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Abstract

A fully committed sender sways a collective adoption decision by voters
through designing experiments. Voters have correlated payoff states and het-
erogeneous thresholds of doubt. We characterize the sender-optimal policy
under unanimity rule for two persuasion modes. Under general persuasion,
evidence presented to each voter depends on all voters’ states. The sender
makes the most demanding voters indifferent between decisions, while the
more lenient voters strictly benefit from persuasion. Under individual per-
suasion, evidence presented to each voter depends only on her state. The
sender designates a subgroup of rubber-stampers, another of fully informed
voters, and a third of partially informed voters. The most demanding voters
are strategically accorded high-quality information.
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information guard

A tremendous share of decision-making in economic and political realms is made
within collective schemes. We explore a setting in which a sender seeks to get the
unanimous approval of a group for a project he promotes. Group members care
about different aspects of the project and might disagree on whether the project
should be implemented. They might also vary in the loss they incur if the project
is of low quality in their respective aspects. The sender designs experiments to
persuade the members to approve. When deciding as part of a group, individuals
understand the informational and payoff interdependencies among their decisions.

Previous literature has focused mostly on the aggregation and acquisition of
(costly) information from exogenous sources in collective decision-making. In con-
trast, our focus is on optimal persuasion of a heterogeneous group by a biased
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sender who is able to design the information presented to each group member.
We aim to understand the optimal information design, the extent to which group
decision-making might be susceptible to information manipulation, and the wel-
fare implications of persuasion for each voter under unanimity rule. Moreover, we
contrast optimal persuasion under unanimity with that under nonunanimous rules.

Let us briefly discuss two examples captured by the model. Consider first an in-
dustry representative that aims to persuade multiple regulators to approve a project.
This representative could be a trade association or an industry-wide self-regulatory
authority that interacts directly with regulators.1 Each regulator is concerned about
different but correlated aspects of the project. Typically a successful approval en-
tails the endorsement of all regulators. The representative provides evidence to each
regulator by designing informative experiments about the project.

A second example concerns the flow of innovative ideas within organizations.
Such ideas are typically born in the R&D department, but they are required to find
broad support from other departments, with potentially varied interests, before
implementation. The R&D department provides tests to persuade them, and may
vary these tests to fit the particular concerns of the department being addressed.

The sender seeks to maximize the ex-ante probability that the project is ap-
proved by the entire group.2 He establishes and commits to an institutionalized
standard for the amount of information to be provided to each voter. Modifying
institutional standards on an ad hoc basis is costly and difficult due to legal con-
straints. At the time of the design the sender is uncertain about the quality of
projects to be evaluated using this standard.3

In both examples, the sender is a key source of information for the receivers. In
complex policy environments, the regulators are highly dependent on the industry
for expertise and knowledge on how to evaluate the project under investigation.4

1In the context of the U.S. financial industry, such an industry representative is the Financial
Industry Regulatory Authority, the private self-regulatory authority created by the industry and
serving its internal needs. FINRA provides information to different regulatory agencies such
as the Securities and Exchange Commission (SEC), the Consumer Financial Protection Bureau
(CFPB), the Federal Deposit Insurance Corporation (FDIC) etc. It arguably has wide authority
in determining the precision of the evidence presented to the regulators (McCarty (2015)).

2An example in which majority (rather than unanimous) approval suffices is that of a lobbyist
who persuades multiple legislators but only needs a share of them to support the cause.

3There are two sources of commitment in the examples we present. R&D units are naturally
uninformed about the quality of their innovation at the time of test design. In contrast, in regu-
lation, the industry representative commits on behalf of the entire industry to certain guidelines
of information disclosure for any projects to be presented to regulators in the future. In partic-
ular, FINRA has a consolidated rulebook on disclosure rules and standards; for an example, see
FINRA’s Regulatory Notice 10-41 (http://www.finra.org/industry/notices/10-41).

4See McCarty (2015), Omarova (2011), Woodage (2012). Also, McCarty (2015) and McCarty,
Poole, and Rosenthal (2013) have argued that within the financial sector in the United States,
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Within innovative organizations, often R&D units exclusively have the required
expertise and background information to test the quality of their innovations. They
occupy the superior ground of designing tests to persuade other organizational units,
which lack the expertise to find independent informational sources.5

We take an information design approach in analyzing how the sender optimally
persuades a unanimity-seeking group. We consider two scenarios: general persua-
sion, in which evidence presented to each voter depends on the aspects of all voters;
and individual persuasion, in which evidence presented to each voter depends only
on her own aspect. We show that the form of the optimal policy as well as the wel-
fare distribution among voters differ drastically under these two persuasion modes.

The two modes describe natural forms of evidence presentation. Within the
context of regulation, there is an ongoing debate about the relative effectiveness
of comprehensive and targeted evidence to different regulators (Harris and Fire-
stone 2014). General (individual) persuasion is akin to comprehensive (targeted)
evidence. Individual persuasion is more natural in regulatory contexts with greater
independence and more clearly defined areas of authority across regulators, while
general persuasion naturally describes contexts in which each regulator obtains var-
ied evidence on many aspects of a project. Our analysis of the two modes sheds
light on the implications of different forms of evidence presentation for optimal
information design by the sender and the welfare of different regulators.

Our model features a sender and n voters. A voter’s preference is characterized
by her binary payoff state. Her payoff from the project is positive if her state is
high and negative if the state is low. We assume that the distribution of the voters’
payoff states is affiliated and symmetric. With perfectly correlated states, voters
agree about the right decision if their states are commonly known. Away from
this extreme case, they might disagree about the right decision even if the realized
states are commonly known. The magnitude of the loss suffered from approval by
a low-state voter differs across voters. We interpret these varying magnitudes as
heterogeneous thresholds of doubt; the higher the threshold, the more demanding
the voter is. The thresholds and the distribution over state profiles are commonly
known by all. Ex ante, neither the voters nor the sender know the realized state
profile.

Under general persuasion, the sender designs a mapping from the set of state

federal agencies such as SEC and FDIC are demonstrably reliant on the expertise and information
provided by FINRA.

5Evaluative authorities might attempt to enforce some minimal standards of disclosure on the
sender (e.g. Sarbanes-Oxley Act in the finance sector). Our analysis can be interpreted as the
design problem after the sender fulfills the minimal requirement imposed by the authorities.
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profiles to the set of distributions over signal profiles. Two features are worth
emphasizing: the distribution over the signal profiles is conditioned on the states
of all voters; and the signals across voters can be correlated. Under individual
persuasion, each voter’s signal distribution depends only on her own state. For each
voter the sender designs a mapping from the two possible payoff states to the set of
distributions over this voter’s signal space. We interpret general persuasion as one
grand experiment and individual persuasion as voter-specific targeted experiments.
Under each mode, we assume that the designed policies are public information,
based on the observation that standards of information shall be public knowledge
either by legal or other institutional requirements. We assume that each voter
observes her signal privately given the observation that confidential information
communicated to a specific regulator and pertaining to a specific project is not
observable by all parties.6 Yet, the results remain valid even if all signals were
publicly observed.

Under general persuasion, all players are concerned only with the set of state
profiles in which all voters receive a recommendation to approve. In the optimal
policy the sender chooses a group of the most demanding voters such that they are
made indifferent between approval and rejection whenever the sender recommends
approval. The more lenient voters obtain a positive payoff merely due to the pres-
ence of the more demanding voters. In the extreme case of perfectly correlated
states, this group consists of only the most demanding voter. The sender achieves
the same payoff as if he faced this voter alone.

A short detour considers the case in which the sender is required to draw the
signals independently across voters, conditional on the entire state profile, which
we refer to as independent general policies. We show that any general policy can
be replicated with an independent general policy for unanimity rule.

Under individual persuasion, each voter learns about her state directly from
her policy and indirectly from the conjectured decisions of others. With indepen-
dent states, no voter learns payoff-relevant information from the approval of others.
Hence the optimal policy consists of the single-voter policy for each voter. In con-
trast, for perfectly correlated states, the sender persuades the most demanding voter
as if he needed only her approval, while all other voters always approve.

When the states are imperfectly correlated, each voter receives the sender’s
recommendation to approve with certainty if her payoff state is high. Intuitively, a

6The assumption of private observability of signals is motivated by the fact that regulatory
agencies often face legal and bureaucratic obstacles in sharing information smoothly with each
other. Moreover, the principle of strict independence of different regulators is often used as
justification for the lack of information sharing.
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higher probability of approval by a high-state voter benefits the sender while also
boosting the beliefs of all other voters about their own states. We show that, when
a voter’s state is low, the probability that she is asked to approve decreases in
her threshold of doubt. Thus, the optimal individual policy provides more precise
information to more demanding voters.

The optimal individual policy divides the voters into at most three subgroups:
the most lenient voters who rubber-stamp the project, the most demanding vot-
ers who learn their states fully, and an intermediate subgroup who are partially-
informed. Interestingly, the sender does not persuade all voters to approve as fre-
quently as possible, contrary to the case with only one voter. For moderate cor-
relation of states, the most demanding voter(s) learn their states fully and reject
for sure when their state is low. Full revelation of the individual state is more
informative than what is necessary to persuade the strictest voter(s), but it allows
the sender to persuade other voters more effectively. The most demanding and the
least demanding voters might obtain a strictly positive expected payoff. For the
former, the payoff is due to the information externality they generate for others by
acting as information guards for the collective decision. For the latter, the positive
expected payoff is due to their willingness to rubber-stamp other voters’ informed
decisions. The intermediate voters obtain a zero expected payoff.

Under either persuasion mode, the sender prefers smaller to larger groups. Also,
he weakly prefers general to individual persuasion: any approval probability at-
tained by an individual policy is also achieved through a general policy. The sender’s
payoffs across the two modes coincide when the states are sufficiently correlated.
The most demanding voter weakly prefers individual persuasion, while the rest of
the voters might disagree on the preferred persuasion mode.

When moving away from unanimity rule, the results change drastically. For
nonunanimous voting rules, the sender achieves a payoff of one under general and
independent general persuasion. The project is approved with certainty, so there
is no meaningful check on the adoption decision by the voters.7 In contrast, in-
dividual persuasion cannot achieve a certain approval. The voters unambiguously
prefer individual persuasion to general persuasion because the former allows them
to partially discriminate between favorable and unfavorable projects.

The rest of this section discusses the related literature. Section 1 presents the
formal model. Sections 2 through 4 analyze the two persuasion modes. Section 5
compares and contrasts these modes. Section 6 briefly discusses two extensions. In

7For any certain-approval policy, there is a nearby policy such that each voter is pivotal with
positive probability and strictly prefers to follow an approval recommendation.
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particular, subsection 6.2 characterizes sender-optimal persuasion for nonunanimous
rules. We conclude and discuss directions for future research in section 7.
Related literature. This paper is immediately related to the literature on per-
suasion. Rayo and Segal (2010) and Kamenica and Gentzkow (2011) study optimal
persuasion between a sender and a single receiver.8 We study the information design
problem of a sender who persuades a group of receivers. Bergemann and Morris
(2016a, 2016b), Taneva (2014), Mathevet, Perego, and Taneva (2016), and Berge-
mann, Heumann, and Morris (2015) also focus on information design with multiple
receivers in non-voting contexts. In our setting, voters interact with the sender
without any prior private information. The incentive-compatibility constraints for
general persuasion characterize the entire set of Bayes correlated equilibria (BCE),
while those for individual persuasion characterize a subset of the set of BCE. We
identify the sender-optimal BCE within these two sets. In contrast to general per-
suasion, once attention is restricted to individual persuasion the sender’s problem
is no longer a linear program.

More specifically, our paper is closely related to the recent literature on persuad-
ing voters. Alonso and Câmara (2016b) explore general persuasion when the sender
is restricted to public persuasion. We focus on private persuasion. The differences
are threefold. Firstly, we show in subsection 6.1 that whether persuasion is private
or public is inconsequential under unanimity rule. Hence, under unanimity our gen-
eral persuasion setting is a special case of Alonso and Câmara. We strengthen their
implications for unanimity by characterizing the general persuasion solution in more
detail for a broad class of state distributions. Our main result for general persuasion
and unanimity is not implied by their analysis.9 Secondly, we also study individual
persuasion under unanimity to examine how the optimal policy changes when the
evidence presented to each voter depends only on this voter’s state. Lastly, when
the voting rule is nonunanimous, we characterize the optimal policy under private
persuasion which is drastically different from the optimal policy that Alonso and
Câmara identify for public persuasion.

Schnakenberg (2015) shows that the sender can achieve certain approval through
public persuasion under certain prior distributions if and only if the voting rule is
noncollegial. The unanimity rule, which we focus on, is collegial since the approval
of all voters is required. Wang (2015) and Chan, Gupta, Li, and Wang (2016)

8More broadly, the paper is related to the literature on communicating information through
cheap talk (Crawford and Sobel (1982)), disclosure of hard evidence (see Milgrom (2008) for a
survey), and verification (Glazer and Rubinstein (2004)).

9In particular, it is not a special case of their proposition 3 which assumes that all voters
rank states in the same order. In our setting, voters might disagree even if the state profile were
commonly known.
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focus on persuading voters who agree under complete information but have dif-
ferent thresholds. In contrast, we examine an environment in which voters might
have heterogeneous preferences even under complete information. Moreover, Chan,
Gupta, Li, and Wang (2016) characterize the optimal design among information
structures that rely on minimal winning coalitions. Arieli and Babichenko (2016)
study the optimal group persuasion by a sender who promotes a product. Each
receiver makes her own adoption decision so, unlike our setting, there is no payoff
externality among receivers.

Another closely related paper is Caillaud and Tirole (2007). In the language of
our paper, they also consider individual persuasion. Their setting differs from ours
in two aspects: (1) the sender can either reveal or hide a voter’s state perfectly; (2)
a voter pays a cost to investigate the evidence if provided by the sender. Due to the
cost, only voters with moderate beliefs find investigation worthwhile. They show
that the sender optimally provides information to a moderate voter so that a more
pessimistic voter, who is not willing to investigate if alone, agrees to rubber-stamp
the other’s approval. Both their analysis and ours rely on the observation that each
voter learns about her state from the decisions of others. Yet, we are interested
in how the sender adjusts the information precision for each individual voter. We
show that the sender provides better information to the most demanding voters in
order to convince the more lenient ones to follow suit. More surprisingly, he may
find it optimal to fully reveal their states to the most demanding voters.10

Our paper also relates to a large literature on information aggregation in col-
lective decisions with exogenous private information, following Austen-Smith and
Banks (1996) and Feddersen and Pesendorfer (1996, 1997), as well as on information
acquisition in voting games. Li (2001) allows the voters to choose the precision of
their signals through costly effort. He argues that groups might choose to commit
to more stringent decision-making standards than what is ex-post optimal so as to
avoid free riding at the information-acquisition stage. Persico (2004) considers the
optimal design of a committee, both in terms of its size and its threshold voting rule,
so as to incentivize private acquisition of information. Gerardi and Yariv (2008) and
Gershkov and Szentes (2009) look at a broader class of mechanisms that incentivize
costly information acquisition within a committee. Our focus, in contrast, is on the
sender’s design of the information structure so as to influence the group decision.

10Proposition 6 of Caillaud and Tirole shows that the sender might do better facing two ran-
domly drawn voters than one. The cost of investigation is the key. A single pessimistic voter never
investigates or approves. Adding a moderate voter who is willing to investigate might induce the
pessimistic voter to rubber-stamp. In our environment, there is no cost and the sender can choose
the information precision, so more voters always hurt him.
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1 Model

Players and payoff states. We consider a communication game between a sender
(he) and n voters {Ri}ni=1 (she). The voters collectively decide whether to adopt a
project promoted by the sender. The payoff of each voter from adopting the project
depends on her individual payoff state. In particular, Ri’s payoff state, denoted by
θi ∈ {H,L}, can be either high or low. Let θ = (θ1, ..., θn) denote the state profile
of the group, and let Θ := {H,L}n denote the set of all such state profiles.

Before the game begins, nature randomly draws the state profile θ according to
a distribution f . The realized state profile is initially unobservable to all players
and f is common knowledge. Throughout our analysis, we assume that the random
variables (θ1, ..., θn) are exchangeable, in the sense that for every θ and for every
permutation ρ of the set {1, 2, ..., n}, the following holds:

f (θ1, ..., θn) = f
(
θρ(1), ..., θρ(n)

)
.

The analysis of individual persuasion in section 4 and 6.2 also assumes that the
voters’ states are affiliated. For any two state profiles θ, θ′ ∈ Θ, let θ ∨ θ′ and θ ∧ θ′
denote the componentwise maximum and minimum state profiles respectively.11

Affiliation of states requires that, for any θ, θ′ ∈ Θ,

f(θ ∨ θ′)f(θ ∧ θ′) ≥ f(θ)f(θ′).

Let θH and θL be the state profiles such that θHi = H for all i and θLi = L for all i,
respectively. The voters’ states are perfectly correlated if and only if f(θH)+f(θL) =

1. More generally, for f(θH) + f(θL) < 1, the states are imperfectly correlated.
Decisions and payoffs. The sender designs an information policy which generates
individual signals about the realized state profile. At the time of the design, the
sender is uninformed of the realized state profile and fully commits to the chosen
policy. The signal intended for Ri is observed only by her.12

After observing their signals, voters simultaneously decide whether to approve
the project. We let di ∈ {0, 1} represent Ri’s approval decision, where di = 1

denotes approval. Analogously, d ∈ {0, 1} denotes the collective adoption decision.
Under unanimous consent, the project is adopted (d = 1) if and only if di = 1 for
every i.

The sender prefers approval of the project regardless of the realized θ: his payoff
11Formally, θ ∨ θ′ := (max{θ1, θ′1}, ...,max{θn, θ′n}) and θ ∧ θ′ := (min{θ1, θ′1}, ...,min{θn, θ′n}).
12Under unanimity, it makes no difference whether the signal profile is public or private, as we

show in subsection 6.1. Each Ri behaves as if all other voters had received signals that induce
them to approve. The private-observability assumption is crucial when we discuss nonunanimous
rules in subsection 6.2.
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is normalized to one if the project is approved and zero otherwise. The payoff of Ri

depends only on her own state θi. The project yields a payoff of one to Ri if θi = H

and −`i < 0 if θi = L. Here, `i captures the magnitude of the loss incurred by Ri

when the project is adopted and Ri’s state is L. If the project is rejected, the payoffs
of all voters are normalized to zero. Without loss, we assume that no two voters
are identical in their thresholds: `i 6= `j for i 6= j. For notational convenience, the
voters are indexed in increasing order of leniency:

`i > `i+1 for all i ∈ {1, ..., n− 1}.
Each Ri prefers adoption if and only if her state is H. Let ΘH

i := {θ ∈ Θ : θi =

H} and ΘL
i := {θ ∈ Θ : θi = L} be the set of state profiles with Ri’s state being H

and L respectively. Therefore, ΘH
i and ΘL

i contain Ri’s favorable and unfavorable
state profiles, respectively. For any i, ΘH

i ∪ΘL
i = Θ, and ΘH

i ∩ΘL
i = ∅.

Voter Ri’s prior belief of her state beingH is
∑

θ∈ΘHi
f(θ).Due to exchangeability

of f , all voters share the same prior belief of their state being H.13 We focus on
parameter values for which none of the voters prefers approval under the prior belief:

Assumption 1. For any i ∈ {1, ..., n}, Ri strictly prefers to reject the project under
the prior belief, i.e.:

`i >

∑
θ∈ΘHi

f(θ)
∑

θ∈ΘLi
f(θ)

.

We make assumption 1 to simplify exposition. It is without loss of generality.
We show in online appendix B.2 that, if some voters prefer to approve ex ante, then
the sender designs the optimal policy for those who are reluctant to approve. Those
who prefer to approve ex ante are always willing to rubber-stamp.
Modes of persuasion. Let Si denote the signal space for Ri and, correspondingly,∏

i Si the space of signal profiles for the entire group. The game has three stages.
The sender first commits to an information policy. Subsequently, nature draws θ
according to f and then draws the signals (si)

n
i=1 according to the chosen information

policy. Finally, each voter receives her signal and chooses di.
We consider three major classes of information policies: 1) general policies, 2)

independent general policies, and 3) individual policies. Formally, a general policy
is a mapping from the set of state profiles to the set of probability distributions
over the signal space:

π : Θ→ ∆

(∏

i

Si

)
.

13By assuming exchangeability, we can focus on the impact of different thresholds on the optimal
information policy.
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For each state profile θ, it specifies a distribution over all possible signal profiles, so
the signals sent to the voters could be correlated conditional on the state profile.
We let ΠG denote the set of all such policies.

An independent general policy specifies, for each voter Ri, a mapping from the
set of state profiles to the set of probability distributions over Ri’s signal space:

πi : Θ→ ∆ (Si) .

As in a general policy, each voter’s signal distribution depends on the entire state
profile. But unlike in a general policy, conditional on θ the signals across voters are
independently drawn. Let ΠIG denote the set of all independent general policies,
with (πi)

n
i=1 being a typical element of it.

An individual policy specifies, for each voter Ri, a mapping from Ri’s state space
to the set of probability distributions over Si:

πi : {H,L} → ∆(Si).

