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Abstract

This paper studies communication and intervention as mechanisms of corporate gov-

ernance. I develop a model in which a privately informed principal can intervene in the

decisions of the agent if the latter disobeys her instructions. The main result shows that

intervention can prompt disobedience and harm communication. Therefore, less infor-

mation can be revealed by the principal in equilibrium when the principal has the ability

to intervene in the agent’s decisions. In this respect, words do speak louder without

actions. The model is applied to managerial leadership, corporate boards, private equity,

and shareholder activism.

∗The author is from the University of Pennsylvania, Wharton School, Finance Department. Email: dle-
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“Actions speak louder than words, but not nearly as often.”Mark Twain

Introduction

Corporations are governed in various ways. For example, visionary managers often rely on

their ability to articulate a strategy and motivate their employees to achieve their goals, while

others adopt a more authoritative leadership style and frequently overrule their subordinates.

Furthermore, in many corporations the board of directors not only monitors the CEO, but

also advises management on strategy, crisis management, M&A, etc. The mix between board

supervision and counsel varies vastly across firms. Even savvy investors such as private equity,

venture capital, and activist hedge funds, who often share ideas with their portfolio companies

how to add value, have different styles of governance: While some investors are quick to exercise

their control rights, others tend to work more constructively with management. In all of these

principal-agent situations, contracts only partially resolve the conflicts of interests, and as a

result, communication (i.e., transmission of information, using words) and intervention (i.e.,

forcing one’s will, taking actions) are the primary mechanisms of governance.

The goal of this paper is to understand the interaction between communication and in-

tervention, and study its implications for corporate governance. There is an obvious trade

off between the two mechanisms: While communication is effective only if it is persuasive,

intervention is more confrontational and costly. For this reason, intervention is often used as

a last resort (Simon (1947)), and the anticipation of intervention can in and of itself affect the

ability to exert influence through communication. In principle, the two mechanisms can either

complement or substitute one another. Which one is it? In practice, the extent to which inter-

vention (or the threat of) can be used depends on various characteristics of the organization

and its leadership. In turn, effective communication can be associated with a culture in which

dialogues flourish and information flows freely. How are the two related?

To study these questions, I consider a principal-agent model with incomplete contracts and

a “top-down” information structure. In the model, the optimal scale of investment (or type
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of project) depends on the fundamentals of the firm. The principal (“she”), who is privately

informed about these fundamentals, sends the agent (“he”) a message which can be interpreted

as a recommendation, instructions, or a nonbinding demand. Communication is modeled as

cheap talk à la Crawford and Sobel (1982). The agent has private benefits from investment

in large projects (e.g., empire-building or prestige), and due to this bias, the challenge of the

principal is convincing the agent to choose small projects when the fundamentals are bad.1

In equilibrium, information is never fully revealed by the principal, who has incentives to

understate the fundamentals of the firm in order to prevent over-investment. The novel feature

of the model is that after communicating with the agent and observing his investment decision,

the principal can intervene and adjust the size of the project. For example, the principal can

monitor the agent more closely, overrule his decisions, and even replace him if needed. Since

these activities require resources and attention, intervention is costly to the principal.

As one might expect, a credible threat of intervention can reinforce the agent’s compliance.

Intuitively, if intervention is also costly to the agent (e.g., the loss of compensation, damaged

reputation, or embarrassment), then the best way to avoid the unpleasant consequences of

intervention is to follow the principal’s instructions. In those cases, more information can be

revealed by the principal in equilibrium and the two mechanisms complement one another.

Surprisingly, however, the main result of the paper demonstrates that a credible threat of in-

tervention can in fact weaken the incentives of the agent to follow the principal’s instructions.

In those cases, intervention prompts disobedience, less information is revealed by the principal

in equilibrium, and the two mechanisms substitute one another. More generally, communica-

tion can be more effective when the principal faces a higher cost of intervention. Moreover, the

adverse effect of intervention on communication is not trivial; it can offset the value of inter-

vention as a correction device and result with an ex-ante welfare loss for the principal. Overall,

the main result of the paper shows that communication is less effective with intervention than

without it, and in this respect, words do speak louder without actions.

How can intervention harm communication? The analysis highlights two forces that explain

1The same results hold if instead the agent is biased toward smaller projects (e.g., seeking the “quite life”).
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this result. First, the agent is exploiting the fact that intervention is costly to the principal

and intentionally chooses projects that are larger than what would have been optimal even

from his own perspective. By “overshooting,”the agent increases the cost the principal must

incur in order to bring the project to its optimal level, thereby guaranteeing that the final

project would be larger than optimal. Importantly, the principal understands the incentives of

the agent to overshoot, and as a result, she has even stronger incentives to pretend that the

fundamentals are worse than they really are. Since the agent foresees the stronger incentives

of the principal to understate the benefit from large projects, he puts even less weight on the

credibility of the principal’s messages. Put differently, intervention creates a vicious cycle: The

principal’s attempt to prevent the agent from preempting her expected intervention, ultimately

hurts the principal by further diminishing her ability to influence the agent’s decision (through

communication) in the first place. Altogether, less information is revealed in equilibrium, and

in this respect, intervention harms communication.

The second force is more nuanced. Notice that because of the intrinsic conflict of interests,

the principal never fully communicates her private information in equilibrium. The possibility

of intervention, however, allows the agent to “elicit”additional information from the principal

by ignoring her messages. To understand how, note that intervention is an informed decision.

The principal intervenes more forcefully when the agent’s decision is detrimental, that is,

when over-investment is disastrous. Only those circumstances justify incurring the cost of

intervention. While the agent cannot act after this new information is revealed, he can condition

his initial decision on the information that will be reflected by the principal’s intervention.2 In

particular, if the principal does not intervene following a large investment, the agent effectively

“called the principal’s bluff:”he can consume his private benefits without incurring the risk of

large losses due to over-investment. If instead the principal intervenes, her corrective action

benefits the agent since it reverses course exactly when the consequences of over-investment

are detrimental. Knowing that the principal will intervene if and only if over-investment is

detrimental emboldens the agent and results with more over-investment. Indeed, by over-

2This reasoning is similar to the intuition behind the effect of the winner curse in common value auctions
and pivotal considerations in games with strategic voting.
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investing the agent forces the principal to act based on private information she was trying

to conceal, which gives the agent an opportunity to condition on these informative actions.

Effectively, the agent challenges the principal to “back her words with actions,” and this way,

the agent elicits additional information. Since the agent is less receptive to the principal’s

messages, less information can be revealed in equilibrium through communication.

The idea that intervention can harm communication holds more generally. In particular,

communication can be more effective when the principal faces a higher cost of intervention.

Intuitively, if intervention is more costly then the principal is less likely to intervene. The first

force (i.e., the reasoning behind the “vicious cycle”) implies that less overshooting is therefore

needed by the agent to guarantee that the final project would be larger than optimal. As a

result, the principal has weaker incentives to understate the benefit from large projects, and

more information can be revealed in equilibrium. According to the second force, a higher

cost of intervention implies that the agent cannot rely on the principal to intervene when his

actions are detrimental. At the same time, the lack of intervention following over-investment is

a weaker signal that large projects are optimal. Said otherwise, the informational benefit from

challenging the principal to “back her words with actions”is smaller for the agent. Since the

agent is more receptive to principal’s messages when the cost of intervention is larger, more

information can be revealed in equilibrium .

When intervention harms communication, a non-trivial trade-off emerges: While the abil-

ity to intervene allows the principal to correct the agent’s decision whenever his actions are

detrimental, it also weakens her ability to influence the agent’s decision in the first place. In-

terestingly, the second effect can be strong enough to the extent that the principal is ex-ante

better off without the ability to intervene in the agent’s decisions. Specifically, I derive condi-

tions under which the ability to intervene lowers the principal’s expected utility in equilibrium

if and only if communication with the agent is allowed. In other words, intervention has dam-

aging welfare implications that stem exclusively from its negative effect on the ability of the

principal to send messages and communicate with the agent. The idea that communication
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can in and of itself reduce the value of control rights is another novel aspect of my analysis.3

I consider several extensions of the baseline model.4 In particular, I explore a variant

of the model in which the agent is also privately informed. Interestingly, when an informed

agent disobeys the principal, the principal cannot tell for sure if it is because the agent’s

private information contradicts her own information or because of their conflict of interests.

This force deters the principal from intervening and inevitably emboldens the agent even

more. As a result, with two-sided information asymmetry, intervention is even more likely to

prompt disobedience, and less information can be revealed by the principal in equilibrium. In

other words, with intervention, communication is less effective when the agent is also privately

informed. In addition, I consider the effect of pay for performances contracts. I show that

intervention is more likely to harm communication when the agent is offered a high pay for

performances. Intuitively, while a higher pay for performances mitigates the agent’s bias toward

over-investment (and therefore, facilitates effective communication), it has a side-effect that

emboldens the agent when intervention is possible. In particular, since a higher pay to the

agent comes at the expense of the principal, per unit of utility, the principal is facing a higher

cost of intervention while the agent is facing a lower cost from intervention. As as result,

the positive effect of a higher pay for performances on communication is weaker when the

principal also has the ability to intervene. Moreover, I demonstrate that intervention can harm

communication even if the principal chooses the ex-ante optimal level of pay for performances.5

Building on these insights, the analysis offers several novel implications.6 For example,

the model suggests that a visionary leadership and a “hands-off”managerial style are more

likely to be successful in large and complex organizations, in which employees’compensation

is related to firm performances. The model also predicts that corporate boards are more likely

to play a significant advisory role when the CEO of the firm is powerful (e.g., holds board

3This result does not imply that the principal is worse off with communication. As in Crawford and Sobel
(1982), in my model the sender (i.e., the principal) is ex-ante better offwhen more information is communicated
in equilibrium. This is true whether or not the sender can intervene. See Melamud and Shibano (1991) for an
alternative cheap-talk game in which the sender can be ex-ante better off in equilibrium without communication.

4See Section 3 for details.
5The analysis considers only linear contracts (i.e., equity).
6See Section 4 for details.
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chairmanship), has less to lose from being monitored (i.e., enjoy high reputation in the labor

market or a generous severance package), his pay is sensitive to performances, the number

of directors is large, or when directors are diverse and busy (e.g., hold other board seats).

Additionally, the model implies that private equity investors can have their voice heard more

effectively when they have reputation for being non-confrontational, when their fund has a

large number of portfolio companies, when they co-invest with other investors (e.g., LBOs’

club deals or VCs’syndicates), or when they have better exit options from their investment

(e.g., booming IPO and M&A markets). Similarly, the ease at which activist hedge funds can

launch a proxy fight (e.g., due to an easier proxy access or an improved coordination among

institutional investors) or the diffi culty of exiting and selling their shares (e.g., due to stock

illiquidity) could in fact diminish their ability to influence the policy of their target companies.

Related literature

This paper is related to the literature on incomplete contracts. Aghion and Tirole (1997) study

a model with intervention and communication, and show that a commitment not to overrule

the agent is beneficial because it incentivizes the agent to acquire information.7 This hold-up

problem is absent from my model. Aghion and Tirole also assume that the uninformed agent

always follows the recommendations of the principal,8 and as a result, the models offer different

predictions. In particular, in Aghion and Tirole (1997) the allocation of control is irrelevant

if the agent is assumed to be uninformed, while my model predicts that a commitment not

to intervene can be strictly optimal in those cases. In this respect, my model shares with

Crémer (1995) the idea that the principal can benefit from “letting the agent live with the

consequences of his actions.”However, here the mechanisms are also quite different. First, in

Crémer (1995) the principal benefits from being uninformed (about the agent’s ability) because

7Similarly, Burkart, Gromb, and Panunzi (1997) show that intervention can undermine managerial initia-
tives, and Adams and Ferreira (2007) show that it can disincentivize CEOs to cooperate with their board.

8In Aghion and Tirole (1997) there always exists a “suffi ciently negative”project such that the uninformed
party is always better off choosing the informed party’s most favored project over the risk of choosing the
“suffi ciently negative”project.
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it results with a more “aggressive”firing decision,9 which in turn, incentivizes the agent to

exert more effort. By contrast, in my model “letting the agent live with the consequences of his

actions”literally means that the principal (who is always informed) commits not to intervene

in the agent’s decision.10 Second, since in Crémer (1995) the principal is initially uninformed,

communication plays no role in his analysis. Importantly, this strand of the literature is silent

about the effect of intervention on the quality of communication (i.e., the flow of information),

which is the main focus of my analysis. Studying the interplay between these two mechanisms

not only empirically relevant, but it also highlights a novel mechanism by which the allocation

of control rights affects real outcomes.

This paper is also related to the literature on delegation. Starting with Dessein (2002),

a number of papers studied the trade off between delegation and communication in organi-

zations,11 and in particular, its applications to optimal board structure (Adams and Ferreira

(2007), Chakraborty and Yilmaz (2016), Harris and Raviv (2008)) and shareholder control

(Harris and Raviv (2010)). In those models, the uninformed principal delegates decision rights

to the informed agent, and delegation is beneficial because it avoids the distortion of the agent’s

private information when he communicates with his principal. By contrast, in my model the

informed principal communicates with the uninformed agent. The trade-off is between backing

this communication with intervention and solely relying on communication as a governance

mechanism. Moreover, while the papers above imply that the benefit for the principal from

retaining decision making authority is higher when communication (by the agent) is allowed,

my analysis suggests that communication by the principal can in and of itself reduce the value

of control rights. For this reason, my model offers new implications for corporate governance.

Related, Matthews (1989) studies a model in which the principal has the right to veto

the agent’s decision following a cheap-talk communication. Importantly, in Matthews (1989)

the principal’s private information is about her preferences, not the (common) value of the

9The firing decision of the uninformed principal in Crémer (1995) is more aggressive in the sense that the
agent is fired if and only if output is low, irrespective of his true ability.
10In Crémer (1995), the principal does not benefit from forgoing the right to fire the agent.
11For example, see Agastya, Bag, and Chakraborty (2014), Alonso and Matouschek (2007), Grenadier,

Malenko and Malenko (2017), Mylovanov (2008), and Harris and Raviv (2005).
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project/task. As such, the agent values this information only to the extent that it affects

the principal’s decision to exercise her veto right, and as a result, a veto threat can only

improve communication.12 Shimizu (2017) analyzes a model in which the principal can exit

the relationship following a cheap-talk communication with the agent. By exiting, the principal

enforces an exogenously given outcome that is detrimental to the agent. Effectively, exit is a

punishment in his model, and therefore, it can only improve communication. By contrast, in

my model intervention prompts disobedience and harms communication. This result hinges

on two features that are missing from existing models: (i) intervention allows the principal

to change the agent’s decision, and (ii) intervention is based on information that the agent

values.13

Finally, existing models in which corporate leaders have informational advantage focus on

the leader’s role in coordinating the various activities of the firm (e.g., Hermalin (1998); Bolton,

Brunnermeier and Veldkamp (2013)).14 My paper contributes to this literature by showing that

the ease at which corporate leaders can exercise their power diminishes their ability to influence

others to voluntarily follow their vision.

