
Evaluating Professor Value-added: Evidence from

Professor and Student Matching in Physics ∗

Yuta Kikuchi† Ryo Nakajima‡

March 24, 2017

Abstract

This paper estimates a professor’s value added to a postgraduate student’s research

achievement growth using unique panel data on matched advisor-advisee pairs in a

world-leading physics graduate program. To address an identification problem related

to the endogenous selection of advisors and advisees, we use professor turnover and

estimate a semi-parametric lower bound of the variance in advisor quality affecting

advisee research performance. We find that advisor quality, operationalized as the ability

to enhance an advisee’s research achievement, varies substantially. A one-standard-

deviation increase in professor quality results in a 0.54-standard-deviation increase in a

doctoral student’s research achievement growth, increasing the number of first-authored

papers that are published in top journals by 0.64 at the doctoral level.
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1 Introduction

1.1 Overview

How is knowledge created? Economists have had a particular and long-standing interest in

knowledge production. Indeed, the new economic growth theory literature regards the way

in which knowledge is created and accumulated as crucial for a nation’s growth (Lucas 1988;

Romer 1990; Grossman and Helpman 1991).

Recently, there has been an increase in the number of empirical studies on knowledge

creation in the field of science and technology. They have investigated how an individual’s

knowledge creation is affected by knowledge created by others, with a particular emphasis

on knowledge spillovers between individuals within and across institutions. The evidence

obtained thus far, however, has been mixed. Some studies (e.g., Azoulay, Zivin and Wang

2010; Borjas and Doran 2014; Moser, Voena and Waldinger 2014) provide evidence in favor of

positive knowledge spillovers, while others (Borjas and Doran 2012; Waldinger 2012) do not.

Surprisingly little attention has been devoted to knowledge reproduction processes across

generations. As is often argued, scientific and technological knowledge is tacit (Polanyi 1958,

1966). It is not easily translated and thus needs to be intentionally articulated, codified and

diffused. Therefore, knowledge has long been reproduced through a deliberate process of

education and learning, whereby those with knowledge take voluntary action to pass it on to

those who do not. Thus, to investigate the creation and diffusion of scientific and technological

knowledge, it seems natural to distinguish vertical knowledge flows (i.e., knowledge flowing

from an individual with high expertise to one with low expertise) from horizontal knowledge

flows (i.e., knowledge flowing among individuals with the same level of expertise). If the

two lines of knowledge flow differ in the efficiency with which know-how is transmitted, such

differences might explain the mixed results obtained by prior studies with respect to the

extent of spillovers.

This paper focuses on the knowledge reproduction process whereby knowledge is conveyed

through vertical relationships, including master-apprentice, teacher-student and senior-junior-

collaborator relationships. We specifically focus on the advisor-advisee relationship in post-

graduate education to examine its effectiveness in expanding scientific frontiers. Under the

hypothesis that a professor’s “quality” has a consequential impact on the growth of a student’s

research achievement, we estimate the professor’s (advisor’s) value added as the contribution

to a student’s (advisee’s) progress on research outcomes.

Empirically estimating a graduate school professor’s value added is complicated by the

endogenous selection process involving students, professors and schools. We anticipate that

promising students will apply and be admitted to highly ranked schools. Moreover, professors
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with good academic standing are likely to have faculty positions at prestigious schools. These

types of selective recruitment will lead to nonrandom sorting of students and professors across

graduate programs. Furthermore, the existence and extent of sorting can be reinforced by the

advisor-advisee matching process within a school whereby students will choose and be chosen

by faculty members.1

This paper estimates within-school professor value added at a world-leading postgraduate

program in physics in Japan. To disentangle the influence of professors on students from

the sorting and matching effects, we use an identification strategy that exploits professor

turnover from events such as retirement, relocation, or death. We borrow this idea from

Rivkin, Hanushek and Kain (2005, henceforth, RHK), who estimate a lower bound of the

teacher quality effect on student achievement gains. Japanese graduate schools provide an

ideal setting for applying RHK’s strategy of turnover-based value-added estimation. When

an advisor exits a Japanese graduate school due to turnover, the advisees usually remain in

the same program and continue their research projects under the supervision of new advisor.2

Therefore, the advisees who experience advisor turnover are influenced by two advisors of

different quality. Thus, the student’s research achievement growth, under the varied influences

of different advisors, would be more volatile than that of advisees who did not suffer advisor

turnover.

Figure 1 shows the distribution of students across initial advisors (on the vertical axis)

and across cohorts (on the horizontal axis) for the physics graduate program that we use as

an empirical testing ground. We base our analysis on a lab, defined by a cohort of students

who were assigned to the same advisor. The red square and blue circle markers represent

a lab in the treatment group where the advisor was replaced due to turnover and a lab in

the control group where the advisor was not replaced, respectively. We demonstrate that

cohort-to-cohort variation in the lab average of student research achievement gains is larger

for the treatment group than for the control group and is driven primarily by the change in

advisor quality following turnover.

Insert Figure 1

Certainly, factors other than advisor quality might affect an advisee’s research perfor-

mance. This paper employs a semi-parametric education production function, which is widely

used in the economics of education literature, that attributes the student’s achievement gains

to various fixed effects. Repeated observations of an individual student’s research outcomes,

1These choices give rise to “assortative matching” between students and professors within a school with
respect to research ability.

