorter-term yields. This contrasts to an environment far

above the ELB, where the effects of shocks to r̂t are always largest at the short end

of the curve. Second, current and future short-rate volatilities are lower at the ELB,

which will mean that the volatilities of all yields are lower, ceteris paribus. Thus the

covariance terms that represent the multipliers on st in equation (5) will generally be

smaller. This means that a given shift in the supply distribution will have a smaller

effect on term premia at the ELB than it does away from the ELB (or in an affi ne

model). Finally, the covariance terms that determine term premia are increasing in

the level of r̂t. As shown in Figure 1, at and near the ELB there is a positive relation-

ship between the expected future short rate and its variance; all else equal, this will

translate into a positive relationship between short-rate expectations and term premia.

Because the conditional variance of rt is constant when it follows an affi ne process, this

channel does not exist in affi ne models.

2.3 Bond Supply

The arguments just sketched for the qualitative effects of the ELB made no reference to

the way in which asset supply st(τ) was determined. Indeed, they hold for a variety of

possible processes for bond supply. Nonetheless, to obtain a quantitative assessment,

we must specify a particular process.

Since bond supply is continuous across maturities, the object st(τ) is an infinite-

dimensional vector. Clearly, it is desirable to reduce this dimension. Previous literature

specifies st(τ) as an affi ne function of a finite state vector βt that follows a linear-

Gaussian process:

st (τ) = ζ (τ) + θ (τ) βt (13)

βt = φββt−1 + eβt eβt ∼ Niid (0, σβ) (14)

where ζ (τ) and θ (τ) are maturity-specific intercepts and coeffi cients. I follow this

approach, taking the dimension of βt to be 1. I further assume that the intercept is

constant across maturities: ζ (τ) = ζ. This involves only a small loss of generality,

11



since ζ (τ) is integrated out in equation (5) and is thus only a level shifter. Similarly,

from equation (5), the individual factor loadings θ (τ) do not matter for yields; only the

weighted sum
T∫
0

τ ′θt (τ ′)covt
[
y
(τ)
t+1, y

(τ ′)
t+1

]
dτ ′ does. This suggests that the exact specifi-

cation of the function θ (τ) is not of first-order importance, so long as it can generate

realistic behavior for overall portfolio duration.12 For simplicity, I follow Greenwood,

Hanson, and Vayanos (2015) by assuming that this function is linear in τ :

θ (τ) =

(
1− 2τ

T

)
(15)

This specification implies that the bond distribution behaves with a see-saw motion

across maturities. Positive supply shocks reduce the amount of long-term bonds and

increase the amount of short-term bonds in equal measure, with the fulcrum at τ = T/2.

Two helpful summary measures of bond supply that are frequently used in the

literature have direct counterparts in the model. The first measure is the weighted-

average maturity (WAM) of the oustanding debt, which is given by

WAMt = v

T∫
0

τst (τ) dτ

T∫
0

st (τ)t dτ

(16)

where v is the length of one period, expressed in years.13 The second measure is the

amount of "ten-year-equivalent" bonds outstanding. This variable is defined as the

dollar value of ten-year bonds that would produce the same duration-weighted value

that the actual portfolio of outstanding bonds has. (Thus, for example, a portfolio

of 5-year bonds with a value of $100 is worth $50 in terms of ten-year equivalents.)

Mathematically, the amount of ten-year equivalents is defined as

10Y Et =
v

10

T∫
0

τst (τ) dτ (17)

The integrals in both of these equations can be evaluated analytically, given the as-

sumed process for st (τ), providing convenient ways of translating real-world changes

12Malkhozov, Mueller, Vedolin, and Venter (2016) make a similar point.
13Note that, since all bonds are assumed to be zero-coupon, duration is simply equal to maturity.
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in the outstanding bond distribution into the bond-supply shocks of the model.

3 Calibration and Solution

There are nine parameters in the model, which I set to match empirical moments of

Treasury supply and the yield curve. Specifically, I use the Gurkaynak, Sack, and

Wright (2007) zero-coupon yields available on the Federal Reserve Board’s website and

the Treasury security data available in CRSP.14 I start the sample in August 1971

because at that time 10-year yields become available. (I also recalibrated using a

sample excluding the volatile period of the 1970s without much effect on the results.)

The sample ends in December 2015. The specific moments that I match are discussed

below. The calibration is summarized in the top line of Table 2.15

A period is normalized to one calendar quarter (i.e., v = 1/4), and I take T , the

maximum-maturity bond available to investors, to be 60 quarters. This matches the

longest maturity bond that was continuously available over the period under consider-

ation. It also happens to be close to the typical duration of a 30-year coupon bond,

which is the longest bond issued by the Treasury at any point during this period. Al-

ternative values for T make little difference, however, because they affect the volatility

of term premia in a way that is largely neutralized by the calibration of a.

I calibrate the autoregressive coeffi cient on the supply factor φβ to match the persis-

tence of the weighted-average maturity of outstanding Treasury debt (the same series

used in the regressions in Table 1). In the data, this variable is calculated as the

value-weighted timing of all cash flows on all Treasury instruments held by the public.

In the model, the WAM of the debt held by investors, expressed in years, is given by

equation (16):

WAMt = v

T∫
0

τ
[
ζ +

(
1− 2τ

T

)
βt
]
dτ

T∫
0

ζ +
(
1− 2τ

T

)
βtdτ

= vT (
1

2
− 1

6ζ
βt) (18)

14Center for Research in Security Prices, Booth School of Business, The University of Chicago.
Used with permission. All rights reserved. crsp.uchicago.edu.
15Since the calibration matches selected moments of the yield curve, it can be viewed as a form of

limited-information estimation. Because the model is solved numerically and involves state variables
that are both unobserved and nonlinear, full-information maximum-likelihood estimation would be
computationally quite challenging and is beyond the scope of this paper.
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SinceWAMt is linear in βt, it has the same persistence. Thus, I match the persistence

of WAM in the data, using the four-quarter autocorrelation (0.92) to abstract from

seasonal patterns in Treasury issuance. This gives φβ = 0.98.16 The parameter σβ
determines the scale of the bond-supply factor. Since βt is unitless, this parameter has

no economic content and indeed is not separately identified. Without loss of generality,

therefore, I set it such that the unconditional variance of βt is normalized to 1.

I calibrate the remaining parameters jointly to match the long-run empirical features

of the yield curve. The specific moments I match are the unconditional mean and

standard deviation of the three-month Treasury yield (5.2% and 3.6% respectively),

the unconditional mean and standard deviation of the ten-year yield (6.7% and 2.8%),

and the correlation between the three-month and ten-year Treasury yield (0.91).17

Finally, I match the average value of the three-month Treasury yield during the ELB

period. Specifically, between December 2008 and December 2015, the three-month

yield averaged 0.22%, with a maximum value of 0.68%. The calibration that achieves

a mean short rate of 0.0022 conditional on r̂t < 0.0068, given the other values of the

short-rate parameters, is b = 0.0017.

For comparison, I consider two alternative models in which b = −∞, i.e., models
with an affi ne process for the short rate. In the first such model, shown in row 2 of

Table 2, I set all parameters other than b equal to the same values as in the shadow-rate

model in order to isolate the effects of imposing the ELB. In the second affi ne model,

shown in row 3, I recalibrate the parameters to match the same set of unconditional

yield-curve moments that the shadow-rate model matches. The parameters turn out

to be fairly similar to those in the baseline model, with the primary differences being

that µr̂ is a bit higher and σr̂ is a bit lower due to the truncation effects shown in

equations (11) and (12).

In general, the model does not have an analytical solution. I solve globally by

discretizing the state space and iteratively (a) calculating state-contingent yields in

equation (5) given conditional expectations, and (b) calculating conditional expecta-

tions given state-contingent prices using the transition densities implied by equations

16Of course, equating investors’bond holdings in the model with Treasury debt in the data might
be taking the model too literally given that investors may also have duration exposure through other
instruments. However, other choices for φβ in the 0.8 to 1 range, holding the rest of the parameters
constant, produce similar outcomes to those reported below.
17Note that the three-month yield used in these calculations is the fitted value of the Gurkaynak et

al. curves, which are based on Treasury coupon-security data. It is not a Treasury bill rate. It thus
avoids any premium associated with very liquid, "money-like" assets.
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(8) and (14). Cubic interpolation between the discretized nodes is used for situations,

such as model simulation, in which state values are required to be continuous. The

details of the solution method are described in Appendix A.