1 Setup

Consider a principal-agent environment in which payoffs depend on action x ∈ R and a random
variable θ that has a continuous probability density function f with full support over

[
θ, θ
]
. I

refer to x as a choice of a project or the scale of investment. The principal’s payoff is given by

UP (x, θ) = UP (θ, θ)− L (|x− θ|) , (1)

12Notice that intervention in my model is more flexible then a right to veto. The vicious cycle that intervention
creates in my model stems from this flexibility.
13Models in which intervention reinforces compliance or improves communication violate at least one of these

assumptions (e.g., Marino, Matsusaka, and Zábojník (2010), Van den Steen (2010), and Levit (2017)).
14Rotemberg and Saloner (1993, 2000) also focus on the vision aspect of leadership, but without modeling a

top-down communication. See Bolton, Brunnermeier, and Veldkamp (2010) for a related survey.

9



where L′′ (·) > 0 and L (0) = L′ (0) = 0. Notice that UP (x, θ) obtains a maximum at x = θ.

Similarly, the agent’s payoff is given by

UA (x, θ; b) = UA (θ + b, θ; b)− T (|x− (θ + b)|) , (2)

where T ′′ (·) > 0 and T (0) = T ′ (0) = 0. Notice that UA (x, θ, b) obtains a maximum at

x = θ + b. Without the loss of generality I assume b > 0. Effectively, b captures the intrinsic

conflict of interests between the principal and the agent, where a larger b implies a larger

conflict. Following Grossman and Hart (1986) and Hart and Moore (1990), I assume that

contracts are incomplete. In particular, the agent and the principal cannot contract over

actions or the communication protocol. Alternatively, b can be interpreted as the residual

conflict of interests between the principal and the agent following a contract that is agreed by

both parties.15

The model has four stages:

1. The first stage involves communication between the principal and the agent. The principal

is privately informed about θ. For simplicity, I assume that the principal perfectly observes

θ while the agent is uninformed. These assumptions are relaxed in Section 3.1. Based on

her private information, the principal sends the agent a message m ∈
[
θ, θ
]
. In line with a

standard cheap talk framework, the principal’s information about θ is non-verifiable and the

content of m does not affect the agent’s or the principal’s payoff directly. These assumptions

capture the informal nature of communication. I denote by µ(m|θ) ∈ [0, 1] the probability of

sending message m conditional on θ.

2. In the second stage, the agent observes the message from the principal and chooses project

x. I denote by x(m) ∈ R the decision rule of the agent conditional on message m.16

3. The third stage is the key departure of the model from the existing literature. The principal
15See Section 3.2 for the effect of pay for performances contracts on the analysis.
16Since the agent is indifferent with zero probability, I restrict attention to pure strategies.
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observes the agent’s decision and decides whether to intervene and override it. Formally, let

∆(x, θ) ∈ R be the principal’s decision. If ∆ = 0 then the principal effectively did not intervene

and the agent’s decision is implemented. In this case, neither the principal nor the agent incurs

any costs. If ∆ 6= 0 then the principal intervenes and the implemented project is x−∆.17 In

this case, the principal incurs a cost of δC (|∆|) where C ′′ (·) > 0 and C (0) = C ′ (0) = 0. The

agent also incurs a cost of τK (|∆|) where K ′′ (·) > 0 and K (0) = K ′ (0) = 0. Intuitively,

increasing marginal cost of intervention implies that intervention has more consequences when

it is more aggressive. In this respect, ∆ can be interpreted as the intensity of the principal’s

intervention. Notice that these functional forms assume away fixed costs from intervention,

which are needed for the tractability of the model. Section 3.3 analyzes a variant of this model

with a fixed intervention cost. Scalars δ > 0 and τ > 0 parametrize the intensity of these cost

functions.18 Crawford and Sobel (1982) is a special case of this model when intervention is

prohibitively costly (i.e., δ =∞).

4. Payoffs are realized and distributed to the principal and the agent. The principal and the

agent maximize their expected utilities, which are given respectively by

UP (θ, x,∆) = UP (x−∆, θ)− δC (|∆|) (3)

and

UA(θ, x,∆; b) = UA (x−∆, θ; b)− τK (|∆|) . (4)

Solution concept

A Perfect Bayesian Equilibrium of the game consists of three parts: The principal’s communi-

cation strategy µ∗ (m|θ), the agent’s decision rule x∗ (m), and the principal’s intervention policy

17Equivalently, the principal’s intervention policy can be defined as the choice of the project that is eventually
implemented, rather than the difference between the final project and the agent’s decision.
18The analysis does not depend on the cost of intervention itself, but rather on the belief of the agent

about the principal’s self-perception of this cost. For example, if it is a common knowledge that the principal
underestimates (overestimates) the diffi culty of intervening in the agent’s decision, for all purposes of the
analysis, the relevant cost of intervention is lower (higher).
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∆∗(x, θ). Specifically, the equilibrium is defined as follows: (i) For any realization θ ∈
[
θ, θ
]
, if

m∗ is in the support of µ (·|θ), then m∗ maximizes the expected utility of the principal given
the agent’s decision rule x∗ (·) and the intervention policy ∆∗(x, θ); (ii) for any message m,

project x∗ (m) maximizes the expected utility of the agent, taking into account the principal’s

communication strategy µ∗ (m|θ) (in order to update her prior about θ) and intervention policy
∆∗(x, θ); (iii) for any realization θ ∈

[
θ, θ
]
and x ∈ R, ∆∗(x, θ) maximizes the expected utility

of the principal. Finally, all players have rational expectations in that each player’s belief about

the other players’strategies is correct in equilibrium. Moreover, the agent uses Bayes’rules to

update their beliefs from the principal’s message about θ.

2 Analysis

This section provides the main analysis of the model. Section 2.1 studies the communica-

tion game without intervention. Section 2.2 analyzes the intervention policy of the principal.

Section 2.3 analyzes the full model, where both communication and intervention are allowed.

Section 2.4 studies the effect of intervention on communication and discusses the implications

of the model for compliance and disobedience. Section 2.5 considers the welfare implications

of intervention. All omitted proofs are given in the Appendix.

2.1 Communication without intervention

Consider the communication model when intervention is not feasible (δ =∞). Since projects
are non-contractible, the agent always chooses the project that maximizes his expected utility

conditional on her beliefs about θ upon message m. Communication can affect the agent’s

decision only by changing his beliefs. As shown by Crawford and Sobel (1982), all equilibria

of this communication game are characterized by a partition of
[
θ, θ
]
, where the principal

introduces noise into his signal by only specifying the partition element to which the realized

state belongs. Specifically, let (a0, ..., aN) denote a partition of
[
θ, θ
]
with N steps where
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θ = a0 < a1... < aN = θ. Also, define

x (a, a) ≡ arg max
x

∫ a

a

UA (x, θ, b) dF (θ) . (5)

The following result is a variant of Theorem 1 in Crawford and Sobel.

Proposition 1 (Communication). Consider the communication game without intervention.

There exists a positive integer N∗ such that for every n ∈ {1, ..., N∗} there exists at least one
equilibrium, where

µ∗ (x (ai−1, ai) |θ) = 1 if θ ∈ (ai−1, ai) (6)

x∗ (m) = x (ai−1, ai) if m ∈ (ai−1, ai) (7)

UP (x (ai, ai+1) , ai)− UP (x (ai−1, ai) , ai) = 0; for i = 1, ..., n− 1 (8)

a0 = θ and an = θ. (9)

Moreover, all other equilibria are economically equivalent to those in this class for some value

of n ∈ {1, ..., N∗}.19

In equilibrium, only a finite number n ≤ N∗ of projects are implemented with positive

probability, and the states of nature for which each of these projects is best for the agent form

an interval, and these intervals form a partition of
[
θ, θ
]
. The partition (a0, ..., aN) is determined

by (8), a well-defined second-order linear difference equation, and (9), its initial and terminal

conditions. Equation (8) requires the principal to be indifferent between the associated values

of x when θ falls on the boundaries between steps. Given our assumptions about UP , this

condition is necessary and suffi cient for the principal’s communication strategy to be a best

response to x (m). Similarly, (7) gives a best response of the agent to the communication

strategy (6).

19Other equilibria are economically equivalent in the sense that the mapping between states to actions is the
same. For example, instead of sending message x (ai−1, ai) if θ ∈ (ai−1, ai), the principal can mix and send a
message that is uniformly distributed over (ai−1, ai).
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2.2 Intervention

Suppose the principal observes θ and the agent’s decision is x. The agent may choose x 6= θ

either because he lacks suffi cient information about θ or because he is biased. Either way,

and regardless of the message the principal sent the agent beforehand, the principal’s optimal

intervention policy solves

∆∗ ∈ arg max
∆
{UP (θ, θ)− L (|x− θ −∆|)− δC (|∆|)}. (10)

Note that ∆∗ is a function of x− θ. The next result follows.

Lemma 1. The principal’s optimal intervention policy, ∆∗(x − θ), is given by the unique

solution of

L′(|x− θ −∆|) = δC ′ (|∆|) , (11)

and it has the following properties:

(i) ∆∗(0) = 0 and if x 6= θ then |∆∗(x− θ)| < |x− θ|.

(ii) ∆∗(·) is a strictly increasing and continuous function with a slope strictly smaller than
one.

(iii) If x 6= θ then |∆∗(x− θ)| strictly decreases in δ, limδ→0 |∆∗(x− θ)| = |x− θ|, and
limδ→∞ |∆∗(x− θ)| = 0.

According to Lemma 1 part (i), |∆∗| ≤ |x− θ|. Intuitively, by choosing |∆| ≤ |x− θ| the
principal moves the project closer to her ideal point and at the same time minimizes the cost

from intervention. Part (ii) implies that ∂|∆∗|
∂x

> 0⇔ x > θ. Intuitively, if x > θ (x < θ) and x

increases, then the agent’s decision is moving further away from (closer to) the principal’s ideal

point, and as a result, the principal has stronger (fewer) incentives to incur the effort needed

to mitigate the distortion in the agent’s decision. In other words, the principal’s intervention

policy is more aggressive when the agent’s decision is more detrimental. Part (iii) confirms our
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intuition that, everything else held equal, the principal intervenes more when it is less costly

to do so.

To illustrate the effect of intervention, I will use quadratic utility and cost functions as an

example throughout the analysis.20

Example (Quadratic functional form). Suppose UP (x, θ) = A − (θ − x)2, UA (x, θ; b) =

A− (x− θ − b)2, and C (|∆|) = K (|∆|) = ∆2. Under these assumptions,

∆∗(x− θ) =
x− θ
1 + δ

. (12)

Before proceeding with the analysis, I assume from now on that the intensity of the prin-

cipal’s intervention increases at a higher rate as the agent’s decision is moving further away

from the principal’s ideal point, that is, ∂
2∆∗

∂2x
≥ 0⇔ x > θ. To guarantee this condition, which

is used in the proof of Lemma 3 below, I assume

C ′′′ (·) ≤ 0 ≤ L′′′ (·) .21 (13)

2.3 Communication and intervention

The principal and the agent have rational expectations about the principal’s intervention policy

as characterized by Lemma 1. Therefore, accounting for the optimal intervention policy, the

principal’s indirect utility is VP (x, θ) ≡ UP (θ, x,∆∗(x − θ)). Since ∆∗(0) = 0, the principal’s

indirect utility obtains its maximum at x = θ.

Lemma 2. The principal’s indirect utility is a continuous single-peaked function which obtains

its maximum at x = θ. Specifically,

VP (x, θ) = VP (θ, θ)− l (|x− θ|) (14)

20Quadratic utility functions were used by Crawford and Sobel (1982) in their leading example.
21Assumption (13) is used for the proof (17) has a unique solution. But this assumption is not necessary.

For example, the solution of (17) is unique as long as τ is suffi ciently small.
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where VP (θ, θ) = UP (θ, θ),

l (|x− θ|) ≡ L(|x− θ −∆∗(x− θ)|) + δC(|∆∗(x− θ)|), (15)

l′ (0) = 0, and l′′ (·) > 0.

Similarly, the agent’s indirect utility is given by UA(θ, x,∆∗(x− θ); b). However, unlike the
principal, the possibility of intervention changes the agent’s ideal point.

Lemma 3. The agent’s indirect utility is a continuous single-peaked function which obtains

its maximum at x = θ + β, where

β = π + (C ′)
−1

(
L′ (π)

δ
) (16)

and π ∈ (0, b] is the unique solution of

T ′(b− π) = L′′(π)
τK ′((C ′)−1 (L

′(π)
δ

))

δC ′′((C ′)−1 (L
′(π)
δ

))
. (17)

Moreover, β strictly increases in b.

According to Lemma 3, with intervention the agent behaves as if his bias is β. From (11)

and (16), it follows that β satisfies

θ + β −∆∗ (β) = θ + π. (18)

That is, the agent’s indirect utility is maximized when as a response to choosing x = θ+β the

principal’s intervention results with a project of size θ + π. Since π ∈ (0, b], the final project

is smaller than the agent’s original ideal point, θ + b. Moreover, since β > π, the agent’s

optimal project, θ + β, “overshoots”relative to the project that is eventually implemented by

the principal. The agent’s incentives to overshoot will play a key role in the analysis below.
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Since there is a one-to-one mapping between β and b, the agent’s indirect utility can be

defined as a function of β, VA(x, θ; β), where

VA(x, θ; β) = VA(θ + β, θ; β)− t(|x− (θ + β) |), (19)

t′ (0) = 0, and t′′ (·) > 0.

Example. Under quadratic utility and cost functions, π = b δ2

τ+δ2
and

β = b
1 + δ

τ/δ + δ
. (20)

Moreover, the indirect utility functions of the principal and the agent are, respectively,

VP (x, θ) = A− δ

1 + δ
(θ − x)2 (21)

and

VA(x, θ; β) = A− τ + δ2

(1 + δ)2

[
(θ − x+ β)2 +

τ

δ2β
2

]
. (22)

The indirect utility functions VP (x, θ) and VA(x, θ; β) have the same generic properties as

the utility functions UP (x, θ) and UA(x, θ; b), and therefore, the communication between the

principal and the agent in equilibrium of the game with intervention features similar properties

to the equilibrium of the game without intervention. The next result immediately follows from

this observation.