2There might be a concern that the original advisor who had left the program continued to provide research
guidance to the students who remained in the program. In other words, the advisor listed as a thesis advisor
might be a “surrogate” of the true advisor. We address this concern in Section 5.2 and show that our
lower-bound estimate of the variance of advisor quality remains valid in such cases of “surrogate” advisors.
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which are measured by publication records, in master’s and doctoral degree programs enable

us to eliminate student fixed effects by taking the difference of the research outcomes of a

given student from one degree program to another.

The estimation results provide strong evidence for the existence of professor value added.

Indeed, the results consistently demonstrate that advisors vary greatly in quality, measured

as their ability to enhance an advisee’s research achievement at the doctoral level, which

is consistent with the expectation that knowledge and ideas are transmitted vertically from

advisor to advisee. Specifically, our estimates indicate that a one-standard-deviation increase

in advisor quality will increase a doctoral advisee’s research achievement by 0.54 standard

deviations. We also find that a one-standard-deviation increase in advisor quality entails an

increase in the number of articles published by a doctorate student in top journals as a first

author by 0.64.

The findings of this paper are robust to different definitions of student research outcomes

and are also insensitive to many different model specifications. Notably, we continue to find

evidence of substantial professor value added even in a severe case for students in which their

research contribution to the published papers is forced to zero whenever they collaborated

with a advisor. We also find that the results are robust to a falsification exercise that examines

whether the timing of the increased variability in the student research achievement gain agrees

with that of advisor turnover, as predicted by the empirical model.

We also examine the robustness of the estimation results under a weaker conditional in-

dependence assumption on advisor switches. Our identification strategy for professor value

added relies on the assumption that an advisor switch due to turnover is incidental, that is, is

orthogonal to an advisee’s unobservables, conditional on the advisor’s observable characteris-

tics. However, this assumption may not hold. There is a concern that the advisor switch (and

non-switch) is intentional in the sense that students, having prior information on “scheduled”

turnover of faculty members, self-select themselves into or out of specific labs. To address

this concern, we restrict turnover events to those that seem incidental rather than intentional.

Since students would hardly be able to predict their advisor’s relocation or death ex ante, an

advisor switch due to such non-retirement reasons is deemed more likely to be idiosyncratic.

It thus does not seem unrealistic to assume that such a switch is orthogonal to unobserved

student characteristics that affect research performance. We estimate the regression model

using only turnover due to non-retirement-based reasons and still find a strong advisor quality

effect.

We finally investigate alternative mechanisms for knowledge transmission other than that

based on learning through the advisor-advisee relationship. The data indicate that advisor

turnover does not have a significant unidirectional, positive or negative, impact on an advisee’s

research achievement gain, per se, as is consistent with the mechanism that our value-added

4



model postulates, and is thus not fully explained by the other mechanisms such as that

emphasizing (i) a disruption effect of advisor turnover or (ii) a recombination role of various

extant pieces of knowledge, Further analysis reveals that the effect of knowledge transmission

from advisor to student within a lab tends to outweigh that from non-advisor to student

across labs.

While we find a significant effect of advisor quality on advisee research performance growth,

we concede that this finding may be specific to the local contexts of the physics discipline

or the postgraduate education system in Japan. However, at a minimum, in a process of

scientific inquiry in which prominent researchers, including several Nobel laureates, have been

involved, advisors matter, and their quality of supervision varies substantially. Our findings

on the advisor effect speak to a broad range of studies that evaluate the heterogeneous impact

of single individuals on organizational performance.3 For instance, the recent study by Lazear

et al. (2015) analyzes micro-data from one large firm and provides supportive evidence that a

supervisor affects the productivities of the workers on his or her team. This appears to agree

with our finding that an advisor significantly influences the performance of advisees in the lab

that he or she supervises. Further research needs to be conducted and accumulated to explore

whether similar supervisor effects can be observed in other institutions and organizations in

both academia and industry.

The remainder of the paper proceeds as follows. A brief literature review is provided in the

remainder of this section. Section 2 describes the institutional background of postgraduate

physics education in Japan. Section 3 presents the empirical model and describes a regression-

based approach to estimate the lower bound of professor value added. Section 4 explains the

data set used for the analysis. Section 5 discusses some empirical issues concerning value-

added estimation. Section 6 presents the estimation results and provides robustness checks.

Section 7 concludes.

1.2 Related Literature

This paper contributes to the literature by measuring the effectiveness of professors in promot-

ing students’ research productivity growth at a postgraduate institution. The most closely

related work to this paper is Waldinger (2010), who estimates the causal effect of prominent

professors on the research outcomes of Ph.D. students in mathematics at German universities

during the Nazi era. Although we share his view that “university quality is believed to be one

of the key drivers for a successful professional career of university graduates” (Waldinger 2010,

p.787), we highlight the importance of direct interactions between advisor and advisee as a

3See, for example, Jones and Olken (2005) for political leaders; Malmendier and Tate (2009) for chief
executive officers; Branch et al. (2012) for school principals; and Lacetera et al. (2016) for auctioneers.

5



medium whereby knowledge is memorized, transferred and accumulated. Indeed, anecdotal

evidence (e.g., Zuckerman 1977) suggests the importance of vertical social ties in scientific

enterprises at academic institutions. However, to the best of our knowledge, no systematic

quantitative study, especially one that carefully controls for endogenous matching between

master (teacher, advisor or senior collaborator) and apprentice (student, advisee or junior

collaborator), has been conducted to date.