4 Results

4.1 Model fit

Table 3 summarizes the properties of bond yields produced by the calibrations in the

shadow-rate and affi ne models and compares these results to the data. The model-

implied moments are calculated by drawing 1,000,000 times from the distributions

of ert and e
β
t and simulating the resulting paths of the state variables r̂t and βt. To

illustrate the importance of the ELB, I report the results conditional on the short rate

being both below and above the value 0.68%. Again, the reason for choosing this

threshold is that it was the maximum attained by the three-month Treasury yield in

the data during the time that the Federal Reserve kept its policy rate in the 0 —25

basis point range.

The shadow-rate model matches the data quite well when the short rate is at its

lower bound, coming within a few basis points of the means and standard deviations

of all but the longest yields. In contrast, the affi ne model with the same calibration

predicts a short rate that averages -1.3% (negative Treasury rates never actually appear

in the data) and an average yield-curve slope that is dramatically steeper than what

was observed. It also predicts slope volatilities that are somewhat farther from the

data than those given by the shadow-rate model. The affi ne model that is recalibrated

to match the unconditional yield curve moments does slightly better at the ELB, but

it still significantly underperforms the shadow-rate model. It also underestimates the

frequency with which the ELB binds by about 40%.

The shadow-rate model achieves its successes near the ELB without sacrificing

performance relative to the affi ne models in other regions of the state space. As the

bottom panel shows, all three models differ from each other by only a few basis points

for all of the reported statistics when the short rate is greater than 0.68%. To be sure,

the shadow-rate model’s performance is not perfect– like most structural yield-curve

models, it produces too little curvature on average and has trouble simultaneously

matching volatilities at all maturities. But even in these respects the differences with

the data are not dramatic, and it still performs at least as well as the affi ne models.
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4.2 Yield determination in the shadow-rate model

I now consider the effects of the ELB on the yield curve and on the propagation of

the two shocks in different regions of the state space. To facilitate this discussion,

consider the first-order Taylor series expansion of the τ -maturity yield. For arbitrary

state values, r̂ and β, we have

y
(τ)
t ≈ C

(τ)
t + A

(τ)
r̂,t r̂ + A

(τ)
β,tβ (19)

where A(τ)r̂,t ≡ ∂y
(τ)
t /∂r̂t and A

(τ)
β,t ≡ ∂y

(τ)
t /∂βt, with both derivatives evaluated at the

time-t values of the states, and C(τ)t is the corresponding intercept term. In general,

these derivatives vary over values of the state variables; hence, their time subscripts.

They thus have an interpretation as state-dependent factor loadings. In the case of the

affi ne process for the short rate, yields themselves are affi ne in the states (as shown, for

example, in Vayanos and Vila, 2009). Thus, in that case, equation (19) holds exactly,

and the derivatives are constant.

The solid lines in Figure 2 depict the factor loadings in the shadow-rate model across

a range of values for r̂, holding β fixed at its mean value of zero. (The derivatives are

a byproduct of the solution algorithm.) The dashed lines depict the corresponding

loadings in the affi ne model under the baseline calibration (line 2 of Table 2). Since

yields are affi ne functions of the states in the affi ne model, those lines are always flat.

The factor loadings in the shadow-rate model asymptote to those of the affi ne model

as r̂ rises farther above the ELB.

The factor loadings in the shadow-rate model near and below the ELB follow from

the nonlinear conditional moments of the short rate that were depicted in Figure 1. As

was shown there, for lower values of r̂t, both the conditional mean and the conditional

variance of rt+h in future periods falls. The lower mean leads to lower yields through

the expectations component, and the lower variance leads to lower yields through the

term premium. Thus, as shown in panel A of Figure 2, A(τ)r̂,t is monotonically increasing

in r̂. Furthermore, for r̂ low enough, A(τ)r̂,t < A
(τ ′)
r̂,t when τ < τ ′. Consequently, longer-

term yields respond to shadow-rate shocks by more than shorter-term yields do. This

pattern is the opposite of what we observe when r̂ > b, and it is the opposite of what

the affi ne model predicts.

Recall that increases in βt reduce the duration exposure of investors and therefore

have negative effects on term premia. As shown in panel B, in the shadow-rate model,
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A
(τ)
β,t is monotonically decreasing (i.e., becoming more negative) in r̂. This is because

vart [rt] falls as r̂ moves below the ELB, causing the covariance terms in (5) to become

smaller. Consequently, at the ELB– and particularly when r̂ is deeply negative–

bond-supply shocks have smaller effects on yields than they do in the affi ne model.

Figure 5 shows the factor loadings plotted across a range of values for β, holding

r̂ fixed at either the unconditional mean of the short rate (Panel A) or at a value of

−2.7% (Panel B). I choose the latter value for illustration of the ELB environment

because it is the average of the shadow rate estimated by Krippner (2012) over the

period December 2008 to December 2015.18 From this perspective, the differences

between the shadow-rate and the affi ne model are evident even when the short rate

is at its unconditional mean and are of first-order importance when the shadow rate

is negative. In that region, two particularly noteworthy results stand out. First,

A
(τ)
r̂,t is not only strictly lower that it is when r̂ is positive, it is also decreasing in

β. The reason is that, when β is positive, investors have relatively little exposure to

long-term bonds. Consequently, when the shadow rate rises, the resulting increase in

short-rate risk has a relatively small effect on term premia. When β is negative, in

contrast, investors’bond exposures are greater, and increases in the shadow rate have

a larger impact on term premia through their effects on short-rate volatility. Second,

A
(τ)
β,t is increasing (becoming less negative) in β. Intuitively, higher levels of β reduce

exposure to long-term bonds, making long-term yields less sensitive to the changes in

short-rate risk induced by the shadow-rate. Consequently, positive shocks to β reduce

the volatility of yields, making further shocks to β less potent. This result implies,

for example, that the marginal effects of asset purchases decline as the central bank

does more of them. It will also be important for analyzing the relative effectiveness of

alternative policies in different environments in Section 6.

The state-dependent factor loadings explain the empirical patterns that were il-

lustrated in Table 1 in the introduction. Recall that the regressions reported there

showed that Treasury supply had smaller effects during the ELB period than in the

pre-ELB sample. This is exactly the result predicted by panel B of Figure 2. Table 1

also showed that regression coeffi cients of long-term on short-term yields became larger

at the ELB, in particular rising from less than 1 to greater than 1. That the model

18To interpret the meaning of r̂ = −.027, simulations starting from this value produce a modal time
of 6 quarters until the shadow rate moves above the ELB. This is roughly consistent with survey
evidence on market participants’expectations and other evidence collected during much of the ELB
period (see Femia, Friedman, and Sack (2013)).

17



reproduces this result can be seen by examining the factor loadings in the panel 2.A,

and in particular how they cross in the sub-ELB region.

Table 4 makes these patterns clearer by computing the linearized relationships be-

tween long-term yields, shorter-term yields, andWAMt in the model. Given equations

(18) and (19), the response of the τ -period yield to a change in WAMt is −6ζA
(τ)
β,t/vT .

Panel A reports these responses at various values of the shadow rate, for τ = 5, 10, and

15 years, in the first group of columns. To make the comparison to Table 1 clearer,

the second and third groups of columns report the sensitivity to WAMt holding fixed

the one-year yield or the two-year yield.19 The sensitivities show a clear decline at the

ELB, similar to that suggested by the Table 1 regression results.20 Similarly, panel

B shows state-contingent linearized coeffi cients of the τ -period yield on the one- and

two-year yields, holding the supply factor fixed (A(τ)r̂,t /A
(4)
r̂,t and A

(τ)
r̂,t /A

(8)
r̂,t ). As in Table

1, the coeffi cients rise from less than 1 to greater than 1 at the ELB and switch from

being most-sensitive to least-sensitive at the five-year maturity. These results further

support the ability of the model to explain the behavior of the yield curve and its

relationship to bond supply in the ELB environment.