Unlike in a general or independent general policy, each voter’s signal distribution
depends only on her own state. Let ΠI denote the set of all individual policies, with
(πi)

n
i=1 being a typical element.
The information policy adopted by the sender determines the information struc-

ture of the voting game played among voters. Let Π denote the set of policies avail-
able to the sender. If the sender is allowed to use general policies, then Π = ΠG.
If the sender is constrained to independent general policies or individual policies,
then Π = ΠIG or Π = ΠI respectively.14 The strategy σi determines the probability
Ri approves, given the chosen policy and the realized signal:

σi : Π× Si → [0, 1].

Without loss, we focus on direct obedient policies, for which (i) Si coincides with
the action space {0, 1}, and (ii) each voter receives action recommendations, with
which she complies.15 We use d̂i ∈ {0, 1} to represent the sender’s recommendation
to Ri, and d̂ = (d̂i)i ∈ {0, 1}n to represent the profile of action recommendations.

A direct general policy specifies a distribution over action-recommendation pro-
files as a function of the realized state profile, i.e., it specifies π(·|θ) ∈ ∆({0, 1}n) for
each θ. A direct independent general policy specifies for each Ri and for each θ the
probability πi(θ) with which Ri is recommended to approve, since the action space is
binary. For individual persuasion, any direct policy specifies (πi(H), πi(L)) ∈ [0, 1]2

14By definition, any individual policy can be replicated by an independent general policy. Any
independent general policy can be replicated by a general policy.

15The first part of online appendix B.3 provides a proof that the restriction to direct obedient
policies is without loss of generality.
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Modes Definition Notation

General π : Θ→ ∆ ({0, 1}n) (π(·|θ))θ∈Θ

Independent general πi : Θ→ ∆ ({0, 1}) , ∀i (πi(θ))θ∈Θ , ∀i
Individual πi : {H,L} → ∆ ({0, 1}) , ∀i (πi(H), πi(L)) , ∀i

Table 1: Modes of persuasion

for each Ri, where πi(θi) is the probability that the sender recommends approval to
Ri when her state is θi. Table 1 summarizes the definition and notation for these
three different modes of persuasion.
Refinement. We allow for any policy that is the limit of a sequence of direct
obedient policies with full support. The full-support requirement demands that for
any state profile, all possible recommendations are sent with positive probabilities.16

We impose this refinement so that along the sequence (i) no recommendation is off
the equilibrium path; and (ii) a voter is always pivotal with positive probability.17

For each persuasion mode, we solve for the sender-optimal policy.

2 General persuasion

2.1 General formulation

In the regulatory process for complex industries, the most general form that the
evidence presented to the regulators can take is as an experiment that generates cor-
related action recommendations conditional on the realized states of all regulators.
The structure of such an experiment is formally captured by a general policy.

Recall that π(d̂|θ) is the probability that the recommendation profile d̂ is sent,
given the state profile θ. If Ri rejects, the project is definitively rejected. If Ri ap-
proves, the project is collectively approved if and only if all other voters approve as
well; this is the only event in which Ri’s decision matters. Let d̂a be the recommen-
dation under which all voters receive a recommendation to approve. We refer to d̂a

as the unanimous (approval) recommendation. Voter Ri obeys a recommendation
to approve if

∑

θ∈ΘHi

f(θ)π(d̂a|θ)− `i
∑

θ∈ΘLi

f(θ)π(d̂a|θ) ≥ 0. (ICa-i)

Let d̂r,i be the recommendation under which all voters except Ri receive a rec-
16The second part of online appendix B.3 provides a formal definition of full-support policies.
17For unanimity rule, we can easily construct a sequence of full-support direct obedient policies

that approaches the optimal policy. Therefore, we do not invoke this refinement explicitly in the
main discussion. However, when we discuss nonunanimous rules in subsection 6.2, we construct
explicitly the sequence of full-support policies that approaches the optimal policy.
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ommendation to approve, i.e., d̂r,ii = 0 and d̂r,ij = 1 for all j 6= i. Voter Ri obeys a
recommendation to reject if

∑

θ∈ΘHi

f(θ)π(d̂r,i|θ)− `i
∑

θ∈ΘLi

f(θ)π(d̂r,i|θ) ≤ 0. (ICr-i)

The sender chooses (π(·|θ))θ∈Θ so as to maximize the probability of the project
being approved,

∑
θ∈Θ f(θ)π(d̂a|θ), subject to (i) approval and rejection IC con-

straints, and (ii) the following feasibility constraints: π(d̂|θ) ≥ 0, for all d̂, θ, and∑
d̂∈{0,1}n π(d̂|θ) = 1 for all θ.
We first analyze the relaxed problem in which ICr constraints are ignored:

max
(π(d̂a|θ))θ∈Θ

∑

θ∈Θ

f(θ)π(d̂a|θ), (1)

subject to (ICa-i)i and π(d̂a|θ) ∈ [0, 1], ∀θ ∈ Θ.

A solution to this relaxed problem specifies, for each θ, only the probability that
all voters are recommended to approve, i.e., (π(d̂a|θ))θ∈Θ. For any such solution,
we can easily construct the probabilities (π(d̂r,i|θ))i,θ so that the ICr constraints are
satisfied as well.18 Therefore, focusing on the relaxed problem is without loss.

2.2 Characterization of the optimal policy

Each Ri learns about her state from the relative frequency with which the unan-
imous recommendation d̂a is generated in ΘH

i rather than in ΘL
i . The posterior

belief that Ri holds about her state being H conditional on d̂a having been drawn
is:

Pr(θi = H|d̂a) =

∑
θ∈ΘHi

f(θ)π(d̂a|θ)
∑

θ∈Θ f(θ)π(d̂a|θ)
.

Each ICa-i can be rewritten in terms of this posterior belief as:

Pr(θi = H|d̂a) ≥ `i
1 + `i

.

This posterior belief has to be sufficiently high for Ri to obey an approval recom-
mendation. The cutoff value for this posterior belief increases in the threshold of
doubt: naturally, the larger the loss a voter experiences if her state is L, the higher
the posterior belief about θi = H needed in order for this voter to prefer approval.

We first examine the optimal policy for perfectly correlated states. Only two
state profiles, θH and θL, are possible to realize.

18Lemma 2.2 establishes that for any policy that satisfies the approval IC constraints and for
any Ri there exists θ′ ∈ ΘL

i such that π(d̂a|θ′) < 1. The sender can specify π(d̂r,i|θ′) = ε and
π(d̂r,i|θ) = 0 for all θ 6= θ′. Such a specification guarantees that ICr-i holds for each Ri.
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Proposition 2.1 (Perfect correlation). Suppose the voters’ states are perfectly cor-
related. The unique optimal policy, for which only ICa-1 binds, is given by:

π(d̂a|θH) = 1, π(d̂a|θL) =
f(θH)

f(θL)

1

`1

.

The unanimous recommendation is sent with certainty given θH . The probabil-
ity of unanimous approval in θL is determined only by the threshold of the most
demanding voter R1. Due to perfect correlation, all voters share the same posterior
belief about their respective states being H. The highest cutoff on this posterior
belief is imposed by R1. Thus, the sender provides sufficiently accurate recommen-
dations so as to leave R1 indifferent between approval and rejection. Being more
lenient than R1, all other voters receive a strictly positive expected payoff.

We now generalize our discussion to imperfectly correlated states. Our first
observation is that the sender recommends approval with certainty to all voters
when all their respective states are high. The intuition is straightforward: increasing
π(d̂a|θH) strengthens the posterior belief Pr(θi = H|d̂a) of each voter Ri, while also
strictly improving the probability of a collective approval.

Lemma 2.1 (Certain approval for θH). The sender recommends with certainty that
all voters approve when every voter’s state is high, i.e., π(d̂a|θH) = 1.

We next show that, for any Ri, an optimal policy does not set π(d̂a|θ) = 1 for
all θ ∈ ΘL

i . If there existed such a voter who knows that the group receives d̂a for
sure whenever her state is L, her posterior belief conditional on d̂a would be lower
than the prior belief. She would not be willing to approve given assumption 1.

On the other hand, there does not exist a voter who, given that d̂a is sent, is
fully confident that her state is H. Put differently, every voter mistakenly obeys a
unanimous recommendation for a project for which her state is low with positive
probability. If indeed some voter Ri learned her state fully, her ICa-i would be
slack. Moreover, full revelation would require that π(d̂a|θ) = 0 for θ ∈ ΘL

i such that
θj = H for all j 6= i. By increasing the frequency with which d̂a is generated in
this state profile, the sender improves his payoff while still satisfying the previously
slack ICa-i and strictly relaxing all other ICa constraints.

Lemma 2.2 (No certain approval or rejection for ΘL
i ). For each i, there exist

θ, θ′ ∈ ΘL
i such that π(d̂a|θ) < 1 and π(d̂a|θ′) > 0.

A natural next question concerns the pattern of binding and slack ICa constraints
across voters. Under the unanimous rule with an outside option normalized at zero,
a binding ICa constraint implies that the corresponding voter’s expected payoff
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is exactly zero. Hence, an analysis of the subset of binding ICa constraints has
immediate implications for the welfare of the voters. The following proposition
establishes that there exists an index i′ ≥ 1 such that all voters who are more
demanding than Ri′ have binding ICa constraints and a zero expected payoff in any
optimal policy. The only voters who might obtain a positive expected payoff are
the most lenient voters in the group.19

Proposition 2.2 (The strictest voters’ ICa constraints bind). Suppose f is ex-
changeable. In any optimal policy, a subgroup of the strictest voters’ ICa constraints
bind, i.e., ICa-i binds iff i ∈ {1, ..., i′} for some i′ ≥ 1.

This proposition holds as long as f is exchangeable. Ex ante, the voters differ
only in their thresholds. The proof makes use of the dual problem corresponding to
(1). Thinking of each voter’s ICa as a resource constraint, we show that granting
positive surplus to a tough voter is more expensive than to a lenient one. Intuitively,
the voters with the highest thresholds are the hardest to persuade; hence, the sender
provides sufficiently precise information about the strictest voters’ states in order
to leave them indifferent between approval and rejection.

Let us now briefly touch upon the multiplicity of optimal policies that arises
under general persuasion. The dual problem corresponding to (1) identifies the set
of binding ICa constraints. It also identifies the state profiles for which the project
is approved or rejected for sure. These conditions pin down the sender’s payoff.
As a result, he has flexibility in designing how frequently approval is recommended
to all voters in other state profiles. For voters with slack ICa constraints, their
expected payoffs vary across different optimal policies. The following example with
n = 3 and independent payoff states illustrates this multiplicity.

Example 1 (Multiplicity of optimal policies). We suppose that (`1, `2, `3) equals
(20, 15, 2291

229
). Voters’ states are independent. The state of each voter is H with

probability 9/10. By examining the dual problem (which is a linear program), we
determine that in any optimal policy:

π(d̂a|HHH) = π(d̂a|HHL) = 1, π(d̂a|LLH) = π(d̂a|LLL) = 0.

Moreover, both ICa-1 and ICa-2 bind. These pin down the sender’s payoff. Subject
to the binding ICa for R1 and R2, the feasibility constraints, and ICa-3, the sender
has flexibility in specifying the rest of the unanimous recommendation probabilities.
Among the optimal policies, R3’s payoff is the highest if

π(d̂a|HLH) =
210

299
, π(d̂a|LHH) =

160

299
, π(d̂a|HLL) = π(d̂a|LHL) = 0.

19We say that Ri’s ICa constraint binds if the dual variable associated with this constraint is
strictly positive.
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R3 receives a strictly positive payoff from this policy. R3’s payoff is the lowest if

π(d̂a|HLH) =
47

69
, π(d̂a|LHH) =

160

299
, π(d̂a|HLL) =

57

299
, π(d̂a|LHL) = 0,

which grants R3 a zero expected payoff. �

In this example, the optimal policy in which R3 receives a zero payoff is Pareto
dominated by the optimal policy in which R3 receives a positive payoff. The sender
may very well choose an optimal policy that is also Pareto efficient. The set of
optimal and Pareto efficient policies is given by maximizing the weighted sum of
voters’ payoffs subject to their ICa constraints and the constraint that the sender
obtains her optimal payoff.

Example 1 also illustrates that even when the voters’ payoff states are entirely
independent, the general persuasion problem faced by the sender is not separable
across voters. For example, the probability with which R3 is recommended to
approve the project when her state is L depends on the realized states of the other
voters: in any optimal policy in example 1, π(HHL) = 1 but π(LLL) = 0.20

3 Equivalence of general and independent general policies

In the context of our motivating example, the regulatory process might require
the sender to conduct an independent experiment for each regulator. If the sender
is allowed to condition the recommendations to each regulator on the entire state
profile, the sender designs for each regulator a mapping from the set of state profiles
to the set of distributions over this regulator’s signal space. Formally, such a profile
of independent experiments is an independent general policy. We show in this section
that under unanimity, for any general policy, there is an independent general policy
that achieves the same payoffs for all players.

Recall that πi(θ) denotes the probability of an approval recommendation made
to Ri when the realized state profile is θ. The approval and rejection incentive-
compatibility constraints have to be slightly modified for an independent general
policy (πi)

n
i=1:

∑

θ∈ΘHi

f(θ)
n∏

j=1

πj(θ)− `i
∑

θ∈ΘLi

f(θ)
n∏

j=1

πj(θ) ≥ 0, (2)

∑

θ∈ΘHi

f(θ) (1− πi(θ))
∏

j 6=i

πj(θ)− `i
∑

θ∈ΘLi

f(θ) (1− πi(θ))
∏

j 6=i

πj(θ) ≤ 0. (3)

20This observation stands in sharp contrast to the case of individual persuasion, under which no
voter can possibly receive a strictly positive payoff when the states are independent. In section 4,
we show that the optimal individual policy exploits the lack of information externalities between
voters to set all ICa-i constraints binding.
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Similarly, the objective of the sender changes to
∑

θ∈Θ

f(θ)
n∏

i=1

πi(θ).

We argue that a payoff is attainable under independent general persuasion if and
only if it is attainable under general persuasion. One direction of this statement is
trivial: any independent general policy can be formulated as a general policy. The
next propositions shows that the other direction holds as well.

Proposition 3.1 (Equivalence of general/independent general policies). Under
unanimity, the set of attainable payoffs for the sender and the voters is the same
under general policies and independent general policies.

The key assumption for this result is the unanimity rule. The distribution f

need not be exchangeable or affiliated. Moreover, the result holds even if each
voter’s state space is not binary. Under unanimity, the sender cares only about
the event in which all voters receive an approval recommendation; so does each
voter when she contemplates obeying an approval recommendation. Hence, for
each θ, the sender can choose the approval probability for each voter so that the
product of all these probabilities equals the unanimous approval probability in a
general policy. When we consider nonunanimous rules, the equivalence does not
hold any more: In subsection 6.2, we show that the sender is strictly worse off
under independent general persuasion when voters’ states are perfectly correlated.
Moreover, this equivalence result is not expected to hold in other group persuasion
games beyond voting games.21

4 Individual persuasion

4.1 General formulation

Restrictive regulatory processes might require that a regulator be provided only
evidence directly pertaining to her area of interest. Such a requirement is often
justified on grounds of protecting the independence of different regulatory agencies
in their evaluations. Other times law assigns separate and disjoint areas of authority
to different regulators: they decide based on evidence pertaining to their area of
authority. Targeted experiments allow each regulator to focus her limited resources
and have full authority over the evaluation of one aspect in parallel regulatory
processes (i.e. processes that involve more than one regulator). Such experiments
are formally captured by an individual policy.

21See Arieli and Babichenko (2016).
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This section characterizes optimal individual persuasion. We show that a more
demanding voter enjoys a more informative policy. The sender essentially divides
the group into (at most) three subgroups: (i) the most demanding voters fully
learn their states; (ii) the intermediate voters are partially informed; and (iii) the
most lenient voters rubber-stamp. We further show that only the extreme voters
might obtain a positive payoff: the most demanding voters due to their role as
informational guards, and the least demanding voters due to their willingness to
rubber-stamp.

Recall that πi(θi) denotes the probability that Ri receives an approval recom-
mendation when her state is θi. Let Pr(θi = H|R−i approve) denote the probability
that θi = H, conditional on all voters other than Ri approving:

Pr(θi = H|R−i approve) =

∑
θ∈ΘHi

f(θ)
∏

j 6=i πj(θj)∑
θ∈Θ f(θ)

∏
j 6=i πj(θj)

.

Ri’s incentive-compatibility constraint when she receives an approval recommenda-
tion is:

Pr(θi = H|R−i approve)πi(H)−`i(1−Pr(θi = H|R−i approve))πi(L) ≥ 0. (ICa-i)

The sender maximizes the probability of a collective approval:
∑

θ∈Θ

f(θ)
n∏

i=1

πi(θi). (OBJ)

We focus on the relaxed problem of maximizing (OBJ), subject to the set of ICa-i
constraints.22 Focusing on such a relaxed problem is without loss: we show later
in lemma 4.1 that recommendation to reject in any optimal policy for the relaxed
problem is conclusive news that the voter’s own state is low; hence she always obeys
a rejection recommendation.

4.2 Characterization of the optimal policy

The ICa-i constraint, rewritten in the following form, emphasizes the informational
externalities among the voters’ decisions:

Pr(θi = H|R−i approve) ≥
`iπi(L)

`iπi(L) + πi(H)
.

The left-hand side is Ri’s belief that her state is high when she conditions on the
others’ approvals. This belief depends on the policies of all voters other than Ri.23

22Under optimal individual persuasion, every voter approves with positive probability, i.e.,
πi(H) + πi(L) > 0, ∀i. Otherwise, the sender’s payoff is zero. The sender could do better
by fully revealing her payoff state to each voter. Hence, Pr(θi = H|R−i approve) is well defined.

23With slight abuse of the term “policy,” we call (πi(H), πi(L)) the policy of Ri under individual
persuasion.
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Due to affiliation, an increase in πj(H) of another voter Rj boosts the posterior
belief of Ri, while an increase in πj(L) makes Ri more pessimistic about her state.
The right-hand side depends only on Ri’s own policy and her threshold of doubt. It
decreases in πi(H) and increases in πi(L) and `i. The more likely that Ri receives an
approval recommendation when her state is high, the easier it is to induce compli-
ance. The more frequently Ri receives an approval recommendation when her state
is low or the more demanding Ri is, the more difficult it is to induce compliance.
So, an increase in πi(H) relaxes not only ICa-i but also ICa-j for all other Rj, while
an increase in πi(L) increases the cutoff for Ri and lowers the posterior belief of all
other voters, thus tightening all ICa constraints.

Before approaching the more general problem of imperfectly correlated states,
we first solve the polar cases of perfectly correlated and independent states.

Proposition 4.1 (Perfectly correlated or independent states). Suppose the voters’
states are perfectly correlated. Any optimal policy is of the form:

πi(H) = 1, ∀i, and
n∏

i=1

πi(L) =
f(θH)

f(θL)

1

`1

.

Suppose the states are independent. The policy for each voter is the same as if the
sender were facing only this voter:

(πi(H), πi(L)) =

(
1,

∑
θ∈ΘHi

f(θ)
∑

θ∈ΘLi
f(θ)

1

`i

)
for all i.

For perfectly correlated states, the project is approved for sure when every
voter’s state is H, while the probability of approval in state L is chosen so that only
ICa-1 binds. One such optimal policy is the one in which the sender persuades the
most demandingR1 and recommends that all other voters rubber-stamp the decision
of R1.24 For this policy, π1(L) = f(θH)/(f(θL)`1) and πi(L) = 1 for all i ≥ 2.

For independent states, each voter Ri’s posterior belief Pr(θi = H|R−i approve)
equals her prior belief of her state being H regardless of the other voters’ policies.
In the absence of information externalities across voters, the sender sets πi(L) as
high as ICa-i allows for each voter Ri.

We next show that for imperfectly correlated states it continues to be the case
that a high-state voter obtains an approval recommendation with probability one.

Lemma 4.1 (High states approve for sure). Suppose that f is exchangeable and
affiliated. In any optimal policy, the sender recommends approval to each Ri with
probability one when θi = H, i.e., πi(H) = 1 for every i.

24A voter rubber-stamps if she approves with probability one in both states.
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The main step of the proof relies on the Ahlswede-Daykin inequality, through
which we show that increasing πi(H) for Ri relaxes the ICa constraints for voters
other than Ri as well. The interests of the sender and all voters are aligned when
it comes to an increase of πi(H) for any Ri: such an increase improves the sender’s
payoff, makes Ri more compliant with an approval recommendation, and makes all
other voters more optimistic given that Ri approves. Thus, lemma 4.1 reduces the
problem to simply choosing (πi(L))ni=1.

Lemma 4.2 (At least one ICa binds). Suppose that f is exchangeable and affiliated.
In any optimal policy, πi(L) < 1 for some i. Moreover, at least one voter’s ICa

constraint binds, so πj(L) > 0 for some j.