Our findings validate the view of earlier studies (e.g., Azoulay, Zivin and Wang 2010;

Borjas and Doran 2014; Moser, Voena and Waldinger 2014) that vertical social interactions

among scientists are enduring and important for scientific and technological knowledge to be

created and diffused. For example, a recent study by Moser, Voena and Waldinger (2014),

who estimate the effect of German Jewish émigrés on U.S. innovation, suggests that knowl-

edge externalities occurred and were amplified by the educational and collaborative ties in

scientist networks such that U.S. junior scientists were trained by and collaborated with

prominent Jewish senior scientists who emigrated. Borjas and Doran (2014) study the im-

pact of the influx of Soviet mathematicians into the United States after the collapse of the

Soviet Union and conclude that positive knowledge spillovers are generated through the re-

lationships among collaborating mathematicians who regularly interact when at least one of

them is an outstanding knowledge producer.

This study is also related to a voluminous education economics literature that evaluates

teacher value added (e.g., Hanushek and Rivkin 2006, 2010). We base our empirical analysis

on the value-added model approach that is widely employed in the literature. Specifically, as

mentioned above, we adopt a semi-parametric value-added model and employ the turnover

estimator proposed by RHK. However, we depart from the previous literature on teacher

value added in that we focus on value added at a level higher than secondary education.

Although numerous studies estimate value added at the primary and secondary education

levels (e.g., Hanushek and Rivkin 2012, for a recent review), few studies (e.g., Hoffmann and

Oreopoulos 2009; Carrell and West 2010) estimate a professor’s value added in the context of

post-secondary institutions. While these studies on professor value added attempt to estimate

the effectiveness of professors in improving students’ grade gains at the undergraduate level,

we turn to professors’ value added to students’ research achievement gains at the postgraduate

level and thus evaluate the effectiveness of professors in terms of their “quality” in advising

or mentoring graduate students’ research projects.

To the best of our knowledge, no studies assess the impact of professor quality on graduate

student research productivity growth by shedding light on the value-added contribution. A

partial exception is the study by Hilmer and Hilmer (2009), who find a positive effect of an

advisor’s research prominence on advisees’ early career publication success in U.S. economics

Ph.D. programs. While they are successful at disentangling the effect of advisor quality from
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that of program quality on Ph.D. students’ publication outcomes, they do not address endoge-

nous advisor-advisee matching between professors and students within and across institutions.

Thus, it seems questionable to interpret their finding of a positive correlation between the

research productivity of advisors and advisees as causal.

2 Institutional Background

2.1 Postgraduate Physics Education in Japan

Postgraduate education in Japan, including in physics, has a two-tiered structure, that is, a

two-year master’s degree program followed by a doctoral program that typically lasts three or

four years.4 Leading Japanese research universities typically offer both master’s and doctoral

courses. In most cases, students enrolled in a doctoral degree program graduate with a

master’s degree from the same school. However, they are institutionally separated. Thus, a

master’s student seeking to pursue a doctorate must take an entrance examination, which is

largely based on a master’s thesis, to be admitted to a doctoral course even if it is offered by

the same institution. In a sense, the master’s degree program implicitly serves as a screening

device for doctoral programs in Japan.

Three features are notable for graduate education in physics for master’s programs in

Japan. First, Japanese physics master’s students are closely linked to their faculty advisors

immediately after enrollment in a program. Indeed, applicants to a master’s degree program

must declare their desired field of specialization and submit a short list of faculty advisors

from whom mentorship is sought upon admission. Only those who are approved for support

by designated advisors are admitted to a graduate school.5

Second, physics education in Japan at the master’s level is best characterized by research-

based apprentice training, which is often contrasted by coursework-based training in the U.S.

(Abe and Watanabe 2012). Although Japanese master’s students in physics are required to

take some “coursework” credits toward their degrees, they can earn most of their credits

through learning-by-doing style research “seminars” taught by a faculty advisor.6

Finally, for Japanese physics graduate students, a thesis is required to complete the mas-

ter’s program. It is expected to be original, as a doctoral thesis should be, although they are

evaluated according to different criteria of scholarly maturity. Students are encouraged to

4The basic structure has remained unchanged since World War II, although the organizational structure
of universities has been reformed (see Ushiogi 1993; Ogawa 2002)

5This contrasts with U.S. graduate students, who are matched with their supervisors through the rotation
of faculty labs after they complete their coursework and become Ph.D. candidates (see Gumport 1993).

6For example, for the master’s degree program in physics at the University of Tokyo, students must take at
least thirty credits of coursework at the master’s degree level. However, lab-based research “seminars” offered
by thesis advisors constitute two-thirds of their total credits.
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begin original research in their chosen fields at an early stage of the master’s degree program

under the instruction and guidance of a faculty advisor. Because the master’s thesis is a

critical factor for admittance to doctoral programs, Japanese students and professors attach

great importance to a master’s thesis as a pathway to doctoral study.

In contrast, the doctoral programs in physics at Japanese universities are more similar

to their counterparts in Western countries than are the master’s programs. Specifically,

Japanese doctoral students and American Ph.D candidates are considered comparable in

that there is no coursework requirement. Japanese students at the doctoral level, similar

to Ph.D. candidates in the U.S., begin the research for their doctoral dissertations under

the supervision of their research advisors. In general terms, Japanese physics students are

required to write several articles published in refereed journals as a prerequisite for a doctoral

degree. These publications are usually included in a doctoral thesis.

2.2 Physics Labs in Japanese Universities

The interaction between a graduate student and a faculty advisor is lab-oriented in Japanese

physics graduate programs. Upon enrollment in the master’s program, Japanese physics

students are assigned individually to a lab, and the lab’s leader (or sometimes sub-leader)

becomes their thesis research advisor. Students acquire the knowledge necessary to conduct

their research through frequent interaction with their advisors in a lab setting. The content of

this lab-based teaching and learning includes basic research skills, such as how to read scientific

articles, how to select research topics, how to present results at seminars and conferences, and

how to write publishable papers, as well as the culture of physics such as the style of work,

mode of thought, and a taste for “good” physics (Abe and Watanabe 2012).