4.3 The effects of shocks

To see the results in another way, Figure 4 shows the dynamic effects of shocks in

the shadow-rate model. I consider independent one-standard-deviation shocks to the

shadow rate and bond supply in directions that lower yields (ert = −.0078 or eβt = 0.20).

I consider two cases: one in which the short-rate begins at its unconditional mean of

5.2%, and one in which it begins at −2.7%, its ELB-period average according to the

Krippner estimates. (In both cases, I let βt start at its mean value of zero.) For each

set of starting values, I simulate the model forward ten years, both with the shocks

in the first period and without them. I compute impulse-response functions as the

difference between those two simulations. In the figure, each IRF depicts the response

of the entire yield curve over the ten-year period, with maturities on the lower-left

axis and calendar time on the upper-left axis. Panel A shows the response of spot

yields, while Panel B presents the same information in terms of forward rates, where

19These coeffi cients are given by −6ζ(A
(τ)
β,t −A

(τ ′)
β,t /A

(τ ′)
r̂,t )/vT for τ ′ = 4 or 8 quarters.

20Since there is no concept of GDP in the model, it is not possible to mimic the specifications
in Table 1 that use the maturity-weighted debt-to-GDP ratio. However, if the model results are
computed replacing WAMt with the model-implied measure of ten-year-equivalent bonds the same
patterns hold.
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the patterns are somewhat easier to see.

When the short-rate starts from 5.2%, the shock to r̂t has a monotonic impact on

the yield curve. The response to the bond-supply shock displays nearly the opposite

pattern, with no effect on short-term yields and relatively large effects at the long

end. The shadow-rate shock initially lowers the ten-year yield by 54 basis points,

and the bond-supply shock lowers it by 23 basis points. The effects of both shocks

decay monotonically over time, with the yield curve coming most of the way back to

its starting position by the end of the ten years shown.

When the shadow rate starts below b, the outcomes are notably different. For

one thing, the effects of both shocks are smaller; the shadow-rate shock now reduces

the ten-year yield by just 28 basis points, while the bond-supply shock reduces it by

15 basis points. In addition, the shock to r̂t now produces a hump-shaped reaction

across maturities in forward rates, as shown in panel B. This pattern will be critical

for explaining the observed forward-curve response in event studies, considered later.

Again, it occurs because shorter-term forwards cannot move much lower to begin with;

the deeply negative shadow rate has already depressed them to near b. Meanwhile,

long-term forward rates are still not much affected by shadow-rate shocks because they

depend mostly on expectations of the short rate in the far future. Consequently,

shadow-rate shocks have their largest effects on medium-term yields. This prediction

of the model is consistent with the evidence presented by Swanson andWilliams (2014),

who show that responses of shorter-term yields to macroeconomic shocks were muted

during the ELB period, and Carvalho, Hsu, and Nechio (2016), who show that Federal

Reseve communications had their largest effects in the 2- to 10-year maturity range

during the ELB period. The exact maturity of the peak of the hump (about 7 years,

in the case shown in figure 4) depends on the size of the shock and how far below b the

shadow rate initially is.

While the bond-supply shock operates entirely through the term premium, the

shadow-rate shock has effects through both the expectations component of yields and

the term premium. The the latter effect arises because of the way that the shadow rate

affects short-rate volatility at the ELB, and it is more pronounced when the shadow rate

is negative. This is illustrated in Figure 5, which plots the initial responses of spot and

forward rates to the same shadow-rate shock shown in the previous figure, with those

responses now decomposed into the expectations component, shown in pink, and the

term premium, shown in blue. (The expectations component is given by integrating
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equation (11) across maturities, and the term premium is just the difference between

the total yield response and the expectations component.) When the shadow rate

starts at 5.2%, the term premium barely moves in response to the shock, reflecting

the remoteness of the ELB. In contrast, when the shadow rate starts at -2.7%, the

reduction in the term premium in response to the shock accounts for about a third of

the overall yield decline at longer maturities (e.g., 10 of the 28 basis points on the ten-

year yield). Its largest effect on forward rates is at the 8-year maturity, contributing

to the hump shape.

5 Assessing unconventional policy

5.1 Simulating unconventional policy

I now use the model to study the effects of unconventional monetary policy. The

Federal Reserve implemented two main types of such policy: asset purchases (also

known as "quantitative easing") and forward guidance about the future course of the

short-term interest rate. Jointly, these policies can be mapped into the shadow-rate

and bond-supply shocks of the model. However, one should avoid associating QE

only with shocks to bond supply and associating shadow-rate shocks only with forward

guidance. As a number of authors have noted, QE may have worked in part through

a "signaling channel," serving as a commitment by the Fed to keep the short rate at

the ELB for a longer time. (E.g., Woodford (2012); Bauer and Rudebusch (2014);

Bhattarai, Eggertsson, and Gafarov (2015).) If so, then such policies involve shocks

to both bond supply and the shadow rate. For this reason, I do not attempt to

distinguish the effects of forward guidance and QE per se but rather model the joint

effects of changes in the anticipated short rate and bond supply.

The strategy is to feed the model a set of shocks that approximate those associated

with unconventional policy during the ELB period and calculate the yield-curve effects

of those shocks. To conduct this exercise, one must translate the actions taken by

the Federal Reserve into shocks that can be input into the model. Cumulatively, we

know fairly precisely how large these shocks were. rt remained at the ELB for seven

years, and so the shadow-rate shocks in the simulation must keep rt at b for exactly

28 periods. Over the same time, Greenwood, Hanson, Rudolph, and Summers (2015)

report that the Fed removed approximately $2.7 trillion of ten-year-equivalent bonds

from the market, including Treasuries, agency debt, and MBS. This was approximately
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18% of the total 10-year equivalents outstanding in these markets as of December 2015,

which from equation (17) is suffi cient to pin down the cumulative size of the shocks to

bond supply.21

While it is tempting to interpret the bond-supply shocks associated with QE events

simply as realizations of eβt , Federal Reserve asset purchases likely differed in important

ways from the other types of bond-supply fluctuations that dominate the long span of

data. In particular, in the baseline model above the parameter φβ was calibrated to

a value of 0.98, implying a half-life of 8.5 years, to match the persistence of Treasury

debt since 1971. But Fed asset purchases were almost certainly interpreted as less

persistent than that. Carpenter, Ihrig, Klee, Quinn, and Boote (2013) inferred from

surveys of market participants, conducted while the QE programs were taking place,

that the size of the Fed’s balance sheet was expected to normalize by August 2020.

By that reckoning, the expansion of the Fed’s balance sheet, which occurred between

December 2008 and December 2014, had a perceived half-life of less than 4.5 years on

average, substantially less than that of eβt shocks under the baseline calibration.
22

To account for these differences, I extend equation (13) to allow for an additional

supply factor Qt representing bond-supply shocks due to changes in the Federal Re-

serve’s balance sheet:

st (τ) = ζ + θ (τ) (βt +Qt) (20)

where

Qt = φQQt−1 + eQt (21)

for "Fed balance-sheet" shocks eQt . I set φQ = 0.96, giving these shocks a half life of

4.25 years. When calculating bond yields in this model, I set the variance of eQt to

zero, so that the perceived risk associated with total bond supply is the same as in

21In December 2015, the CRSP Treasury data show ten-year-equivalent Treasury bonds of $11.6
trillion, while SIFMA data show $7.2 trillion of agency-backed MBS and CMOs and $1.3 trillion of
long-term agency debt outstanding (http://www.sifma.org/research/statistics.aspx). Hanson (2014)
shows that the average duration of a 30-year MBS is about 3.5 years, and I assume that the duration
of long-term agency debt is 5 years. Under these approximations, ten-year equivalents outstanding
totalled $14.8 trillion.
22Other evidence on the persistence of QE is mixed, but it does not suggest a coeffi cient as high

as 0.98. Wright (2012) estimates a half-life of less than a year for the effects of unconventional
monetary-policy shocks on yields in a VAR. Altavilla and Giannone (forthcoming) show that markets
expected most of the effects of unconventional policy to persist for at least a year, but the survey data
they use do not extend beyond that horizon. Similarly, Swanson (2017) finds that the persistence of
most QE shocks was large, but he limits the estimation horizon to 180 business days.
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the baseline model.23 The process for βt remains the same, and all other parameters

continue to take the values shown in the top row of Table 2. Since Qt does not add

additional risk to the model, the conditional moments of yields and the factor loadings

for r̂t and βt also remain the same as above. I note that, although the addition of the

balance-sheet factor adds realism to the model, the results presented below are largely

unchanged if asset purchases are simply treated as ordinary shocks to βt.