Lemma 4.2 rules out the possibility that all voters approve without any addi-
tional information from the policy, as a direct consequence of assumption 1. More-
over, any optimal policy accords a zero expected payoff to at least one voter. If
that were not the case, the sender could strictly improve the approval probability
by slightly increasing πi(L) for some Ri. Hence, lemma 4.2 rules out the possibility
of the optimal policy being fully revealing about all states. Yet, it may well be
the case that the optimal policy is fully revealing about the states of some voters.
Indeed, we present in example 2 an optimal policy for which πi(L) = 0 for some Ri.

Example 2 (Full revelation to some voter). Let f be: f(HHH) = 6/25, f(HHL) =

1/250, f(HLL) = 7/750, and f(LLL) = 18/25. The thresholds are (`1, `2, `3) =

(41, 40, 39). Based on lemma 4.1, the sender chooses (πi(L))3
i=1 to maximize the

probability of unanimous approval subject to ICa constraints. The solution is:

(π1(L), π2(L), π3(L)) = (0, 0.606, 0.644).

The most demanding voter R1 learns her state fully. The project is never approved
when θ1 = L, so R1’s ICa is slack. R1 takes the role of a very accurate veto player:
the more lenient voters depend on R1 to veto a bad project. The sender could
recommend the low-state R1 to approve more frequently, but he optimally chooses
to fully reveal θ1 so that he can persuade R2 and R3 more effectively.

Example 2 highlights the crucial role of the most demanding voter(s): they serve
as information guards vis-a-vis the more lenient voters who either partially or fully
rubber-stamp the project. This example also suggests a monotonicity feature of
the optimal policy (πi(L))ni=1 with respect to the threshold: for `i > `j, πi(L) ≤
πj(L). More demanding voters are less likely to receive an approval recommendation
when their states are low. Hence, the approval recommendations made to more
demanding voters are more informative of their respective states being H. Any

19



voter is more optimistic about her state being high when taking into account the
approval of another more demanding voter than the approval of a more lenient
voter. The following proposition establishes this monotonicity property.

Proposition 4.2 (Monotonicity of persuasion). Suppose that f is exchangeable and
affiliated. There exists an optimal policy in which more demanding voters’ policies
are more informative:

πi(L) ≤ πi+1(L) for all i ∈ {1, ..., n− 1}.
Moreover, in any optimal policy in which Ri’s ICa constraint binds, those who are
more demanding than Ri must have strictly more informative policies, i.e., πj(L) <

πi(L) for all j < i.

Proposition 4.2 states that the sender essentially divides the group into (at
most) three subgroups. The most demanding voters learn their states fully. The
intermediate voters are partially manipulated. The most lenient voters rubber-
stamp the collective decision.

To prove the first part of proposition 4.2, we show that if there is a pair of voters
for which the more lenient voter enjoys a more informative policy, we can swap the
individual policies between the two. The new policy remains incentive-compatible.
Intuitively, when the stricter voter is compliant with a less informative policy, she
continues to comply when assigned the more informative policy. After the swap,
the stricter voter’s belief that her state is H is weakened when conditioning only
on the approval of all other voters, but the more accurate information acquired
through her own policy offsets this increased pessimism.25 After the swap, the
more lenient voter is assigned the less informative policy accorded previously to
the stricter voter. Since the stricter voter was willing to comply with an approval
recommendation from this policy, the more lenient voter is willing to do so as well.
Therefore, there always exists an optimal policy such that stricter voters have more
informative policies. The second part of proposition 4.2 follows naturally: if ICa-i
binds for some Ri, any voter who is more demanding than Ri must have a strictly
more informative policy. Otherwise, this stricter voter’s ICa is not satisfied.

Based on the monotonicity property and the previous examples, a natural con-
jecture is that any voter with a slack ICa constraint either fully learns her state
or rubber-stamps. This conjecture is not true, as the following example 3 demon-
strates. Nonetheless, among those voters who are partially informed (i.e., πi(L) ∈
(0, 1), at most one of them has a slack ICa. If such a voter exists, she must be the

25After all, each voter learns about her own state indirectly from the others’ approval decisions
but she learns about her own state directly from her own policy.
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strictest among those voters with partially informative policies. We state this result
formally in proposition 4.3 below.

Example 3 (Slack ICa with interior πi(L)). Let f be the same as in example 2
and the threshold profile be (31, 30, 24). The optimal policy is given by:

(π1(L), π2(L), π3(L)) = (0.003, 0.516, 1) .

Only ICa-1 is slack. The sender provides very precise information to R1 so as to
be able to recommend approval more frequently to R2 and R3. Decreasing π1(L)

further does not benefit the sender once the recommendation to R3 becomes fully
uninformative, i.e., π3(L) = 1. �

Proposition 4.3. Suppose distribution f is exchangeable and satisfies strict affili-
ation for any 3-voter subgroup. Among those voters who are partially informed, at
most one has a slack ICa constraint. If such a voter exists, she is the strictest voter
among those who are partially informed.

Taken together, propositions 4.2 and 4.3 establish that only the extreme voters
might obtain a positive payoff from persuasion: the most demanding voters due
to their role as informational guards, and the least demanding voters due to their
willingness to rubber-stamp.

We conclude this section by discussing the proof of proposition 4.3. Suppose,
to the contrary, that we can find two partially informed voters with thresholds
`i < `j whose ICa constraints are slack. From proposition 4.2, it is without loss
that πi(L) ≥ πj(L). Due to the slack ICa-i and ICa-j, the sender can slightly
increase πi(L) and decrease πj(L) so that, given Ri and Rj’s approvals, every other
voter’s posterior belief of her respective state being H is at least as high as prior
to the change. Because πi(L) is greater than πj(L) to start with, the boost in
another voter’s belief from a lower πj(L) has a stronger effect than the drop in the
belief from a higher πi(L). Therefore, only a small decrease in πj(L) is required
to offset the change in πi(L). Importantly, this necessary decrease is sufficiently
small so that the sender’s payoff strictly improves from this policy perturbation.
Hence, at most one partially informed voter has a slack ICa. The second part
of proposition 4.3 strengthens this observation: if some partially informed voter
receives a positive payoff, she must be the strictest voter among all those who
are partially informed. If the sender ever provides to some voter more precise
information than what is required by her ICa constraint, he prefers to do so with a
voter who will necessarily be assigned a low πi(L). Reducing an already low πi(L)

generates a stronger optimism boost among other voters.
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4.3 When do some voters fully learn their states?

Individual persuasion introduces the possibility that the strictest voter(s) learn their
own states fully. This stands in contrast to general persuasion. Lemma 2.2 estab-
lished that no voter fully learns her state under general persuasion. The following
discussion identifies necessary conditions for full revelation to the strictest voters
to be optimal under individual persuasion. More importantly, we characterize the
parameter region under which full revelation to some voters arise for a subclass of
state distributions.

First, the group size must be at least three. We show in online appendix B.4
that when facing two voters, the sender sets π1(L) and π2(L) as high as their
ICa constraints permit; he never fully reveals the state to any voter. When the
sender provides more precise information to some voter than what this voter’s ICa

constraint requires, the probability that this voter approves the project is reduced.
On the other hand, the sender can persuade the other voters to approve in their low
state more frequently. This information externality is a public good so the benefit
is larger for a larger group. The group size has to be at least three for the sender
to find it worthwhile to provide more precise information than necessary.

Secondly, when the states are sufficiently independent or correlated, the sender
does not fully reveal to any voter her state. Propositions 4.4 and 4.5 establish
this fact. If the states are sufficiently independent, the information externality is
not sufficiently strong for the benefits of full revelation to offset its cost in terms
of forgone approval probability. On the other hand, if the states are sufficiently
correlated, full revelation is not necessary: due to the strong correlation, the sender
does not need to reduce by much the probability with which the strictest voter
approves in her low state before the other voters are willing to rubber-stamp her
decision.26

Proposition 4.4 (No full revelation if states are sufficiently correlated). For a fixed
threshold profile (`i)

n
i=1, there exists a critical degree of correlation above which full

revelation to any voter is not optimal:

(πj(H), πj(L)) 6= (1, 0) for any j.

Proposition 4.5 (No full revelation if states are sufficiently independent). For
sufficiently independent states, all ICa constraints bind in the optimal individual
policy.

26In a sense, proposition 4.4 establishes a conceptual continuity between (i) full revelation to
some voter for imperfectly correlated states, and (ii) lack of full revelation to any voter for perfectly
correlated states.
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Lastly, we fully characterize the parameter region under which some voters learn
their own states fully for a relatively broad class of state distributions and a group
in which all voters have the same threshold ` > 1.27

Each distribution in this class is parametrized by λ1 ∈
[

1
2
, 1
]
, which measures the

degree of correlation among the voters’ states. More specifically, let there be a grand
state ω ∈ {G,B}, for which Pr(ω = G) = p0. The state of each voter is drawn
conditionally independently according to the following probabilities: Pr(H|G) =

Pr(L|B) = λ1. In particular, λ1 = 1/2 corresponds to independent payoff states,
and λ1 = 1 to perfectly correlated payoff states. Without loss, we assume πi(L) ≤
πj(L), ∀i < j.

Figure 1 summarizes the optimal policy when the group size n is sufficiently
large. When the states are sufficiently independent (i.e. λ1 ∈

(
1
2
, `
`+1

]
), the optimal

policy is symmetric across all voters (Proposition B.4). No voter learns her state
fully for such low λ1. Moreover, every voter’s ICa constraint binds. If the states
are sufficiently correlated (i.e., λ1 ∈ (λ∗1, 1)), the sender provides one voter with
more precise information than her ICa constraint requires so that every other voter
is willing to rubber-stamp (Proposition B.2). Due to sufficiently high correlation,
the better informed voter does not have to learn her state fully before the others
are willing to rubber-stamp. When the state correlation is intermediate (i.e. λ1 ∈(

`
`+1

, λ∗1
]
), the optimal policy is to have some voters who are fully revealed their

own states, one partially informed voter, and all other voters as rubber-stampers
(Proposition B.3). This analysis shows that full revelation to some voters is optimal
for a broad range of parameter values.

1
2

`
`+1

λ1

λ∗1 1
︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸

no full revelation full revelation to some voters no full revelation

πi(L) = πj(L) ∈ (0, 1) ∀i, j one partially informed voter π1(L) ∈ (0, 1)

the rest rubber-stamp the rest rubber-stamp

Figure 1: Optimal individual persuasion with homogeneous thresholds

5 Comparison of persuasion modes

In this subsection we compare the different persuasion modes analyzed in sections
2 through 4. Proposition 3.1 has shown that independent general persuasion and

27The formal analysis and results for this case can be found in the online appendix B.5.
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general persuasion are equivalent under unanimity. Therefore, we focus on the
comparison of general and individual persuasion.

Under both general and individual persuasion, more voters hurt the sender. We
show that, under both modes, any approval probability that can be achieved by n
voters can also be achieved after a voter is removed from the group. Hence, the
sender is weakly better off after the removal of a voter. Intuitively, due to the
required unanimity for a collective approval, a greater number of voters can only
hurt the probability of a unanimous approval.

Lemma 5.1 (More voters hurt the sender). For any fixed threshold profile, the
sender attains a weakly higher payoff with (n− 1) voters than with n voters under
both general and individual persuasion.

When the states are sufficiently correlated, the sender attains the same payoff
under general and individual persuasion. Under the latter, the sender persuades
only the most demanding voter R1, whereas all other more lenient voters are willing
to rubber-stamp R1’s decision. This obviously induces the highest attainable payoff
for the sender since persuading more voters than just R1 can only leave him worse
off. Therefore, general persuasion cannot improve upon the payoff from individual
persuasion. There exists an optimal policy under general persuasion such that the
approval probability in each state profile is the same across the two modes.

Lemma 5.2 (Equivalence with sufficiently high correlation). Given a perfect cor-
relation distribution f ′, there exists ε > 0 such that for any f with ||f − f ′|| < ε,
the approval probability for any θ ∈ Θ is the same across the two modes, i.e.,

π(θ) =
n∏

i=1

πi(θi),

where π and (πi)
n
i=1 denote, respectively, an optimal general policy and an optimal

individual policy associated with f .

As the correlation among the states weakens, the sender does strictly better
under general persuasion than under individual persuasion. The sender is able to
pool different state profiles more freely under general persuasion in order to obtain
a higher payoff. In contrast, the strictest voter always weakly prefers individual
persuasion. This is because any optimal general policy accords the strictest voter a
zero payoff, while the optimal individual policy might accord her a strictly positive
payoff. Moreover, if ICa-i binds for i ∈ {1, ..., i′} in any optimal general policy, the
strictest voters {R1, ..., Ri′} are better off with individual persuasion.
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While the strictest voter(s) unequivocally prefer individual persuasion, the rank-
ing of the two persuasion modes by more lenient voters can go either way. For in-
stance, in example 1, R3 obtains a positive payoff under general persuasion when the
sender chooses an optimal and Pareto efficient policy. Due to independent states,
R3’s payoff must be zero under individual persuasion. In this example, the more
lenient voter prefers general persuasion. We can find another example in which the
most lenient voter obtains a stricter higher payoff under individual persuasion than
under general persuasion, even if we restrict attention to optimal general policies
that are Pareto efficient. As a result, the more lenient voters might disagree on the
preferred persuasion mode.

6 Extensions

6.1 Public/sequential persuasion and observability of poli-

cies

This subsection discusses the robustness of the results as we relax two assumptions
of the benchmark model: the private observability of recommendations, and the
simultaneous structure of voting. We argue that the relaxation of either assumption
does not affect the results from sections 2 through 5. Moreover, we briefly discuss
the implications of privately observed policies under individual persuasion.

Let us first assume that the recommendations are announced publicly. Given any
optimal policy under the previous assumption of private communication, the voting
game that follows after voters publicly observe the same recommendations admits
an obedient equilibrium in which all voters follow their respective recommendations.
This is true for any of the three persuasion modes. If the public recommendation
profile is the unanimous recommendation d̂a, the previous ICa constraints ensure
that all voters comply with the approval recommendation. If d̂r,i is realized instead,
the previous ICr-i ensures that Ri prefers to reject. The other voters comply as well
since they are no longer pivotal. If two or more voters receive a recommendation
to reject, no voter can overturn the collective rejection given that all other voters
follow their individual recommendations.28 The following proposition summarizes
this reasoning.

28Moreover, if two or more voters receive a recommendation to reject, it cannot be the case that
all voters prefer to approve. If that were so, the sender could recommend that all voters approve
under private communication and increase his payoff. This contradicts the presumption that the
policy is optimal under private communication.

25



Proposition 6.1 (Public persuasion). Fix an optimal general or individual policy.
Suppose that the recommendation profile d̂ is observable by all voters. There exists
an equilibrium in which each voter complies with the recommendation.

Suppose now that the signals are privately observed but the sender encounters
the voters sequentially in a particular order, one at a time. Each voter perfectly
observes the decisions of preceding voters. We analyze how well the sender performs,
compared to simultaneous voting, and whether the payoff achieved by the sender
depends on the particular order in which the voters are approached.

Under unanimity rule, the decision of Ri is significant for the collective deci-
sion only if all preceding voters have already approved and all succeeding voters
will approve as well. This observation—that in sequential voting too each voter
decides as if all other voters have already approved the project—suggests that se-
quential voting is equivalent to simultaneous voting.29 Indeed, the set of incentive-
compatible policies under sequential voting is the same as that under simultaneous
voting. Moreover, the order in which the voters are encountered is immaterial for
the sender’s payoff.

Proposition 6.2 (Sequential persuasion). Fix an optimal general or individual
policy with simultaneous voting. This policy is also optimal under sequential voting
for any order of voters.

Furthermore, it follows from propositions 6.1 and 6.2 combined that the set
of incentive-compatible policies remains the same if we relax the assumptions of
private communication and simultaneous voting concurrently.

Finally, we discuss how results change if under individual persuasion, each voter
privately observes her own policy. First of all, if we use Nash equilibrium as our
solution concept, the optimal policy stays the same. This is because if the sender
deviates and alters the equilibrium policy for Ri, then Ri will reject for sure. How-
ever, rejecting for sure on Ri’s side regardless of the deviation policy and the realized
signal is not sequentially rational. After the deviation, Ri needs to form a belief
about the sender’s policies toward other voters and their behavior, in order to form
a belief about their respective states. The most pessimistic belief Ri can hold is that
all other voters’ states are L upon approval. If the deviation policy toward Ri is
incentive compatible under this most pessimistic belief, then Ri is willing to follow
the recommendation. This gives an upper bound on how informative Ri’s equilib-
rium policy can be. If πi(H) = 1, this gives a positive lower bound on how low πi(L)

can be in order for the policy to be sustained in equilibrium. The sender’s problem
29The reasoning clearly does not extend to nonunanimous voting rules.
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is essentially the same as before except that each πi(L) now must stay above its
lower bound.

By this reasoning, the optimal policy identified in example 2 is not an equilib-
rium. The sender prefers to deviate from the fully revealing policy π1 and increase
π1(L) by a very small amount: for any belief R1 might hold, there exists a suf-
ficiently small π1(L) for which R1 continues to obey the recommendation. Full
revelation does not arise with privately observed policies.

However, the optimal policy identified in example 3 is credible under the most
pessimistic off-path beliefs described above. R1 obeys a recommendation of an off-
path policy π̃1 with π̃1(H) = 1 if and only if π̃1(L) < 1

`1

f(HLL)
f(LLL)

= 0.00042. This
imposes a lower bound on any credible π1(L). Hence, the sender does not deviate
from the optimal policy π∗1(L) = 0.003. Similarly, the sender prefers not to deviate
from π∗2 and π∗3 as well. This example shows that even with privately-observed
individual policies, there are environments (f, (`i)

n
i=1) for which the sender provides

to the strictest voters more precise information than what is needed to persuade
them in order to persuade others more often.

6.2 Nonunanimous decision rules

This subsection considers nonunanimous voting rules, i.e., when k < n votes suffice
for project adoption. We show that the project is approved with certainty under
general persuasion, and with probability strictly less than one under individual per-
suasion. Voters, on the other hand, strictly prefer individual to general persuasion.

A general policy that trivially achieves a certain approval is one that always
recommends all voters to approve for all state profiles. No voter is ever pivotal,
so each voter trivially follows the approval recommendation. This construction,
however, relies on the failure to be pivotal, so each voter is indifferent when asked
to approve. We take a different route.

As noted in section 1, we allow only for any policy that is the limit of a sequence
of full-support incentive-compatible policies. For each limiting policy, there exists
a nearby full-support policy for which each voter is pivotal with positive probabil-
ity for both approval and rejection recommendations, and each voter’s incentive-
compatibility constraints are strictly satisfied.30 We can construct a sequence of
such full-support policies that achieves a payoff arbitrarily close to one for the
sender. This shows that the certain-approval result does not rely on the voters’

30Suppose that the sender does not provide any information and voters do not use weakly
dominated strategies. For any voting rule 1 ≤ k ≤ n, all voters reject in the unique correlated
equilibrium.
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failure to be pivotal.
This certain-approval result stands in contrast to the optimal policy under una-

nimity where the sender’s payoff is strictly below one. The key observation is that
the sender benefits from the event that at least k voters approve, whereas each
voter cares about the event that exactly k voters (including herself) receive an ap-
proval recommendation. When k < n, the sender can recommend most of the time
that at least k + 1 voters approve, without jeopardizing the IC constraints of the
voters. This observation explains the discontinuity between the unanimous and
nonunanimous rules.

Proposition 6.3 (Certain approval under general policies). 31 Suppose that the
sender needs k ≤ n− 1 approvals. Under general persuasion, the sender’s payoff is
one.

θ
d̂ (0,0) (1,0) (0,1) (1,1)

HH ε2 ε ε 1− 2ε− ε2

HL ε2 ε2 ε2 1− 3ε2

LH ε2 ε2 ε2 1− 3ε2

LL ε ε2 ε2 1− ε− 2ε2

Table 2: General policy for n = 2, k = 1

To illustrate the proof idea, we construct a full-support policy for n = 2 and
k = 1 in table 2. Each row summarizes the recommendation distribution for a
fixed state profile. Upon receiving an approval recommendation, R1 is pivotal only
if recommendation (1, 0) has realized. This recommendation is sent much more
frequently in state profile HH than in other state profiles; therefore, R1 is confident
that her state is H when conditioning on being pivotal. The reasoning for R2 is
similar. Therefore, the constructed policy guarantees compliance with approval
recommendations. On the other hand, the only recommendation for which Ri is
pivotal upon being recommended to reject is (0, 0). Since this recommendation
profile is suggestive of the unfavorable state profile LL more than of any other state
profile, both voters are willing to follow a rejection recommendation. Therefore,
this sequence of policies (indexed by ε) are obedient and attain a payoff for the
sender that is arbitrarily close to one.

The certain-approval result is further strengthened by the observation that the
sender achieves a certain approval even when constrained to independent general
persuasion.

31The proofs for propositions 6.3 and 6.4 can be found in online appendix B.1. Chan et al.
(2016) independently reach a similar result to proposition 6.3 for the case of perfectly correlated
states.
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Proposition 6.4 (Certain approval under independent general policies). Suppose
that f has full support and the sender needs k ≤ n−1 approvals. Under independent
general persuasion, the sender’s payoff is one.