Japanese physics labs are generally democratic in tone. The “laboratory democracy” in

Japanese physics communities can be traced back to the end of World War II, the period

when there were immediate and insistent calls for the creation of a new “scientific Japan”

under the control of the allied occupation (Low 2005). To place this in perspective, it is

broadly understood that Japanese physics labs are less prescriptive and less hierarchical than

their U.S. counterparts (Gumport 1993; Kawashima and Maruyama 1993). There is also no

strict division of labor among lab members, even between faculty members and graduate

students, in Japanese physics labs (Traweek 1988).7 Hence, although it is not uncommon for

the research topics of master’s and doctoral theses to be suggested by advisors as a part of a

large, ongoing project in a given lab, Japanese physics graduate students are, generally, given

some autonomy to pursue their own research based on their original ideas.

7Interested readers should consult Appendix A that explains in detail the “laboratory democracy” among
Japanese physicists.
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3 Empirical Model

In this section, we introduce a simple value-added model that associates growth in student

research achievement with the “quality” of the professor supervising the student. Then, we

present a regression-based approach to estimate a lower bound of the variance in professor

quality, which can be interpreted as the extent to which any professor differences matter in

determining student research outcome growth.

3.1 Value-added Specification

Following the standard value-added modeling approach (e.g., Hanushek and Rivkin 2010), we

employ a semi-parametric specification of a professor’s contribution to a student’s achievement

growth.

Consider graduate student i who entered the master’s program of a graduate school in

year c. Below, we treat year c as the student’s cohort. We denote the research outcome

growth of a graduate student in the master’s degree program by g = m and in the doctoral

degree program by g = d. The growth is measured by the gains in research output from the

previous degree program to the current degree program.8 Let ∆outcomeciag be the research

outcome growth of student i under the supervision of professor a ∈ A in degree program

g ∈ {m, d} in cohort c ∈ C . We assume that it is given by the following function:

∆outcomeciag = γi + θag + νciag, (1)

where γi is student i’s individual fixed effect, θag is professor a’s quality that influences the

student’s research outcome growth in degree program g, and νciag is an idiosyncratic random

shock.9

We assume that matching between student and professor is many-to-one, that is, multiple

students are assigned to one advisor. Let us define a lab as a group of students (advisees)

in the same cohort who were assigned to the same professor (advisor). Specifically, we use

ℓ(a, c) to denote a lab in which students are in cohort c and assigned to professor a as an

advisor. Let L be the number of all labs in a school, and let students in lab ℓ(a, c) be

indexed by i = 1, · · · , Iℓ(a,c), where Iℓ(a,c) is the number of students in lab ℓ(a, c). We use

I ℓ(a,c) ≡ {1, · · · , Iℓ(a,c)} to denote the set of students in the lab.

8We assume that the research output of students at the bachelor level is zero. We compute a publication-
based research proficiency score, which is explained in detail in Section 4, for students in the sample when
they are undergraduate students and find that it is negligible.

9Note that other effects, such as school fixed effects and research field fixed effects, are not included in the
value-added model. We opt not to include these fixed effects because they are subtracted out of the estimation
model in the process of “differencing”, as presented below.
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We take the average of Equation (1) over all students in the same lab ℓ(a, c). Because the

students in the same lab have the same advisor quality, we have the following equation for

the lab-level average of student research outcome growth:

∆outcome
ℓ(a,c)
ag = γ̄ℓ(a,c) + θag + ν̄ℓ(a,c)ag , (2)

where the overbar notation indicates the group average.

Note that the superscript a denotes the initial advisor to whom the students in lab ℓ(a, c)

were assigned, while the subscript a denotes the advisor who supervised the students in degree

program g. Thus, the advisors represented by the superscript and subscript could be different.

For example, suppose that a turnover incident causes the students in lab ℓ(a, c) to switch their

research advisor from professor a in the master’s degree program to professor b in the doctoral

degree program. Here, the average student research outcome gain at the doctoral level, which

is the left-hand side of Equation (2), is given by ∆outcome
ℓ(a,c)
bd , where the index a in the

superscript differs from the index b in the subscript.

We use the event of professor turnover (e.g., retirement, relocation and decease) to identify

the variance in professor quality. We implicitly assume that when a professor exits a graduate

program due to turnover, the students in the lab whom he or she initially supervised are

re-assigned to a new advisor and continue their research projects in the same program.10 In

what follows, we therefore assume that an event of professor turnover on the faculty side leads

to an event of advisor switch on the student side. In other words, we treat these two events,

advisor turnover and advisor switch, identically. When advisor turnover occurs in a lab, two

faculty members, whose quality levels are generally different, will have advised the students

in that lab.11

It should be noted that the professor, say b, who was assigned to the students in the lab of

a professor, say a, after the latter exited due to turnover was not necessary drawn at random

from a pool of professors available at the school at that time. Indeed, the newly assigned

professor might select the students that he or she is willing to take over. We thus allow the

student fixed effect, γi, to be correlated with the quality of the re-assigned professor, θbd, in

the same way as we assume it to be correlated with the quality of the original advisor, θad.

10A joint transfer of faculty and students is quite rare in Japanese universities, and hence, even if a faculty
member changes affiliation, the students usually remain in the same program.