Proposition 2. Consider the communication game with intervention. There exists a positive

integer N∗∗ such that for every n ∈ {1, ..., N∗∗} there exists at least one equilibrium in which

x∗ (m) and µ∗ (m|θ) are as characterized in Proposition 1, with the exception that the utility
functions UP (x, θ) and UA (x, θ; b) are replaced everywhere by VP (x, θ) and VA(x, θ; β), respec-

tively. Furthermore, for every θ and x, the intervention policy of the principal in equilibrium,

∆∗ (x− θ), is characterized by Lemma 1.
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2.4 The effect of intervention on communication

This section studies the effect of intervention on communication by comparing equilibria of a

game with intervention to equilibria of a game without intervention. Although in both cases

the communication between the principal and the agent features the same generic properties

(e.g., the equilibrium forms a partition on [θ, θ]), a comparison between the two games is not

immediate. Below, I show that when θ is a uniformly distributed on [θ, θ], the comparison

between the two games is reduced to a comparison between β and b. Note that a uniform

distribution is often assumed in the cheap talk literature to gain tractability (e.g., Dessein

(2002), Adams and Ferreira (2007), Chakraborty and Yilmaz (2016), and Harris and Raviv

(2005, 2008, 2010)), and it is also assumed by Crawford and Sobel in their leading example.22

I start with the following observation.

Lemma 4. Suppose θ is uniformly distributed over [θ, θ] and consider the communication

game without intervention. The set of equilibria with utility functions UP (x, θ) and UA(x, θ; b)

is identical to the set of equilibria with utility functions VP (x, θ) and VA(x, θ; b). Moreover, in

both cases,

x (ai−1, ai) =
ai−1 + ai

2
+ b and ai =

x (ai−1, ai) + x (ai, ai+1)

2
for i = 1, ..., N − 1, (23)

the elements of the partition satisfy

ai+1 − ai = ai − ai−1 − 4b, (24)

22The uniform distribution assumption is mainly used in the proof of Lemma 4 to show that x (a, a) = a+a
2 +b

as long as the agent’s utility is a single-peaked function with an ideal point θ+ b. However, it is not necessary
for the main result. For example, under quadratic utility and cost functions x (a, a) = E [θ|θ ∈ (a, a)] + b even
if UA(x, θ; b) is replaced by VA(x, θ; b). To the extent that the quality of communication decreases with the bias
of the agent (e.g., under the conditions in Theorem 2 in Crawford and Sobel (1982)), Proposition 3 extends
to non-uniform distributions. As another example, similar to the analysis in Section 2.4.1 below, a previous
version of this paper showed that if the agent is limited to choosing between only two actions (e.g., either keep
or change the status quo), then intervention can harm communication for any distribution of θ.
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and the size of the partition under the most informative equilibrium is

N (b) =

−1

2
+

1

2

√
1 + 2

θ − θ
b

 .23 (25)

According to Lemma 4, the communication between the principal and the agent in equilib-

rium does not change if the utility functions UP (x, θ) and UA(x, θ; b) are replaced by VP (x, θ)

and VA(x, θ; b), respectively. In fact, the main property that is required for this result (in

addition to the uniform distribution) is that these utility functions are single-peaked with ideal

points θ + b and θ, respectively. Under these assumptions, the agent’s best response satisfies

(23) and the solution of (8) requires (24) to hold. According to condition (24), the size of a

partition element is 4b smaller than the size of the preceding one. Intuitively, since the agent is

biased toward larger projects (b > 0), the challenge of the principal is convincing the agent to

choose smaller projects. Indeed, the agent is worried that the principal understates the benefit

from large projects. As a result, the principal has a lower credibility when she is sending a

message that θ is small. The lower credibility is reflected by a larger interval, which means

that less information is communicated by the principal.

An immediate corollary of Lemma 4 is that the communication stage in the equilibrium of a

game with intervention when the agent’s bias is b is identical to the communication equilibrium

of a game without intervention, when the bias of the agent is β.

Corollary 1. If θ is uniformly distributed over [θ, θ] then N∗ = N (b) and N∗∗ = N (β) .

Since the transmitted information is more precise when the partition is finer, intervention

harms (enhances) communication if N∗∗ < N∗ (N∗∗ > N∗).24 Notice that the size of the

largest partition that can arise in equilibrium, N (b), decreases with b. Therefore, the quality

of communication between the principal and the agent improves as their preferences become

23The notation dre is used to indicate the smallest integer greater than or equal to r.
24This definition does not take a stand on which equilibrium is selected. Crawford and Sobel (1982) proved

that the equilibrium with the largest number of elements in the partition Pareto dominates any other equilib-
rium, and therefore, it should be selected. See also Chen, Kartik, and Sobel (2008), who provide an alternative
justification for the selection of the most informative equilibrium in cheap-talk games.
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more similar. Importantly, since N∗ = N (b) and N∗∗ = N (β), the effect of intervention on

communication depends on how β compares to b. For example, note that N (b) = 2 if and only

if θ−θ
12
≤ b < θ−θ

4
. Thus, if β < θ−θ

12
then N (β) ≥ 3 and intervention enhances communication.

However, if θ−θ
4
≤ β then N (β) = 1 and intervention harms communication. The next result

follows.

Proposition 3. If θ is uniformly distributed over
[
θ, θ
]
then intervention harms (enhances)

communication only if β > b (β < b). Moreover, if β > b (β < b) then there exists θ − θ > 0

such that intervention harms (enhances) communication.

The observation that intervention can enhance communication is intuitive. Recall that ac-

cording to Lemma 1, everything else being equal, the principal is more likely to intervene when

the agent chooses a project that is further away from θ. The fear from intervention increases

the incentives of the agent to choose projects that are closer to the agent’s best estimate of the

principal’s ideal point. These incentives are particularly strong when the cost of intervention

for the principal are low (small δ) and the adverse consequences for the agent are severe (large

τ). If the agent is more likely to choose a project that is closer to the principal’s ideal point,

the principal has fewer incentives to pretend that the benefit from large projects is lower than

it really is. That is, the principal does not need to manipulate her private information as much

to counter the agent’s bias toward larger project. Therefore, more information can be revealed

in equilibrium. In this respect, intervention enhances communication.

More surprising is the observation that intervention can harm communication. Before

explaining the intuition behind this result, the next lemma demonstrates that β > b is feasible.

Lemma 5. There are 0 < τ ≤ τ <∞ and 0 < δ ≤ δ <∞ such that:

(i) If τ < τ or δ > δ then β > b. Moreover, if δ > δ then β is decreasing in δ and

limδ→∞ β = b.

(ii) If τ > τ or, τ > 0 and δ < δ, then β < b.
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Example. Under quadratic utility and cost functions,

β > b⇔ δ > τ. (26)

Figure 1 plots β/b = 1+δ
τ/δ+δ

as a function of δ. For a given value of τ , β > b whenever the

corresponding curve is above the black dashed line.

Fig. 1 - The ratio between β and b under quadratic utility and cost functions

How can intervention harm communication? There are two forces at work. First, everything

else held equal, if δ is large (intervention is costly to the principal) or τ is small (intervention is

not costly to the agent), the agent has incentives to choose larger projects than what he would

have chosen without the possibility of intervention. Essentially, the agent is exploiting the fact

that intervention is relatively more costly to the principal and intentionally “overshoots”by

choosing a project that is larger than his best estimate of θ+b. By doing so, the agent increases

the cost that the principal has to incur in order to move the project closer to its optimal scale,

θ. As a result, the project that is eventually implemented is closer to θ + b. Importantly, the

principal understands the incentives of the agent to overshoot. To mitigate this behavior, the

principal has even stronger incentives than before to pretend that θ is smaller than it really

is. However, since the agent foresees the stronger incentives of the principal to understate the

benefit from large projects, he puts even less weight on the credibility of her messages. In

this respect, intervention creates a vicious cycle: The principal’s attempt to prevent the agent
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from preempting her expected intervention, ultimately hurts the principal by diminishing her

ability to influence the agent’s decision in the first place through communication. Altogether,

less information is revealed in equilibrium, namely, intervention harms communication.

The incentives of the agent to overshoot are particularly strong when τ is small, as over-

shooting is less costly in those cases. Therefore, β decreases with τ . Related, the incentives of

the agent to overshoot decrease with δ for large values of δ. Intuitively, if intervention is less

costly to the principal, the agent can expect more intervention, and therefore, more overshoot-

ing is needed in order to guarantee that the final project is closer to θ + b. Since β decreases

with δ in this range, communication tends to be more effective when the principal’s cost of

intervention is higher. Note that if τ = 0 then β decreases in δ for any value of δ. However,

if τ > 0 and δ is small then β actually increases with δ. Intuitively, in this range the cost of

overshooting is particularly large, and since a smaller δ implies more intervention, the agent

will refrain from overshooting.

The second force in play is a bit more subtle. In equilibrium, the principal does not fully

reveal the value of θ at the communication stage. The agent learns that θ ∈ (ai−1, ai), but

not the exact location of θ in this interval. Interestingly, the possibility of intervention allows

the agent to “elicit”additional information from the principal. To understand how, note that

intervention (and its intensity) is an informed decision. Indeed, as was argued in Lemma 1,

the principal intervenes more intensively when the agent’s decision is more detrimental, i.e.,

when |x− θ| is large. Only those circumstances justify incurring the cost of intervention. For
example, recall that ai−1+ai

2
< x (ai−1, ai) < ai. Therefore, the principal intervenes more when θ

is closer to ai−1 than when it is closer to ai. Inevitably, intervention reveals information about

the location of θ in the interval (ai−1, ai), information the principal was trying to conceal

when communicating with the agent. While the agent cannot act after this new information is

revealed (i.e., he cannot voluntary revise his initial decision), he can condition his initial decision

on the information that will be reflected by the principal’s intervention policy. Knowing that

the principal will intervene only when large projects are highly unprofitable emboldens agent,

who in turn, takes more “risk”by choosing larger projects. Therefore, if τ is small, the agent
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has stronger incentives to “ignore”the principal’s messages, thereby relying more heavily on

the information that is reflected by her intervention policy. Essentially, the agent challenges the

principal to “back her words with actions”. Since the agent is less receptive to the principal’s

messages, less information is revealed in equilibrium.

Remark on commitment: Throughout, it was assumed that the principal’s intervention

policy is ex-post optimal. Instead, if the principal could commit to her ex-ante optimal in-

tervention policy (i.e., ∆ ≡ x − θ), the agent would have no control on the project that is

eventually implemented. As long as τ > 0, the agent will have strict incentives to minimize

the intensity of the principal’s intervention policy by choosing a project that is as close as

possible to his best estimate of θ. Effectively, the agent will behave as if he has no bias, and

consequently, information will be fully revealed in equilibrium (rendering the need to intervene

on the equilibrium path). Note, however, that this argument requires the agent to be believe

that the principal will intervene even if it is ex-post sub-optimal. As long as the agent has

some doubts, the analysis above continues to hold in the sense that a partial commitment of

this sort is equivalent to assuming that the principal’s cost of intervention is lower.

2.4.1 Compliance and disobedience

This section considers a binary version of the model which will serve two purposes: (i) high-

lighting the agent’s informational benefit from challenging the principal to “back her words

with actions;”(ii) explaining the effect of intervention on the agent’s disobedience.

Suppose N (b) = 2. Therefore, under the most informative equilibrium of a game without

intervention there are exactly two different types of messages, and each type triggers a different

project. Specifically, there is a cutoff θ∗ ∈ (θ, θ) such that the principal reveals the location of

θ relative to θ∗, and if θ > θ∗ (θ < θ∗) the agent chooses project x = xR (x = xL). According

to Lemma 4, xL < θ∗ < xR and θ
∗ = xL+xR

2
. Since b > 0, the challenge of the principal is

convincing the agent to choose xL when θ < θ∗. Since N (b) = 2, the agent follows these
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instructions in equilibrium:

E [UA (xL, θ; b) |θ < θ∗] ≥ E [UA (xR, θ; b) |θ < θ∗] . (27)

How does intervention affect the agent’s incentives to choose xL? To answer this question,

consider the game with intervention, but suppose that the only feasible projects are xL and xR.

By construction, intervention does not change the preferences of the principal; she still prefers

xL over xR if and only if θ < θ∗. Therefore, the principal follows the same communication

strategy as before. In this thought experiment, if the principal recommends on xL (i.e., she

sends a message θ < θ∗) but the agent disobeys her and chooses xR, the principal intervenes

whenever

−L (|θ − xL|)− δC (xR − xL) > −L (|xR − θ|) . (28)

In the Appendix I show that there exists θ∗∗ < θ∗ such that (28) holds if and only if θ < θ∗∗.25

Intuitively, the principal is willing to incur the cost of downsizing the project only if the benefit

from doing so is suffi ciently large. In fact, θ∗∗ decreases with δ, as the willingness to intervene

decreases with its cost. Suppose τ = 0. Expecting this intervention policy, the agent complies

with the principal’s instructions to choose xL if and only if

E [UA (xL, θ; b) |θ∗∗ < θ < θ∗] ≥ E [UA (xR, θ; b) |θ∗∗ < θ < θ∗] . (29)

Intervention prompts disobedience if and only if condition (29) is violated while condition (27)

holds.26

Proposition 4. Suppose N (b) = 2 and τ = 0. There exits δdisobedience > 0 such that interven-

tion prompts disobedience if and only if δ < δdisobedience.

How can intervention prompt disobedience? Recall that in equilibrium the principal reveals

25Implicitly, I assume that if the principal is indifferent between intervention and nonintervention, then she
does not intervene.
26If τ > 0 then the agent must also account for the harm that intervention might inflict, but as long as τ is

suffi ciently small, intervention would still prompt disobedience.
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the position of θ relative to θ∗, but she does not reveal additional information out of fear that

the biased agent will choose xR if θ is suffi ciently close to θ
∗. At the same time, the agent knows

that by disobeying the principal he can effectively force her to reveal the location of θ relative

to θ∗∗, information she was trying to conceal. Indeed, if the principal does not intervene then

it must be θ∗∗ < θ < θ∗. The agent benefits from calling the principal’s bluff since it allows

him to “consume”his private benefits from over-investment without scarifying too much value.

However, if the principal intervenes and forces the small project then it must be θ < θ∗∗. In

those cases, the agent himself does not find the large project very attractive and the correction

of his initial decision is in fact desirable. Either way, the agent can condition his own decision

on the decision of the principal to intervene. Intervention prompts disobedience because it

allows the agent to challenge the principal to “back her word with actions,” which embeds

an informational benefit for the agent. Notice that as δ rises, the principal is less likely to

intervene (θ∗∗ decreases with δ) and so the informational content of nonintervention is smaller,

implying the agent is less likely to disobey. This logic explains Proposition 4.

Finally, if condition (29) is violated then the principal expects the agent to disobey her

and choose the large project regardless of her instructions. Since the principal is ignored, she

has weaker incentives to communicate with the agent (she is indifferent). However, if sending

a message of any kind is costly, even if this cost is arbitrarily small, the principal will remain

silent and the equilibrium must be uninformative. In this respect, when intervention prompts

disobedience it also harms communication.