To illustrate the proof idea, we revisit the two-voter example with k = 1. The
left-hand side of table 6.2 demonstrates the independent policy for each voter. The
right-hand side shows the corresponding probability of each recommendation profile
for each state profile.32

θ
πi π1(·) π2(·)

HH 1− ε1 1− ε1

HL 1− ε2 ε3

LH ε3 1− ε2

LL 1− ε4 1− ε4

θ
d̂ (0,0) (1,0) (0,1)

HH ε2
1 ε1(1− ε1) ε1(1− ε1)

HL ε2(1− ε3) (1− ε2)(1− ε3) ε2ε3

LH ε2(1− ε3) ε2ε3 (1− ε2)(1− ε3)
LL ε2

4 ε4(1− ε4) ε4(1− ε4)

Table 3: Independent general policy for n = 2, k = 1

In state profiles with exactly one high-state voter, this voter is recommended to
approve with very high probability, while the other low-state voter is recommended
to reject with very high probability. Hence, when R1 is recommended to approve
and she conditions on (1, 0) being sent, the state profile is most likely to be HL.
Because HL is favorable for R1, she is willing to approve. By the same logic, upon
being recommended to reject, R1 conditions on (0, 0) being sent. If ε4 is chosen
so as to shrink to zero at a much slower rate than ε1 and ε2, R1 is sufficiently
assured that the state profile is the unfavorable LL. Hence, she obeys the rejection
recommendation. The reasoning for R2 is similar. Therefore, the policies in the
sequence are obedient and attain an arbitrarily high payoff for the sender.

More generally under independent general persuasion, whenever a state profile
with exactly k high-state voters realizes, the high-state voters are very likely to be
recommended to approve and the low-state voters very likely to be recommended to
reject. Therefore, when Ri is recommended to approve, the pivotality of her decision
suggests that the realized state profile very probably admits exactly k high-state
voters, with Ri being among them. This construction has the flavor of “targeted
persuasion” as in Alonso and Câmara (2016b), since the sender targets the voters
who benefit from the project. By making the state profiles with exactly k high-state
approvers the most salient event for each voter when her vote is pivotal, the sender
is able to achieve a guaranteed approval.

Our construction relies on the existence of state profiles with k > 0 high-state
voters and (n − k) > 0 low-state voters. So such state profiles have to occur

32The distribution for recommendation profile (1, 1) has been omitted for ease of exposition.
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with positive probability in order for the argument to hold. Lemma B.1 in online
appendix B.1 shows that for any affiliated and exchangeable state distribution f ,
either (i) f has full support on Θ, or (ii) the states are perfectly correlated. If
the latter holds, the problem of the sender reduces to one of individual persuasion,
under which a certain approval is never attained, as shown in the next proposition.
Hence, a full-support state distribution is both necessary and sufficient for certain
approval under independent general persuasion.

Whenever each voter’s recommendation can depend on the entire profile θ, a
requirement for nonunanimous consent effectively imposes no check on the adoption
of the project, as approval is guaranteed. We next show that when the sender can
condition individual recommendations to a voter only on her state, the project is
never approved for sure.

Proposition 6.5 (No certain approval under individual policies). Suppose that the
sender needs k ≤ n− 1 approvals. Under individual persuasion, the sender’s payoff
is strictly below one. The payoff of each voter is strictly higher than that under
general and independent general persuasion.

Under individual persuasion, each voter approves more frequently under a high
state than a low state. If the project is approved with certainty, it must be approved
with certainty under all possible state profiles. There must then exist a coalition
of at least k voters who approve the project regardless of their individual states.
However, any voter in this coalition does not become more optimistic about her
state being high when she receives a recommendation to approve and considers her
decision to be pivotal. Due to assumption 1, she is not willing to follow the approval
recommendation. Hence, the project cannot be approved with certainty.

We further establish that there exists at least one voter who approves strictly
more frequently under a high state than under a low state and she is pivotal with
positive probability. Due to affiliation, all other voters benefit from such a voter’s
decision. Therefore, for any nonunanimous voting rule, all voters are strictly better
off under individual persuasion than under either general or independent general
persuasion.
The role of communication. For a fixed information structure π or (πi)

n
i=1, a

stage of pre-voting communication can be added to this voting game of incomplete
information. The set of equilibria depends on the communication protocol. For
instance, we can add one round of public cheap-talk communication: all voters first
observe their own private signal and then simultaneously announce a public cheap-
talk message. Afterwards they vote. For this particular communication protocol,
there is always an equilibrium in which each voter votes informatively based on
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her private signal generated according to π or (πi)
n
i=1.33 This is clearly the optimal

equilibrium for the sender among all possible communication equilibria.34 Moreover,
if all voters share a consensus given π or (πi)

n
i=1, this communication protocol admits

also an equilibrium in which all voters announce their signals truthfully and vote
according to the aggregated information.35 This might lead to a lower payoff for the
sender than the previous equilibrium. In general, when voters do not share such a
consensus, there might not exist such a full-revelation equilibrium.

To sum up, for any information structure π or (πi)
n
i=1, the equilibrium outcome

when the voters can communicate depends not only on the communication protocol
but also on the equilibrium selection criterion. We view our result as an important
and useful benchmark when the sender-optimal equilibrium is selected.

7 Concluding remarks

This paper analyzed the problem faced by an uninformed sender aiming to persuade
a unanimity-seeking group of heterogeneous voters through the design of informa-
tive experiments. We characterized the optimal policies for two main modes of
persuasion, —general and individual persuasion—and explored their implications
for the players’ welfare. Returning to our motivating examples, our results clar-
ify who benefits from particular forms of evidence: the most demanding regulators
prefer targeted evidence, while comprehensive evidence benefits, besides the sender,
only the least demanding ones. Moreover, providing evidence that is comprehensive
yet independent across regulators does not constrain the sender at all in his ability
to persuade. When restricted to targeted evidence, —for instance, in highly special-
ized regulatory evaluations, — the sender might find it optimal to accurately inform
the strictest regulators of the quality of their aspect of interest. An institutional
arrangement that is based on targeted evidence designates a strong informational
role to the most demanding regulators: the sender leverages the fully revealing rec-
ommendations provided to them to persuade others more easily. When the voters’
states are affiliated and exchangeable, the possibility of full revelation is exclusive

33There is always a babbling equilibrium in which each voter sends an uninformative message
and then votes according to her private signal.

34In fact, for any direct obedient π or (πi)
n
i=1, there exists a communication equilibrium in which

voters follow their private signals. See Gererdi and Yariv (2007) for details.
35As defined in Coughlan (2000) and Austen-Smith and Feddersen (2006), a consensus exists

if, given the public revelation of all private information, all voters always agree on whether to
approve. If voters do not share such a consensus, a full-revelation equilibrium might not exist.
Austen-Smith and Feddersen (2006) present an example in which voters have the same state but
different thresholds. Given the information structure in that example, there is no full-revelation
equilibrium.
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to targeted evidence.
Under unanimity rule, the characterized optimal policies remain optimal even

when the voters publicly observe the recommendation profile and/or take turns to
cast their votes. For nonunanimous rules, the sender obtains a sure approval if
allowed to offer a general policy or an independent general policy to the group.
In the context of regulation, this is effectively as if there were no regulatory check
on the proposals of the industry as long as it can provide comprehensive evidence
regarding all payoff-relevant aspects. We interpret this result as advocating for
the institutionalization of unanimity rule whenever the sender (i) communicates
with voters in private, and (ii) offers comprehensive evidence. Moreover, the fact
that all voters prefer individual to general persuasion under any nonunanimous rule
supports the institutionalization of targeted evidence in environments governed by
such rules.

Our analysis of unanimity rule invites future work on the full characterization of
optimal individual persuasion for nonunanimous rules. We have taken a first step
by analyzing some features of individual persuasion under such rules. The effect
of communication among voters on the persuasion effort of the sender also remains
largely unexplored. Another natural question concerns the implications of sequen-
tial persuasion in settings with and without payoff externalities among receivers.
For sequential collective decision-making under different persuasion modes, a de-
parture from the unanimity rule complicates the analysis substantially. Moreover,
we leave for future work a systematic examination of differences among persuasion
modes when the receivers vary in their informational importance for the group, that
is, when the assumption of exchangeability is dropped. The exploration of these
questions promises to shed further light on the dynamics of group persuasion.
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A Appendix: Proofs for sections 2 to 4

Proof for proposition 2.1. The policy only specifies π(d̂a|θH) and π(d̂a|θL). First,
π(d̂a|θH) = 1. Otherwise the objective can be improved without hurting any ICa

constraints. Secondly, in order for π(d̂a|θL) to be as high as possible without hurting
any ICa constraints, the sender optimally sets it so as to make ICa-1 bind (because
`1 = maxi `i). Hence, f(θH)− f(θL)π(d̂a|θL)`1 = 0.

Proof for lemma 2.1. Suppose that π(d̂a|θH) < 1. Increasing π(d̂a|θH) relaxes ICa-i
for all i as θH ∈ ΘH

i for all i. It also strictly improves the payoff of the sender.
Hence π(d̂a|θH) < 1 cannot be optimal.

Proof for lemma 2.2. Suppose to the contrary that there exists i such that π(d̂a|θ) =

1 for all θ ∈ ΘL
i . Then ICa-i requires that

(∑
θ∈ΘHi

f(θ)π(d̂a|θ)
)
/
(∑

θ∈ΘLi
f(θ)

)
≥

`i. But assumption 1 tells us that

`i >

∑
θ∈ΘHi

f(θ)
∑

θ∈ΘLi
f(θ)

≥
∑

θ∈ΘHi
f(θ)π(d̂a|θ)

∑
θ∈ΘLi

f(θ)

for any specification of π(d̂a|θ) for θ ∈ ΘH
i . We have thus reached a contradiction.

Suppose to the contrary that for some i, π(d̂a|θ) = 0 for all θ ∈ ΘL
i . Then ICa-i

is slack. Consider θ′ ∈ ΘL
i such that θ′j = H for all j 6= i. Consider increasing

π(d̂a|θ′) to some strictly positive value so as to still satisfy ICa-i. This increase: i)
strictly improves the payoff of the sender, ii) relaxes all ICa-j for j 6= i.

Proof for proposition 2.2. Slightly reformulated, the sender’s problem is

min
π(d̂a|θ)≥0

−
∑

θ∈Θ

f(θ)π(d̂a|θ)

s.t. π(d̂a|θ)− 1 ≤ 0, ∀θ, and
∑

θ∈ΘLi

f(θ)π(d̂a|θ)`i −
∑

θ∈ΘHi

f(θ)π(d̂a|θ) ≤ 0, ∀i.

Let γθ be the dual variable associated with π(d̂a|θ)− 1 ≤ 0 and µi the dual variable
associated with ICa-i. Since the constraints of the primal are inequalities, for the
dual we have the constraints that γθ ≥ 0 for all θ and µi ≥ 0 for all i. The dual is:

min
γθ≥0,µi≥0

∑

θ∈Θ

γθ, s.t. γθ ≥ f(θ)

(
1 +

∑

i:θi=H

µi −
∑

i:θi=L

µi`i

)
, ∀θ ∈ Θ.

In the dual problem, there is an inequality constraint for each state profile θ. The
associated primal variable for each inequality constraint is π(d̂a|θ).

We first show that it cannot be that µi = 0 for all i. Suppose that was indeed
the case. Then

∑
θ∈Θ γθ =

∑
θ∈Θ f(θ) = 1. Consider increasing µ1 by a small

33



amount ε > 0. The dual objective changes by ε
∑

θ∈ΘH1
f(θ) − ε`1

∑
θ∈ΘL1

f(θ) < 0

by assumption 1. Hence the dual objective can be improved.
We next show that there exists an optimal solution to the dual such that if

µj = 0, then µj′ = 0 for any j′ > j. Suppose that µj = 0 and µj′ > 0 for some
j′ > j. We can rewrite the constraint associated with θ as:

γθ ≥ f(θ)


1 +

∑

i 6=j,j′
θi=H

µi −
∑

i 6=j,j′
θi=L

µi`i +
∑

i∈{j,j′}

µi (1θi=H − 1θi=L`i)


 .

We construct a new set of µ̃i and γ̃θ such the the dual objective stays constant and
the dual constraints are satisfied. We let µ̃j′ = µj = 0, µ̃j = µj′ > 0 and µ̃i = µi for
i 6= j, j′. To construct γ̃θ, we consider two cases:

1. If the state profile θ is such that θj = θj′ , then we let γ̃θ = γθ. Since `j > `j′

and µ̃j > µ̃j′ = 0, the RHS of the inequality associated with γ̃θ is weakly
lower than before, so the constraint is satisfied.

2. If the state profile θ is such that θj 6= θj′ , then there exists another state
profile θ′ such that θ′ is the same as θ except for θ′j and θ′j′ . In this case,
we let γ̃θ = γθ′ and γ̃θ′ = γθ. The inequalities associated with γ̃θ and γ̃θ′ are
both satisfied. This is easily verified given that `j > `j′ , f(θ) = f(θ′), and the
presumption that µj′ > µj = 0 (or equivalently, µ̃j > µ̃j′ = 0).

This shows that there exists an optimal solution to the dual such that µi’s for the
most demanding regulators are positive. Moreover, based on case (ii), if µj′ > µj = 0

and j′ > j, it must be true that γθ = 0 for any θ such that θj = H, θj′ = L.
Otherwise, after the exchange operation in case (ii), we can lower γθ (or equivalently,
γ̃θ′) without violating any constraint.

We next show that in any optimal solution of the dual, if µj = 0, then µj′ = 0

for any j′ > j. Suppose not. Suppose that µj = 0 and µj′ > 0 for some j′ > j. This
implies that γθ = 0 for any θ such that θj = H, θj′ = L. In particular, γθ = 0 when
θj = H, θj′ = L and all other states are H. The constraint with respect to this
state profile is γθ = 0 ≥ f(θ)

(
1 +

∑
i 6=j,j′ µi − µj′`j′

)
. This imposes a lower bound

on µj′ : µj′ ≥
(

1 +
∑

i 6=j,j′ µi

)
/`j′ . We next show that it is uniquely optimal to set

µj′ to be this lower bound. Firstly, this lower bound of µj′ ensures that for any θ
such that θj′ = L, we can set γθ to be zero. For any θ such that θj′ = H, lowering
µj′ makes the constraint associated with θ easier to be satisfied. In particular, for
θ such that all states are H, lowering µj′ strictly decreases the lower bound on γθ
and thus strictly lower the dual objective. This shows that it is uniquely optimal
to set µj′ to be the lower bound (1 +

∑
i 6=j,j′ µi)/`j′ .
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Lastly, we show that we can strictly improve by constructing a new set of µ̃i
and γ̃θ. We let µ̃j′ = 0, µ̃j = (1 +

∑
i 6=j,j′ µi)/`j < (1 +

∑
i 6=j,j′ µi)/`j′ and µ̃i = µi

for i 6= j, j′. For any θ such that θj = L, we can set γ̃θ to be zero. For any θ such
that θj = H, there exists a state profile θ′ such that θ′j′ = θj, θ′j = θj′ , and θ′i = θi

for i 6= j, j′. We let γ̃θ = γθ′ . Since µ̃j is strictly smaller than µj′ , the constraint
associated with γ̃θ is satisfied. Moreover, the lower µ̃j ensures that we can further
lower γ̃θH (which was equal to γθH ). This shows that we can strictly decrease the
objective. We have thus reached a contradiction.

Therefore, it cannot be true that µj = 0 and µj′ > 0 for some j′ > j. Moreover,
at least one µi is strictly positive. This shows that there exists an i′ ≥ 1 such that
µi > 0 for i ≤ i′. Therefore, in any optimal policy, the strictest regulators’ ICa

constraints bind.

Proof for proposition 3.1. Consider a general policy π =
(
π(d̂|θ)

)
d̂,θ
. We want to

construct an independent general policy (πi(θ)i,θ that implements the same payoff
for the sender. We construct (πi(θ))i,θ such that

∏n
i=1 πi(θ) = π(d̂a|θ) for any

θ ∈ Θ. ICa constraints (2) are satisfied automatically since the right-hand side of
(2) depends only on the product

∏n
i=1 πi(θ). We next show that we can choose

(πi(θ))i,θ to satisfy ICr constraints (3) as well. First, if π(d̂a|θ) = 0, we set πi(θ)
to be zero for all i. Such state profiles contribute zero to the left-hand side of (3).
Secondly, if π(d̂a|θ) = 1, we have to set πi(θ) = 1 for all i. Again, such state
profiles contribute nothing to the left-hand side of (3). Lastly, if π(d̂a|θ) ∈ (0, 1),
we set πi(θ) to be one if θi = H and πi(θ) to be interior if θi = L. Such state
profiles contribute a weakly negative term to the left-hand side of (3). Thus, we
have shown that (3) is satisfied.

Proof for proposition 4.1. Under perfect correlation, ICa constraint can be rewrit-
ten compactly as: f(θH)

∏n
j=1 πj(H) ≥ f(θL)`i

∏n
j=1 πj(L), while the objective is:

f(θH)
∏n

j=1 πj(H) + f(θL)
∏n

j=1 πj(L). Increasing
∏

j πj(H) relaxes all approval IC
constraints and also benefits the sender, therefore the sender sets πj(H) = 1 for all
j. The sender’s payoff increases in

∏
j πj(L), so he sets it to be the highest possible

value allowed by the ICa constraints:
∏n

j=1 πj(L) = f(θH)/
(
f(θL)`1

)
. This policy

satisfies ICr constraints as well. If Ri receives a rejection recommendation, she
knows for sure that her state is L because πi(H) = 1, hence she strictly prefers to
reject the project.

If states are independent, Ri receives no additional information from condition-
ing on the approval ofR−i. ICa-i is simply:

∑
θ∈ΘHi

f(θ)πi(H)−∑θ∈ΘLi
f(θ)πi(L)`i ≥

0. The policy offered to one voter does not affect the sender’s ability to persuade
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other voters. So the problem of the sender is separable across voters. Therefore, the

following single-voter policy is optimal: πi(H) = 1, and πi(L) =

∑
θ∈ΘH

i
f(θ)

`i
∑
θ∈ΘL

i
f(θ)

.

Proof for lemma 4.1. Suppose πj(H) < 1 for some j. It is easily verified that
(OBJ) increases in πj(H), and increasing πj(H) weakly relaxes ICa-j. It remains to
be shown that increasing πj(H) weakly relaxes ICa-i for any i 6= j. Consider ICa-i
rewritten in the following form:
πj(H)

∑
ΘHi ∩ΘHj

f(θ)
∏

k 6=i,j πk(θk) + πj(L)
∑

ΘHi ∩ΘLj
f(θ)

∏
k 6=i,j πk(θk)

πj(H)
∑

ΘLi ∩ΘHj
f(θ)

∏
k 6=i,j πk(θk) + πj(L)

∑
ΘLi ∩ΘLj

f(θ)
∏

k 6=i,j πk(θk)
≥ `i

πi(L)

πi(H)
.

For this step, note that if the denominator of the LHS equals zero, then ICa-i holds
for any πj(H), and if the denominator of the RHS equals zero, then πi(L) has to be
zero so ICa-i holds for any πj(H) as well. Therefore, we focus on the case in which
neither denominator equals zero.

The derivative of the LHS with respect to πj(H) is positive if:

 ∑

ΘHi ∩ΘHj

f(θ)
∏

k 6=i,j

πk(θk)




 ∑

ΘLi ∩ΘLj

f(θ)
∏

k 6=i,j

πk(θk)


−


 ∑

ΘHi ∩ΘLj

f(θ)
∏

k 6=i,j

πk(θk)




 ∑

ΘLi ∩ΘHj

f(θ)
∏

k 6=i,j

πk(θk)


 ≥ 0. (4)

To prove this inequality, we will use the Ahlswede-Daykin inequality (Ahlswede and
Daykin, 1978): Suppose (Γ,�) is a finite distributive lattice and functions f1, f2,
f3, f4 : Γ → R+ satisfy the relation that f1(a)f2(b) ≤ f3(a ∧ b)f4(a ∨ b), ∀a, b ∈ Γ.
Then f1(A)f2(B) ≤ f3(A∧B)f4(A∨B), ∀A,B ⊂ Γ, where fk(A) =

∑
a∈A fk(a) for

all A ⊂ Γ, k ∈ {1, 2, 3, 4}, and A∨B = {a∨ b : a ∈ A, b ∈ B}, A∧B = {a∧ b : a ∈
A, b ∈ B}.