The nonlinearities induced by the ELB mean that both starting values and the

trajectory of the shocks matter. I use starting values based on the configuration of

the yield curve on the eve of unconventional policy. Letting t = 0 denote the period

immediately before unconventional policies were enacted, I set r̂0 = 0.0017, just at

the ELB. I set β0 = −0.34, which produces a ten-year yield-curve slope of 3.0%, the

observed slope as of the FOMC meeting prior reaching the ELB. I initialize Q0 to

zero, since QE did not exist prior to the ELB.24

Since we cannot directly observe the trajectories of the shadow rate and the Fed

balance-sheet factor in the data, I simulate a range of possible trajectories, with each

trajectory being consistent with the observed outcomes of (1) a short rate that stays

at zero for exactly 28 periods and (2) a cumulative net reduction in 10-year-equivalent

bonds of 18%.25 The details of these simulations are discussed in Appendix B. Each

simulation i consists of a set of 28 shocks to both the shadow rate and the Fed’s

balance sheet {(er̂i,1, e
Q
i,1), ..., (er̂i,28, e

Q
i,28)}, which accumulate into the state trajectories

{(r̂i,0, Qi,0), ..., (r̂i,28, Qi,28)} via equations (8) and (21). The initial values (r̂i,0, Qi,0),

which were just discussed, are the same in all simulations. The shocks to βt are set to

zero, so that variable simply decays back toward its mean over the period, following a

23This assumption is justified because QE purchases account for very little of the unconditional
variation in the duration risk of investors’portfolios. Allowing for a positive variance of eQt does not
substantively change the results below, as long as it is less than the unconditional variance of eβt .
24The ELB was offi cially reached on December 16, 2008, when the FOMC cut the target federal

funds rate from 1% to a range of 0 to 25 basis points. However, from the Treasury market’s perspective
the effective date may have been slightly earlier. The three-month yield declined 102 basis points
over the intermeeting period leading up to December 16, in anticipation of the cut. In addition,
the first announcement of asset purchases came on November 25. Using a starting value for bond
supply based on the situation as of October 29, 2008, ensures that it does not include these pre-ELB
influences of unconventional policy.
25One might use data on the Fed’s holdings as an observed measure of Qt, and such a path is in fact

spanned by the set of trajectories I simulate. I allow for more ambiguity, however, because the term
premium depends on expectations of future asset purchases, not just the amount the Fed currently
holds. In the model here, Et [Qt+h] depends only on Qt, making the distinction between current
balances and expected future balances fuzzy. Greenwood, Hanson, and Vayanos (2015) explore this
distinction in detail.
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path that is identical across all simulations.

Panel A of Figure 6 shows the resulting distribution of the simulated trajectories for

r̂t. This distribution spans empirical estimates of the shadow-rate path during the ELB

period, including those of Krippner (2012) and Wu and Xia (2016). Panel B shows

the distribution of the Qt, trajectories, converted to cumulative percentage changes in

ten-year-equivalent bonds outstanding for ease of interpretation, using equation (17).

It is more diffi cult to know what the "right" path of this variable ought to be (see

footnote 25), but the distribution covers a fairly wide range of possibilities.

With the simulated distributions of the state-variable trajectories in hand, I use

the model to extract the yield-curve responses. To report the results, for each period

in each simulation I calculate how the yield curve changes, relative to how it would

have changed if there had been no shock in that period. I then sum these differences

across periods within each simulation. This proceedure is analagous to empirical event

studies that attempt to isolate and accumulate the immediate impact of policy shocks

without accounting for their dynamics. (Here, there is an "event" in every period.)

Specifically, letting y(τ) (r̂t, βt, Qt) denote the τ -maturity yield as a function of the state

variables, I calculate

D
(τ)
i =

28∑
t=1

[
y(τ) (r̂i,t, βt, Qi,t)− y(τ)

(
r̂i,t − eri,t, βt, Qi,t − eQi,t

)]
(22)

The distribution of D(τ)
i across simulations is shown in Figure 7.A, with the corre-

sponding calculation for forward rates shown in 7.B.

The median decline in the ten-year yield produced by the simulated unconventional

policy shocks is 202 basis points. This estimate does not differ much across simula-

tions, with the middle 90% of the distribution spanning only the range of -205 to -194

basis points. It is worth noting that these are similar magnitudes to the effects that

have been estimated in event studies of unconventional policy. For example, look-

ing at 23 important policy announcements during the ELB period, and controlling for

macroeconomic news, Altavilla and Giannone (forthcoming) find a net effect on the

ten-year yield of -176 basis points. Comparisons between these kinds of results and

the model cannot be made precise because empirical event studies necessarily capture

only a subset of the relevant shocks, but they suggest that the model’s results are

quantitatively realistic.

Perhaps more importantly, the model reproduces another key stylized fact from
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the event-study literature. Rogers, Scotti, and Wright (2014) and Greenwood, Han-

son, and Vayanos (2015) show that unconventional policy annnouncements typically

resulted in a hump-shaped reaction across the forward curve, with forward rates in

the 5- to 7-year range moving the most. The model generates exactly this pattern

(see Figure 7.B). As was evident in Figure 5, it does so because of the non-monotonic

effects of shadow-rate shocks induced by the ELB, which operate through both the

expectations and term-premium components of yields.

The consistency of the model with the empirical evidence on unconventional policy,

together with the other results presented earlier, suggests that it does a good job of

matching the behavior of Treasury yields and their relationship to bond supply in di-

mensions that are observable. Thus, one can have some confidence in what the model

has to say about the unobservable aspects of unconventional-policy shocks. I examine

two of these aspects. First, I decompose the cumulative contemporaneous yield-curve

reaction shown in Figure 6 into various channels of unconventional policy. While this

calculation captures the sources of the changes in yields in the periods when shocks

occurred, it does not account for the dynamic effects of those shocks. Therefore, the

second approach I take is to calculate a decomposition of the total model-implied vari-

ance in yields during the ELB period. In both exercises, the breakdown is calculated

by computing what the change in yields would have been if only the shadow-rate or the

Fed balance-sheet shocks had occurred (again, relative to a baseline case in which there

are no shocks at all). In the case of the shadow-rate shocks, the response can be further

decomposed into the expectations and term-premium components. Finally, because

of the nonlinearities, the responses to the individual shocks do not sum exactly to the

total response when both types of shocks occur simultaneously. An "interaction" term

captures the residual.

Table 5 shows the results of these decompositions according to the medians across

simulations, with the 5% and 95% quantiles reported in parentheses. Panel A presents

the decomposition of the cumulative contemporaneous effects and panel B presents

the total-variance decomposition. Looked at either way, the shadow-rate shocks are

responsible for considerably more of the change in yields than the Fed balance-sheet

shocks are. For example, as shown in column 4 of panel A, the model implies that

the duration effects associated with QE lowered the ten-year yield by a total of just

34 basis points in the periods when they occurred. The shadow-rate shocks explain

over 80% of the contemporaneous declines in yields at this maturity, and at maturities

24



of less than five years they explain nearly all of the change (columns 2 and 3). The

expectations component constitues the bulk of the effects of the shadow-rate shocks,

but the term-premium effects of such shocks are also significant. They account for 63

basis points of the decline in yields at the ten-year maturity– about twice the effects

of the balance-sheet shocks.

In panel B, the nonlinear interactions in column 6 loom larger, so that the precise

contributions of each factor to the overall variance of yields are somewhat less clear.