2.5 Principal’s welfare

If intervention enhances communication (β ≤ b) then it also increases the principal’s expected

utility in equilibrium. To see why, consider the following thought experiment. If the principal

communicates but ex-post “surprises”the agent and does not intervene, the game is a stan-

dard communication game without intervention where the agent’s bias is β instead of b. From

Crawford and Sobel we know that the principal’s expected utility is higher when the bias is

smaller. Notice that in a game with intervention the principal also incurs the cost of interven-
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tion when she moves the project closer to θ. However, by revealed preferences, the principal

must be better off with these choices. Therefore, when intervention improves communication,

it necessarily increases the principal’s expected utility in equilibrium.

By contrast, if intervention harms communication then a trade-off emerges: On the one

hand, less information is revealed by the principal in equilibrium, which harms the principal

since the agent is less likely to implement the desired project. But on the other hand, the

principal has a correction device to undo the agent’s bias. The next result provides suffi cient

conditions under which the principal is strictly better off without the option to intervene

because of its adverse effect on communication. When these conditions hold, the principal’s

expected utility in equilibrium is higher when she is only relying on her ability to persuade the

agent to follow her instructions.

Proposition 5. Suppose θ is uniformly distributed over
[
θ, θ
]
and N∗ ≥ 2. Let EVP (n)

and EUP (n) be the principal’s expected utility in equilibrium with and without intervention,

respectively, when the number of elements in the partition is n. Then, there are 0 ≤ τ ∗l < τ ∗h

and 0 < δ∗l < δ∗h such that if τ ∈ [τ ∗l , τ
∗
h] and δ ∈ [δ∗l , δ

∗
h] then N

∗∗ = 1 and

EUP (1) < EVP (N∗∗) < EUP (2) . (30)

Under these conditions, an informative equilibrium exists if and only if the principal does not

have the option to intervene, and the principal is worse off with the option to intervene if and

only if an informative equilibrium is selected whenever it exists.

The starting point of Proposition 5 is the existence of an informative equilibrium in a game

without intervention, which according to Lemma 4 requires N∗ ≥ 2⇔ b < θ−θ
4
. This condition

is necessary since otherwise intervention does not have the potential to harm communication.

Proposition 5 then shows that there exists a range of τ and δ such that three additional condi-

tions are satisfied. First, an informative equilibrium does not exist in a game with intervention,

that is, N∗∗ = 1 ⇔ θ−θ
4
≤ β. Since N∗ ≥ 2 > 1 = N∗∗, intervention harms communication.

Second, in the absence of communication the principal’s expected utility in a game with inter-
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vention is strictly higher than in a game without intervention, that is, EUP (1) < EVP (N∗∗).27

This condition ensures that if the principal is better off without the option to intervene, it is

only because of the adverse effect of intervention on communication. Third, the principal’s

expected utility in a game with intervention is strictly lower than her expected utility in a

game without intervention, as long as in the latter an informative equilibrium is selected, that

is, EVP (N∗∗) < EUP (2). Under these three conditions the principal is better off without the

option to intervene precisely because it harms communication.28

Example. Suppose θ is uniformly distributed over
[
θ, θ
]
. Crawford and Sobel showed that

under their leading example

E[(x∗ − θ)2] = σ2 (n, b) + b2, (31)

where x∗ is the action taken by the agent in equilibrium when the partition has n elements and

σ2 (n, b) =
1

12

(θ − θ)2

n2
+
b2 (n2 − 1)

3
. (32)

Therefore, under quadratic utility and cost functions

EUP (n) = A−
(
σ2 (n, b) + b2

)
(33)

and

EVP (n) = A− δ

1 + δ

(
σ2 (n, β) + β2

)
. (34)

Figure 2 provides two examples in which N∗ = 2 and condition (30) holds. In the right panels,

τ = 0. The lower right panel shows that N∗∗ = 1 if δ < 1 and N∗∗ = 2 otherwise. The

upper right panel shows that EVP (N∗∗) (the red curve) is strictly greater than EUP (1) (the

purple horizontal line) if and only if δ > 0.25 and EVP (N∗∗) is always strictly smaller than

27Recall that in both games there always exists an uninformative equilibrium with N = 1.
28Note that the principal can be better off without the option to intervene even in the absence of commu-

nication (i.e., EUP (1) > EVP (1)). Intuitively, intervention can be counter-productive by giving the agent
strong incentives to overshoot. The principal may end up with the same implemented project, but may incur
additional costs from intervention.
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EUP (N∗) (the green horizontal line). Combined, if τ = 0 then condition (30) holds whenever

δ ∈ (0.25, 1). In the left panels, τ = 0.05. The lower left panel shows that N∗∗ = 1 if and

only if δ ∈ (0.1, 0.9). The upper left panel shows that EVP (N∗∗) is always strictly greater

than EUP (1) and EVP (N∗∗) is smaller than EUP (N∗) if and only if δ > 0.35. Combined, if

τ = 0.05 then condition (30) holds whenever δ ∈ (0.35, 0.9).

Fig. 2 Principal’s expected welfare in equilibrium when A = 2, θ − θ = 4, and b = 0.5

Agent’s welfare. The agent expected utility in equilibrium with and without intervention

when the number of elements in the partition is n can be similarly defined as EVA (n) and

EUA (n), respectively. Under the assumptions above,

EUA (n) = A− σ2 (n, b) (35)
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and

EVA (n) = A− τ + δ2

(1 + δ)2

[
σ2 (n, β) +

τ

δ2β
2

]
. (36)

Figure 3 plots the agent’s expected utility under the same conditions as in Figure 2. It shows

that the agent can benefit from the principal’s intervention, primarily because intervention is

an informed decision.

Fig. 3 Agent’s expected welfare in equilibrium when A = 2, θ − θ = 4, and b = 0.5

3 Extensions and robustness

This section considers several extensions of the baseline model.

3.1 Informed agent

In some applications of the model, the agent may also have private information about the fun-

damentals θ. To consider this possibility, suppose θ = θP + θA, where the principal is privately

informed about θP ∈
[
θP , θP

]
and the agent is privately informed about θA ∈

[
θA, θA

]
. I also

assume that θP and θA are independent. Other assumptions of the model remain unchanged.

Different from the baseline model, here the agent’s choice is also a function of his private

information about θA. Without intervention, the game is identical to Harris and Raviv (2005),

who showed that the set of equilibria when the agent is privately informed is equivalent to the

set of equilibria when the agent is uninformed, with the exception that x∗(θA,m) = θA+x∗ (m),

where x∗ (m) is defined in Proposition 1. In particular, the quality of communication is not

affected by the agent’s private information, and the largest partition that arises in equilibrium
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has N
(
b, θP − θP

)
elements. Intuitively, the agent’s optimal decision fully incorporates his

private information about θA in a way that leaves the principal’s expected utility independent

of the realization of θA. The agent’s private information, on its own, does not distort the

principal’s incentives to communicate her own private information.

By contrast, in a game with intervention the principal can learn about θA from the agent’s

decision. This learning channel changes the principal’s intervention policy. As a result, it also

changes the agent’s initial decision, which in turn, affects the principal’s ability to influence

the agent in the first place. For simplicity, I restrict attention to quadratic utility and cost

functions. In addition, I focus on linear equilibria, i.e., equilibria in which the agent’s initial

decision is a linear function of θA.29 Under these assumptions, the following result holds.

Proposition 6. Consider the model with quadratic utility and cost functions, and two-sided

information asymmetry. The set of communication strategies that arises in a linear equilibrium

of a game with intervention is identical to the set of communication strategies that arises in an

equilibrium of a game without intervention (and two-sided information asymmetry) in which

the agent’s bias is b1+δ
δ
. Furthermore, for every θP and message m, the intervention policy of

the principal in equilibrium is independent of x and is given by ∆∗ = 1
1+δ

(θP −E[θP |m]− 1+δ
δ
b).

Proposition 6 shows that with intervention the agent behaves as if his bias is b1+δ
δ
. Since

1+δ
δ
> 1, intervention always harms communication when the agent is privately informed. Note

that this result holds for any τ > 0. By contrast, when the agent is uninformed he behaves as

if his bias is b 1+δ
τ/δ+δ

. Since 1+δ
τ/δ+δ

< 1+δ
δ
for all τ > 0, the agent’s private information exacerbates

the adverse effect that intervention has on the ability of the principal to influence the agent

through communication.

To understand Proposition 6, notice that τ has no effect on the equilibrium (the informed

agent behaves as if τ = 0). When the agent is uninformed, larger τ weakens his incentives to

choose actions that are distant from his best estimate of the principal’s ideal point. However,

when the agent is privately informed, choosing a distant action does not increase the intensity

29Notice that without intervention all equilibria are linear.
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of intervention by the principal. In equilibrium, the principal learns about θA from the agent’s

decision and updates her ideal point accordingly. In particular, the principal rationally inter-

prets distant actions as strong signals about θA. That is, the principal attributes the variation

in observed x to unobserved variation in θA. For this reason, the intensity of the principal’s

intervention in equilibrium does not depend on x, and as such, it is beyond the agent’s con-

trol. While intervention has no disciplinary effect on the agent’s decision, the agent overshoots

in anticipation of the principal’s intervention, knowing that the principal will intervene more

aggressively only if θP justifies doing so. For this reason, intervention harms communication.

Finally, the comparison of this analysis to the baseline model implies that, all else equal,

communication is less effective when the agent is better informed. This observation also implies

that the principal will intervene more intensively when the agent is better informed.

Principal’s welfare with informed agent. Notice that if θP , the principal’s private in-

formation, is uniformly distributed then the principal’s expected utility under the most infor-

mative equilibrium is identical to her expected utility when θA is a common knowledge and

τ = 0. This results follows directly from Proposition 6 and from the observation that the

agent’s decision in equilibrium fully incorporates his private information about θA; the only

loss of welfare stems from the noisy communication of θP . Therefore, under quadratic utility

and cost functions, the principal’s expected utility can be calculated using the expressions from

the corresponding example in Section 2.5. In particular, the principal can be worse off with

the ability to intervene in the agent’s decision.

3.2 Pay for performances

The incompleteness of contracts plays a central role in the analysis: Actions and messages

cannot be contracted. However, the value of the project (e.g., its terminal cash-flows) could in

principle be contracted. For example, the principal can give the agent more skin in the game

by offering him a fraction ω ∈ (0, 1) of UP (x, θ) (i.e., equity contract). This section explores

the effect of ω on the interaction between intervention and communication.
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For this purpose, let the agent’s intrinsic private benefits from investment be Bx, where

B > 0.30 I assume that ω does not have a direct effect on the intervention technology. Given

ω, the principal’s direct and indirect utility are (1− ω)UP (x, θ) and (1− ω)VP (θ, x; δ
1−ω ), re-

spectively. Similarly, the agent’s direct utility is Bx+ωUP (x, θ). Notice that Bx−ωL (|x− θ|)
is a single-peaked function that obtains its maximum at θ + (L′)−1 (B

ω
). Therefore, the

agent’s direct utility can be rewritten as UA (θ + b (ω) , θ; b (ω))− ωT (|x− (θ + b (ω))|), where
b (ω) ≡ (L′)−1 (B

ω
) and T (·) has the same properties as in the baseline model. Importantly,

T (·) does not depend on ω directly. Let β (τ , δ, b) be the agent’s bias adjusted for intervention

as defined by (16), then with pay for performances it can be written as β (ω) ≡ β( τ
ω
, δ

1−ω , b (ω)).

Therefore, the agent’s indirect utility can be rewritten as ωVA(θ, x; β(ω), τ
ω

).

Since the analysis of the baseline model is invariant to linear transformations of the indirect

utility functions, the game without intervention has the same solution with the exception that

b is replaced by b (ω). Similarly, the game with intervention has the same solution with the

exceptions that b is replaced by b (ω), τ is replaced by τ
ω
, and δ is replaced by δ

1−ω . Therefore,

a change in ω has three potential effects on the analysis. First, the bias of the agent decreases

with ω. Intuitively, with more skin in the game the agent internalizes more of the benefit from

choosing a project of size θ, and as a result, his ideal point shifts closer to θ. Second, the agent’s

cost from intervention decreases in ω. Intuitively, since the actual cost from intervention is

independent of ω, a larger ω implies that the agent puts more weight on maximizing UP (x, θ).

Equivalently, the cost from intervention per unit of utility is lower. Third, the principal’s cost

from intervention increases in ω. Intuitively, by giving away a larger fraction of the project

to the agent, per unit of utility, the principal incurs a larger cost from intervention. Since
δ

1−ω →∞ as ω → 1, the next result is a direct corollary of Lemma 5 part (i).

Proposition 7. There is ω∗ ∈ (0, 1) such that if ω ∈ (ω∗, 1) then β (ω) > b (ω).

Essentially, intervention is more likely to harm communication when the agent has a signif-

icant skin the game. While the agent’s bias effectively decreases with ω, its positive effect on

30Similar results hold if instead these private benefits are given by Bq (x) where q′ > 0 and q′′ ≤ 0.
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the principal’s ability to influence the agent through communication is weaker with interven-

tion. Indeed, a higher ω also decreases the cost from intervention for the agent and increases

the cost of intervention to the principal, and as discussed in Section 2.4, intervention is more

likely to harm communication when the agent’s cost is small relative to the principal’s cost.

Example. Under quadratic utility and cost functions, b (ω) = B
2ω
, β(ω)
b(ω)

=
1+ δ

1−ω
1−ω
ω

τ
δ

+ δ
1−ω
, and

β (ω) > b (ω)⇔ ω >
τ

τ + δ
. (37)

Welfare effects of pay for performances. When choosing ω the principal trades off the

direct cost of giving away part of the project’s value to the agent with the positive effect it

may have on communication. Generally, the analysis above suggests that the optimal level of

ω (from an ex-ante perspective) depends on the intervention technology (τ and δ), but it may

also depend on factors which are outside of the model (e.g., agent’s ability, career concerns,

etc.). While the analysis of the optimal contract is beyond the scope of this paper, the example

below demonstrates that intervention can harm communication even if the principal chooses ω

optimally (prior to observing θ).