First, we let Γ be the set of state profiles excluding Ri and Rj. That is, Γ = Θ−ij.
The lattice Γ is finite. Secondly, the lattice is distributive, i.e. for any θ, θ′, θ′′ ∈ Θ

θ−ij ∨ (θ′−ij ∧ θ′′−ij) = (θ−ij ∨ θ′−ij) ∧ (θ−ij ∨ θ′′−ij). To see this, consider the state of
Rk 6= Ri, Rj in both sides. If θk = H, then the state of Rk is H in both sides. If
θk = L and θ′k = θ′′k , then the state of Rk is θ′k in both sides. If θk = L, and θ′k 6= θ′′k ,
the state of Rk is L in both sides. Therefore the lattice is distributive. We write
f(θ) = f(θiθj, θ−ij). Define functions:

f1(θ−ij) = f(HL, θ−ij)π−ij(θ−ij), f2(θ−ij) = f(LH, θ−ij)π−ij(θ−ij),

f3(θ−ij) = f(LL, θ−ij)π−ij(θ−ij), f4(θ−ij) = f(HH, θ−ij)π−ij(θ−ij),

where π−ij(θ−ij) :=
∏

k 6=i,j πk(θk). Due to affiliation and the easily verified equality
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that π−ij(θ−ij)π−ij(θ′−ij) = π−ij(θ−ij ∧ θ′−ij)π−ij(θ−ij ∨ θ′−ij), the premise of the
theorem holds:

f(HL, θ−ij)π−ij(θ−ij)f(LH, θ′−ij)π−ij(θ
′
−ij) ≤

f(LL, θ−ij ∧ θ′−ij)π−ij(θ−ij ∧ θ′−ij)f(HH, θ−ij ∨ θ′−ij)π−ij(θ−ij ∨ θ′−ij).
Take subsets of the lattice A = B = Γ, so A ∧ B = A ∨ B = Γ. It follows from
Ahlswede-Daykin inequality that

 ∑

θ−ij∈A

f(HL, θ−ij)π−ij(θ−ij)




 ∑

θ−ij∈B

f(LH, θ−ij)π−ij(θ−ij)


 ≤


 ∑

θ−ij∈A∧B

f(LL, θ−ij)π−ij(θ−ij)




 ∑

θ−ij∈A∨B

f(HH, θ−ij)π−ij(θ−ij)


 .

This is precisely the inequality we wanted to show. This concludes the proof.

Proof for lemma 4.2. We first argue that there exists a voter Ri such that πi(L) < 1.
Suppose that for all i, πi(L) = 1. Then Ri’s belief of her state being H if she
conditions on the approval of all other voters is equal to the prior belief

∑
θ∈ΘHi

f(θ).
But given assumption 1, (πi(H), πi(L)) = (1, 1) is not incentive compatible under
the prior. Suppose now that πi(L) < 1 for some i and ICa-j is slack for all j.
Then increasing πi(L) by a small amount strictly increases the probability that the
project is approved without violating any ICa constraint.

We then show that πi(L) > 0 for some i. Suppose πi(L) = 0 for all i. The
sender fully reveals the payoff state to each voter. Hence, all ICa constraints are
slack. This contradicts the first part of this proof.

Proof for proposition 4.2. Suppose there exist Ri and Rj such that `j > `i and
πj(L) > πi(L). We can rewrite ICa-i and ICa-j as:

`iπi(L) ≤ a1 + a2πj(L)

a2 + a3πj(L)
, `jπj(L) ≤ a1 + a2πi(L)

a2 + a3πi(L)
,

where

a1 :=
∑

ΘHi ∩ΘHj

f(θ)
∏

k 6=i,j

πk(θk), a3 :=
∑

ΘLi ∩ΘLj

f(θ)
∏

k 6=i,j

πk(θk),

a2 :=
∑

ΘHi ∩ΘLj

f(θ)
∏

k 6=i,j

πk(θk) =
∑

ΘLi ∩ΘHj

f(θ)
∏

k 6=i,j

πk(θk).

It is easily verified that a1, a2, a3 ≥ 0. Moreover, using an argument similar to the
proof for lemma 4.1, we can show that a2

2 ≤ a1a3. Therefore, a1+a2x
a2+a3x

decreases in x.
Multiplying the LHS of ICa-j by `i/`j ∈ (0, 1), we obtain the following inequal-
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ity:

`iπj(L) <
a1 + a2πi(L)

a2 + a3πi(L)
. (5)

Moreover, it is easy to show that a1+a2x
a2+a3x

x increases in x. Given the presumption
that πi(L) < πj(L), we thus have πi(L)/πj(L) ≤ a1+a2πj(L)

a2+a3πj(L)
/a1+a2πi(L)
a2+a3πi(L)

. Multiplying

the LHS of ICa-j by πi(L)/πj(L) and the RHS of ICa-j by a1+a2πj(L)

a2+a3πj(L)
/a1+a2πi(L)
a2+a3πi(L)

, we
then obtain the following inequality:

`jπi(L) ≤ a1 + a2πj(L)

a2 + a3πj(L)
. (6)

Based on (5) and (6), we can assign the lower πi(L) to Rj and the higher πj(L) to
Ri without violating their ICa constraints. Moreover, this switch does not affect the
objective or any other voter’s ICa constraint. This shows that the sender is weakly
better off after the switch. We have proved that there exists an optimal policy with
the monotonicity property.

We next show that if ICa-i binds, then πj(L) < πi(L) if `j > `i. Suppose not:
there exists Rj such that `j > `i and πj(L) ≥ πi(L). Since ICa-i binds, πi(L) is
strictly positive. So is πj(L). Combining ICa-j and the binding ICa-i, we have

`iπi(L)

`jπj(L)
≥

a1+a2πj(L)

a2+a3πj(L)

a1+a2πi(L)
a2+a3πi(L)

.

On the other hand, given the presumption that πj(L) ≥ πi(L), it is easy to show that
πi(L)/πj(L) ≤ a1+a2πj(L)

a2+a3πj(L)
/a1+a2πi(L)
a2+a3πi(L)

. This leads to the relation that πi(L)/πj(L) ≤
`iπi(L)/(`jπj(L)), which contradicts the presumption that `j > `i.

Proof for proposition 4.3. We first prove that among those voters who have an in-
terior πi(L), at most one voter has a slack ICa constraint. Suppose not. Suppose
that `j > `i and 0 < πj(L) ≤ πi(L) < 1. (From proposition 4.2, it is without loss to
assume that the more lenient voter Ri has a higher πi(L).) Suppose that both ICa-i
and ICa-j are slack. Then we can find a pair of small positive numbers (ε1, ε2) such
that replacing (πi(L), πj(L)) with (πi(L) + ε1, πj(L)− ε2) makes the sender strictly
better off without violating any ICa constraint. First, when ε1, ε2 are sufficiently
small, ICa-i and ICa-j are satisfied since they were slack.

In order to leave ICa-k intact for any k 6= i, j, we need the following ratio to be
weakly higher:

S(HHH) + S(HLH)πj(L) + S(LHH)πi(L) + S(LLH)πi(L)πj(L)

S(HHL) + S(HLL)πj(L) + S(LHL)πi(L) + S(LLL)πi(L)πj(L)
, (7)

where S(θiθjθk) :=
∑

θ−ijk∈Θ−ijk
f(θiθjθk, θ−ijk)π−ijk(θ−ijk). Given the exchange-

ability assumption, we have S(HHL) = S(HLH) = S(LHH) and S(HLL) =
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S(LHL) = S(LLH).
We next show that S(HHH)S(LLL) > S(HHL)S(HLL) by applying the strict

Ahlswede-Daykin inequality introduced and proved in part B.6 of the online ap-
pendix. We define f1, f2, f3, f4 as follows:

f1(θ−ijk) = f(HHL, θ−ijk)π−ijk(θ−ijk), f2(θ−ijk) = f(HLL, θ−ijk)π−ijk(θ−ijk),

f3(θ−ijk) = f(HHH, θ−ijk)π−ijk(θ−ijk), f4(θ−ijk) = f(LLL, θ−ijk)π−ijk(θ−ijk).

Suppose that among all voters other than i, j, k, only voters in C ⊆ {1, ..., n} \
{i, j, k} have a fully revealing individual policy, i.e. πLm(θ−ijk) = 0 for any m ∈ C.
Then, π−ijk(θ−ijk) 6= 0 only for {θ−ijk ∈ Θ−ijk : θm = H for all m ∈ C}] ≡ L.
The set L forms a sublattice because: 1) it is nonempty, as θH−ijk ∈ L, 2) for any
θ−ijk, θ

′
−ijk ∈ L, it is easily verified that θ−ijk ∨ θ′−ijk ∈ L and θ−ijk ∧ θ′−ijk ∈ L.

Given that for any θ−ijk, θ′−ijk ∈ L, the premise of the Ahlswede-Daykin inequality
is satisfied strictly due to our assumption of strict affiliation for any three voters’
states, i.e. f1(θ−ijk)f2(θ′−ijk) < f3(θ−ijk∧θ′−ijk)f4(θ−ijk∨θ′−ijk), for all θ−ijk, θ′−ijk ∈
L, we can apply the strict Ahlswede-Daykin inequality with A = B = L to conclude
that f1(L)f2(L) < f3(L)f4(L). But, because π−ijk(θ−ijk = 0 for all θ−ijk ∈ Θ−ijk\L,

S(θiθjθk) =
∑

θ−ijk∈L

f(θiθjθk, θ−ijk)π−ijk(θ−ijk)

+
∑

θ−ijk∈Θ−ijk\L

f(θiθjθk, θ−ijk)π−ijk(θ−ijk)

=
∑

θ−ijk∈L

f(θiθjθk, θ−ijk)π−ijk(θ−ijk).

Therefore, S(HHH)S(LLL) > S(HHL)S(HLL). Using the same method, we can
prove that S(HHL)S(LLL) > S(HLL)2 and S(HHH)S(HLL) > S(HHL)2. We
omit the details here. These inequalities imply that the ratio (7) strictly decreases
in πi(L), πj(L).

To make sure that the ratio (7) is higher after we replace (πi(L), πj(L)) with
(πi(L)+ε1, πj(L)−ε2), we have to put a lower bound on ε2 in terms of ε1. After we
substitute S(HLH), S(LHH) with S(HHL) and S(LHL), S(LLH) with S(HLL),
the lower bound on ε2 in terms of ε1 can be written as:

ε2 ≥
πj(L)(s1s4 − s2s3) + s1s3 − s2

2 + (πj(L))2 (s2s4 − s2
3)

πi(L)(s1s4 − s2s3) + s1s3 − s2
2 + (πi(L))2 (s2s4 − s2

3)
ε1, (8)

where s1 = S(HHH), s2 = S(HHL), s3 = S(HLL), s4 = S(LLL).

Note that the lower bound on the RHS of (8) varies as we vary k 6= i, j. There
exists a maximum lower bound. For the rest of the proof, we let Rk be the voter
corresponding to this maximum lower bound.
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The sender’s payoff can be written as follows:

{S(HHH),S(HHL),S(HLH),S(LHH),S(HLL),S(LHL),S(LLH),S(LLL)}.
{1, πk(L), πj(L), πi(L), πj(L)πk(L), πi(L)πk(L), πi(L)πj(L), πi(L)πj(L)πk(L)}

To make sure that the sender’s payoff is weakly higher after we replace (πi(L), πj(L))

with (πi(L)+ε1, πj(L)−ε2), we have to impose an upper bound on ε2 in terms of ε1:
ε2 ≤ πj(L)(πk(L)s4+s3)+πk(L)s3+s2

πi(L)(πk(L)s4+s3)+πk(L)s3+s2
ε1. In this expression, we have substituted S(HLH)

with S(HHL), S(LHH) with S(LHL), and S(LLH) with S(HLL). The RHS
decreases in πk(L), so this upper bound is the tightest when πk(L) = 1:

ε2 ≤
(s3 + s4)πj(L) + s2 + s3

(s3 + s4)πi(L) + s2 + s3

ε1. (9)

The upper bound in (9) is higher than the lower bound in (8), given that s1s4 >

s2s3, s2s4 > s2
3, and s1s3 > s2

2. Therefore, we can find a pair (ε1, ε2) such that the
sender is better off after the change, and all the ICa constraints are satisfied.

We then prove that among those voters who have interior πi(L), only the strictest
voter might have a slack ICa constraint. Suppose that `j > `i and 0 < πj(L) ≤
πi(L) < 1. Suppose further that ICa-i is slack and ICa-j is binding. Then we
can replace (πi(L), πj(L)) with (πi(L)+ε1, πj(L)−ε2) where (ε1, ε2) satisfy the two
inequalities (8) and (9). Based on the argument above, this change makes the sender
strictly better off without violating the ICa constraints of the voters other than Ri

and Rj. Moreover, since ICa-i was slack, ICa-i is satisfied after the change. ICa-j
is satisfied as well since we replace πj(L) with a more informative policy πj(L)− ε2

and the voters other than Ri and Rj are willing to be obedient if they condition
on Ri’s and Rj’s approvals. It is easily verified that the decrease ε2 required for
ICa-j to be satisfied is smaller than the decrease ε2 that keeps the sender’s payoff
intact.

Proof for proposition 4.4. Consider the auxiliary problem in which the sender needs
only R1’s approval. The optimal policy is to set π1(L) as high as R1’s ICa constraint
allows: π1(L) =

∑
θ∈ΘHi

f(θ)/
(∑

θ∈ΘLi
f(θ)`1

)
. Conditioning on receiving an ap-

proval recommendation, R1’s posterior belief that her state is H is `1/(1 + `1). Let
f ′ denote the state distribution such that

f ′(θH) =
∑

θ∈ΘHi

f(θ), f ′(θL) = 1− f ′(θH).

Given the single-voter policy above, the belief of any other voter Rj 6= R1 about
θj = H approaches R1’s posterior belief `1/(1 + `1), if ‖f − f ′‖ is small enough.36

On the other hand, any Rj 6= R1 is willing to approve the project if her belief of
36Here, ‖f − f ′‖ denotes the Euclidean distance between f and f ′.
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being H is above `j/(1 + `j) which is strictly smaller than `1/(1 + `1). This means
that there exists ε > 0 such that every other Rj 6= R1 is willing to rubber-stamp
R1’s approval decision if ‖f − f ′‖ ≤ ε.

We then argue that when the above policy is incentive compatible, it is never
optimal to fully reveal her payoff state to some voter. To the contrary, suppose
that in the optimal policy Ri 6= R1 learns about her state fully: πi(L) = 0. Then
the project is never approved when Ri’s state is L. The sender’s payoff is at most∑

θ∈ΘHi
f(θ), which is strictly below the payoff under the single-voter policy specified

in the first paragraph.

Proof for proposition 4.5. Let f ′ denote the state distribution such that voters’
states are independent and each voter’s state is H with probability

∑
θ∈ΘHi

f(θ). We
want to argue that if ‖f−f ′‖ is sufficiently small, all ICa constraints bind. Suppose
not. Suppose there exists Ri for which ICa-i is slack. Let Rj be another voter whose
ICa-j constraint binds. Then, `iπi(L) <

a1+a2πj(L)

a2+a3πj(L)
, and `jπj(L) = a1+a2πi(L)

a2+a3πi(L)
. The

coefficients a1, a2, a3 are as defined in the proof of proposition 4.2. When ‖f − f ′‖
is sufficiently small, the LHS of each voters’ ICa constraints becomes independent

of the information of the other voters: lim‖f−f ′‖→0
a1+a2πi(L)
a2+a3πi(L)

=

∑
θ∈ΘH

i
f ′(θ)∑

θ∈ΘL
i
f ′(θ)

. If the

sender increases πi(L), the LHS of ICa-j will be only slightly affected if ‖f − f ′‖ is
sufficiently small. Hence, πj(L) has to decrease only slightly so that ICa-j continues
to bind. For sufficiently independent states, i.e. for ‖f(·)−f ′(·)‖ < ε for some small
ε, setting all ICa constraints binding strictly improves the payoff of the sender.
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B Online appendix

B.1 Proofs for sections 5 and 6

Proof for lemma 5.1. (i) General persuasion: Let (π(d̂a|θ))θ be an optimal policy
with n voters. Suppose a voter Ri is removed from the group, so there are only
(n − 1) voters left. The distribution of states for the remaining voters is given by
f̃ : {H,L}n−1 → [0, 1] such that f̃(θ−i) = f(θ−i, H) + f(θ−i, L). We construct
π̃(d̂a|·) : {H,L}n−1 → [0, 1] such that for any θ ∈ {H,L}n−1 and θ′, θ′′ ∈ {H,L}n
with θ′j = θ′′j = θj for j 6= i and θ′i = H, θ′′i = L:

f̃(θ)π̃(d̂a|θ) = f(θ′)π(d̂a|θ′) + f(θ′′)π(d̂a|θ′′).
Notice that the ICa constraints of the remaining voters are satisfied, as

∑
θ∈{H,L}n−1:θj=H

f̃(θ)π̃(d̂a|θ)
∑

θ∈{H,L}n−1:θj=L
f̃(θ)π̃(d̂a|θ)

=

∑
θ∈{H,L}n:θj=H

f(θ)π(d̂a|θ)
∑

θ∈{H,L}n:θj=L
f(θ)π(d̂a|θ)

≥ `j.

By the same reasoning, the sender attains the same payoff under π̃ as under π.
Hence, he is weakly better off with (n− 1) voters.

(ii) Individual persuasion: Consider a group of n voters, characterized by a
threshold profile {`1, ..., `n} with `i > `i+1 for any i ≤ n − 1. By proposition
4.2 there exists a monotone optimal policy. We let (πi(L))ni=1 denote this policy.
Suppose that the sender does not need some voter’s approval, so we are left with
n − 1 voters. We relabel the remaining voters monotonically, so that R1 is the
strictest and Rn−1 is the most lenient voter. In the first step, we assign the original
πi(L) to the ith strictest voter among the remaining n − 1 voters. Therefore Rn’s
original policy will be removed from the group.

Note that the remaining n− 1 voters might not be willing to obey the approval
recommendation given the policy {π1(L), ..., πn−1(L)} if we remove Rn’s original
policy πn(L) from the group. This is because voter Rj 6= Rn might be willing to
approve only when she conditions the approvals by the other voters including Rn.
We need to construct a new policy for the smaller group {R1, ..., Rn−1}. The main
step is to show that the informativeness of πn(L) can be loaded into the policies
of the remaining voters so as to satisfy the remaining voters’ ICa constraints when
πn(L) is removed from the policy profile.

Our first observation is that if πn(L) = 1, then the policy {π1(L), ..., πn−1(L)} is
incentive compatible since each voter in the smaller group {R1, ..., Rn−1} is assigned
a (weakly) more informative policy than before. Moreover, removing Rn’s policy
has no impact on the other voters’ incentive constraints since she always approves.
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We focus on the case in which πn(L) < 1. We want to show that we can adjust
the policy {π1(L), ..., πn(L)} in an incentive compatible way so as to increase πn(L)

until it reaches one. At that point, removing πn(L) from the policy profile will not
affect the ICa constraints of {R1, ..., Rn−1}.

Since Rn will eventually be removed, this is as if Rn’s ICa constraint is always
slack. In proposition 4.3, we show that among those voters who have interior πi(L),
only the strictest voter might have a slacking ICa constraint. In our current setting,
Rn’s policy corresponds to the most lenient voter’s policy and Rn’s ICa constraint is
slack. Therefore, we follow the reasoning in the proof of proposition 4.3 to show that
we can always increase πn(L) and decrease another voter’s policy in an incentive-
compatible way without decreasing the sender’s payoff. In particular, if πn−1(L)

is also interior, we can replace (πn−1(L), πn(L)) with (πn−1(L)− ε2, πn(L) + ε1) so
that the sender is better off and the ICa constraints of {R1, ..., Rn−1} are satisfied.
Since Rn’s ICa constraint is constantly slack, we can make this adjustment on the
pair (πn−1(L), πn(L)) until either πn(L) reaches one or πn−1(L) reaches zero. If
πn(L) reaches one before πn−1(L) drops to zero, we are done with the construction,
because removing Rn from the group now will not affect the remaining voters’ ICa

constraints. If πn−1(L) drops to zero before πn(L) reaches one, we can then adjust
the pair (πn−2(L), πn(L)) by increasing πn(L) and decreasing πn−2(L) in a similar
manner.

We keep making this adjustment until πn(L) reaches one: this is always possible
if πi(L) > 0 for some i ∈ {1, ..., n−1}. In other words, it cannot be that the policies
of all other voters become fully revealing before πn(L) = 1, as it takes an infinite
amount of information from Rn’s policy to push all other voters’ policies to fully
revealing ones. When πn(L) reaches one, removing Rn will not affect the remaining
voters’ ICa constraints. If πj(L) = 0 for j ∈ {1, ..., n − 1} in the original policy to
begin with, removingRn’s policy will not affect the remaining voters’ ICa constraints
since they all learn their states fully. This completes the construction.

Proof for lemma 5.2. From the proof of proposition 4.4, we know that given a per-
fectly correlated distribution f ′, for sufficiently correlated states i.e. for some f
within ε > 0 of f ′, in any optimal individual policy ICa-1 is the only binding ICa-i
constraint. The sender achieves the same payoff as if he needed only R1’s approval.

We next argue that this is also the optimal policy under general persuasion.
From lemma 5.1, we know that the sender’s payoff weakly decreases in the number of
approvals he needs for a fixed threshold profile. Therefore, the sender’s payoff cannot
exceed the payoff from persuading only R1. On the other hand, the sender can use
the individual policy specified in the previous paragraph to achieve this payoff
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when the sender is allowed to use any general policy. Therefore, the probability of
approval is equal for each θ across the two modes.