11Based on the observed pattern of advisor replacement in our data, when advisor turnover occurred, the
students were usually either assigned to a junior faculty member or the sub-leader of the same lab or they
were moved to a different lab in closely related research fields within the same institution and were supervised
by the faculty member who managed that lab.
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3.2 A Lower-bound Estimation of the Variance in Advisor Quality

We are interested in estimating the variance of advisor quality, σ2
g , rather than the the advi-

sor’s individual quality, θag. Although the individual value added would be useful to answer

important questions concerning which or which types of professors tend to have higher or

lower effectiveness in research supervision, such estimation requires more extensive data and

stricter identification assumptions than we have employed in this study.12 We therefore set

more modest goal, that is, to measure a minimum degree, if any, to which each professor

contributes to the performance growth of his or her lab students. For this purpose, we de-

compose the total variation in student outcome gains into the variation that can be attributed

to professor quality, θag. First, take the difference of Equation (2) between the master’s degree

and doctoral degree programs. Doing so eliminates the student fixed effect, γi, because it is

constant across degree programs for a given student. If advisor turnover did not occur in lab

ℓ(a, c), it is given by the following between-degree difference equation:

∆outcome
ℓ(a,c)
ad −∆outcome

ℓ(a,c)
am = (θad − θam) + (ν̄ℓ(a,c)ad − ν̄ℓ(a,c)am ). (3)

In contrast, assume that there was advisor turnover in lab ℓ(a, c). As the students switched

their advisors from advisor a in the master’s program to advisor b in the doctoral program,

the between-degree difference equation, corresponding to Equation (3), is given by

∆outcome
ℓ(a,c)
bd −∆outcome

ℓ(a,c)
am = (θbd − θam) + (ν̄ℓ(a,c)bd − ν̄ℓ(a,c)am ). (4)

Comparing Equations (3) and (4) shows that advisor turnover influences the development

of student research achievement in different ways. There is a clear difference in student

research outcome growth, which appears on the left-hand side of each equation, that responds

differently to a change in advisors due to the difference in degree-level advisor effects, (θad −
θam) and (θbd− θam), which are generally not equal. This plays a key role in the identification

of the effect of advisor quality on student research outcome growth at each degree level.

The point is illustrated by Figure2, which depicts three labs with different cohorts, c0, c1

and c2, whose initial advisor is professor a. In the figure, each lab is portrayed by a connected

line segment, which represents the two-year master’s degree program (the first half of the

segment) and the three-year doctoral degree program (the last half of the segment).13 Here,

advisor turnover did not occur in labs l(a, c0) or l(a, c1) before cohort c2, and hence, the

students in these labs were supervised by the same professor, a, throughout both the master’s

12See Chetty et al. (2014), for example, on techniques to estimate a reliable individual teacher value added.
13For the ease of exposition, the labs’ cohorts are not overlapped in the figure, although this is not necessarily

the case in the actual sample.
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and doctoral programs. However, in lab l(a, c2), professor a exited the school due to turnover,

and professor b took charge of the doctoral students.

Note that, on average, the research outcome gains of lab l(a, c0) and l(a, c1) students are

the same, which is given by (θad − θam), whereas, following advisor turnover, the average

student research outcome gain of lab l(a, c2), which is given by (θbd − θam), could be better

or worse than that of the previous cohorts, depending on whether the supervising quality of

the newly assigned professor, b, is higher than that of the departing professor, a. In either

case, irrespective of whether the achievement growth is positive or negative, an instance of

turnover triggers a change in professor quality at the doctoral level and could thus result in

a disparity in the between-degree research achievement gains between cohorts. We will use

the induced divergence in research outcome growth as evidence of an advisor’s impact on an

advisee.

Insert Figure 2

To improve the identification, we use the double-differencing approach as proposed by

RHK to estimate a lower bound of the variance in unknown teacher quality. We take the

difference between Equations (3) and (4) with respect to cohort year. Let c′ denote the

cohort before c, and let τ be the years between c and c′. For professor a, consider two labs,

ℓ(a, c) and ℓ(a, c′). Let W ℓ(a,c,c′) denote a dummy variable indicating a change in advisor

due to turnover: it takes value one if professor a is replaced in lab ℓ(a, c) due to turnover

and zero otherwise. Without loss of generality, we assume that supervisor replacement is

from professor a to professor b such that, if there were advisor turnover, the students would

have been supervised by two different professors, a and b, in the master’s and doctoral degree

programs, respectively. Then, we have the following double-differenced (DD) average student

research outcome growth:

DD∆outcome
ℓ(a,c,c′)

=

⎧
⎨

⎩
[∆outcome

ℓ(a,c)
bd −∆outcome

ℓ(a,c)
am ]− [∆outcome

ℓ(a,c′)
ad −∆outcome

ℓ(a,c′)
pm ] if W ℓ(a,c,c′) = 1

[∆outcome
ℓ(a,c)
ad −∆outcome

ℓ(a,c)
am ]− [∆outcome

ℓ(a,c′)
pd −∆outcome

ℓ(a,c′)
pm ] if W ℓ(a,c,c′) = 0

=

⎧
⎨

⎩
(θbd − θad) + error term if W ℓ(a,c,c′) = 1

error term if W ℓ(a,c,c′) = 0,
(5)

where the error term is a catchall random noise term that combines the average idiosyncratic

errors.

Equation (5) shows that all of the fixed effects, except for doctoral-level advisor quality, are

eliminated after the double difference is taken with respect to degree programs and cohorts.