Example. Figure 4 plots the principal’s expected utility in equilibrium as a function of ω,

with intervention (red curve) and without intervention (green curve), when the utility and cost

functions are quadratic.31 Both panels of Figure 4 shows that under the optimal ω the principal

is better off without intervention. The optimal ω without intervention is 0.48 and it implies

N∗ = 2. In the left (right) panel τ = 0.05 ( τ = 0), the optimal ω with intervention is 0.38

( 0.60), and it implies N∗∗ = 1 (N∗∗ = 2). Intuitively, a larger τ increases the cost of giving

the agent more skin in the game, as larger ω weakens the effect of τ on the incentives of the

agent to comply with the principal. Notice that if τ = 0.05 then under the optimal contract,

N∗∗ < N∗, that is, intervention can harm communication even if the principal chooses ω

31If UP (x, θ) is quadratic, so is the agent’s utility. The principal’s expected utility in equilibrium without
intervention is given by (1− ω)EUP (n) where EUP (n) is given by (33) and b is replaced by b (ω) everywhere.
Similarly, the principal’s expected utility in equilibrium with intervention is given by (1 − ω)EVP (n), where
EVP (n) is given by (34), β is replaced by β (ω), and δ is replaced by δ

1−ω .
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optimally.

Fig. 4 Principal’s expected welfare as a function of ω when A = 2, θ − θ = 4, B = 0.5, and δ = 0.4

3.3 Fixed intervention cost

Consider an extension of the model in which the cost of intervention if fixed at C > 0. Namely,

if the principal pays C she can freely adjust the final project at no additional cost. Since

the cost of intervention is fixed, upon intervention the principal always chooses ∆ = θ − x.

Therefore, given x and θ, the principal intervenes if and only if

−L (|x− θ|) < −L (0)− C ⇔ θ 6∈
[
x− C, x+ C

]
, (38)

where C ≡ L−1 (C + L (0)).32 I prove the following result.

Proposition 8. Suppose τ = 0 and C ≤ b. If θ is uniformly distributed over
[
θ, θ
]
then

the game with intervention does not have a partition equilibrium with more than one element.

In the unique partition equilibrium the principal’s messages are uninformed, the agent chooses

x∗ = max
{
θ, θ + C

}
, and the principal intervenes if and only if C < θ− θ and θ ∈

[
θ, θ − C

]
.

Intuitively, if C ≤ b then the cost of intervention is relatively small and the principal

intervenes whenever the project is larger than θ+ b. However, the principal does not intervene

32Implicitly, I assume that if the principal is indifferent between intervention and nonintervention, then she
does not intervene.
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if the project is too small, x ∈
(
θ − C, θ

)
. Since from the agent’s perspective the risk of

undershooting is larger than the risk of overshooting, the agent has strong incentives to choose

larger projects. In response, and similar to the reasoning in baseline model, the principal has

stronger incentives to understate θ, which in turn, harms her credibility. In equilibrium, no

information can be revealed by the principal.

The next corollary, which follows from Proposition 8 and the observation that N∗ ≥ 2 if

and only if b ≤ θ−θ
4
, shows that intervention can harm communication also in a setup with

fixed intervention costs.

Corollary 2. If C ≤ b and b ≤ θ−θ
4
then an informative equilibrium exists in a game without

intervention, but it does not exist in a game with intervention.

4 Applications

This section discusses several applications of the model.

4.1 Managerial leadership

Leadership is often defined as the ability to influence and motivate others to achieve a certain

goal successfully (e.g., Hermalin (1998)). It involves articulating a strategy that is appropriate

given the organization’s strategic position and the environment it faces. Without the ability

to persuade others to follow their vision, leaders have to choose between a compromise with

an undesired outcome and exercising their authority to bring about a change. The power of

leaders depends on various characteristics of the organization and its leadership. As a general

message, the model suggests that the ease at which corporate leaders can exercise their power

can diminish their ability to influence others to voluntarily follow their vision. In this regard,

the model can be applied to study interactions between managers and their subordinates,

owners of small businesses and their employees, firms and labor unions, or CEOs\headquarters
and division managers.
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As an example, consider the interaction between the CEO of a company (principal) and

a representative division manager (agent). The firm has to decide on x, the resources to

be allocated to the division (e.g., investment in physical or human capital). Investment can

involve expanding to new geographical areas, introducing new products, renewing IT systems,

divesting non-core assets, etc. These investments are not contractible since their attractiveness

depend on a variety of macro, industry, and firm-specific factors which cannot be perfectly

anticipated. The CEO has superior knowledge on the benefit from investment, θ. For example,

if the proposal is to divest assets, the CEO has a better understanding of the market conditions,

demand for corporate assets by investors, and the external cost of financing. If the proposal

is to enter new markets, the CEO has a better knowledge of the complementarities with other

products of the company, unwanted cannibalization, and alternative investment opportunities.

While the CEO is interested in maximizing the value of the whole firm, the division manager is

biased toward maximizing the profits of his division, and may be prone to over-invest (b > 0).

Generally, the conflict of interests arises because the division manager is being compensated

based on the profitability of his division, because of his career concerns (his skills are better

reflected in the performances of his division), or due to private benefits from controlling larger

assets (e.g., prestige and power).

The CEO will lay out her vision and try to persuade the division manager to follow her

strategy. If she is unsuccessful, the ability of the CEO to intervene and implement the strategy

in spite of the division manager’s resistance (parameter δ) depends on factors such as the

CEO’s managerial style (e.g., hands-off approach), the CEO’s characteristics (e.g., aversion to

confrontation), the busyness of the CEO (e.g., the alternative cost of intervention is higher

when the CEO oversees large and complex firms), and the autonomy that was granted to the

division over its operations in the first place. In turn, intervention could harm the division

manager’s reputation, ego, or compensation (τ ≥ 0).

Applied to this context, the model suggests that cross sectional variation in firm and CEO

characteristics that are associated with a high cost of intervention (as listed above) should be

positively correlated with effective communication and visionary leadership. Effective commu-

36



nication can be viewed as an intangible asset or a corporate culture that creates an environment

in which open dialogues can flourish. Surveys of employees’satisfaction and their view of the

organization in which they are employed could be a useful source. Moreover, if communica-

tions are effective and valuable, various means of internal communications should be frequently

used: in person meetings, conference calls, emails, distribution of internal memos, etc. In this

regard, the model speaks to how different patterns of communication are mapped to different

organizational structures and managerial styles.

4.2 Corporate boards

In a typical public corporation, the CEO runs the company on a daily basis, but the board of

directors sets the strategy, approves major decisions, and has the right to replace and set the

compensation of the CEO. In many cases, board members are executives in related industries,

lawyers, bankers, accountants, academics, and in some cases, savvy investors such as activist

hedge fund managers (Gow, Shin, and Srinivasan (2014)) or venture capitalists (even long

after the IPO, see Celikyurt, Sevilir and Shivdasani (2014)). These individuals often use their

business, legal, and finance expertise, to advise and direct the CEO on a variety of issues such

as strategy, public relations, crisis management, and M&A. At the same time, CEOs might

have a different agenda: building an empire, maintaining their reputation, or seeking the “quite

life.”Therefore, monitoring (intervention) and advising (communication) the CEO are among

the most important duties of directors.

Intervention, however, requires coordination among directors (e.g., to avoid free-riding).33

Therefore, the effective cost of intervention of the board as a whole is likely higher in larger

boards with more diverse and busy directors. The analysis suggests that the effectiveness of

the board’s advisory role could be positively related to these factors. Moreover, since boards

with a powerful CEO have a limited capacity of intervention, the analysis suggests that the

board in those cases can in fact play a more effective advisory role. Board meeting minutes can

33For studies on optimal board size see Hermalin and Weisbach (1998), Harris and Raviv (2008), and Raheja
(2005).
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shed light on the allocation of time that directors spend during these meetings on monitoring,

criticizing, and overruling the CEO, as opposed to a productive discussion which involves

advice and exchanges of views. Alternatively, the effectiveness of the board monitoring can be

measured indirectly by the performances of a strategic event that requires significant board

input, such as an acquisition of another firm.

Moreover, the analysis suggests that the advisory role of the board is likely to be ineffective

when the CEO does not suffer severe consequences form intervention (low τ), that is, if his

reputation in the labor market is already established (e.g., long tenure or proximity to retire-

ment) or if he is entitled to a generous severance package. This prediction differs from Adams

and Ferreira (2007) who argue that the board’s advisory role will be ineffective when the CEO

dislikes board monitoring the most. Indeed, in their model there is a hold-up problem: the

CEO has fewer incentives to cooperate with the board when monitoring inflicts larger costs on

the CEO, and by assumption, without cooperation the board cannot advise the CEO in their

model.

Finally, the analysis in Section 3.1 suggests that communication is less effective when the

agent is better informed. Therefore, if the CEO has a higher expertise the model predicts

that the board’s advisory role is less effective (holding the board’s expertise fixed). This

prediction differs from Harris and Raviv (2008) and Chakraborty and Yilmaz (2016). In the

former, the quality of communication from outsiders to insiders is unaffected by the expertise

of insiders (given the allocation of control, which is itself endogenous), and in the latter, more

information can be communicated by the board when management is also privately informed.

This difference stems from the assumption in my model that the board can intervene in the

CEO’s decision if the CEO does not comply.34

34While the models differ in their prediction with respect to the effectiveness of communication from the
board to the CEO, they all suggest that CEOs with better information should be given (weakly) more control
rights.

38



4.3 Private equity

The implications of the model for corporate boards can also be applied to private equity. Ven-

ture capital and leveraged buyout funds typically hold board seats and other control rights

in their portfolio companies, which give them the power to make strategic decisions, replace

management, and even liquidate the firm (Baker and Gompers (2003), Kaplan and Ström-

berg (2003, 2004), Cornelli and Karakas (2015)). Importantly, these investors often provide

expertise and post-investment added value to their portfolio companies. Indeed, the empirical

evidence suggests that VCs provide advice and support to small entrepreneurial start-ups, help

with the professionalization of the management team and the commercialization of the prod-

uct, foster innovation, and improve productivity.35 Similarly, in a typical leveraged buyout,

the LBO fund appoints experts from the industry (e.g., Ex-CEOs), consultants, and its own

general partners, as board members of the acquired company. Moreover, many of the large

PE shops have an in-house operational research team whose purpose is to identify attractive

investment opportunities, develop value creation plans for those investments, and help the fund

to turnaround the operations of the target firm after the investment is made (e.g., cost-cutting,

productivity improvements, repositioning, or acquisition opportunities).36 For all of these rea-

sons, the role of communication and intervention seems particularly important in the private

equity investments.

The private equity context, however, has several unique implications that do not necessarily

apply to boards of public companies. First, private equity firms tend to co-invest (i.e., club

investment in leveraged buyouts and syndication in venture capital). When the deal has more

than one sponsor, the investors share the cash-flows and control rights in the company, which

can result in coordination problems between investors. Second, private equity firms make

multiple investments. Holding the size of the fund fixed, a large number of portfolio companies

increases the alternative cost of intervention in each specific portfolio company. The motives

behind co-investment and diversification are likely to be related to capital constraints and risk-

35See Hellmann and Puri (2000, 2002); Kortum and Lerner (2000); Bottazzi, Rin, and Hellmann (2008);
Chemmanur, Krishnan, and Nandy (2011); Gompers et al. (2016).
36See Kaplan and Strömberg (2009); Acharya et al. (2013); Gompers, Kaplan, Mukharlyamov (2016).
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sharing. However, the model suggests that the cross-sectional variation in these two factors can

explain the ability of private equity investors to effectively communicate, provide advice, and

add value to their portfolio companies. Related, since private equity investors make multiple

investments over time, they could develop reputation for either working constructively with

management or being adversarial and authoritative. In the former case, intervention could

be more costly since the investor’s reputation is at stakes. Therefore, the model suggests

that private equity investor with reputation of being “friendly”could also be more effective in

advising their portfolio companies.37 Finally, private equity are long-term investors, but they

ultimately seek an exit on their investment. Exit can be a substitute for intervention if the PE

investor fails to influence management. Therefore, the ease at which the PE investors can exit

their investments (at better terms) has a similar effect to a higher cost of intervention. Exit

from a private equity investment is easier if the IPO or the M&A market are hot. Therefore,

the model predicts that the ability of private equity investors to provide advice and add value

to their portfolio companies through communication is higher when these markets are booming.

4.4 Shareholder activism

In a typical campaign, the activist investor buys a sizeable stake in a public company and then

engages with the management or the board of directors, expressing her dissatisfaction or view of

how the company should be managed.38 Indeed, activist hedge funds, who routinely conduct

highly-detailed analysis of their investments, are likely to have information that corporate

boards lack, especially if directors are lazy, busy with other activities, do not have the relevant

expertise, or simply suffer from group-think.39 Occasionally, if the company refuses to comply

37Baker, Gibbons, and Murphy (1999) assume that authority is non-contractible, but can be informally given
through commitments enforced by reputation.
38There is an emerging empirical evidence that suggests that activist and institutional investors often engage

in direct discussions with the management or the board of directors of their portfolio companies, mostly behind-
the-scenes. For example, see Becht, Franks, Mayer, and Rossi (2009), Becht, Franks, and Grant (2017), Deloitte
(2015), McCahery, Sautner, and Starks (2016).
39The idea that outsiders have information that insiders can learn from is central to a new literature that

studies how firms use information in stock prices to make investment decisions (e.g., Bond, Edmans, and
Goldstein (2012)).
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with the activist’s demand, the activist ends up litigating or launching a proxy fight in order

to force her ideas on the company. Running a successful proxy fight, however, is costly since it

requires the activist to reach out to other shareholders of the firm in order to win their vote.

Applied to this context, the analysis highlights that policies that reduce the cost of in-

tervention for activists (e.g., the adoption of an easier proxy access) and forces that ease the

coordination among shareholders (e.g., the rise of institutional/index investment or the in-

creased influence of proxy advisory firms) can undermine the ability of activists to influence

the polices of their target companies. Similarly, activists might have more influence on target

companies with dispersed ownership, large market capitalization, or dual class structure. In all

of these instances, intervention is likely to be more costly. Finally, and similar to the applica-

tion of the model to private equity, factors that increase the ease at which activist investors can

sell their shares (e.g., stock liquidity), could facilitate comminution between activist investors

and their target companies.

5 Concluding remarks

Interactions between managers, directors, and investors are crucial to our understanding of how

corporations are managed and governed. In many of these interactions, contracts only par-

tially resolve the conflicts of interests, and as a result, communication and intervention become

the primary mechanisms of governance. This paper sheds new light on corporate governance

by analyzing a principal-agent model with incomplete contracts and a top-down information

structure. Surprisingly, the main result of the paper demonstrates that a credible threat of

intervention can decrease the incentives of the agent to follow the principal’s instructions. In

those cases, intervention prompts disobedience, communication is less effective and less infor-

mative with intervention than without it, and the two mechanisms substitute one another. In

this respect, words do speak louder without actions. Building on this core insight, the analy-

sis considers several variants of the baseline model and provides novel predictions related to

managerial leadership, corporate boards, private equity, and shareholder activism.
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Appendix

Proof of Lemma 1. First, suppose x − θ > 0 (x − θ < 0). The principal never chooses

∆ > x − θ (∆ < x − θ), since by choosing ∆ = x − θ she not only minimizes L, but she also
reduces the cost of intervention. Also, the principal never chooses ∆ < 0 (∆ > 0), since by

choosing ∆ = 0 not only she brings the cost of intervention to zero, but she also reduces the

loss from the L (·) function. Therefore, |∆∗| < |x− θ| and x = θ ⇒ ∆∗ = 0, as required.