Proof for propositions 6.1. Suppose that d̂ is observed publicly; we want to show
that each Ri continues to comply with d̂i. Consider first d̂ ∈ {d̂a, {d̂r,i}i}. By
incentive compatibility of the optimal policy π, it follows immediately that each
Ri follows her own recommendation, i.e. she complies with d̂i. Suppose now that
d̂ /∈ {d̂a, {d̂r,i}i}. If all other voters R−i follow the recommendation, Ri’s vote is not
pivotal. For any such d̂ with two or more rejections, the project is not approved.
Hence, Ri is indifferent between d̂i and the other available action, as both yield an
ex-post payoff of zero.

Proof for proposition 6.2. Consider first the case of individual persuasion. Take
(πi)i to be an optimal policy under simultaneous voting. Our first claim is that
any policy that is incentive-compatible under simultaneous voting is incentive-
compatible also under sequential voting, for a fixed voting order {1, ..., n}. Con-
versely, any policy that is incentive-compatible under sequential voting is incentive-
compatible under simultaneous voting as well. It is sufficient to show that ICa

sim-i,
ICa

seq-i, ICr
sim-i, and ICr

seq-i, are pairwise equivalent:

∑

ΘHi

f(θ)
∏

j 6=i

πj(θj)πi(H)


 ≥ `i


∑

ΘLi

f(θ)
∏

j 6=i

πj(θj)πi(L)


 , (ICa

sim-i)


∑

ΘHi

f(θ)
i−1∏

j=1

πj(θj)πi(H)
n∏

j=i+1

πj(θj)


 ≥

`i


∑

ΘLi

f(θ)
k−1∏

j=1

πj(θj)πi(L)
n∏

j=k+1

πj(θj)


 , (ICa

seq-i)


∑

ΘHi

f(θ)
∏

j 6=i

πj(θj)(1− πi(H))


 ≥ `i


∑

ΘLi

f(θ)
∏

j 6=i

πj(θj)(1− πi(L))


 ,

(ICr
sim-i)


∑

ΘHi

f(θ)
i−1∏

j=1

πj(θj)(1− πi(H))
n∏

j=i+1

πj(θj)


 ≥

`i


∑

ΘLi

f(θ)
k−1∏

j=1

πj(θj)(1− πi(L))
n∏

j=k+1

πj(θj)


 . (ICr

seq-i)
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The constraints are pairwise equivalent for simultaneous and sequential voting.
Therefore, the optimal policy under simultaneous voting is also optimal under se-
quential voting with order {1, ..., n}. We next argue that optimal policy in sequential
voting is order-independent. Let {1, ..., n} and δ such that δ(i) 6= i be two voting
orders. Let us rewrite ICa-i and ICa-δ(i) in the following form respectively:

∑

ΘHi

f(θ)
i−1∏

j=1

πj(θj)πi(H)
n∏

j=i+1

πj(θj)


 ≥

`i


∑

ΘLi

f(θ)
k−1∏

j=1

πj(θj)πi(L)
n∏

j=k+1

πj(θj)


 . (ICa-i)


∑

ΘHi

f(θ)

δ(i)−1∏

j=1

πj(θj)πi(H)
n∏

j=δ(i)+1

πj(θj)


 ≥

`i


∑

ΘLi

f(θ)

δ(i)−1∏

j=1

πj(θj)πi(L)
n∏

j=δ(i)+1

πj(θj)


 . (ICa-δ(i))

The set of other voters R−i is the same despite the order of play for Ri. If Ri is
offered the same policy in both sequences, ICa-i and ICa-δ(i) become equivalent to
each-other and to:
∑

ΘHi

f(θ)πi(H) Pr (R−i approve|θ)


− `i


∑

ΘLi

f(θ)πi(L)f (R−i approve|θ)


 ≥ 0.

Therefore the ICa constraint for a voter Ri is order-independent. The objective of
the sender is

max
πi(H),πi(L)

∑

Θ

f(θ)
∏

i

πi(θi)

This objective is also order-independent (the product of approval probabilities is
commutative). Therefore, if ((πi(H), πi(L)))i is a solution to the original individual
persuasion problem with order {1, ..., n}, {(πδ(i)(H), πδ(i)(L))}i is also a solution to
the new problem with order δ.

The reasoning for general persuasion is very similar. First, it is straightforward
that ICa

sim-i is equivalent to ICa
seq-i and ICr

sim-i to ICr
seq-i. Therefore the optimal

simultaneous policy remains optimal under sequential voting with order {1, ..., n}.
Secondly, each voter, despite her rank in the sequence, only cares about π(d̂a|θ) and
π(d̂i,r|θ). Upon observing (i− 1) preceding approvals, Ri is sure that the generated
recommendation is in Di−1,a = {d̂ : d̂j = 1 for j = 1, ..., i − 1}. Yet she only cares
about those elements in Di−1,a for which d̂j = 1 for voters in {Ri+1, ..., Rn} as well.
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Hence, her ICa is order-independent:
(∑

ΘHi
f(θ)π(d̂a|θ)

)
≥ `i

(∑
ΘLi
f(θ)π(d̂a|θ)

)
.

So is ICr-i as well. The objective of the sender is also order-independent:

max
π(·|θ)

∑

Θ

f(θ)
∏

i

π(d̂a|θ).

For any recommendation d̂, let δ(d̂) be the permuted recommendation such that
d̂i = d̂δ(i); in particular, δ(d̂a) = d̂a. Therefore, if (π(d̂|θ))d̂,θ is a solution to the
original general persuasion problem with order {1, ..., n}, π′ such that π′(δ(d̂)|θ) =

π(d̂|θ) for any d̂ and θ is a solution to the general persuasion problem under δ. The
sender’s payoff is the same from both π and π′.

Proof for proposition 6.3. Let D̂a
i denote the set of recommendation profiles under

which exactly k voters are recommended to approve and Ri is among them, and
D̂r
i the set of recommendation profiles under which exactly k− 1 voters are recom-

mended to approve and Ri is not among them. We design a full support policy as
follows. For any i and any d̂ ∈ D̂a

i , we let

Pr(d̂ | θ) =




ε2, if θ 6= θH

ε, if θ = θH .

Here, ε is a small positive number. This ensures that whenever Ri is recommended
to approve, her belief of being H conditional on being pivotal (i.e., conditional on
d̂ ∈ D̂a

i ) is sufficiently high. So ICa-i is satisfied. For any i and any d̂ ∈ D̂r
i , we let

Pr(d̂ | θ) =




ε2, if θ 6= θL

ε, if θ = θL.

This ensures that whenever Ri is recommended to reject, her belief of being L

conditional on being pivotal is sufficiently high. So ICr-i is satisfied as well. For any
recommendation profile d̂ 6= d̂a such that d̂ /∈ D̂a

i ∪D̂r
i for any i, we let Pr(d̂ | θ) = ε2.

For each state profile θ, once we deduct the probabilities of the recommendation
profiles specified above, the remaining probability is assigned to the unanimous
approval recommendation d̂a. This construction ensures that the policy has full
support. As ε goes to zero, the probability that the project is approved approaches
one.

Lemma B.1. If f is exchangeable and affiliated, then either f(θH) + f(θL) = 1 or
f has full support.

Proof. Since f is exchangeable, f(θ) depends only on the number of high-state
voters in θ. For any k ∈ {0, ..., n}, we let pk denote f(θ) when exactly k voters’
states are high in θ. Due to affiliation, for any 2 ≤ k ≤ n we have pkpk−2 ≥ p2

k−1.
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We first show that if f
(
θH
)

= 0 (that is pn = 0), then pk = 0 for any k ≥ 1.
This is because pk being zero implies that pk−1 being zero for any 2 ≤ k ≤ n. Given
the presumption that pn = 0, it must be true that pk = 0 for k ≥ 1. The only
possibility is that f(θL) = 1.

We then show that if f
(
θL
)

= 0 (that is p0 = 0), then pk = 0 for any k ≤ n− 1.
This is because pk−2 being zero implies that pk−1 being zero for any 2 ≤ k ≤ n.
The only possibility is that f(θH) = 1.

Suppose that both f
(
θH
)
and f

(
θL
)
are strictly positive. We next show that

either pk = 0 for all 1 ≤ k ≤ n− 1 or pk > 0 for all 1 ≤ k ≤ n− 1. Suppose there
exists some k′ such that pk′ = 0. Then, applying the inequality that pkpk−2 ≥ p2

k−1,
we conclude that pk must be zero for any 1 ≤ k ≤ n − 1. Therefore, either f has
full support or f

(
θH
)

+ f
(
θL
)

= 1.

Proof for proposition 6.4. Suppose that the sender needs k approvals. We divide the
set of the state profiles Θ into three subsets. The first subset is denoted by Θk, which
contains all the state profiles such that exactly k voters’ states are H. The second
subset is {θL}, which contains a unique state profile such that all voters’ states are
L. The third subset includes the rest of the state profiles, i.e., Θ\

(
Θk ∪ {θL}

)
. For

any θ ∈ Θk, we let

πi(θ) =





1− ε1, if θi = H

ε2, if θi = L.

For θL, we let πi(θL) = 1 − ε3. For any θ ∈ Θ \
(
Θk ∪ {θL}

)
, we let πi(θ) =

1 − ε4. We first show that ICa-i is satisfied. For any θ ∈ Θk ∩ ΘH
i , the prob-

ability that exactly k voters including Ri are recommended to approve is (1 −
ε1)k(1 − ε2)n−k + O

(
(1− ε1)k−1(1− ε2)n−k−1ε1ε2

)
. For any θ ∈ Θk ∩ ΘL

i , the
probability that exactly k voters including Ri are recommended to approve is
O
(
(1− ε1)k−1(1− ε2)n−k−1ε1ε2

)
. For θL, the probability that exactly k voters in-

cluding Ri are recommended to approve is O
(
(1− ε3)kεn−k3

)
. Similarly, for any

θ ∈ Θ \
(
Θk ∪ {θL}

)
, the probability that exactly k voters including Ri are recom-

mended to approve is O
(
(1− ε4)kεn−k4

)
. When ε1, ε2, ε3, ε4 are small enough, Ri

puts most of the weight on the event that θ ∈ Θk ∩ ΘH
i when she is recommended

to approve and she conditions on being pivotal. It is obvious that Ri is willing to
approve since her state is H.

We next show that ICr-i is satisfied as well. For any θ ∈ Θk ∩ ΘH
i , the prob-

ability that exactly k − 1 voters excluding Ri are recommended to approve is
O
(
(1− ε1)k−1ε1(1− ε2)n−k

)
. For any θ ∈ Θk∩ΘL

i , the probability that exactly k−1

voters excluding Ri are recommended to approve is O
(
(1− ε1)k−1ε1(1− ε2)n−k

)
.
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For θL, the probability that exactly k − 1 voters excluding Ri are recommended
to approve is O

(
(1− ε3)k−1εn−k+1

3

)
. Similarly, for any θ ∈ Θ \

(
Θk ∪ {θL}

)
, the

probability that exactly k − 1 voters excluding Ri are recommended to approve is
O
(
(1− ε4)k−1εn−k+1

4

)
. If we let ε1, ε4 approach zero at a much faster rate than ε3,

Ri puts most of the weight on the event that θ = θL when she is recommended to
reject and she conditions on being pivotal. It is obvious that Ri is willing to reject
since her state is L given θL. This completes the construction.

Proof for proposition 6.5. Suppose there exists an individual policy (πi(H), πi(L))ni=1

which is the limit of a sequence of full-support incentive-compatible policies and en-
sures that the project is approved for sure. We first argue that πi(H) ≥ πi(L). Pick
any full-support policy (π̃i(H), π̃i(L))ni=1 along the sequence. The following ICa and
ICr constraints must hold for each Ri:

Pr(θi = H|k − 1 approve)π̃i(H) ≥ Pr(θi = L|k − 1 approve)`iπ̃i(L),

Pr(θi = H|k − 1 approve)(1− π̃i(H)) ≤ Pr(θi = L|k − 1 approve)`i(1− π̃i(L)),

we obtain that π̃i(H)/π̃i(L) ≥ (1− π̃i(H))/(1− π̃i(L)). This implies that π̃i(H) ≥
π̃i(L) for each Ri. This must hold for all policies along the sequence, so πi(H) ≥
πi(L) for each Ri.

If the project is approved for sure. It is approved for sure when θ = θL. There-
fore, there exist k voters who approve with certainty when their states are L. Given
that πi(H) ≥ πi(L) for each Ri, these voters also approve with certainty when their
states are H. Thus, at least k voters approve the project for sure in both states.
Let Ra be the set of voters who approve for sure: suppose there is exactly k such
voters. We want to show that any voter Ri ∈ Ra prefers to reject the project when
she is recommended to approve. Conditional on being pivotal, Ri knows that all
the voters not in Ra have rejected while all the voters in Ra \ {Ri} have approved.
Ri does not get more optimistic about her state being H from the approvals by
Ra \{Ri} since these voters approve regardless of their states. Ri become more pes-
simistic about her state being H from the rejections by voters not in Ra. Therefore,
Ri’s posterior belief of being H conditional on being pivotal is lower than her prior
belief. Ri strictly prefers to reject. Contradiction.

The case in which more than k voters are in Ra can be analyzed in a similar
manner. Suppose that there are k′ > k voters in Ra. This policy is the limit of
a sequence of full-support incentive-compatible policies. There exists M ∈ (0, 1)

such that voters not in Ra approve with probability less than M in either state
H or L, i.e., min{πi(H), πi(L)} = πi(L) ≤ M . For any small ε > 0, there is a
full-support policy such that voters in Ra approve with probability above 1 − ε in
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both states, i.e., min{πi(H), πi(L)} = πi(L) ≥ 1 − ε. Pick any Ri ∈ Ra. When Ri

is recommended to approve, there are two types of events in which she is pivotal:
(i) k − 1 voters in Ra approve and the rest reject; (ii) k′′ < k − 1 voters in Ra

approve, k − 1 − k′′ voters which are not in Ra approve, and the rest reject. As ε
converges to zero, for any event of type (ii), there exists an event of type (i) which
is much more likely to occur. This is because voters outside Ra are much more
likely to reject than those in Ra. Therefore, the belief of Ri about her state being
H is mainly driven by events of type (i). Note that in these events only voters
in Ra approve. Ri does not get more optimistic about her state being H from
the approvals by voters in Ra \ {Ri} since these voters approve regardless of their
states. Ri become more pessimistic about her state being H from the disapprovals
by voters not in Ra. Therefore, Ri’s posterior belief of being H conditional on being
pivotal is either arbitrarily close to or smaller than her prior, so she strictly prefers
to reject. Therefore Ri does not obey her approval recommendation. This shows
that the project cannot be approved for sure.

We next show that each voter’s payoff under individual persuasion is higher than
that under general persuasion. We have shown that for each Ri, πi(H) ≥ πi(L).
We next show that there exists at least one voter such that the above inequality is
strict. Suppose not. Then each voter approves with the same probability in both
state H and L. Therefore, each voter’s posterior belief, when she conditions on
being pivotal, is the same as her prior belief. It is not incentive compatible to obey
the approval recommendation since each voter’s own policy is uninformative as well.
Therefore, at least one voter approves strictly more frequently in state H than in
state L. We index this voter by i.

We next show that Ri is pivotal with strictly positive probability. Suppose not.
Then for each state profile, either (i) at least k voters out of the rest n − 1 voters
approve for sure, or (ii) at least n− k + 1 voters out of the rest n− 1 voters reject
for sure. We first argue that, if f has full support, it is not possible that case
(i) holds for some state profiles, and case (ii) holds for the others. Suppose not.
Suppose that there exists a state profile such that exactly k′ ≥ k voters out of
the rest n− 1 voters approve for sure. There also exists another state profile such
that exactly k′′ ≥ n − k + 1 out of the rest n − 1 voters disapprove for sure. The
intersection of these two sets of voters who approve or disapprove for sure include at
least k′+ k′′− (n− 1) voters. These voters approve under one state and disapprove
under the other. It is easily verified that k′+ k′′− (n− 1) ≥ k′− k+ 2. If we begin
with the previous state profile under which exactly k′ voters approve, we can flip
the states and the decisions of k′ − k + 1 such voters so that exactly k − 1 voters
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approve for sure. This makes Ri’s decision pivotal, contradicting the presumption
that Ri is never pivotal. Therefore, it has to be true that either case (i) holds for all
state profiles or case (ii) holds for all state profiles. If f does not have full support
(or equivalently the voters’ states are perfectly correlated), then it is possible that
case (i) holds for one state profile and case (ii) holds for the other. Given that
πi(H) ≥ πi(L) for each Ri, the only possibility is that case (i) holds for θH and case
(ii) holds for θL. Note that each voter obtains the highest possible payoff which is
strictly positive. The statement of the proposition holds. Therefore, we can focus
on the case in which either case (i) holds for both θH , θL or case (ii) holds for both
θH , θL.

If case (ii) holds for all θ, this is clearly sub-optimal for the sender since he
obtains a payoff of zero. Therefore, we assume that case (i) holds for all θ. However,
we have argued previously that the project is not approved for sure. Contradiction.
Therefore, Ri is pivotal with strictly positive probability. For Ri, a high state
project is more likely to be approved than a low one. Due to affiliation, other
voters benefit from the selection effect of Ri.

This shows that for any voter, a high state project is more likely to be approved
than a low state one. Individual persuasion is better than general persuasion.

B.2 Optimal policy when assumption 1 fails

Our results remain intact when we add voters who prefer to approve ex ante. Once
the sender designs the optimal policy for those voters who are reluctant to approve,
those who prefer to approve ex ante become more optimistic about their own states.
The sender simply recommends that they approve all the time. This is the case
under both general and individual persuasion.

Proposition B.1. Suppose that voter n+ 1 prefers to approve ex ante. Under both
general and individual persuasion, given the optimal policy for the first n voters,
voter n+ 1 is willing to rubber-stamp the first n voters’ approval decision.

Proof of proposition B.1. This result holds for individual persuasion since each voter
is weakly more optimistic about her state conditional on the others’ approval.
Therefore, voter n + 1 is more optimistic about her state when she conditions on
the others’ approvals. We thus focus on general persuasion. There are n+ 1 voters.
Let f̃ be the distribution of these voters’ states. The last voter is convinced, i.e.,
she approves given the prior belief f̃ :

`n+1 ≤
∑

θ∈{H,L}n f̃(θ,H)
∑

θ∈{H,L}n f̃(θ, L)
. (10)
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Let f denote the distribution of the first n voters’ states. We thus have f(θ) =

f̃(θ,H)+ f̃(θ, L). Let (π(d̂a|θ))θ∈{H,L}n be an optimal policy with the first n voters.
We want to construct a policy for n + 1 voters (π̃(d̂a|θ̃))θ̃∈{H,L}n+1 such that the
sender’s payoff stays the same as when he faces only n voters. To ease notation, we
write π(θ) for π(d̂a|θ) and π̃(θ̃) for π̃(d̂a|θ̃).

We let π̃(θ,H) = π̃(θ, L) = π(θ). Under this policy, the convinced voter ap-
proves whenever the first n voters approve. Then, (i) the sender’s payoff stays the
same; (ii) the first n voters’ IC constraints are still satisfied. We only need to show
that the convinced voter’s IC constraint is satisfied, i.e.,

`n+1 ≤
∑

θ∈{H,L}n f̃(θ,H)π̃(θ,H)
∑

θ∈{H,L}n f̃(θ, L)π̃(θ, L)
=

∑
θ∈{H,L}n f̃(θ,H)π(θ)

∑
θ∈{H,L}n f̃(θ, L)π(θ)

. (11)

Next, we want to show that the RHS of (11) is larger than that of (10). This will
complete the proof.

Given the optimal policy π(·) for n voters, we let πk be the average probability
of unanimous approval for state profiles with k high states:

πk :=

∑
|θ|=k f(θ)π(θ)
∑
|θ|=k f(θ)

=

∑
|θ|=k π(θ)

#{θ : |θ| = k} .

Here |θ| is the number of high states in θ. We want to show that πk ≥ πk−1 for
k ∈ {1, ..., n}, that is, a profile with more high states is on average more likely to
be approved than that with fewer high states. This, combined with the affiliation
assumption, implies that the RHS of (11) is higher than that of (10). Intuitively, if
πk ≥ πk−1 for all k ∈ {1, ..., n}, then the convinced voter is more optimistic about
her state when she conditions on the approval decision by the first n voters.

We illustrate the argument for πk ≥ πk−1 through an example. Suppose that
n = 3, k = 2. We first argue that

π(HHL) ≥ π(HLL), π(HLH) ≥ π(HLL), π(LHH) ≥ π(LHL),

π(HHL) ≥ π(LHL), π(HLH) ≥ π(LLH), π(LHH) ≥ π(LLH).
(12)

Suppose not. Suppose that, for instance, π(HHL) < π(HLL). We can increase
π(HHL) by ε > 0 and decrease π(HLL) by ε′ > 0 such that

f(HHL)ε = f(HLL)ε′.