Nonetheless, in the case with Fed balance-sheet shocks alone (column 4), yields beyond

the two-year horizon have only about 1% of the variance that they have when both

shocks are present. In contrast, in the case with shadow-rate shocks alone (columns 2

and 3), the variance of yields is similar to the variance when both shocks are present. At

intermediate and long maturities, the term-premium effects of the shadow-rate shocks

explain about the same fraction of the total variance in yields that the expectations

component explains.

In summary, the model– which is consitent with the evidence on unconventional

policy in most verifiable respects– suggests that shadow-rate shocks by themselves

can explain most of the response of yields to unconventional policy. The duration

channel is relatively unimportant. Furthermore, although the shadow rate’s effect

on rate expectations is the single most important driver of yields, its effect on term

premia is also significant. Indeed, the results suggest that the term-premium effects

of the reduced short-rate uncertainty at the ELB– a previously overlooked channel of

unconventional policy– may be at least as important as the much-discussed duration

channel of QE.

5.2 Policy options in alternative environments

Because they take different units, it is not meaningful to ask whether the shadow-rate

shocks or the bond-supply shocks are "more powerful" in general. However, one can

compare their relative effectiveness in different states of the world. One reason that

such a comparison may be interesting is that policymakers, who presumably have some

notion of the implict cost of implementing each type of policy, may favor one over the

other depending on the circumstances.

To measure relative effi cacy, I compute the size of the bond-supply shock that

would be required to generate the same effect on the τ -period yield that a 25-basis-

point decline in the shadow rate has. Specifically, again letting y(τ) (r̂t, βt, Qt) denote
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the τ -maturity yield as a function of the state variables, I solve for ∆β such that

y(τ) (r̂t − .0025, βt, Qt) = y(τ) (r̂t, βt + ∆β,Qt) (23)

using a range of initial values (r̂t, βt). I repeat an analagous exercise to solve for the

relative effi cacy of Fed balance-sheet shocks, ∆Q.26 In an affi ne model, the values

∆β and ∆Q that solve these equations are constant across the state space. In the

shadow-rate model, as was evident in Figures 4 and 5, the elasticities of yields with

respect to shadow-rate and bond-supply shocks differ in different areas of the state

space, and therefore their relative effi cacy also differs.

Figure 8 presents contour maps of relative effi cacy for 10- and 15-year yields, with

darker colors indicating bigger values– i.e., areas of the space in which bond-supply

shocks have relatively large effects compared to those of shadow-rate shocks. Both βt
and Qt achieve their greatest relative effi cacy in the southwest quadrant of the maps,

where both r̂t and βt are deeply negative. As noted earlier, both bond-supply and

shadow-rate shocks are attenuated when the shadow rate is below the ELB. However,

when βt is negative (i.e., more duration in the market), the attenuation of the shadow-

rate shocks is greater than the attenuation of the bond-supply shocks.27 Thus, for

example, a shock to βt of about 0.11 or a shock to Qt of about 0.15 in this region is

suffi cient to lower the ten-year yield by the same amount that a 25-basis-point shock to

r̂t would achieve. In contrast, at the unconditional means of the states, the respective

sizes of the βt and Qt shocks required are closer to 0.16 and 0.20, respectively.

Interestingly, this high-relative-effi cacy region for the bond-supply shocks is approx-

imately the region of the space in which the Fed asset purchases were conducted in

practice. The greatest removal of duration from the market occurred during the QE

and maturity extension programs that mostly operated between 2011 and 2013. During

that time, empirical shadow-rate term-structure models show r̂t near its nadir, with the

Krippner (2012) estimate, for example, averaging -4.5% over those three years. Mean-

while, the Treasury was lengthening the maturities of its issuance, so that the average

duration outstanding stood near the upper end of its historical range. Moreover, fiscal

expansion increased the total quantity of Treasury debt outstanding, further boosting

the amount of interest-rate risk held by investors.28 Thus, one possible interpretation

26Note that the solution for ∆β is the same regardless of whether we use the baseline process (13)
or include Qt in the model as in (20). In the latter case, the initial value of Qtis set to zero.
27This result can be seen to some extent in Figure 5, panel B.
28Over the 2011 - 2013 period, the maturity-weighted debt-to-GDP ratio averaged 4.4, compared
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of the Fed’s actions during this time is that it saw the cost-benefit calculations around

its policy options changing. During normal times, the Fed has a revealed preference

for not engaging in asset purchases. This preference may have shifted during the ELB

period if the FOMC perceived that the marginal benefits of forward guidance declined

suffi ciently relative to those of asset purchases.

6 Conclusion

This paper has augmented a model of risk-averse arbitrage in the bond market to

account for the effective lower bound on nominal interest rates. The model successfully

reproduces the conditional moments of the yield curve, particularly near the ELB, as

well as empirical evidence on the effects of bond supply on yields. When considering

shocks that approximate the experience of unconventional monetary policy in the U.S.,

the main finding is that the majority of the effects of such policies come through the

expectations component of yields. The term premium effects of changes in policy

expectations– a channel that does not exist in affi ne models and has been ignored by

previous literature– also plays a significant role. The duration effects of bond-supply

shocks are relatively weak, accounting for less than one-fifth of the overall change in

the ten-year yield and even less at shorter maturities.

The Fed bought about $3 trillion of longer-term bonds, and the model suggests

that this may have reduced the ten-year yield through the duration channel by about

30 basis points. Of course, many empirical studies suggest that QE had much larger

effects–Williams (2014), for example, cites a consenus estimate of 15 - 25 basis points

on the ten-year yield per $600 billion of asset purchases. Such estimates generally come

from two sources. One source is models (reduced-form and structural) that are often

both linear and parameterized to data from the pre-ELB environment. The results

presented here suggest that the predictions of such models could be quite misleading

because they do a poor job of matching the behavior of yields near the ELB, where the

relevant factor loadings change both quantiatively and qualitatively. The second type

of evidence comes from event studies of unconventional policy. While such studies

usually point to a sizeable impact of asset-purchase annonucements, they cannot easily

distinguish duration effects from implict signaling effects or from the effects of explicit

forward guidance that often was announced simultaneously with changes in balance-

to a pre-ELB average of 2.4, according to the CRSP data.
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sheet policy. Indeed, as was shown above, the model in this paper replicates the general

features of the event-study evidence without the need for large duration effects.29

From a policy perspective, the results presented here are a mixed bag. On the

one hand, the weakness of the duration channel suggests that monetary policymakers

finding themselves at the ELB might be hesitant to rely on asset purchases if they

have other tools– such as forward guidance– at their disposal. On the other hand,

the results of Section 5 suggest that, in states of the world in which the ELB is a

serious constraint, asset purchases may become more attractive, particularly if the

quantity of duration risk in the market is high. It may also be the case that asset

purchases provide a commentment device and thus have effects on the shadow rate

through the signaling channel. Determining the optimal mix of policy tools at the

ELB requires careful evaluation of these various mechanism, and my hope is that the

results presented above are a useful further step in that direction.
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Appendix A. Solution Algorithm

Transform log prices from the time/maturity domain to the state-space domain by

writing them as a function p(.):

p
(τ)
t = p (τ , r̂t, βt) (24)

We want to solve for this function.

Discretize the state and maturity space into Nτ× Nr̂ ×Nβ nodes. Let τn, r̂n, and

βn denote the values of the maturity and state variables at node n. Set p (1, r̂t, βt) =

−max [r̂t, b] for all β
n. Then, from equations (3), (13), and (15), for τ > 1 we have

p (τn, r̂n, βn) = E
[
p
(
τn − 1, r̂t+1, βt+1

)
|r̂n, βn

]
+ r̂n (25)

+{a
Nτ∑
τ ′=1

[
ζ +

(
1− 2τ ′

T

)
βn
]

×cov
[
p
(
τ ′, r̂t+1, βt+1

)
, p
(
τn − 1, r̂t+1, βt+1

)
|r̂n, βn

]
}

Rewrite the law of motion for the state vector as the conditional probability function

π
(
r̂t+1, βt+1|r̂t, βt

)
= ϕ

(
r̂t+1 − µr̂(1− φr̂)− φr̂r̂t

)
ϕ
(
βt+1 − φββt

)
(26)

where ϕ(.) is the standard-normal PDF (and the separability makes use of the inde-

pendence of r̂t and βt).