The DD measure is more variable, on average, for the pair of labs with and without a change
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in advisor (W ℓ(a,c,c′) = 1) than that for the pair of labs without such a change (W ℓ(a,c,c′) = 0).

The gap is attributable to a discrete change in doctoral-level advisor quality from θad to

θbd due to advisor turnover. Note that advisors’ quality levels can be correlated with the

lab averages of student fixed effects, γ̄ℓ(a,c) and γ̄ℓ(a,c
′), and they can also be correlated with

one another, that is, Corr(θad, θbd) ̸= 0. In what follows, we ascribe the sample variation in

the DD measure as a series of variance and covariance components of advisor quality and

idiosyncratic shocks.

The Assumption on Advisor Quality and Idiosyncratic Shocks

We make the following assumptions concerning the distribution of advisor quality.

assumption 1.1: The expectation and variance of advisor quality are given by E(θag) =

µg and Var(θag) = σ2
g , for any a ∈ A , g ∈ {m, d}, and c, c′ ∈ C .

assumption 1.2: The correlation of advisor quality across professors, a ̸= b ∈ A, is given

by Corr(θag, θbg) = ρg, for any a, b ∈ A , a ̸= b, g ∈ {m, d} and c, c′ ∈ C .

The assumptions concern the stationarity of the advisor quality distribution, which char-

acterizes the notion that the professors’ advising quality levels are drawn from a common

distribution for each degree type. It requires that the grade-program-specific mean and vari-

ance do not vary across cohorts and that the correlation with any given advisor is constant.

Specifically, we interpret µg and σ2
g as the long-run mean and variance of the stationary dis-

tribution of advisor quality in degree program g within a school. The stationarity assumption

simplifies the estimation of professor value added because it reduces the number of parameters

to be considered.

Appendix B.1 presents the assumptions regarding the moments of the idiosyncratic shock

after demeaning by each cohort. Let ν̄g be the average of the random shock, νciag, the average

of which is taken over all cohorts in each degree program, g, such that the demeaned random

shock is given by ν̃ciag = νciag − ν̄g. We assume that the random shocks demeaned by cohort

are independent of turnover incidents (assumption 2.1). They can be serially correlated

between degree programs within a student (assumption 2.2) and between students in each

degree program if they are supervised by the same advisor (assumption 2.3). Otherwise, they

are neither cross- nor serially correlated (assumptions 2.4 and 2.5). Note that, even if the

demeaned random shock, ν̃ciag, is uncorrelated with others under assumptions 2.4 and 2.5, the

original random shock, νciag, is allowed to be correlated through the common mean factor, ν̄g.
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The Regression Model

Finally, given the assumptions presented above, we square both sides of Equation (5) and take

the expectation conditional on the occurrence of turnover. We have the following result:14

E

[(
DD∆outcome

ℓ(a,c,c′)
)2

|W ℓ(a,c,c′)

]
= α

(
1

Iℓ(a,c)
+

1

I l(a,c′)

)
+
{
2σ2

d(1− ρd)
}
W ℓ(a,c,c′), (6)

where α is a composite term of variances and covariances of the demeaned random shocks.

Equation (6) provides a basis for estimating the variance in advisor quality at the doctoral

level. Using the cohort examples, c0, c1, and c2, that are depicted in Figure 2 for illustration,

the squared difference measure of student research outcome growth, which is the right-hand

side of Equation (6), is greater for ℓ(a, c1, c2) than that for ℓ(a, c0, c1) by 2σ2
d(1− ρd). We can

therefore ascribe the large sample variation of the right-hand side of Equation (6), if any, to

the variance in doctoral-level advisor quality, σ2
d, unless the correlation coefficient, ρd, is equal

to one.

We now present a regression model to obtain a lower-bound estimate of the variance of

σ2
d. Consider the following:

(
DD∆outcomen

)2
= αXn + βWn + εn, (7)

where n = 1, · · · , N is the index of observations. Here, the unit of observation is each

element of (a, c, c′) for any advisor a ∈ A and cohort c, c′ such that 0 < c − c′ ≤ τ , where

τ is the period over which the difference is taken.15. Note that, analogous to Equation (6),

the covariate Xn = 2(1/Iℓ(a,c) + 1/I l(a,c
′)) is introduced into the regression. The random term

εn is interpreted as the prediction error between the expected and observed values of the

divergence measures, that is:

εn ≡ E

[(
DD∆outcomen

)2
∣∣∣∣Wn

]
−

(
DD∆outcomen

)2
.

Assume for a moment that the advisor switch indicator, Wn, is independent of the predic-

tion error, εn. If the value of ρd were known perfectly, the OLS estimate β̂ in Equation (7)

would provide a consistent estimate of σ2
d through the following equation:

β̂ =
{
2σ̂2

d(1− ρd)
}
. (8)

14See Appendix B.2 for the derivation.
15 To obtain the double-differenced average of the research outcome gain, which is the left-hand side of

Equation (7), we take the difference between all cohorts within a period of τ years. As
(τ+1

2

)
= τ !

(τ−2)!2!

samples are created for each lab, the total sample size of the regression is given by N = τ !L
(τ−2)!2! , where L is

the total number of labs.
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As the correlation is imperfect (ρd < 1), a lower-bound estimate of σ2
d is given by the last

term of the following equation:

σ̂2
d =

β̂

2(1− ρd)
≥ β̂

4
. (9)

In other words, a lower-bound estimate of the within-school variance of faculty quality at the

doctoral level is equal to the estimated coefficient, β̂, of the regression model (7) divided by

four.

4 Data

We assemble data sets of professors and students in a graduate program in physics in Japan.