This change will not affect the sender’s payoff. It will not affect the incentive of any
voter who has the same state in HHL and HLL, i.e., R1’s and R3’s IC constraints
are still satisfied. The change will only make R2’s IC constraint easier to satisfy.
Summing up inequalities in (12) and simplifying, we have shown that πk ≥ πk−1

for k = 2. The argument for any n and k ∈ {1, ..., n} is similar. This completes the
proof.
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B.3 Full-support direct obedient policies

Direct obedient policies

Let π : Θ→ ∆ (
∏n

i=1 Si) be an arbitrary information policy. A mixed strategy for Ri

in the induced voting game is given by σi : Π×Si → ∆({0, 1}). Let σi(si) := σi(π, si)

denote the probability that di = 1 upon observing si. We claim that given any policy
π and any profile of equilibrium strategies (σi)

n
i=1 we can construct a direct obedient

policy that implements the same outcome as the original policy. Consider the direct
policy π̃ : Θ→ ∆ ({0, 1}n) such that for any d̂ and any θ ∈ Θ,

π̃(d̂|θ) =
∑

s

π(s|θ)
n∏

i=1

(
d̂iσi(si) + (1− d̂i)(1− σi(si))

)
.

Claim 1. The direct policy π satisfies ICa-i and ICr-i for any i.

Proof. Let us first show that voter Ri obeys an approval recommendation:
∑

ΘHi

f(θ)π̃(d̂a|θ)− `i
∑

ΘLi

f(θ)π̃(d̂a|θ)

=
∑

ΘHi

f(θ)

(∑

s

π(s|θ)
n∏

i=1

σi(si)

)
− `i

∑

ΘLi

f(θ)

(∑

s

π(s|θ)
n∏

i=1

σi(si)

)

=
∑

s

∏

i

σi(si)




∑

ΘHi

f(θ)π(s|θ)− `i
∑

ΘLi

f(θ)π(s|θ)





=
∑

si∈Si

σi(si)


∑

s−i

∏

j 6=i

σj(sj)




∑

ΘHi

f(θ)π(si, s−i|θ)− `i
∑

ΘLi

f(θ)π(si, s−i|θ)






 ≥ 0.

The last inequality follows from the fact that if σi(si) ∈ (0, 1) (resp., σi(si) = 1) for
some si then the term in brackets is zero (resp., strictly positive). Hence ICa-i is
satisfied. Similar reasoning shows that ICr constraints are satisfied as well by π̃,
∑

ΘHi

f(θ)π̃(d̂r,i|θ)− `i
∑

ΘLi

f(θ)π̃(d̂r,i|θ)

=
∑

si∈Si

(1− σi(si))


∑

s−i

∏

j 6=i

σj(sj)


∑

ΘHi

f(θ)π(si, s−i|θ)− `i
∑

ΘLi

f(θ)π(si, s−i|θ)




 .

If σi(si) ∈ (0, 1) (resp., σi(si) = 0) for some si, the term in brackets is zero (resp.,
strictly negative). Therefore, π̃ is obedient.

52



Full-support policies

Our analysis focuses on policies that are the limit of some sequence of full-support
obedient policies. For this purpose, let us define a full-support policy for each mode
of persuasion. A general policy π is a full-support general policy if π(d̂|θ) ∈ (0, 1)

for any d̂ ∈ {0, 1}n and for any θ ∈ Θ. This means that for any given state profile,
all recommendation profiles are sent with strictly positive probability. Similarly,
a full-support independent general policy (πi(·))i is such that for each voter Ri,
πi(θ) ∈ (0, 1) for any θ ∈ Θ. That is, in each state profile, each voter is recommended
to approve and to reject with strictly positive probability. An individual policy (πi))i

has full support if for each Ri, the probability of Ri receiving each recommendation
for each individual state is bounded away from zero and one, i.e. for each Ri,
πi(θi) ∈ (0, 1) for each θi ∈ {H,L}. That is, for each individual state θi, each voter
is recommended to approve and to reject with strictly positive probability.

B.4 Individual persuasion with two voters

The optimal policy when the states are perfectly correlated or independent is given
by proposition 4.1, so here we focus on imperfectly correlated states. Without loss,
it is assumed that `1 > `2. Based on lemma 4.1 and lemma 4.2, the optimal policy
features π1(H) = π2(H) = 1 and at least one voter has a binding ICa constraint.

We first want to argue that the stricter voter’s ICa-1 constraint must bind.
Suppose not. Then ICa-2 must bind. We can solve for π2(L) from this binding
constraint:

π2(L) =
f(LH)π1(L) + f(HH)π1(H)

`2(f(HL)π1(H) + f(LL)π1(L))
.

Substituting π1(H) = π2(H) = 1 and π2(L) into the objective of the sender, we
obtain the following objective:

f(HH)(1 + `2) + f(LH)π1(L)(1 + `2)

`2

,

which strictly increases in π1(L). Therefore, the sender finds it optimal to set π1(L)

as high as possible. This means that either ICa-1 constraint binds or π1(L) = 1.
Given the presumption that ICa-1 constraint does not bind, it has to be the case
that π1(L) = 1. This policy essentially provides the more lenient voter with an
informative policy and asks the stricter voter to approve with probability 1. We
argue that this policy cannot be incentive-compatible, because ICa-2 binds but R1 is
asked to rubber-stamp. Given that R1 is stricter than R2, R1 learns about her state
indirectly from R2’s approval, and whenever R2 is indifferent between approving
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and not, R1 must strictly prefer to reject. This shows that in the optimal policy
ICa-1 must bind.

Given that ICa-1 always binds, we can solve for π1(L) as a function of π2(L).
Substituting π1(H) = π2(H) = 1 and π1(L) into the sender’s objective, we obtain
that the objective strictly increases in π2(L). Therefore, the sender sets π2(L) as
high as possible. Either ICa-2 binds or π2(L) = 1. We summarize the discussion
above in the following lemma:

Lemma B.2. Given two voters `1 > `2 whose states are imperfectly correlated, the
optimal policy is unique. The stricter voter’s ICa-1 binds. The more lenient voter’s
π2(L) is as high as ICa-2 allows.

B.5 Individual persuasion with homogeneous thresholds

Consider individual persuasion under the unanimous rule when n voters have the
same thresholds `. Without loss, we assume that πi(L) ≤ πi+1(L) for 1 ≤ i ≤ n−1.
In any optimal policy, the voter(s) with the highest πi(L) must have binding ICa

constraints. The rest have slack ICa constraints. We also assume that ` > 1.
We focus on the following class of distributions f . Nature first draws a grand

state which can be either G or B. If the state is G, each voter’s state is H with
probability λ1 ∈ (1/2, 1). If the state is B, each voter’s state is L with probability
(1 − λ1) ∈ (0, 1/2).37 Conditional on the grand state, the voters’ states are drawn
independently. We let fk denote the probability of a state profile with k low-state
voters. We thus have fk = p0λ

n−k
1 (1− λ1)k + (1− p0)(1− λ1)n−kλk1.

We first argue that the support of (πi(L))ni=1 has at most three elements. Suppose
not. Then there exist i and j such that πi(L), πj(L) ∈ (0, 1) and both ICa-i and
ICa-j are slack. This violates proposition 4.3.38 This argument also shows that the
support of (πi(L))ni=1 has at most two interior-valued elements.

Therefore, any optimal policy can be characterized by three numbers (n0, y, x)

with n0 ≥ 0 and 0 < y ≤ x ≤ 1 such that: (i) πi(L) = 0 for i ∈ {1, ..., n0}; (ii)
πn0+1(L) = y; (iii) πi(L) = x for i ∈ {n0 + 2, ..., n}.39 Only the ICa constraints of
voters with πi(L) = x bind:

` =

∑n−n0−2
k=0 Ck

n−n0−2fkx
k +

∑n−n0−2
k=0 Ck

n−n0−2fk+1x
ky

∑n−n0−2
k=0 Ck

n−n0−2fk+1xk+1 +
∑n−n0−2

k=0 Ck
n−n0−2fk+2xk+1y

. (ICa)

37If λ1 = 1, voters’ states are perfectly correlated. If λ1 = 1/2, voters’ states are independent.
Both these polar cases have been addressed in proposition 4.1.

38It is easy to verify that the states of any three voters are strictly affiliated for this class of
distributions.

39If y 6= x, only one voter has the policy y. If instead two or more voters had y, at least two
voters would have interior πi(L) and slack ICa constraints, contradicting proposition 4.3.
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The sender’s payoff is the sum of the numerator and the denominator of the right-
hand side.

We let λ∗k denote the value of λ1 such that conditional on k voters’ states being
high, a voter is just willing to rubber-stamp. In other words, conditional on k voters’
states being high, a voter’s belief of being high is exactly `/(1 + `). Therefore,
λ1 = λ∗k solves the following equation:

p0λ
k
1

p0λk1 + (1− p0)(1− λ1)k
λ1 +

(1− p0)(1− λ1)k

p0λk1 + (1− p0)(1− λ1)k
(1− λ1) =

`

1 + `
.

We let ph denote the ex ante probability of being H, that is, ph = p0λ1 + (1 −
p0)(1 − λ1). The domain of ph is (1 − λ1, λ1). Assumption 1 that no voter prefers
to approve ex ante is equivalent to ph − `(1− ph) < 0. Substituting p0 = ph−(1−λ1)

2λ1−1

into the equation above, we obtain the following equation that defines λ∗k:

λk+1
1 (ph − (1− λ1)) + (1− λ1)k+1(λ1 − ph)
λk1(ph − (1− λ1)) + (1− λ1)k(λ1 − ph)

=
`

1 + `
.

Note that λ∗k depends on ph, `, k but not on n. The left-hand side increases in ph,
k, an λ1.40 The right-hand side increases in `. Therefore, λ∗k decreases in ph and k,
and it increases in `.

The sequence (λ∗k)
∞
k=1 is a decreasing sequence which converges to `/(1+`). Each

voter learns about the grand state from the information regarding other voters’
states. If λ1 < `/(1 + `), even if a voter is certain that the grand state is G, this
voter is not willing to rubber-stamp the project. Therefore, if λ1 ≤ `/(1 + `), no
matter how many other voters’ states are high, a voter is unwilling to rubber-stamp.
On the other hand, for any λ1 > `/(1+`), there exists k ≥ 1 such that λ1 > λ∗k. We
next argue that, if λ1 > λ∗k, n0 < k in any optimal policy. Because a voter is willing
to rubber-stamp if k−1 voters have πi(L) = 0 and another voter has πi(L) ∈ (0, 1),
the sender can strictly improve his payoff if at least k voters learn their states fully.
For instance, if λ1 > λ∗1, the sender is able to persuade R2 to Rn to rubber-stamp
even if he only partially reveals the state to R1. No voter will learn her state fully,
so n0 = 0. For λ1 > λ∗1, we are left with two possible cases: either y < x or y = x.
In the former case, R1’s ICa is slack. The sender provides more precise information
to R1 in order to persuade the other voters more effectively. In the latter case, all
voters’ ICa constraints bind. In general, if λ1 ∈ (λ∗k, λ

∗
k−1], we must have n0 < k.

We next show that it is not possible that both y and x are interior and they are
not equal to each other.

Lemma B.3. The support of (πi(L))ni=1 does not have two interior values.
40We fix the probability ph that a voter’s state is high, so varying λ1 only varies the correlation

of the states across voters.
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Proof. The first n0 ≥ 0 voters learn their states fully. Voter Rn0+1’s policy is
πn0+1(L) = y. Subsequent voters from Rn0+2 to Rn have the policy πi(L) = x.
Suppose that both y and x are interior and y < x. We want to show that the
sender can strictly improve his payoff.

The sender’s payoff can be written as
c0(x)(1− λ1)n0(λ1 − ph)(1− λ1 + λ1x)(1− λ1 + λ1y)

2λ1 − 1

+
c1(x)λn0

1 (ph − 1 + λ1)(λ1 + (1− λ1)x)(λ1 + (1− λ1)y)

2λ1 − 1
,

where

c0(x) = (1− λ1 + λ1x)n−n0−2, c1(x) = (λ1 + (1− λ1)x)n−n0−2.

The binding ICa constraint can be written as:
c0(x)

c1(x)
=
λn0

1 (λ1 + ph − 1)(λ1 + (1− λ1)y)(`(λ1 − 1)x+ λ1)

(1− λ1)n0(λ1 − ph)(λ1(y − 1) + 1)(`λ1x+ λ1 − 1)
.

Given (`, ph, λ1, n, n0), the binding ICa constraint implicitly defines y as a function
of x. The domain of x depends on the values of (`, ph, λ1, n, n0). The lowest value
that x can take is denoted x, which is obtained when we set y to be equal to x. The
highest value of x is denoted by x, which is either equal to 1 or obtained by setting
y to be zero. The domain of x is [x, x].

Suppose that the pair (x, y) solves ICa. We can replace (x, y) with (x+ εx, y +

εy,ic) so that the ICa constraint still holds as an equality. Similarly, we can replace
(x, y) with (x+εx, y+εy,obj) so that the sender’s payoff remains constant. We define
ε′y,ic(x) and ε′y,obj(x) as follows:

ε′y,ic(x) = lim
εx→0

y + εy,ic − y
x+ εx − x

, ε′y,obj(x) = lim
εx→0

y + εy,obj − y
x+ εx − x

.

It is easy to show that both derivatives ε′y,ic(x), ε′y,obj(x) are negative over the domain
of x. It is easily verified that ε′y,ic(x) is negative, since a voter with the policy x
must become more optimistic about her state based on policy y after we increase x
by a small amount. Therefore, the binding ICa defines y as a decreasing function
of x. It is also easily verified that ε′y,obj(x) is negative as well: In order to keep the
sender’s payoff constant, we must decrease y as we increase x.

If ε′y,obj(x) < ε′y,ic(x) over some region of x, then the decrease in y required for
ICa to hold is smaller than the decrease in y required for the sender’s payoff to
stay constant. In this case, the sender can improve by increasing x. Analogously, if
ε′y,obj(x) > ε′y,ic(x) over some region of x, then the sender can improve by decreasing
x. We want to argue that in the domain of x, one of the following three cases occurs:
(i) ε′y,obj(x) > ε′y,ic(x) for any x ∈ [x, x]; (ii) ε′y,obj(x) < ε′y,ic(x) for any x ∈ [x, x];
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(iii) there exists x′ such that ε′y,obj(x) < ε′y,ic(x) if x > x′ and ε′y,obj(x) > ε′y,ic(x)

if x < x′. In all three cases, the sender finds it optimal to set x either as high as
possible or as low as possible. Therefore, the support of any optimal policy cannot
have two interior values x, y ∈ (0, 1) with x 6= y.

We next show that one of three cases occurs by examining the sign of ε′y,obj(x)−
ε′y,ic(x). The term ε′y,obj(x)− ε′y,ic(x) is positive if and only if:

(
λ1 + (1− λ1)x

1− λ1 + λ1x

)n−n0−1

>

(
1−λ1

λ1

)n0

(λ1 − ph) (`λ1x
2(−n+ n0 + 2)− (λ1 − 1)x(n− n0 − 1) + λ1)

(ph − 1 + λ1) (`(1− λ1)x2(n− n0 − 2) + λ1x(−n+ n0 + 1) + λ1 − 1)
. (13)

Let us first show that the second term in the denominator is negative:

`(1− λ1)x2(n− n0 − 2) + λ1x(−n+ n0 + 1) + λ1 − 1 < 0.

This inequality holds when n = n0 + 2, which is the lowest value that n can take.
The derivative of the left-hand side with respect to n is−x(λ1−`(1−λ1)x). We want
to argue that λ1 − `(1− λ1)x is weakly positive. If λ1 ≥ `/(1 + `), λ1 − `(1− λ1)x

is positive for any x. If λ1 < `/(1 + `), no voter will ever rubber-stamp. The
highest value of x is obtained when we set y to be zero. It is easily verified that
x < λ1/(`(1− λ1)) in this case. Therefore, the derivative of the left-hand side with
respect to n is weakly negative, so the inequality holds for any n ≥ n0 + 2.

The left-hand side of (13) decreases in x whereas the right-hand side increases
in x. Therefore, either the above inequality holds for any x in the domain, or it
does not hold for any x in the domain, or it holds only when x is below a threshold
x′. This completes the proof.

Based on lemma B.3, we are left with four possible cases:

(i) n0 = 0, y = x ∈ (0, 1). In this case, all voters have the same policy. All ICa

constraints bind. This is the only symmetric policy.

(ii) n0 = 0, y ∈ (0, 1), x = 1. R1’s information is more precise than her ICa

constraint requires. The other voters are willing to rubber-stamp given that
R1’s policy is partially informative. This case is possible if and only if λ1 > λ∗1.

(iii) n0 > 0, y = x ∈ (0, 1]. The sender provides fully revealing policies to R1

through Rn0 .

(iv) n0 > 0, y ∈ (0, 1), x = 1. The sender provides fully revealing policies to R1

through Rn0 and partial information to Rn0+1.
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The theme that the sender provides more precise information to some voters in
order to persuade the others more effectively is reflected in the latter three cases.
Moreover, when λ1 ≤ `/(1 + `), no voter ever rubber-stamps. The optimal policy
must take the form of either case (i) or case (iii). If it is optimal to set n0 to be
zero, the optimal policy is the symmetric one. For λ1 > `/(1 + `), the policy is
either (n0, y, 1) with n0 ≥ 0 or (n0, y, x) with n0 ≥ 0 and y = x. In the rest of this
section, we analyze the parameter regions (λ∗1, 1), (`/(1+ `), λ∗1], and (1/2, `/(1+ `)]

separately.
When λ1 ∈ (λ∗1, 1), only case (i) and case (ii) are possible. The threshold λ∗1 is

given by:

λ∗1 =
1

2

(
1 +

√
1 + `− 4ph

1 + `

)
.

We are interested in characterizing how the optimal policy varies as we increase the
number of voters n. If the sender chooses a policy as in case (ii), the sender’s payoff
is

(`+ 1)(λ1 − ph)(λ1 + ph − 1)

`((λ1 − 1)λ1 − ph + 1) + (λ1 − 1)λ1

. (14)

The sender chooses y so that the other voters are willing to rubber-stamp. The
payoff of the sender is given by offering the policy π1(L) = y to R1 since the other
voters approve for sure. If λ1 = λ∗1, the sender’s payoff is equal to ph, since at this
correlation level the other voters are willing to rubber-stamp only if the sender fully
reveals θ1 to R1. As λ1 increases, the sender’s payoff increases as well. When states
are perfectly correlated, i.e., λ1 = 1, the sender’s payoff is (1 + 1/`)ph, which is the
same as if he were facing R1 alone. In case (ii) the number of voters has no impact
on the sender’s payoff.

If the sender chooses a policy as in case (i), the ICa constraint can be written as

(λ1 + ph − 1)(`(λ1 − 1)x+ λ1)

(λ1 − ph)(`λ1x+ λ1 − 1)
=

(
λ1x+ (1− λ1)

λ1 + (1− λ1)x

)n−1

. (15)

This equation implicitly defines x. The sender’s payoff is given by
(`+ 1)x(λ1 + ph − 1)

`λ1x+ λ1 − 1
(λ1 + x(1− λ1))n−1. (16)

We will show that x, the probability that a low-state voter approves, increases in
n. Moreover, the sender’s payoff decreases in n. The limit of the sender’s payoff as
n approaches infinity is given by

(`+ 1)(λ1 + ph − 1)
(

(`(λ1−1)+λ1)(λ1+ph−1)
(`λ1+λ1−1)(λ1−ph)

) 1−λ1
2λ1−1

`λ1 + λ1 − 1
. (17)

This limiting payoff as n→∞ is lower than the payoff in case (ii). Moreover, when
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n equals 2, (16) is strictly higher than (14), so the sender obtains a strictly higher
payoff in case (i) than in case (ii). Therefore, for each `, ph, and λ1 ∈ (λ∗1, 1), there
exists n′ ≥ 3 such that the sender is strictly better off in case (ii) than in case (i) if
and only if n ≥ n′.

Proposition B.2. Suppose λ1 ∈ [λ∗1, 1). For each `, ph and λ1, there exists n′ ≥ 3

such that for n ≥ n′, the sender is strictly better off in case (ii) than in case (i), so
case (ii) policy is uniquely optimal.

Proof. We first show that (14) is strictly higher than (17). Then we show that (16)
strictly decreases in n. This completes the proof.

The ratio of (14) over (17) is given by

(`λ1 + λ1 − 1)(λ1 − ph)
(

(`(λ1−1)+λ1)(λ1+ph−1)
(`λ1+λ1−1)(λ1−ph)

) λ1−1
2λ1−1

`((λ1 − 1)λ1 − ph + 1) + (λ1 − 1)λ1

. (18)

This ratio equals one when λ1 = 1. We want to show that this ratio is strictly above
one for λ1 ∈ [λ∗1, 1). The derivative of this ratio with respect to ph is negative if and
only if

(
(`(λ1 − 1) + λ1)(λ1 + ph − 1)

(`λ1 + λ1 − 1)(λ1 − ph)

) λ1+1
2λ1−1

> 0.

Since this inequality holds, the ratio (18) decreases in ph. Assumption 1 ensures
that ph < `/(1 + `). Substituting ph = `/(1 + `) into (18), the ratio equals one.
Therefore, for any ph < `/(1 + `), the ratio (18) is above one. This completes the
proof that (14) is strictly higher than (17) for λ1 ∈ [λ∗1, 1).