Second, suppose x−θ ≤ 0. From the previous step it must be x−θ ≤ ∆ ≤ 0, and therefore,

∆∗ ∈ arg max
x−θ≤∆≤0

{UP (θ, θ)− L (θ − x+ ∆)− δC (−∆)}.

The first order condition implies

−L′ (θ − x+ ∆) + δC ′ (−∆) = 0, (39)

and the second order condition requires

−L′′ (θ − x+ ∆)− δC ′′ (−∆) < 0.

Since L′′ > 0 and C ′′ > 0, the second order condition holds and ∆∗ is given by the unique

solution of L′ (θ − x+ ∆) = δC ′ (−∆). Moreover, notice that if x− θ = 0 then ∆∗ = 0, and if

x − θ < 0 then x − θ < ∆∗ < 0. Third, suppose x − θ > 0. From the initial step it must be

0 ≤ ∆ ≤ x− θ, and therefore,

∆∗ ∈ arg max
0≤∆≤x−θ

{UP (θ, θ)− L (x− θ −∆)− δC (∆)}.

The first order condition implies

L′ (x− θ −∆)− δC ′ (∆) = 0, (40)

and the second order condition requires

−L′′ (x− θ −∆)− δC ′′ (∆) < 0.

Therefore, ∆∗ is given by the unique solution of L′ (x− θ −∆) = δC ′ (∆). Also, notice that

0 < ∆∗ < x − θ. Notice that (39) and (40) imply that ∆∗ is a continuous function of x − θ.

45



Overall, this proves (11) and completes part (i).

Consider part (ii). Define r ≡ x− θ. Applying the implicit function theorem on (11),

∂∆∗

∂r
=

L′′ (|r −∆∗|)
L′′ (|r −∆∗|) + δC ′′ (|∆∗|) . (41)

Noting that L′′ > 0 and C ′′ > 0 establishes ∂∆∗

∂r
∈ (0, 1).

Finally, consider part (iii). Recall 0 < ∆∗ ⇔ 0 < x − θ. Applying the implicit function
theorem on (11), we have

∂ |∆∗|
∂δ

= − C ′ (|∆∗|)
L′′ (|x− θ −∆∗|) + δC ′′ (|∆∗|) < 0. (42)

Moreover, from (11) it immediately follows that if δ → 0 then L′(|x− θ −∆∗|) → 0. Since

L′ (0) = 0 and L′′ > 0, if δ → 0 then ∆∗ → |x− θ|. Similarly, from (11) it immediately follows

if δ → ∞ then L′(|x−θ−∆∗|)
δ

→ 0 . Since C ′ (0) = 0 and C ′′ > 0, if δ → ∞ then ∆∗ → 0, which

completes the proof.

Proof of Lemma 2. According to Lemma 1, ∆∗ is a function of x−θ and it does not depend
on θ or x in any other way. Therefore, so does l (x− θ) ≡ L(|x−θ−∆∗(x−θ)|)+δC(|∆∗(x−θ)|).
Next, I argue l (x− θ) = l (θ − x). Indeed, suppose without the loss of generality that x > θ.

According to Lemma 1, ∆∗(x − θ) is the unique solution of L′ (x− θ −∆) = δC ′ (∆), and

∆∗(θ − x) is the unique solution of L′ (x− θ + ∆) = δC ′ (−∆). Since both has a unique

solution, it must be ∆∗(θ − x) = −∆∗(x− θ). Recall |∆∗(x− θ)| < |x− θ|, and therefore,

L(|x− θ −∆∗(x− θ)|) =

L(x− θ −∆∗(x− θ)) if x > θ

L(−x+ θ + ∆∗(x− θ)) if x < θ.
(43)

Therefore, if x > θ then

l (x− θ) = L(x− θ −∆∗(x− θ)) + δC(|∆∗(x− θ)|)
= L(x− θ + ∆∗(θ − x)) + δC(|∆∗(θ − x)|) = l (θ − x) .

Since l (x− θ) = l (θ − x), l (·) is effectively a function of |x− θ|.
Finally, I prove l′ (0) = 0 and l′′ > 0. Without the loss of generality, suppose x > θ. Then,

l′ (x− θ) = L′(x− θ −∆∗(x− θ))
(
1− (∆∗)′ (x− θ)

)
+ δC ′(∆∗(x− θ)) (∆∗)′ (x− θ).
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Since ∆∗(x−θ) satisfies L′(x−θ−∆∗) = δC ′(∆∗), it must be l′ (x− θ) = L′(x−θ−∆∗(x−θ)).
Recall ∆∗(0) = 0, and therefore, l′ (0) = L′(0) = 0. To see that l′′ > 0, notice that l′′ (x− θ) =

L′′(x − θ − ∆∗(x − θ))
(
1− (∆∗)′ (x− θ)

)
. Since L′′ > 0, and since according to Lemma 1

(∆∗)′ ∈ (0, 1), it follows that l′′ > 0, as required.

Proof of Lemma 3. Since ∆∗(x− θ) is a continuous function, so is VA(x, θ; b). I prove the

lemma in several steps:

1. First, I argue that if x − θ ≤ 0 then ∂VA(x,θ;b)
∂x

> 0. To see why, note that according to

Lemma 1, if x− θ ≤ 0 then x− θ ≤ ∆∗(x− θ) ≤ 0. Therefore, in this region,

VA(x, θ; b) = UA(θ + b, θ)− T (θ − x+ ∆∗(x− θ) + b)− τK(−∆∗(x− θ)), (44)

and
∂VA(x, θ; b)

∂x
= T ′(θ − x+ ∆∗(x− θ) + b)(1− ∂∆∗

∂x
) + τK ′(−∆∗(x− θ))∂∆∗

∂x
. (45)

Recall that according to Lemma 1, ∂∆∗

∂x
∈ (0, 1). Also note that T ′(θ − x+ ∆∗(x− θ) + b) > 0

and K ′ (·) ≥ 0. Therefore, it must be ∂VA(x,θ;b)
∂x

> 0, as required.

2. Second, I argue that if 0 < x − θ and b < x − θ − ∆∗(x − θ) then ∂VA(x,θ;b)
∂x

< 0. To

see why, note that according to Lemma 1, 0 < x − θ implies θ < ∆∗(x − θ) < x − θ. Since
b < x− θ −∆∗(x− θ), in this region,

VA(x, θ; b) = UA(θ + b, θ)− T (x− θ − b−∆∗(x− θ))− τK(∆∗(x− θ)) (46)

and
∂VA(x, θ; b)

∂x
= −T ′(x− θ − b−∆∗(x− θ))(1− ∂∆∗

∂x
)− τK ′(∆∗(x− θ))∂∆∗

∂x
. (47)

Since T ′ (0) = 0 and T ′′ > 0, b < x − θ − ∆∗(x − θ) implies T ′(b < x − θ − ∆∗(x − θ)) > 0.

Therefore, in this range ∂VA(x,θ;b)
∂x

< 0, as required.

3. Third, suppose 0 < x − θ and x − θ −∆∗(x − θ) ≤ b. I argue that there exists x̂ in this

range such that ∂VA(x,θ;b)
∂x

|x=x̂ = 0. To see why, recall 0 < x− θ implies 0 < ∆∗(x− θ) < x− θ.
Therefore, in this region,

VA(x, θ; b) = UA(θ + b, θ)− T (θ + b− x+ ∆∗(x− θ))− τK(∆∗(x− θ)) (48)

and
∂VA(x, θ; b)

∂x
= T ′(θ + b− x+ ∆∗(x− θ))(1− ∂∆∗

∂x
)− τK ′(∆∗(x− θ))∂∆∗

∂x
. (49)
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Using (41) for the explicit form of ∂∆∗

∂x
, the equation ∂VA(x,θ;b)

∂x
= 0 can be rewritten as

T ′(θ + b− x+ ∆∗(x− θ)) = L′′ (x− θ −∆∗(x− θ)) τK
′(∆∗(x− θ))

δC ′′ (∆∗(x− θ)) . (50)

Define

π(x− θ) ≡ x− θ −∆∗(x− θ). (51)

Since 0 < x − θ − ∆∗(x − θ) ≤ b, it must be π(x − θ) ∈ (0, b]. Recall that according to

Lemma 1, ∆∗(x − θ) satisfies (11). Substituting (51) into (11), and noting that in this range
0 < ∆∗(x− θ) < x− θ gives L′(π(x− θ)) = δC ′(x− θ − π(x− θ)), which is equivalent to

x = θ + π(x− θ) + (C ′)
−1

(
L′(π(x− θ))

δ
). (52)

Using this identity, condition (50) can be rewritten as

T ′(b− π(x− θ)) = L′′(π(x− θ))
τK ′((C ′)−1 (L

′(π(x−θ))
δ

))

δC ′′((C ′)−1 (L
′(π(x−θ))

δ
))
. (53)

Notice that the solution of (53) depends on x and θ only through π(x − θ). Let us rewrite

(53) as (17). Recall it must be π ∈ (0, b]. I argue that a solution to (17) exists and it is in the

interval (0, b]. First note that if π = 0 then the left hand side (“LHS”) of (17) is T ′(b) > 0 and

the right hand side (“RHS”) is L′′(0) τK
′(0)

δC′′(0)
= 0 (recall K ′(0) = 0). Therefore, the solution must

be strictly positive. Also notice that if π = b then the LHS of (17) is T ′(0) = 0, and the RHS

is L′′(b) τK
′((C′)−1(

L′(b)
δ

))

δC′′((C′)−1(
L′(b)
δ

))
≥ 0. Therefore, the solution must be weakly smaller than b. Since both

sides of (17) are continuous as a function of π, equation (17) has a solution in (0, b]. Therefore,

there exists x̂ in this range such that ∂VA(x,θ;b)
∂x

|x=x̂ = 0. Notice that x̂ = θ + π + (C ′)−1 (L
′(π)
δ

),

where π is a solution of (17). Since β is given by (16), x̂ = θ + β. Notice that π > 0 implies

β > 0.

4. Fourth, I argue that if (13) holds then the solution of (17) is unique and VA(x, θ; b) obtains

its maximum at θ + β. To see why, suppose 0 < x− θ and x− θ −∆∗(x− θ) ≤ b. Note that

∂2VA(x, θ; b)

∂2x
=

(
−T ′′(θ + b− x+ ∆∗)(1− ∂∆∗

∂x
)2 − T ′(θ + b− x+ ∆∗)∂

2∆∗

∂2x

−τK ′′(∆∗)(∂∆∗

∂x
)2 − τK ′(∆∗)∂2∆∗

∂2x

)
. (54)
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According to (41), if x− θ > 0 then ∂∆∗

∂x
= L′′(x−θ−∆∗)

L′′(x−θ−∆∗)+δC′′(∆∗) . Therefore,

∂2∆∗

∂2x
=

L′′′ (x− θ −∆∗) (1− ∂∆∗

∂x
)δC ′′ (∆∗)− L′′ (x− θ −∆∗) δC ′′′ (∆∗) ∂∆∗

∂x

[L′′ (x− θ −∆∗) + δC ′′ (∆∗)]2

=
L′′′ (x− θ −∆∗) (δC ′′ (∆∗))2 − (L′′ (x− θ −∆∗))2 δC ′′′ (∆∗)

[L′′ (x− θ −∆∗) + δC ′′ (∆∗)]3
.

Thus, if C ′′′ (·) ≤ 0 ≤ L′′′ (·) then ∂2∆∗

∂2x
≥ 0. Since ∂∆∗

∂x
∈ (0, 1), it follows that ∂2VA(x,θ;b)

∂2x
<

0. Therefore, VA(x, θ; b) is a single-peaked function with a unique maximum. Based on the

previous steps, the maximizer must be θ + β. Moreover, it can be verified that C ′′′ (·) ≤ 0 ≤
L′′′ (·) guarantees that the RHS of (17) is increasing in ∆, and therefore, the solution of (17)

is unique, as required.40

5. Fifth, I argue that β strictly increases in b. To see why, note that from (16)

∂β

∂b
=
∂π

∂b
+

L′′(π)
δ

∂π
∂b

C ′′((C ′)−1 (L
′(π)
δ

))
=
∂π

∂b

(
1 +

L′′(π)
δ

C ′′((C ′)−1 (L
′(π)
δ

))

)
.

Since L′′ > 0 and C ′′ > 0, the signs of ∂β
∂b
and ∂π

∂b
are identical. Recall that the RHS of (17)

is increasing in π and the LHS is decreasing in π. Since the RHS is independent of b and the

LHS increases in b, it must be that the unique solution of (17) also increases in b. That is,
∂π
∂b
> 0, which implies ∂β

∂b
> 0 as required.

Proof of Lemma 4. According to Proposition 1, the set of equilibria is determined by the

functional form of (5) and the solution of (8). I will show that when θ is uniformly distributed

over
[
θ, θ
]
, these two only depend on b and

[
θ, θ
]
, but not on the exact shape of the utility

functions of the principal and the agent. If true, the set of equilibria must be identical.

To see this, suppose UP (x1, θ0) − UP (x2, θ0) = 0 for some θ0 ∈
[
θ, θ
]
and x1 < x2 .

This implies L (|x1 − θ0|) = L (|x2 − θ0|). Since L′ (0) = 0 and L′′ > 0, |x− θ| > 0 ⇒
L′ (|x− θ|) > 0. Therefore, it must be |x1 − θ0| = |x2 − θ0|. Consider the function VP (x, θ).

According to Lemma 2, VP (x, θ) = UP (θ, θ)− l (|x− θ|), where l′ (0) = 0 and l′′ > 0. Therefore

|x1 − θ0| = |x2 − θ0| implies l (x1, θ0) = l (x2, θ0) and VP (x1, θ0) = VP (x2, θ0), as required. The

other direction follows similarly. Therefore, given x (ai−1, ai), the solutions of (8) for UP and

for VP are identical.

40Notice that assumption (13) is unnecessary. For example, if τ = 0 then (17) implies π = b. Moreover, the
first order condition implies T ′(θ + b− x+ ∆∗) = 0 and the second order condition, evaluated at the extreme
point, becomes −T ′′(θ + b− x+ ∆∗) (δC ′′ (∆∗))

2, which is always negative.
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Next, consider the agent’s decision. Suppose the agent learns that θ ∈ [a, a]. Since F (θ) is

uniform, (5) can be rewritten as

x (a, a) ≡ arg min
x

1

a− a

∫ a

a

T (|θ + b− x|) dθ. (55)

Recall T ′ (0) = 0 and T ′′ > 0. I argue that as long as T (·) satisfies these two properties, it
must be x (a, a) = a+a

2
+ b. Indeed, let z = x− b. It can be verified that

∂

∂z

∫ a

a

T (|θ − z|) dθ =

∫ min{z,a}

min{z,a}
T ′ (z − θ) dθ −

∫ max{z,a}

max{z,a}
T ′ (θ − z) dθ

∂2

∂2z

∫ a

a

T (|θ − z|) dθ =

∫ min{z,a}

min{z,a}
T ′′ (z − θ) dθ +

∫ max{z,a}

max{z,a}
T ′′ (θ − z) dθ.