Among the numerous Japanese research universities that offer both master’s and doctoral

programs in the field of physics, we focus on the graduate program at the University of Tokyo

(henceforth, UTokyo), which is the oldest institution of its kind in the country and has enjoyed

considerable prestige in the global academic community.16

The graduate program in physics at UTokyo consists of the department of physics as

its core and other physics-related research institutes on campus.17 The average number of

graduates in recent years is 105.6 for the master’s program and 58.4 for the doctoral program18.

At present, there are more than 130 full-time faculty members. Many subfields of physics

are covered by laboratories in UTokyo’s physics graduate programs, such as nuclear physics,

particle physics, condensed matter physics, and biophysics.

4.1 Data on Advisor and Advisee Pairs

To extract the information on matched advisor-advisee pairs, we use the master’s and doctoral

thesis catalogs for graduate students in UTokyo’s physics program.19 For each thesis entry

in the catalog, the available information includes the degree date, the title of the thesis, the

name of the student, and the name of the faculty advisor who supervised the student.

We compile the thesis data for the students who obtained their doctoral degrees in the

cohorts between 1970 and 2004 (35 years). Among all of the graduate students who were

listed in both the master’s and doctoral thesis catalogs, we restrict our attention to those

16According to several world university rankings, UTokyo has been in the top 10 in the discipline of physics.
The alumni include five Nobel laureates in physics as of 2015.

17The institutes are the Institute of Cosmic Ray Research, (ICRR), the Institute of Solid State Physics
(ISSP), and the International Center for Elementary Particle Physics (ICEPP).

18These are the average figures over the period from 2010 to 2014.
19The catalogs are available on the department’s website at http://www.phys.s.u-tokyo.ac.jp/TOSHO/

ronbun.html.
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who earned doctorates within six years of enrollment. In addition, we restrict the analysis to

those who were supervised by faculty members with the ranks of full and associate professors

in the physics department or on-campus physics-related research institutions. There are 119

advisors (professors) and 1484 advisees (students).20 The average number of students is 1.5

for each lab and 12.5 for each advisor in the sample.21

4.2 Data on Advisor Turnover and Switch

We obtain information on faculty turnover from the University Personnel Directory Book

(“Zenkoku Daigaku Shokuin Roku”) published by Koujyun Sha, which includes information

on the full name, rank, department, school, specialized fields and year of birth of all staff

members at every Japanese university, public or private, in a given year. By compiling the

roster of faculty members at UTokyo, we can obtain their turnover information.

We classify the reasons for turnover into the following three categories: (1) retirement if the

instance of turnover occurred at the mandatory retirement age predetermined by UTokyo;22

(2) move if turnover occurred before the retirement age and the faculty name began to reap-

pear on other universities’ roasters beginning in the year after the turnover instance; and

(3) decease/quit otherwise.23 Figure 3 presents the graphs that plot the number of turnover

incidents in each year of the sample period, broken down by the reasons.24

Insert Figure 3

The matched advisor-advisee data reveal that approximately 14.4 percent of graduate

students switched advisors between the master’s program and the doctoral program. Instances

of professor turnover are responsible for some, although not all, of the students’ observed

changes in advisors. As mentioned previously, in Japanese universities, a joint transfer of a

20We restrict advisors in the sample to those who supervised at least two cohorts of students within three
years because, as shown in later sections, the observation unit of the baseline regression is set as the difference
between two consecutive cohorts within three years.

21It should be noted that the reported average numbers of students per lab and per professor are undersized
relative to the actual sizes that make up the graduate program because the estimation samples are restricted
to the students who took both master’s and doctoral degrees in physics at UTokyo.

22 Before fiscal year 2000, the mandatory retirement age at UTokyo was 60. After the 2001 fiscal year, it
was increased by one year every three years until it reached 65. As of 2004, which is the end of the sample
period, the retirement age was 61.

23Note that the reasons for faculty turnover are not perfectly distinguishable. Indeed, the majority of
faculty members categorized as “retire” did not actually retire from academic life and were reemployed at
other universities or research institutions. This is possible because of the gap in retirement ages between
universities: UTokyo set its faculty retirement age at 60 during the most of the sample period, while other
Japanese universities, public and private, adopted retirement ages that were several years older.

24There is a considerable number of incidents in 1997, when the Institute for Nuclear Study (INS) at
UTokyo, which was one of the on-campus research institutes affiliated with the physics department, was
closed and merged with the High Energy Accelerator Research Organization (also known as the KEK (Kō
Eneruḡi Kasokuki Kenkyū Kikō.), and some of the faculty members at the INS chose to leave UTokyo for the
KEK.
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faculty member and student is quite rare. If a faculty member exits a graduate program,

another other faculty member – usually a sub-leader of the same lab or, sometimes, a faculty

member from a different lab in the same institution whose research area is closely related to

the professor who exited – becomes the new advisor of the students who are left behind. In

either case, the student remains in the same program.

We identify an advisor switch due to turnover if a student’s master’s thesis advisor exited

UTokyo before the student earned a doctoral degree. Such cases account for 53.2 percent of

all advisor switches in the sample. We exclude students who switched advisors on their own

initiative from the sample observations, as such student-side advisor switches are likely to

be caused by a mismatch between advisor and advisee and could be correlated with student

research outcomes.

From Figure 1, where a red square marker represents a lab where an advisor switch due

to turnover occurred, while a blue circle marker represents a lab with no advisor turnover (a

darker colored marker means more students in a lab), it appears that faculty turnover incidents

are relatively frequent. There thus appears to be sufficient variation in the dependent variable

of the regression equation (7) to identify the variance of advisor effectiveness on advisee

research achievement gains within the same institution.