The algorithm proceeds as follows:

Step 0. Set i = 0. Begin with an initial guess of the pricing function p0(.). For

example, choose p0(τ , r̂t, βt) = −max [r̂t, b] for all τ , r̂t, βt.

Step 1. At each node n, evaluate the functions

mi (τn, r̂n, βn) ≡
∫ ∫

π (r̂, β|r̂n, βn) pi (τ − 1, r̂, β) dr̂dβ (27)

= E
[
pi
(
τn − 1, r̂t+1, βt+1

)
|r̂n, βn

]
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and

ωi (τn, τ ′, r̂n, βn) ≡
∫ ∫

{π (r̂, β|r̂n, βn)
[
pi (τ − 1, r̂, β)−mi (τ , r̂n, βn)

]
(28)

×
[
pi (τ ′, r̂, β)−mi (τ ′, r̂n, βn)

]
}dr̂dβ

= cov
[
pi
(
τ ′, r̂t+1, βt+1

)
, pi
(
τn − 1, r̂t+1, βt+1

)
|r̂n, βn

]
with both functions set to zero when τ = 1.

Step 2. Update the pricing function by calculating, at each node,

pi+1 (τn, r̂n, βn) = mi (τn, r̂n, βn)−max [r̂t, b] (29)

+a
Nτ∑
τ ′=1

[
ζ +

(
1− 2τ ′

T

)
βn
]
ωi (τn, τ ′, r̂n, βn)

Set i = i+ 1.

Repeat steps (1) and (2) to convergence.

The expectations in Step 1 are computed numerically using the probability function

π (.) and the pricing function pi(.). The integration is performed by quadrature and,

to ensure accuracy, relies on a much finer grid than the price computation in Step 2

does. To obtain bond prices over this refinement of the space, the values of pi(.) are

interpolated between each pair of nodes, at each iteration, using a cubic spline. At

the edges of the discretized space, to avoid explosive behavior, prices are log-linearly

extrapolated for the purposes of computing expectations. (So long as the edges are far

away from the region of the space that is being considered, the conditional expectations

used there have little influence on the results.)

In the baseline model of the paper, I use Nτ = 60, Nr̂ = 101, and Nβ = 25, for

a total of 151, 500 nodes, distributed uniformly in each dimension over the intervals

τ = [1, 60], r̂ = [−0.25, 0.35], and β = [−6.0, 6.0]. Expanding the density of the nodes

or their range beyond this point had no noticeable effect on the results reported in

the paper. The algorithm converges to three significant digits in approximately 400

iterations.
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Appendix B. Simulation details
This appendix describes the construction of the simulated distributions of the state

variables used in the pseudo event study, as depicted in Figure 6.

Clearly, it had to be the case that the average shadow-rate shock during the ELB

period was negative. Thus, for each simulation i, I draw a series of shadow-rate

shocks {er̂i,1, ..., e
r̂
i,28} from the distribution N [µi, σr̂], where µi < 0 is chosen to make

the terminal value of the shadow rate r̂i,28 exactly equal b. I reject any draw in which

the simulated value of r̂t ever rises above b.

To determine the size of the Fed balance-sheet shocks, note that equation (17)

implies that changes in the supply factors translate into percentage changes in 10-year-

equivalent bonds as follows:

%∆10YEt+h =

T∫
0

τ
[(

1− 2τ
T

) (
βt+h +Qt+h − βt −Qt

)]
dτ

T∫
0

τ
[
ζ +

(
1− 2τ

T

)
(βt +Qt)

]
dτ

(30)

= −∆βt+h + ∆Qt+h

3ζ − βt −Qt

Since the eβt are taken to be zero in this exercise, plugging in the actual percentage

change in 10-year equivalents that resulted from QE allows one to uniquely solve for

∆Qt+h, given initial values. In particular, at the end of the simulation we must have

Q28 = 0.23 in order to achieve a reduction in ten-year equivalents of 18% relative to a

case in which the Q28 = 0.30

This calculation provides a value for the cumulative effect of the Fed balance-sheet

shocks on bond supply, but it does not tell us about the individual values of those

shocks. I take a conservative approach by considering the widest possible distribution

for the shocks, while respecting the empirical facts that (1) QE balances never fell

below their starting value of zero, and (2) QE attained its maximum value at the end

of the ELB period. Specifically, for each simulation i, I take draws {ẽi,1, ..., ẽi,28}

from N [0, 1] and compute the balance-sheet shocks {eQi,1, ..., e
Q
i,28} = σi{ẽi,1, ..., ẽi,28},

where σi is the the largest value that is consistent with min[{Qi,1, ..., Qi,28}] > 0 and

max[{Qi,1, ..., Qi,28}] = Qi,28.

30The difference between the path of ten-year equivalents in the simulation and the counterfactual
case in which no QE occurs is − ∆Qt+h

3ζ−βt−Qt
= − Q28

3(0.31)+0.21 . Setting this equal to −0.18 gives Q28 =
0.23.
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Table 1.  Regressions of long-term yields on Treasury duration and short-term yields  
 

Dep. Var. 

Independent variables Adj. 
R2 WAM of Treas. debt  1y yield 

Pre-ELB ELB Break t-stat  Pre-ELB ELB Break t-stat 

5y yield 0.140 
(0.095) 

0.002 
(0.101) -2.17 

 0.842*** 
(0.050) 

2.271*** 
(0.785) 1.84 0.951 

10y yield 0.221* 
(0.121) 

0.058 
(0.116) -2.25 

 0.736*** 
(0.060) 

3.028** 
(1.203) 1.92 0.901 

15y yield 0.261* 
(0.133) 

0.110 
(0.126) -2.05 

 0.688*** 
(0.065) 

2.966** 
(1.276) 1.80 0.870 

 

Dep. Var. 

Independent variables Adj. 
R2 WAM of Treas. debt  2y yield 

Pre-ELB ELB Break t-stat  Pre-ELB ELB Break t-stat 

5y yield 0.102* 
(0.373) 

-0.002 
(0.060) -2.57 

 0.901*** 
(0.032) 

1.910*** 
(0.217) 4.74 0.981 

10y yield 0.187** 
(0.094) 

0.053 
(0.088) -2.25 

 0.794*** 
(0.048) 

2.328*** 
(0.429) 3.61 0.942 

15y yield 0.227** 
(0.109) 

0.113 
(0.108) -1.62 

 0.746*** 
(0.056) 

2.167*** 
(0.537) 2.68 0.915 

 

Dep. Var. 

Independent variables Adj. 
R2 Maturity-weighted debt/GDP  1y yield 

Pre-ELB ELB Break t-stat  Pre-ELB ELB Break t-stat 

5y yield 0.179* 
(0.010) 

-0.058 
(0.083) -2.65 

 0.850*** 
(0.049) 

2.097*** 
(0.679) 1.89 0.952 

10y yield 0.250* 
(0.129) 

-0.056 
(0.093) -2.81 

 0.743*** 
(0.062) 

2.940*** 
(1.043) 2.15 0.902 

15y yield 0.282** 
(0.140) 

-0.027 
(0.101) -2.74 

 0.696*** 
(0.070) 

2.962*** 
(1.128) 2.06 0.871 

 

Dep. Var. 