Since T ′′ > 0, the second derivative is positive. Therefore, ∂
∂z

∫ a
a
T (|θ − z|) dθ = 0 is necessary

and suffi cient for the solution. The solution must satisfy∫ min{z,a}

min{z,a}
T ′ (z − θ) dθ =

∫ max{z,a}

max{z,a}
T ′ (θ − z) dθ.

Since T ′ > 0, the solution requires a < z < a. If a < z < a, then by integration it must be

T (z − a) = T (a− z), which implies z = a+a
2
⇔ x = a+a

2
+ b, as required. Since t (·) is also

increasing and convex, the agent’s optimal decision (given a and a) when his utility is given

by UA(x, θ; b) is the same as it is when it is given by VA(x, θ; b).

Finally, notice that x (ai−1, ai) = ai−1+ai
2

+ b and ai = x(ai−1,ai)+x(ai,ai+1)
2

for i = 1, ..., N − 1.

Combined, the solution of (8) requires equality (24). Given the boundary conditions (9),

Crawford and Sobel (1982) showed that the solution is parameterized by a1,

ai = θ + i · (a1 − θ)− 2i (i− 1) b. (56)

Therefore, the largest number of intervals that can be supported in equilibrium is the largest

integer such that a1 = θ and aN < θ, that is, θ + 2N (N − 1) b < θ, which gives (25). This

completes the proof.

Proof of Proposition 3. The first part immediately follows from the fact that N (·) being
a decreasing function. Consider the second part. Suppose β > b, and let N

(
b, θ − θ

)
be the

functionN (b) parametrized by θ−θ. I prove that there exists θ−θ > 0 such thatN
(
β, θ − θ

)
<
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N
(
b, θ − θ

)
. Note that if N

(
b, θ − θ

)
≥ N0 then b <

θ−θ
2N0(N0−1)

. Therefore, if β > b then there

exists θ
′− θ′ > 0 such that b < θ

′−θ′
2N0(N0−1)

≤ β, which implies N(β, θ
′− θ′) < N0 ≤ N(b, θ

′− θ′),
as required. The proof for β < b is similar and hence omitted.

Proof of Lemma 5. According to Lemma 3, β = π + (C ′)−1 (L
′(π)
δ

) where π is the unique

solution of (17). I start by showing that ∂β
∂τ
< 0. Note that

∂β

∂τ
=
∂π

∂τ
+

L′′(π)
δ

∂π
∂τ

C ′′((C ′)−1 (L
′(π)
δ

))
=
∂π

∂τ

(
1 +

L′′(π)
δ

C ′′((C ′)−1 (L
′(π)
δ

))

)
.

Since L′′ > 0 and C ′′ > 0, the signs of ∂β
∂τ
and ∂∆

∂τ
are identical. Recall the RHS of (17) is

increasing in π and the LHS is decreasing in π. Since the RHS of (17) increases in τ and the

LHS is independent of τ , the unique solution of (17) is decreasing in τ . That is, ∂π
∂τ
< 0, which

implies ∂β
∂τ
< 0 as required. Next, note that if τ = 0 then π = b and β = b+ (C ′)−1 (L

′(b)
δ

) > b.

Also, from (17), if τ → ∞ then π → 0. Since L′ (0) = C ′ (0) = 0, if τ → ∞ then β → 0 < b.

Therefore, there exists τ ∗ > 0 such that β > b ⇔ τ ≤ τ ∗. Letting τ = τ = τ ∗ completes the

proof.

Next, note that if τ = 0 then β > b for all δ. Suppose τ > 0. I argue limδ→0 β = 0. Indeed,

if δ → 0 then the agent can expect ∆∗ → x − θ. Since τ > 0, choosing x 6= θ is inferior to

x = θ: in both cases project θ is implemented, but in the former case the agent incurs an

additional cost of τK (|x− θ|) > 0. Therefore, there exists δ > 0 such that if δ < δ then β < b.

Finally, I show that there is δ > 0 such that if δ > δ then β > b. Note that

∂β

∂δ
=
∂π

∂δ
+
δL′′ (∆) ∂π

∂δ
− L′ (π)

δ2C ′′((C ′)−1 (L
′(π)
δ

))
.

Let z = (C ′)−1 (L
′(π)
δ

). Then, ∂β
∂δ

< 0 ⇔ ∂π
∂δ

< L′(π)

δ2C′′(z)+δL′′(π)
. Applying the implicit function

theorem on (17),

∂π

∂δ
= −

C ′′(z)T ′(b− π)− δC ′′′(z) L′(π)

δ2C′′(z)
T ′(b− π) + L′′(π)τK ′′(z) L′(π)

δ2C′′(z)

δC ′′′(z) L′′(π)
δC′′(z)T

′(b− π)− δC ′′(z)T ′′(b− π)− L′′′(π)τK ′(z)− L′′(π)τK ′′(z) L′′(π)
δC′′(z)
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Using (17), T ′(b− π) = L′′(π) τK
′(z)

δC′′(z) , we get

∂π

∂δ
=

C ′′(z)L′′(π) τK
′(z)

δC′′(z) − C
′′′(z) L′(π)

δC′′(z)L
′′(π) τK

′(z)
δC′′(z) + L′′(π)τK ′′(z) L′(π)

δ2C′′(z)

−C ′′′(z)L
′′(π)

C′′(z)L
′′(π) τK

′(z)
δC′′(z) + δC ′′(z)T ′′(b− π) + L′′′(π)τK ′(z) + L′′(π)τK ′′(z) L′′(π)

δC′′(z)

Thus ∂π
∂δ
< L′(π)

δ2C′′(z)+δL′′(π)
⇔

τK′(z)
C′′(z)

[
C ′′(z)L′′(π)− C ′′′(z) L′(π)

δC′′(z)L
′′(π)

]
δC′′(z)+L′′(π)

δL′(π)
+ L′′(π)τK ′′(z)

C′′(z)+L′′(π)
δ

δC′′(z)

−C ′′′(z)L
′′(π)

C′′(z)L
′′(π) τK′(z)

δ2C′′(z)
+ C ′′(z)T ′′(b− π) + L′′′(π) τ

δ
K ′(z) + L′′(π)τK ′′(z) L′′(π)

δ2C′′(z)

< 1

Note that limδ→∞ β = limδ→∞ π = b. Also, limδ→∞ z = 0. Therefore, as δ → ∞ the LHS

converges to zero. Therefore, I proved limδ→∞
∂β
∂δ
< 0. Since, limδ→∞ β = b, it follows that for

δ suffi ciently large, β > b.

Proof of Proposition 4. The proof has two steps. First, I prove that condition (28) holds

if and only if θ < θ∗∗, where θ∗∗ < θ∗ is a decreasing function of δ.41 To see why, notice that

xR > θ∗ > θ and recall L′ ≥ 0. We can rewrite (28) as

δC (xR − xL) < L (xR − θ)− L (|xL − θ|) . (57)

If xL < θ then the derivative of the RHS is −L′ (xR − θ)−L′ (θ − xL) < 0. If xL > θ then it is

−L′ (xR − θ) +L′ (xL − θ). Since L′′ > 0 and xR > xL > θ, this term is also negative. Overall,

the RHS is a decreasing function of θ. Therefore, there is θ∗∗ such that condition (28) holds if

and only if θ < θ∗∗. Since the RHS is a decreasing function of θ, θ∗∗ is a decreasing function of

δ. Finally, note that if θ = θ∗ then L (xR − θ∗)−L (θ∗ − xL) = 0. Indeed, θ∗ = xL+xR
2
, implies

xR − θ∗ = θ∗ − xL. Therefore, it must be θ∗∗ < θ∗, as required.

Second, note that condition (27) does not depend on δ. I prove that there exists δdisobedience >

0 as stated in the proposition. For this purpose, define

η (z) ≡ E [T (|θ + b− xL|)− T (|xR − θ − b|) |z < θ < θ∗] . (58)

I prove that η (z) is an increasing function of z. Since η (z) is a weighted average, it is suffi cient

to show that σ (θ) ≡ T (|θ + b− xL|) − T (|xR − θ − b|) is an increasing function of θ. Recall
41I assume that if the principal is indifferent between intervening and not intervening, then she does not

intervene. Since this indifference is a zero probability event, this assumption is immaterial.

52



xR = θ∗+θ
2

+ b > θ∗ + b. Therefore, θ < θ∗ implies xR − θ − b > 0. Then

σ′ (θ) =

−T ′ (xL − θ − b) + T ′ (xR − θ − b) if θ < xL − b
T ′ (θ + b− xL) + T ′ (xR − θ − b) else.

(59)

Recall T ′ (0) = 0 and T ′′ > 0. Moreover, recall xR > xL. Therefore, σ′ (θ) > 0 as required.

Since η (z) is an increasing function of z, combined with the first step, η (θ∗∗) is a decreasing

function of δ. Note that (29) holds if and only if η (θ∗∗) ≤ 0. Moreover, note that as δ → 0,

we have θ∗∗ → θ∗, that is, conditional on θ < θ∗ the principal intervenes whenever the agent

disobeys her. However, notice that θ∗ = xL+xR
2

implies T (|θ∗ + b− xL|) > T (|xR − θ∗ − b|),
which in turn implies η (θ∗) > 0. Therefore, there exists δdisobedience > 0 such that η (θ∗∗) > 0

if and only if δ < δdisobedience , as required.

Proof of Proposition 5. According to Lemma 4 and Corollary 1, N∗ ≥ 2 ⇔ b < θ−θ
4

and N∗∗ = 1 ⇔ θ−θ
4
≤ β. According to Lemma 3, β (τ , δ) = π (τ , δ) + (C ′)−1 (L

′(π(τ ,δ))
δ

) where

π (τ , δ) ∈ (0, b] is the unique solution of (17). Note that θ − E [θ] = θ−θ
2
> θ−θ

4
. I proceed in

several steps.

1. First, I prove that there exist δ1 > 0 and a function τ 1 (·) > 0 such that if 0 < δ ≤ δ1 and

τ ≤ τ 1 (δ) then β (τ 1 (δ) , δ) ≥ θ − E [θ] and EVP (N∗∗) < EUP (1). Proof:

a. Since β (0, δ) is a decreasing function of δ where limδ→0 β (0, δ) =∞, there exists δ′ > 0

such that β (0, δ) > θ − E [θ] ⇔ δ < δ′. Also note that β (τ , δ) is a decreasing and

continuous function of τ , where τ > 0 implies limδ→0 β (τ , δ) = 0. Therefore, for all

δ < δ1 there is τ 1 (δ) > 0 such that if τ ∈ [0, τ 1 (δ)] then β (τ , δ) > θ − E [θ].

b. Note that limδ→0 τ 1 (δ) = 0. Indeed, suppose on the contrary that limδ→0 τ 1 (δ) = τ 1 > 0.

In this case, limδ→0 β (τ 1 (δ) , δ) = limδ→0 β (τ 1, δ) = 0 < θ − E [θ], which contradicts the

definition of τ 1 (δ).

c. Before proceeding, I assume without the loss of generality that τ 1 (δ) converges to zero

faster than δ. Specifically, since limδ→0 τ 1 (δ) = 0 and limδ→0 β (0, δ) =∞, I can assume
that limδ→0 β (τ 1 (δ) , δ) =∞. Also, since τ = 0⇒ π = b for all δ, I assume without the

loss of generality that limδ→0 π (τ 1 (δ) , δ) = b and limδ→0
∂π(τ1(δ),δ)

∂δ
= 0.

d. Suppose δ < δ1 and τ < τ 1 (δ). Since β (τ , δ) > θ−E [θ] > θ−θ
4
, it must be N∗∗ = 1, and

according to Lemma 4, the agent chooses x∗∗ = E [θ] + β (τ , δ). Notice that β (τ , δ) >
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θ − E [θ] implies E [θ] + β (τ , δ)− θ > 0 for all θ ≤ θ. Building on Lemma 2,

EVP (N∗∗) = E [VP (E [θ] + β (τ , δ) , θ)]

= E[UP (θ, θ)]− E[l (E [θ] + β (τ , δ)− θ)
≤ E[UP (θ, θ)]− l (E [E [θ] + β (τ , δ)− θ]) = E[UP (θ, θ)]− l (β (τ , δ)) ,

where the inequality follows from Jensen’s inequality. The definition of l (·) in Lemma 2
implies

l (β) = L(|β −∆∗(β)|) + δC(|∆∗(β)|)).

Since β −∆∗ (β) = π,

l (β) = L(π) + δC(β − π) = L(π) + δC((C ′)
−1

(
L′ (π)

δ
)).

Recall τ ≤ τ 1 (δ). I argue that limδ→0 l (β (τ , δ)) = ∞. Indeed, since π ∈ [0, b] for any δ

and τ , L(π (τ , δ)) is bounded. Also, from L’Hospital’s Rule, if τ ≤ τ 1 (δ) then

lim
δ→0

C((C ′)−1 (L
′(π(τ ,δ))

δ
))

1
δ

= lim
δ→0

C ′((C ′)−1 (L
′(π(τ ,δ))

δ
))

L′′(π(τ,δ)) ∂π(τ,δ)
∂δ

δ−L′(π(τ,δ))
δ2

C′′((C′)−1(
L′(π(τ,δ))

δ
))

− 1
δ2

= lim
δ→0

(L′(π(τ ,δ)))2

δ
− L′ (π (τ , δ))L′′ (π (τ , δ)) ∂π(τ ,δ)

∂δ

C ′′((C ′)−1 (L
′(π(τ ,δ))

δ
))

.

Since limδ→0 π (τ , δ) = b and limδ→0
∂π(τ ,δ)
∂δ

= 0, we have

lim
δ→0

δC((C ′)
−1

(
L′ (π (τ , δ))

δ
)) = lim

δ→0

1

δ

L′ (b)2

C ′′((C ′)−1 (L
′(b)
δ

))
.

Notice thatC ′′ is a strictly positive and non-increasing function. Therefore, limδ→0
1
δ

L′(b)2

C′′((C′)−1(
L′(b)
δ

))
=

∞ and limδ→0 l (β (τ , δ)) =∞. We conclude that if τ ≤ τ 1 (δ) then limδ→0E [VP (E [θ] + β (τ , δ) , θ)] =

−∞. Since EUP (1) is independent of τ and δ, EVP (N∗∗) < EUP (1) as required.