Now we restrict attention to the policy of case (i). We first show that the
solution x to (15) increases in n. The right-hand side of (15) increases in x and
decreases in n. The left-hand side decreases in x. Therefore, as n increases, x must
increase as well.

We next show that (16) decreases in n. It is easily verified that (`+1)x(λ1+ph−1)
`λ1x+λ1−1

decreases in x. So it also decreases in n, since x increases in n. Therefore, if we
can show that (λ1 + x(n)(1− λ1))n−1 decreases in n, then (16) must decrease in n.
For the rest of this proof, we use x(n) instead of x to highlight the dependence of
x on n. From the analysis of the previous paragraph, we know that the left-hand
side of (15) decreases in n. Therefore, the total derivative of the right-hand side of
(15) with respect to n is negative. This puts an upper bound on x′(n):

x′(n) <
(λ1x(n)− λ1 + 1)(λ1x(n)− λ1 − x(n)) log

(
λ1(x(n)−1)+1

λ1(−x(n))+λ1+x(n)

)

(2λ1 − 1)(n− 1)
.

For (λ1 + x(n)(1 − λ1))n−1 to be increasing in n, the derivative x′(n) must be at
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least:

x′(n) >
(λ1 + x(n)− λ1x(n)) log(λ1(−x(n)) + λ1 + x(n))

(λ1 − 1)(n− 1)
.

We want to show that this is impossible. The lower bound on x′(n) is higher than
the upper bound if and only if

(λ1x(n)− λ1 + 1) log
(

λ1(x(n)−1)+1
λ1(−x(n))+λ1+x(n)

)

2λ1 − 1
− log(λ1(−x(n)) + λ1 + x(n))

1− λ1

> 0.

The left-hand side of the above inequality decreases in x(n). Moreover, the left-
hand side equals zero when x(n) equals one. Therefore, the above inequality always
holds. This shows that the lower bound on x′(n) is indeed higher than the upper
bound. Therefore, (λ1 + x(n)(1− λ1))n−1 and (16) decreases in n.

We next focus on the parameter region λ1 ∈
(

`
(1+`)

, λ∗1

]
. The optimal policy

might take the form of case (i), (iii), or (iv). We show that case (iv) dominates
case (i) and case (iii) for n large enough. This implies that some voters learn their
states fully for n large enough.

Proposition B.3. Suppose λ1 ∈ (`/(1 + `), λ∗1]. For each `, ph and λ1, there exists
n′ ≥ 3 such that for n ≥ n′, the sender is strictly better off in case (iv) than in case
(i) and (iii), so case (iv) policy is uniquely optimal.

Proof. For any λ1 ∈ (`/(1 + `), λ∗1], there exists k ≥ 1 such that λ1 ∈ (λ∗k+1, λ
∗
k]. We

first argue that the policy in case (iv) with n0 being k leads to a higher payoff than
the symmetric policy in case (i) when n is large enough.

If the sender uses the policy in case (iv) with n0 being k, the ICa constraint can
be written as:

` =
λk+1

1 (λ1 + ph − 1)(λ1 + (1− λ1)y) + (1− λ1)k+1(λ1 − ph)(λ1y + (1− λ1))

(1− λ1)λk1(λ1 + ph − 1)(λ1 + (1− λ1)y) + λ1(1− λ1)k(λ1 − ph)(λ1y + (1− λ1))
.

This allows us to solve for y. Substituting this value of y into the sender’s payoff,
we obtain the sender’s payoff as

(`+ 1)(2λ1 − 1)((1− λ1)λ1)k(λ1 − ph)(λ1 + ph − 1)

(λ1 − 1)(`(λ1 − 1) + λ1)λk1(λ1 + ph − 1) + λ1(`λ1 + λ1 − 1)(1− λ1)k(λ1 − ph)
.

(19)
The ICa constraint holds as an equality for some y in [0, 1]. The right-hand side of
the ICa constraint decreases in y. After substituting y = 1 into the ICa constraint,
we obtain the following inequality:

` ≥ λk+1
1 (λ1 + ph − 1) + (1− λ1)k+1(λ1 − ph)

λ1(1− λ1)k(λ1 − ph)− (λ1 − 1)λk1(λ1 + ph − 1)
.
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This inequality imposes an upper bound on ph:

ph ≤
(1− λ1)(`(λ1 − 1) + λ1)λk1 + λ1(`λ1 + λ1 − 1)(1− λ1)k

(`(λ1 − 1) + λ1)λk1 + (`λ1 + λ1 − 1)(1− λ1)k
. (20)

The payoff from the symmetric policy in case (i) approaches (17) as n goes to
infinity. The ratio of (19) over (17) is given by:

(2λ1 − 1)(`λ1 + λ1 − 1)((1− λ1)λ1)k(λ1 − ph)
(

(`(λ1−1)+λ1)(λ1+ph−1)
(`λ1+λ1−1)(λ1−ph)

) λ1−1
2λ1−1

(λ1 − 1)(`(λ1 − 1) + λ1)λk1(λ1 + ph − 1) + λ1(`λ1 + λ1 − 1)(1− λ1)k(λ1 − ph)
.

This ratio decreases in ph given the inequality (20). Moreover, if we substitute the
upper bound on ph as in (20) into the ratio above, this ratio equals:

λk1
(
(1− λ1)kλ−k1

) λ1
1−2λ1

+1
. (21)

The term above strictly decreases in λ1 if λ1 ∈ (1/2, 1). Moreover, the limit of the
term above when λ1 goes to one is equal to one. This shows that the ratio of (19)
over (17) is strictly greater than one. Therefore, the symmetric policy in case (i) is
dominated by the asymmetric policy in case (iv) when n is large enough.

We next argue that the policy in case (iii) with n0 ≤ k leads to a lower payoff
than the policy in case (iv) when n is large enough. If the sender uses the policy in
case (iii), the ICa constraint can be written as:

λn0
1

(1− λ1)n0

(λ1 + ph − 1)(`(λ1 − 1)x+ λ1)

(λ1 − ph)(`λ1x+ λ1 − 1)
=

(
λ1x+ (1− λ1)

λ1 + (1− λ1)x

)n−n0−1

.

This equation implicitly defines x. The limit of x as n goes to infinity is 1. The
limit of the sender’s payoff as n approaches infinity is given by

(`+ 1)(λ1 + ph − 1)λn0
1

(
λ
n0
1

(1−λ1)n0

(`(λ1−1)+λ1)(λ1+ph−1)
(`λ1+λ1−1)(λ1−ph)

) 1−λ1
2λ1−1

`λ1 + λ1 − 1
. (22)

The ratio of the limit payoff in case (iii) over the limit payoff in case (i) is given by
the ratio of (22) over (17):

(
1

λ1

− 1

) (λ1−1)n0
2λ1−1

λn0
1 .

This ratio is strictly smaller than (21) if n0 < k. This ratio is equal to (21) If
n0 = k. Note that (21) is strictly higher than the ratio of the payoff in case (iv)
over the limit payoff in case (i). This shows that the payoff in case (iv) is strictly
higher than the limit payoff in case (iii).

Let us now consider the case of a low λ1: let λ1 ∈
(

1
2
, `

(1+`)

]
. For this parameter

region, even if a voter is certain that the realized grand state is G, she is still not
willing to approve the project if λ1−`(1−λ1) < 0. Due to this, no voter is willing to
rubber-stamp the project, hence there is no voter for which πi(L) = 1. A symmetric
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policy assigns the same πi(L) ∈ (0, 1) for any i. An asymmetric policy assigns a
fully revealing policy to a subgroup of the voters and a symmetric interior policy to
the remaining voters, due to lemma B.3. Hence, any asymmetric policy is indexed
by n0, the number of voters who receive fully revealing recommendations. Let
P (n0, n) denote the payoff from a policy with exactly n0 voters with fully revealing
recommendations among n voters in total.

For a policy with n0 ≥ 0 and x ∈ (0, 1) denoting the recommendation probability
πi(L) for the partially informed voters, the binding ICa is:

(
λ1 + (1− λ1)x

1− λ1 + λ1x

)n−n0−1

=
λn0

1 (ph − 1 + λ1)(λ1 − `(1− λ1)x)

(1− λ1)n0(λ1 − ph)(λ1 − 1 + `λ1x)
(23)

The corresponding payoff to the sender is:

P (n0, n) =
(`+ 1)λn0

1 (ph + λ1 − 1)x(λ1 + (1− λ1)x)n−n0−1

λ1 − 1 + `λ1x
.

The approval probability x implicitly depends on n. For any fixed n0 ≥ 0, x(n) is
increasing in n. To see this, notice that the right-hand side of (23) increases in x
and decreases in n, while the left-hand side decreases in x. Therefore, an increase in
n makes the right-hand side smaller, while it does not directly affect the left-hand
side: for equality to hold, x(n) has to increase as well.

Moreover, it is straightforward to see from the ICa constraint that x(n) increases
in n0 for a fixed group size n. Naturally, if more voters are offered fully revealing
recommendations, this allows the sender to recommend the partially informed voters
to approve more frequently.

The following result establishes that as n→∞, the payoff of the sender decreases
in n0; hence, for an infinitely large group, it is optimal for the sender to assign the
symmetric policy with n0 = 0.

Proposition B.4. Suppose that λ1 ∈
(

1
2
, `

(1+`)

]
. For any n0 ≥ 0,

lim
n→∞

P (n0, n)

P (n0 + 1, n)
=
`+ 1

`
> 1,

that is, for sufficiently large n, the sender’s payoff is decreasing in n0.

Proof. Let x0(n) and x1(n) denote the probability of recommendation to a low-state
voter corresponding to the policies with n0 and n0 + 1 fully revealing recommenda-
tions. The ratio of payoffs is:

P (n0, n)

P (n0 + 1, n)

=
λ1 + (1− λ1)x0(n)

λ1

(
λ1 + (1− λ1)x0(n)

λ1 + (1− λ1)x1(n)

)n−n0−1
x1(n)

x0(n)

`x0(n)λ1 + λ1 − 1

`x1(n)λ1 + λ1 − 1
.
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It follows from a comparison of the two ICa constraints that x1(n) > x0(n) for any
n. Moreover, (x1(n)− x0(n))→ 0 as n→∞. Both x1(n) and x0(n) tend to λ1

(1−λ1)`
.

Therefore,

lim
n→∞

x1(n)

x0(n)
= lim

n→∞

`x0(n)λ1 + λ1 − 1

`x1(n)λ1 + λ1 − 1
= 1; lim

n→∞

λ1 + (1− λ1)x0(n)

λ1

=
`+ 1

`
.

Hence, the limit ratio of the payoffs reduces to:

lim
n→∞

P (n0, n)

P (n0 + 1, n)
=
`+ 1

`
lim
n→∞

(
λ1 + (1− λ1)x0(n)

λ1 + (1− λ1)x1(n)

)n−n0−1

.

In order to evaluate the remaining limit term, we need to approximate the rate at
which x1(n) and x0(n) converge to λ1

`(1−λ1)
as n→∞. From the ICa constraint when

n0 voters receive fully revealing recommendations, we have:
λ1

`(1− λ1)
− x0(n) =

(2λ1 − 1)(1− λ1)n0−2(λ1 − ph)w0(n)n−n0−1

` (λn0
1 (λ1 + ph − 1) + λ1(1− λ1)n0−1(λ1 − ph)w0(n)n−n0−1)

,

where w0(n) = (1 − λ1 + λ1x0(n))/(λ1 + (1 − λ1)x0(n)). Since x0(n) converges to
λ1

`(1−λ1)
as n→∞, there exist constants w0 < w0 ∈ (0, 1) such that w0(n) ∈ (w0, w0)

when n is sufficiently large. Similarly, from the ICa constraint when n0 + 1 voters
receive fully revealing recommendations, we have:

λ1

`(1− λ1)
− x1(n) =

(2λ1 − 1)(1− λ1)n0−1(λ1 − ph)w1(n)n−n0−2

`
(
λn0+1

1 (λ1 + ph − 1) + λ1(1− λ1)n0(λ1 − ph)w1(n)n−n0−2
) ,

where w1(n) = (1 − λ1 + λ1x1(n))/(λ1 + (1 − λ1)x1(n)). Since x1(n) converges to
λ1

`(1−λ1)
as n→∞, there exist constants w1 < w1 ∈ (0, 1) such that w1(n) ∈ (w1, w1)

when n is sufficiently large.
Notice that for any a0, a1 ∈ (0, 1) and any κ0, κ1 > 0,

lim
n→∞

(
1− κ0a

n
0

1− κ1an1

)n−1

= 1.

Therefore,

lim
n→∞

(
λ1 + (1− λ1)x0(n)

λ1 + (1− λ1)x1(n)

)n−n0−1

= lim
n→∞




1− `(1−λ1)
(1+`)λ1

(
λ1

`(1−λ1)
− x0(n)

)

1− `(1−λ1)
(1+`)λ1

(
λ1

`(1−λ1)
− x1(n)

)



n−n0−1

= 1.

This concludes the proof.

An immediate implication of proposition B.4 is the following corollary, which
pins down the exact limiting ratio of the payoffs from the symmetric policy and any
asymmetric policy with n0 > 0. This ratio depends only on ` and n0: the larger
the threshold `, the smaller the comparative benefit from a symmetric policy.
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Corollary B.4. For any asymmetric policy with n0 > 0 fully informed voters,

lim
n→∞

P (0, n)

P (n0, n)
=

(
`+ 1

`

)n0

.

To sum up, we analyzed optimal individual persuasion for the case of homoge-
neous thresholds when the group size n is sufficiently large. We have established
that when λ1 is above `

`+1
, the sender finds it optimal to rely on an asymmetric

policy, that assigns different recommendation probabilities πi(L) across voters. For
instance, if λ1 > λ∗1, the optimal policy consists of a partially informed voter and
all other voters rubber-stamping; if λ1 ∈ (λ∗2, λ

∗
1), the optimal policy consists of

one fully informed voter, another partially informed voters, and all other voters as
rubber-stampers, and so on. If on the other hand λ1 is below `

`+1
, it is optimal for

the sender to offer the same probability of recommendation in state L to all voters
when the size group is sufficiently high. No voter is fully revealed her state for such
low λ1.

1
2

`
`+1

λ1

1

λ∗1λ∗2λ∗3

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
n0 = 0 n0 > 0 n0 = 0

πi(L) = πj(L) ∈ (0, 1) ∀i, j πn0+1(L) ∈ (0, 1) π1(L) ∈ (0, 1)

πi(L) = 1 ∀i > n0 + 1 πi(L) = 1 ∀i > 1symmetric
asymmetric asymmetric

Figure 2: Optimal individual persuasion with homogeneous thresholds

B.6 Strict Ahlswede-Daykin theorem

Theorem B.5. Suppose (Γ,�) is a finite distributive lattice and functions f1, f2,
f3, f4 : Γ→ R+ satisfy the relation that

f1(a)f2(b) < f3(a ∧ b)f4(a ∨ b),
∀a, b ∈ Γ. Furthermore, suppose that f3(c) > 0 and f4(c) > 0 for any c ∈ Γ. Then

f1(A)f2(B) < f3(A ∧B)f4(A ∨B),

∀A,B ⊂ Γ, where fk(A) =
∑

a∈A fk(a) for all A ⊂ Γ, k ∈ {1, 2, 3, 4}, and A ∨ B =

{a ∨ b : a ∈ A, b ∈ B}, A ∧B = {a ∧ b : a ∈ A, b ∈ B}.
Proof. 41 Because Γ is a finite distributive lattice, it suffices42 to prove that the

41This proof adapts the proof presented in Graham (1983). See: Graham, R. L. 1983. “Appli-
cations of the FKG Inequality and Its Relatives,” in Conference Proceedings, 12th Intern. Symp.
Math. Programming. Springer: 115-131.

42Every distributive lattice can be embedded in a powerset algebra so that all existing finite
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result holds for Γ = 2N , the lattice of subsets of the set N = {1, ..., n} partially
ordered by the inclusion relation. Then, a ∈ Γ is a particular subset of N , and
A ⊂ Γ is a subset of subsets of N .

First, let us establish the result for n = 1, so N = {1}. Then Γ = {∅, {1}}. Let
f 0
k , f

1
k denote the function fk for k = 1, 2, 3, 4 evaluated at ∅ and {1} respectively.

By the premise, given that f 0
3 , f

1
3 , f

0
4 , f

1
4 6= 0,

f 0
1 f

0
2 < f 0

3 f
0
4 , f 1

1 f
0
2 < f 0

3 f
1
4 , f 0

1 f
1
2 < f 0

3 f
1
4 , f 1

1 f
1
2 < f 1

3 f
1
4 .

It is straightforward to check that the result holds for any A and B that are single-
tons. This leaves only the case of A = B = {∅, {1}}. We need to show that

(f 0
1 + f 1

1 )(f 0
2 + f 1

2 ) < (f 0
3 + f 1

3 )(f 0
4 + f 1

4 ).

If either f1 or f2 is zero, then the result follows trivially. So let us now consider the
case in which they all nonzero. It is sufficient to consider the case for which f 0

k = 1

for all k. It follows that

f 1
1 < f 1

4 , f 1
2 < f 1

4 , f 1
1 f

1
2 < f 1

3 f
1
4 .

We would like to show that

(1 + f 1
1 )(1 + f 1

2 ) < (1 + f 1
3 )(1 + f 1

4 ). (24)

If f 1
4 = 0, the result follows immediately. So let us consider the case for which

f 1
4 > 0. The result we want to show becomes easier to satisfy as f 1

4 : hence it is
sufficient to establish it for a very low f 1

4 . From the inequality f 1
1 f

1
2 < f 1

3 f
1
4 , we

know that

f 1
4 >

f 1
1 f

1
2

f 1
3

.

For some small fixed ε > 0, let f 1
4 =

f1
1 f

1
2

f1
3

+ ε. From the fact that f 1
1 < f 1

4 and
f 1

2 < f 1
4 , it follows that

(f 1
4 − f 1

1 )(f 1
4 − f 1

2 ) > 0. (25)

We want to prove that

(1 + f 1
1 )(1 + f 1

2 ) < (1 + f 1
3 )

(
1 +

f 1
1 f

1
2

f 1
3

+ ε

)
(26)

which is equivalent to

f 1
4

2
+ f 1

1 f
1
2 − f 1

4 f
1
1 − f 1

4 f
1
2 > −f 1

4 ε− f 1
4

2
ε.

But from 25,

f 1
4

2
+ f 1

1 f
1
2 − f 1

4 f
1
1 − f 1

4 f
1
2 > 0 > −f 1

4 ε− f 1
4

2
ε

joins and meets are preserved.
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for any ε > 0. This establishes 26 for any arbitrarily small ε, hence, inequality 24
is satisfied. So the proof for n = 1 is concluded.

Let us now assume that the result holds for n = m for some m ≥ 1, and we
would like to show that it holds for n = m + 1 as well. Suppose fk, k = 1, 2, 3, 4

satisfy the premise of the result for n = m+ 1 for Γ = 2{1,...,m+1}.. Let A,B be two
fixed subsets of the power set 2{1,...,m+1}. Let us define f ′k : 2{1,...,m} → R+ such that

f ′1(a′) =
∑

a∈A,a′=a\{m+1}

f1(a), f ′2(b′) =
∑

b∈B,b′=b\{m+1}

f2(b),

f ′3(w′) =
∑

w∈A∩B,w′=w\{m+1}

f3(w), f ′4(v′) =
∑

v∈A∪B,v′=v\{m+1}

f4(v).

For any a′ ∈ 2{1,...,m},

f ′1(a′) =





f1(a) + f1(a ∪ {m+ 1}) if a′ ∈ A, a′ ∪ {m+ 1} ∈ A
f1(a) if a′ ∈ A, a′ ∪ {m+ 1} /∈ A
f1(a ∪ {m+ 1}) if a′ /∈ A, a′ ∪ {m+ 1} ∈ A
0 if a′ /∈ A, a′ ∪ {m+ 1} /∈ A

With such a definition,

f1(A) = f ′1(2{1,...,m}).

Similarly, f2(B) = f ′2(2{1,...,m}), f3(A ∧ B) = f ′3(2{1,...,m}), f4(A ∨ B) = f ′4(2{1,...,m}).
Now, a similar argument to the one followed for n = 1 with a′ corresponding to ∅
before and a′ ∪ {n} corresponding to {1}, gives us that

f ′1(a′)f ′2(b′) < f ′3(a′ ∧ b′)f ′4(a′ ∨ b′),
∀a′, b′ ∈ 2{1,...,m}. But by the induction hypothesis for n = m,

f ′1(2{1,...,m})f ′2(2{1,...,m}) < f ′3(2{1,...,m})f ′4(2{1,...,m})

since 2{1,...,m} ∧ 2{1,...,m} = 2{1,...,m} and 2{1,...,m} ∨ 2{1,...,m} = 2{1,...,m}. This implies
the desired result for n = m+ 1:

f1(A)f2(B) < f3(A ∧B)f4(A ∨B).

This concludes the proof.
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