Independent variables Adj. 
R2 Maturity-weighted debt/GDP  2y yield 

Pre-ELB ELB Break t-stat  Pre-ELB ELB Break t-stat 

5y yield 0.126* 
(0.067) 

-0.044 
(0.051) -2.86 

 0.906*** 
(0.032) 

1.818*** 
(0.205) 4.77 0.981 

10y yield 0.207** 
(0.104) 

-0.058 
(0.076) -2.80 

 0.800*** 
(0.050) 

2.301*** 
(0.698) 4.32 0.943 

15y yield 0.239** 
(0.118) 

-0.013 
(0.095) -2.43 

 0.751*** 
(0.600) 

2.218*** 
(0.463) 3.34 0.915 

 
Notes:  Each row in each table reports the estimates of a single regression, where the dependent variable is a longer-term 
Treasury yield, as indicated in the first column.  Each regression uses two independent variables: either the weighted-
average maturity of Treasury debt in public hands or the maturity-weighted Treasury-debt-to-GDP ratio and either the 
one- or two-year zero-coupon Treasury yield.  In each regression, the coefficient on each variable is allowed to differ 
between the period when the ELB was not binding (prior to December 2008) and the period when it was binding 
(December 2008 through December 2015), with the break accomplished using interactive dummy variables.  The samples 
begin in August 1971 for the 5- and 10-year maturities and in December 1971 for the 15-year maturity.  Yield data are 
Gurkaynak et al. (2007) zero-coupon yields.  Treasury debt variables are constructed from CRSP data, following 
Greenwood and Vayanos (2014).  All data are monthly.  Newey-West standard errors, using 36 lags, are reported in 
parentheses, and statistical significance at the 10% (*), 5% (**), and 1% (***) levels is indicated by asterisks.  The t 
statistics, reported in italics, test the significance of the break in each of the two coefficients in each regression. 
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Table 2.  Model calibration 
  Bond supply  Short rate  Risk 

aversion 
 T 𝜙𝜙𝛽𝛽 𝜎𝜎𝛽𝛽 ζ  𝜇𝜇𝑟̂𝑟  𝜙𝜙𝑟̂𝑟 𝜎𝜎𝑟̂𝑟 b  a 

[1]  Shadow-rate model 60 0.98 0.20 0.31  5.0% 0.98 0.78% 0.17%  0.15 
[2]  Affine model – base calibration 60 0.98 0.20 0.31  5.0% 0.98 0.78% -∞  0.15 
[3]  Affine model – recalibrated 60 0.98 0.20 0.32  5.2% 0.98 0.68% -∞  0.17 
Notes: The table shows the calibrated values of the parameters in the baseline shadow-rate model, as well as in two models with affine 
short-rate processes.  In the first affine model, all parameters (except the ELB) are the same as in the shadow-rate model.  In the 
second affine model, the parameters are recalibrated to match the same set of unconditional yield-curve moments that the shadow-
rate model matches.  Details of the calibration are described in the text. 

 

 

 

 
Table 3.  Conditional moments of yield curve in data vs. models 
Short rate below 0.68% 

 
% of obs. 3m rate 

Slopes (to 3m) 
2Y 5Y 10Y 15Y 

Conditional means 
Data 16% 0.2% 0.3% 1.3% 2.5% 3.1% 
Shadow-rate model 13% 0.2% 0.4% 1.3% 2.6% 3.8% 
Affine Model – base calibration 13% -1.3% 0.7% 1.9% 3.6% 4.9% 
Affine Model – recalibrated  10% -1.0% 0.7% 1.8% 3.3% 4.7% 
Conditional standard deviations 
Data  0.1% 0.3% 0.6% 0.8% 0.8% 
Shadow-rate model  0.1% 0.3% 0.7% 1.1% 1.4% 
Affine Model – base calibration  1.7% 0.3% 0.7% 1.3% 1.7% 
Affine Model – recalibrated  1.5% 0.3% 0.7% 1.2% 1.6% 

 
Short rate above 0.68% 

 
% of obs. 3m rate 

Slopes (to 3m) 
2Y 5Y 10Y 15Y 

Conditional means 
Data 84% 6.1% 0.5% 0.9% 1.3% 1.5% 
Shadow-rate model 87% 6.0% 0.3% 0.7% 1.4% 2.0% 
Affine Model – base calibration 87% 6.0% 0.2% 0.7% 1.3% 1.9% 
Affine Model – recalibrated 90% 5.9% 0.3% 0.7% 1.3% 1.9% 
Conditional standard deviations 
Data  3.1% 0.9% 1.3% 1.6% 1.7% 
Shadow-rate model  3.2% 0.4% 0.9% 1.5% 2.0% 
Affine Model – base calibration  3.2% 0.4% 0.9% 1.3% 1.9% 
Affine Model – recalibrated  3.0% 0.3% 0.8% 1.5% 1.9% 

 
Notes: The table shows conditional moments of zero-coupon yields simulated from the shadow-rate and affine models, based on the 
calibrations shown in Table 2, together with the corresponding moments from the data.  Model results are based on 1 million 
simulations of the state variables.  Yield data are from the Gurkaynak et al. (2007) dataset and cover the period August 1971 – 
December 2015, except for the 15-year yields, which begin in December 1971.  
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Table 4.  Model-implied relationships among long-term yields, shorter-term yields, 
and Treasury supply 

A. Sensitivity of long-term yields to WAM 

Shadow 
rate 

Sensitivity to WAM  Sensitivity to WAM, 
holding 1Y yield fixed  Sensitivity to WAM, 

holding 2Y yield fixed 
5Y 10Y 15Y  5Y 10Y 15Y  5Y 10Y 15Y 

8% 0.09 0.15 0.20  0.07 0.14 0.19  0.06 0.13 0.17 
4% 0.09 0.15 0.19  0.07 0.14 0.18  0.05 0.12 0.17 
2% 0.08 0.14 0.19  0.07 0.13 0.18  0.05 0.12 0.17 
1% 0.08 0.14 0.19  0.06 0.13 0.18  0.05 0.12 0.16 
0% 0.07 0.13 0.18  0.06 0.12 0.17  0.04 0.11 0.16 
-1% 0.06 0.12 0.17  0.05 0.11 0.16  0.03 0.10 0.15 
-2% 0.04 0.11 0.16  0.04 0.10 0.15  0.03 0.09 0.14 
-4% 0.02 0.08 0.14  0.02 0.08 0.13  0.01 0.07 0.12 

 
Notes: The first group of columns reports the model-implied sensitivity of 5-, 10-, and 15-year yields to the weighted-average 
maturity of Treasury debt at various values of the shadow rate.  The second and third groups of columns report these 
sensitivities, holding fixed the level of the one-year or the two-year yield.  The calculations, which are given in the text, rely on 
the derivatives of yields with respect to the shadow rate and the bond supply factor (𝐴𝐴𝑟̂𝑟

(𝜏𝜏) and 𝐴𝐴𝛽𝛽
(𝜏𝜏)), evaluated under the baseline 

calibration (line 1 of Table 2). 
 
 

 

B. Sensitivity of long-term yields to shorter-term yields 
Shadow 
rate 

Sensitivity to 1Y  Sensitivity to 2Y 
5Y 10Y 15Y  5Y 10Y 15Y 

8% 0.9 0.7 0.6  0.9 0.7 0.6 
4% 0.9 0.7 0.6  0.9 0.7 0.6 
2% 0.8 0.7 0.6  0.9 0.8 0.6 
1% 0.8 0.7 0.6  0.9 0.8 0.7 
0% 1.3 1.2 1.1  1.1 1.0 1.0 
-1% 2.7 3.0 2.8  1.5 1.7 1.6 
-2% 7.5 9.6 9.6  2.3 2.9 2.9 
-4% 140.1 259.0 291.5  6.6 12.2 13.8 

 
Notes: The table reports the model-implied sensitivity of 5-, 10-, and 15-year yields to 1- and 
2-year yields, holding the bond-supply factor fixed, at various values of the shadow rate.  
The coefficients are calculated as the ratio 𝐴𝐴𝑟̂𝑟

(𝜏𝜏)/𝐴𝐴𝑟̂𝑟
(4) or 𝐴𝐴𝑟̂𝑟

(𝜏𝜏)/𝐴𝐴𝑟̂𝑟
(8) where 𝐴𝐴𝑟̂𝑟

(𝜏𝜏) is the 
derivative of the yield at maturity τ with respect to 𝑟̂𝑟 under the baseline calibration (line 1 of 
Table 2). 