2. Second, I prove that there exist δ2 ∈ (0, δ1) and a function τ 2 (·) > 0 such that if 0 < δ ≤ δ2

and τ = τ 2 (δ) then β (τ , δ) = θ − E [θ] and EVP (N∗∗) > EUP (1). To see why, consider any

δ2 ∈ (0, δ1). Recall that β (τ , δ) decreases in τ and limδ→0 β (τ , δ) = 0 for any τ > 0. Since

δ2 < δ1 implies β (0, δ) > θ − E [θ] for all 0 < δ ≤ δ2, for every 0 < δ ≤ δ2 there is a unique
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τ 2 (δ) > 0 such that β (τ 2 (δ) , δ) = θ − E [θ]. Therefore, N∗∗ = 1 and

EVP (N∗∗) = E [VP (E [θ] + β (τ 2 (δ) , δ) , θ)] = E
[
VP (θ, θ)

]
.

Notice that for any given project x, limδ→0E [VP (x, θ)] = E[UP (θ, θ)]. Therefore, limδ→0E
[
VP (θ, θ)

]
=

E[UP (θ, θ)]. Since EUP (1) is independent of δ and τ , and it is strictly smaller than E[UP (θ, θ)],

the claim is proved.

3. Third, let ε ≡ EUP (N∗) − EUP (1). From Crawford and Sobel we know that if N∗ ≥ 2

then ε > 0. Notice that ε is independent of τ and δ.

4. Fourth, combined, the first and the second steps imply that for any 0 < δ0 ≤ δ2 there are

τ ′, τ ′′ > 0 such that β (τ ′, δ0) > θ−θ
4
, β (τ ′′, δ0) > θ−θ

4
, and

E [VP (E [θ] + β (τ ′, δ0) , θ)] = EVP (N∗∗, τ = τ ′)

< EUP (1)

< EVP (N∗∗, τ = τ ′′) = E [VP (E [θ] + β (τ ′′, δ0) , θ)] .

Since E [VP (E [θ] + β (τ , δ) , θ)] is a continuous function of τ and δ, there exist 0 ≤ τ < τ and

0 < ρ < δ such that if τ ∈ [τ , τ ] and δ ∈ [δ, δ] then β (τ , δ) > θ−θ
4
and

EUP (1) < E [VP (E [θ] + β (τ , δ) , θ)] < EUP (1) + ε.

Noting that EUP (1) + ε = EUP (N∗) completes the proof.

Proof of Proposition 6. Consider first the game without intervention. As argued by Harris

and Raviv (2005), the set of equilibria in a game with two-sided information asymmetry is

equivalent to the set of equilibria in a game in which only the principal has private information

(as in Crawford and Sobel (1982)), with one exception. The exception is that if x∗ (m) is

the agent’s optimal choice given message m in the an equilibrium of the game with one-

sided information asymmetry, then with two-sided information asymmetry the agent’s optimal

choice in equilibrium is x(θA,m) = θA + x∗ (m). Note that x∗ (m) = E[θP |m] + b, and thus,

x(θA,m) = θA + E[θP |m] + b and

UP (θP ,m) = E[A− (θP + θA − x(θA,m))2|θP ,m] = A− (θP − E[θP |m]− b)2. (60)

Next, consider the game with intervention. Suppose that in equilibrium the agent follows
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a linear strategy

x∗(θA,m) = αθA + φ (m) ,

where α is a scalar and φ (·) is a real function. Conditional on θP , message m, and the agent’s
decision x, the principal solves

∆∗(x, θP ,m) = arg max
∆
{A− E[(θP +H(x, θA,m)− (x−∆))2|θP ]− δ∆2}

=
x− θP − E[H(x, θA,m)]

1 + δ
,

where

H(x, θA,m) =


x−φ(m)

α
if α 6= 0

θA if α = 0

is the principal’s inference from the agent’s decision. The agent therefore solves

max
x
E
[
A− (θP + θA + b− x+ ∆∗(x, θP ,m))2 − τ (∆∗(x, θP ,m))2 |θA,m

]
⇒ (61)

x∗(θA,m) =


1

1+ 1−α
α

1+τ 1−α
1+αδ
1+δ

θA +
1

1+δ
(δ− τ−τα

1+δα
)(E[θP |m]−φ(m)

α
)+

φ(m)
α

+b

1+ 1−α
α

1+τ 1−α
1+αδ
1+δ

if α 6= 0

E[θP |m] + E[θA] + δ2+δ
δ2+τ

(θA − E[θA] + b) if α = 0.

(62)

Since δ2+δ
δ2+τ

6= 0, it must be α 6= 0. Matching the coeffi cient of θA to α implies α ∈ {1, τ−δτ+δ2
}.

Notice that α = τ−δ
τ+δ2

cannot be an equilibrium. Indeed, if α = τ−δ
τ+δ2

then the second term in (62)

becomes φ (m) + τ−δ
τ+δ2

b. However, matching coeffi cients implies φ (m) + τ−δ
τ+δ2

b = φ (m), which

requires either τ−δ
τ+δ2

= 0 or b = 0. The former does not hold since α = τ−δ
τ+δ2

and α cannot be zero

as was proven above. The latter does not hold by the assumption. Therefore, it must be α = 1.

If α = 1 then matching the coeffi cient on the second term implies φ (m) = E[θP |m] + 1+δ
δ
b, and

hence,

x∗(θA,m) = θA + E[θP |m] + b
1 + δ

δ
.

and

∆∗(x(θA,m), θP ,m) =
E[θP |m]− θP + 1+δ

δ
b

1 + δ

Anticipating x∗(θA,m), the principal’s expected utility conditional on θP and on sending mes-
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sage m is

VP (θP ,m) = E

[
A− (θP + θA − x(θA,m) + ∆∗(x(θA,m), θP ,m))2

−δ(∆∗(x(θA,m), θP ,m))2
|m, θP

]

= E
[
A− δ

1 + δ
(E[θP |m]− θP +

1 + δ

δ
b)2|m, θP

]
Thus,

VP (θP ,m) = A− δ

1 + δ
(θP − E[θP |m]− 1 + δ

δ
b)2. (63)

Recall that without intervention, the principal expected utility conditional on θP and on send-

ing message m is given by (60). The only difference from (63) is that b is replaced by 1+δ
δ
b,

and the entire term is scaled by δ
1+δ
. It follows that at the communication stage, the principal

behaves as if her preferences are represented by the utility function −(θP + θA − x)2. The

agent behaves as if δ = ∞, τ = 0, and his preferences are represented by the utility function

−(θP + θA + b1+δ
δ
− x)2, which completes the proof.

Proof of Proposition 8. Note that C ≤ L (b)− L (0)⇔ C ≤ b. Suppose the agent learned

that θ ∈ [a, a], where θ ≤ a < a ≤ θ. I start by arguing that the agent’s optimal choice,

denoted by x∗ (a, a), is max
{
a, a+ C

}
. To see why, note that the agent’s expected utility

conditional on x and learning θ ∈ [a, a] is

UA (x, a, a) = E [UA (θ + b, θ; b) |θ ∈ [a, a]]− Pr
[
θ ∈

[
x− C, x+ C

]
|θ ∈ [a, a]

]
×E

[
T (|x− θ − b|) |θ ∈

[
x− C, x+ C

]
∩ [a, a]

]
− Pr

[
θ 6∈

[
x− C, x+ C

]
|θ ∈ [a, a]

]
T (b)

= E [UA (θ + b, θ; b) |θ ∈ [a, a]]− T (b)− Pr
[
θ ∈

[
x− C, x+ C

]
|θ ∈ [a, a]

]
×E

[
T (|x− θ − b|)− T (b) |θ ∈

[
x− C, x+ C

]
∩ [a, a]

]
,

= E [UA (θ + b, θ; b) |θ ∈ [a, a]]− T (b)− H (x, a, a)

Pr [θ ∈ [a, a]]
.

where

H (x, a, a) ≡
∫ min{a,x+C}

max{a,x−C}
[T (|x− θ − b|)− T (b)] dθ. (64)

Notice that C ≤ b implies θ > x− C ⇒ θ > x− b. Therefore,

H (x, a, a) =

∫ min{a,x+C}

max{a,x−C}
[T (θ + b− x)− T (b)] dθ, (65)
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which is a continuous function. Let x∗ (a, a) ∈ arg minxH (x, a, a). I prove that x∗ (a, a) =

max
{
a, a+ C

}
. There are several steps:

1. I argue x∗ (a, a) ∈
(
a− C, a+ C

)
. Indeed, if x ≤ a−C or x ≤ a+C then H (x, a, a) = 0,

whereas for ε > 0 arbitrarily small,

H
(
a+ C − ε, a, a

)
=

∫ a

a−ε

[
T
(
θ − (a− ε) + b− C

)
− T (b)

]
dθ

<

∫ a

a−ε

[
T
(
a− (a− ε) + b− C

)
− T (b)

]
dθ

=

∫ a

a−ε

[
T
(
ε+ b− C

)
− T (b)

]
dθ < 0.

2. I argue x∗ (a, a) ≤ max
{
a, a+ C

}
. Indeed, if max

{
a, a+ C

}
< x < a+ C then

H (x, a, a) =

∫ a

x−C
[T (θ + b− x)− T (b)] dθ

and

∂H (x, a, a)

∂x
= −

[
T
(
b− C

)
− T (b)

]
−
∫ a

x−C
T ′ (θ + b− x) dθ

= −T
(
b− C

)
+ T (b)− T (a+ b− x) + T

(
b− C

)
= T (b)− T (a+ b− x) .

Since T ′ > 0, x > a implies ∂H(x,a,a)
∂x

> 0. Therefore, arg minxH (x, a, a) ≤ max
{
a, a+ C

}
.

3. I argue x∗ (a, a) ≥ a+ C. Indeed, if a− C < x < a+ C then

H (x, a, a) =


∫ a
a

[T (θ + b− x)− T (b)] dθ if min{a− C, a+ C} ≤ x < a+ C∫ x+C

a
[T (θ + b− x)− T (b)] dθ if a− C < x < min{a− C, a+ C}.

(66)

Thus, if min{a − C, a + C} ≤ x < a + C then ∂H(x,a,a)
∂x

= −
∫ a
a
T ′ (θ + b− x) dθ < 0. If

a− C < x < min{a− C, a+ C} then

∂H (x, a, a)

∂x
= T

(
b+ C

)
− T (b)−

∫ x+C

a

T ′ (θ + b− x) dθ

= T
(
b+ C

)
− T (b)− T

(
x+ C + b− x

)
+ T (a+ b− x) = T (a+ b− x)− T (b) .
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Since T ′ > 0, in this range ∂H(x,a,a)
∂x

> 0 ⇔ x < a. Therefore, the only candidate for the

minimizer in this range is the lowest possible value of x, a − C, which yields H (x, a, a) = 0.

But part #1 has already established that a− C < x∗ (a, a). Therefore, x∗ (a, a) ≥ a+ C.

4. Based on the previous two steps, a+C ≤ x∗ (a, a) ≤ max
{
a, a+ C

}
. Therefore, if a ≤ a+C

then x∗ (a, a) = a + C. Suppose a + C < a. I argue x∗ (a, a) = a. Indeed, if a + C ≤ x < a

then

H (x, a, a) =


∫ a
x−C [T (θ + b− x)− T (b)] dθ if max{a− C, a+ C} ≤ x < a∫ x+C

x−C [T (θ + b− x)− T (b)] dθ if a+ C ≤ x < max{a− C, a+ C}.
(67)

Thus, if max{a− C, a+ C} < x < a then

∂H (x, a, a)

∂x
= −

[
T
(
b− C

)
− T (b)

]
−
∫ a

x−C
T ′ (θ + b− x) dθ

= −
[
T
(
b− C

)
− T (b)

]
− T (a+ b− x) + T

(
x− C + b− x

)
= T (b)− T (a+ b− x) .

Since T ′ > 0, x < a implies ∂H(x,a,a)
∂x

< 0 in this range. If a+C ≤ x < max{a−C, a+C} then

∂H (x, a, a)

∂x
=

[
T
(
C + b

)
− T (b)

]
−
[
T
(
b− C

)
− T (b)

]
−
∫ x+C

x−C
T ′ (θ + b− x) dθ

= T
(
C + b

)
− T

(
b− C

)
− T

(
x+ C + b− x

)
+ T

(
x− C + b− x

)
= 0.

Since H (x, a, a) is a continuous function, it must be x∗ (a, a) ≥ a, as require.

Overall, I proved x∗ (a, a) = max
{
a, a+ C

}
. Suppose on the contrary there exists a parti-

tion equilibrium with n ≥ 2 elements. If θ = ai then the principal must be indifferent between

x∗ (ai−1, ai) and x∗ (ai, ai+1),

max {−L (0)− C,−L (|x∗ (ai−1, ai)− ai|)} = max {−L (0)− C,−L (|x∗ (ai, ai+1)− ai|)} .
(68)

I prove that (68) never holds:

1. If x∗ (ai−1, ai) = ai then (68) requires

−L (0) = −L (|x∗ (ai, ai+1)− ai|)⇔ L (0) = L
(∣∣max

{
ai+1, ai + C

}
− ai

∣∣)⇔
0 =

∣∣max
{
ai+1, ai + C

}
− ai

∣∣ ,
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which never holds given that ai+1 > ai and C > 0.

2. If x∗ (ai−1, ai) = ai−1 + C then

−L (0)− C < −L
(
ai−1 + C − ai

)
⇔ L−1 (L (0) + C) > ai−1 + C − ai ⇔

C > ai−1 + C − ai ⇔ ai > ai−1,

which always holds. Also note that

−L (0)− C ≥ −L (|x∗ (ai, ai+1)− ai|)⇔ L (0) + C ≤ L
(
max

{
ai+1 − ai, C

})
⇔

C ≤ max
{
ai+1 − ai, C

}
which always holds. Combined, (68) requires

−L
(
ai−1 + C − ai

)
= −L (0)− C ⇔ L

(
ai−1 + C − ai

)
= L (0) + C ⇔

ai−1 + C − ai = C ⇔ ai−1 − ai = 0

which never holds.

Overall, I showed that the principal is never indifferent between x∗ (ai−1, ai) and x∗ (ai, ai+1)

when θ = ai, and therefore, a partition equilibrium with more than one element does not

exist. Finally, note that if the equilibrium is uninformative, then the agent chooses x∗ =

max
{
θ, θ + C

}
, and the principal intervenes if and only if θ 6∈

[
x∗ − C, x∗ + C

]
. Since x∗ ≥ θ,

principal intervenes if and only if θ < x∗ − C ⇔ θ ∈
[
θ, θ − C

]
.
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