  

ELB 

ELB 
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Table 5.  Decompositions of yield responses to unconventional policy shocks 

A.  Contemporaneous responses (bps) 

Maturity 
[1] 

Shadow-rate shocks 
 Fed balance-

sheet shocks 

Interaction 
[6] 

Total 
[7] 

Expectations 
component 

[2] 

Term premium 
component 

 [3] 

 Term premium 
component 

 [4] 
2 years -63 

(-93, -36) 
-12 

(-14, -10) 
 -9 

(-10, -8) 
5 

(4, 6) 
-79 

(-109, -49) 

5 years -98 
(-117, -73) 

-45 
(-47, -42) 

 -21 
(-22, -18) 

8 
(6, 11) 

-156 
(-174, -127) 

10 years -114 
(-121, -101) 

-63 
(-70, -54) 

 -34 
(-36, -29) 

7 
(5, 11) 

-202 
(-205, -194) 

15 years -111 
(-113, -105) 

-63 
(-75, -53) 

 -40 
(-44, -35) 

6 
(4, 9) 

-208 
(-213, -201) 

 

B.  Total variance (bps2/100) 

Maturity 
[1] 

Shadow-rate shocks 
 Fed balance-

sheet shocks 

Interaction 
[6] 

Total 
[7] 

Expectations 
component 

[2] 

Term premium 
component 

[3] 
 

Term premium 
component 

 [4] 
2 years 20 

(13, 30) 
7 

(4, 10) 
 0.0 

(0.0, 0.0) 
-22 

(-33,-12 ) 
27 

(18, 39) 

5 years 21 
(11, 34) 

13 
(6, 24) 

 0.2 
(0.1, 0.2) 

-18 
(-35, -0) 

34 
(17, 58) 

10 years 19 
(9, 35) 

18 
(7, 38) 

 0.4 
(0.3, 0.5) 

-13 
(-29, 3) 

39 
(18, 74) 

15 years 16 
(8, 31) 

17 
(6, 39) 

 0.6 
(0.4, 0.7) 

-9 
(-22, 2) 

36 
(16, 72) 

 
 
Notes: Panel A reports the cumulative response of the spot zero-coupon yield curve in model simulations based on the 
distribution of state-variable trajectories shown in Figure 6, summing the responses to the shocks in each period.  Panel B reports 
the total variance in yields in the simulations, relative to a baseline scenario in which no shocks occur.  In both cases, for each 
maturity, the median response is reported, with the 5% and 95% quantiles in parentheses below.  The total effect on the yield of 
each maturity is shown in the last column.  The bond-supply and shadow-rate shocks are simulated both separately and together 
to obtain the decomposition reported in the other columns.  The “interaction” column represents the effect of nonlinearities that 
cause the sum of the two individual simulations to differ from that of the joint simulation.  For the shadow-rate shocks, the 
change in the expectations component is calculated from equation (11), while the change in the term-premium component is 
calculated as the difference between the total change in yields and the change in the expectations component.  By construction, 
the individual components sum to the totals in each simulation, but the median values in columns [2] through [6] may not sum to 
the values in column [7] because of the asymmetry in the distributions across simulations.  
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Figure 1.  Conditional moments of short rate at various horizons 

A. B. 

 
  
Notes:  The figure shows the conditional mean (panel A) and standard deviation (panel B) of the time t+h short rate, conditional on 
the value of the shadow rate in time t, where h = 2, 5, 10, and 15 years.  The solid lines show these moments in the shadow-rate 
model, under the calibration shown in the top line of Table 2.  The dashed lines show the moments in an affine model with the same 
calibration but with the ELB removed. 
 

 

 

 

Figure 2.  Factor loadings across values of the shadow rate at β = 0 

  
 
Notes:  The figure shows the model-implied factor loadings for the τ-period yield, conditional on the time-t value of the shadow rate, 
where τ = 2, 5, 10, and 15 years.  The solid lines show the loadings in the shadow-rate model, under the calibration shown in line 1 of 
Table 2.  The dashed lines show the loadings in an affine model with the same calibration but with the ELB removed (line 2 of Table 
2).  The bond-supply factor βt is held fixed at its mean of zero. 
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Figure 3.  Factor loadings across values of the supply factor 

A.  𝑟̂𝑟𝑡𝑡= 5.2% 

 

B.  𝑟̂𝑟𝑡𝑡 = -2.7% 

 

 
Notes:  The figure shows the model-implied factor loadings for the τ -period yield, across time-t values of the bond-supply factor, 
where τ = 2, 5, 10, and 15 years.  The solid lines show the loadings in the shadow-rate model, under the calibration shown in line 1 of 
Table 2.  The dashed lines show the loadings in an affine model with the same calibration but with the ELB removed (line 2 of Table 
2).  In panel A, the shadow rate is held fixed at the mean value of the short rate (5.2%), while in panel B it is held fixed at -2.7%, its 
average value during the ELB period according to the Krippner (2012) estimates. 
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Figure 4.  Impulse-response functions 

A. Spot yield curve 
 Shadow-rate shocks Bond-supply shocks 
Shadow rate at 5.2% 

   

Shadow rate at -2.7% 

   

B. Forward rate curve 
  Shadow-rate shocks Bond-supply shocks 
Shadow rate at 5.2% 

   

Shadow rate at -2.7% 

   

Notes:  The figure shows the model-implied responses of yields (panel A) and forward rates (panel B) to one-standard-deviation 
shocks to each of the two factors over the subsequent 10 years.  Maturity in years is shown on the lower-left axis in each graph, while 
calendar time is on the upper-left axis.  Responses are evaluated starting both from a shadow rate at the mean value of the short rate 
(5.2%) and a value of -2.7%, its average during the ELB period according to the Krippner (2012) estimates.  In both cases, the starting 
value of the bond-supply factor is zero.  
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Figure 5.  Decomposition of initial response to shadow-rate shocks 

A. Spot yield curve 
 Shadow rate at 5.2% Shadow rate at -2.7% 

      

 
B.  Forward rate curve 

 Shadow rate at 5.2% Shadow rate at -2.7% 

        
 

 

Notes:  The figure shows the model-implied response of the yield curve (panel A) and the forward-rate curve (panel B) to one-
standard-deviation shock to the shadow rate in the period when the shock occurs.  The pink region shows the change in the 
expectations component of yields, while the blue region shows the change in the term premium.  The change in the expectations 
component is calculated from equation (11), while the change in the term-premium component is calculated as the difference between 
the total change in yields and the change in the expectations component.  Responses are evaluated starting both from a shadow rate at 
the mean value of the short rate (5.2%) and a value of -2.7%, its average during the ELB period according to the Krippner (2012) 
estimates.  In both cases, the value of the bond-supply factor is constant at zero.  
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Figure 6.  Distributions of state-variable trajectories in model simulations 

A.  Shadow rate B.  %Change in 10-year equivalents 

  

Notes:  The figures show the distributions of 100,000 simulated paths of the state variables during the ELB period, in terms of the 
pointwise medians (solid lines) and 5% and 95% quantiles (dotted lines).  The simulations are constructed to exactly match the 
observed values of the short-term interest rate and the percentage of ten-year equivalent bonds held by the Fed as of December 2008 
and December 2015, with the intermediate values simulated from the model as described in Appendix B.  For the purposes of 
presentation, in panel B the QE state variable (Qt) is converted to a cumulative percentage change in 10-year equivalent bonds held by 
investors, relative to the amount that would have been outstanding in the absence of shocks, using equation (17). 
 

 

Figure 7.  Cumulative yield-curve responses in model simulations 

A.  Spot yield curve B.  Forward rate curve 

  

Notes:  The figure shows the cumulative response of bond yields (panel A) and forward rates (panel B) in model simulations based on 
the distribution of state-variable trajectories shown in Figure 6.  The figures sum the contemporaneous responses to the shocks in 
each of the 28 simulated periods.  In each panel, the solid line shows the pointwise median and dashed lines show 5% and 95% 
quantiles.   
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Figure 8.  Relative efficacy of bond-supply shocks across state values 
 
A. Bond-supply factor (βt) 
 10-year yield 15-year yield 

   
 
 
B.  Fed balance-sheet factor (Qt)  
 10-year yield 15-year yield 

    
 

Notes:  The figure shows contour maps of the effects of bond-supply shocks on 10- and 15-year yields, relative to the effects of 
shadow-rate shocks.  Relative efficacy is calculated, for each yield, as the size of the bond-supply shock that would be necessary 
to equal the effects of a -25-basis-point shock to the shadow rate.  The values of this ratio are shown across different regions of 
the state space, with darker coloring indicating regions where the bond-supply shocks are relatively more powerful.  
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