4.3 Data on Student Research Achievement

To measure a graduate student’s research achievement, we use the number of journal articles

that he or she published. To obtain this information, we employ the Thomson Reuters Web of

Science (WoS) archive. We collect physics articles with author names that match the name of

the graduate student under consideration. We further restrict our attention to those articles

published around the period when the target student was enrolled.

Selecting articles by author name matching may generate false positives: these articles

could have an author who coincidentally has the same name as the graduate student in

the sample but is in fact a different person. To minimize such identification errors, we add a

further restriction; that is, for an article to be identified as written by the student in question,

we impose a restriction that the words in the article title should overlap to some extent with

those in the title of the master’s or doctoral thesis. 25

Based on a student’s publication records, we define the research proficiency score as the

number of publication counts during a given year. Here, we employ two quality adjustment

methods. First, we limit the publications to those published in twelve high-quality peer-

reviewed journals, including three high-reputation general-interest science journals and nine

25See Appendix C.1 for details on the score of word overlap in titles.
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highly ranked physics journals.26 Second, we consider a student’s share of credit for an article

if there are multiple authors. In physics, as in other scientific disciplines, papers are usually

written by a group of authors whose contributions are not necessarily equal. We follow a

standard bibliometric method (e.g., Liu and Fang 2012; Waltman 2012) based on the byline

hierarchy rule to quantify a coauthor’s share of credit for an article with multiple authors.27

Figure 4 plots the average research proficiency score for our sample graduate students in

each year. Note that, in the figure, we begin the graduate school year index at one in the

year when a student entered the master’s program and increase it throughout the duration

of the graduate program. For the sake of expedience, the graduate school year is also defined

for the postdoctoral period after the student obtained a doctorate degree. In the figure, this

corresponds to the period after the 6th year.

Insert Figure 4

The figure illustrates the time pattern of how physics graduate students at UTokyo develop

their research outcomes: the achievement curve rises and reaches its peak in the years near

the completion of the doctoral degree (D1 and P1). Then, the research outcomes begin to

decline during the postdoctoral periods (P1-P5). We suspect that this reflects two types of

lag structure: the first relates to a publication lag, that is, the time lag from the submission

to publication of articles in journals. The second concerns a gestation lag, that is, the time

lag between project inception and completion.

5 Empirical Issues

In this section, we describe the empirical issues involved in estimating a lower bound of

professor quality based on the regression model in Equation (7). We first address how to

construct the squared difference measure of the student outcome growth variable, which is

used as the dependent variable in the regression model. We next highlight the possibility that

supervisory period is overestimated and discuss the bias in the lower-bound estimate of an

advisor’s value added. We finally consider the non-randomness of professor turnover, which

could cause an endogeneity problem and thus threaten the validity of the estimates. We then

propose a method to address this endogeneity concern.

26Nature, Science and Proceedings of the National Academy of Sciences of the United States of America
(PNAS) are included as the general-interest science journals, and Physical Reviews A, B, C, D, and E ;
Physical Reviews Letters; and Physics Letters A and B are included as the top physics journals. We received
advice from physicists regarding the selection of the top journals.

27See Appendix C.2 for details on the computation of a coauthor’s credit share.
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5.1 Student Research Outcome Variable

Two issues arise regarding the double-differenced student research outcome measure: (i) the

choice of years over which the student research outcomes are aggregated at the program level

and (ii) the choice of interval years between the pair of cohorts that are differenced.28

To address the first issue, we examine the distribution of the student average research

proficiency scores over the years of the graduate program. Figure 5 decomposes the student

average research proficiency scores into those related to the master’s thesis and those related

to the doctoral thesis. The proficiency score associated with the master’s thesis peaks in the

second year of the doctoral program (D2) and decreases thereafter, while the score related to

the doctoral thesis continues to increase. We thus opt to aggregate the research proficiency

scores over the period from the first year of the master’s program (M1) to the second year of

the doctoral program (D2) to compute the research outcome at the master’s level. For the

research outcome at the doctoral level, we assemble the research proficiency scores from the

first year of the doctoral program (D1) up to the fourth year of the postdoctoral period (P4).

We choose a rather long aggregation period at the doctoral level in light of the lag between

the time of article publication and the time the degree is awarded.

Insert Figure 5

In sum, our benchmark student research outcomes are aggregated over the period from

M1 to D2 and the period from D1 to P4 for the master’s degree and doctoral degree programs,

respectively. Table 1 presents the descriptive statistics.29

Insert Table 1

We turn to the second issue concerning the interval in years between cohorts. In Sec-

tion 3.2, τ denotes the number of years between two cohorts, c and c′, such that c − c′ ≤ τ

when determining the DD measure of the student research achievement growth. Note that

there is no theoretical rule for which year should be used as τ . On the one hand, the longer the

interval is, the more efficient the estimator because it yields more samples for the regression

analysis.30 On the other hand, the shorter interval is, the better because it requires a weaker

assumption on the covariance stationarity of the distribution of the demeaned random shocks

(assumption 2.3).31 In light of balance, we adopt the adjacent cohort period of τ = 3, 4 and

28Because the value-added model focuses on the student research achievement gain while in school, the
magnitude may be minute and unnoticeable if it is measured by the annual gain. We thus select the unit of
measure as each degree program period.

29The box plots of the research outcome distributions at the master’s and doctoral levels are presented in
Table D.2 of Appendix D.1.

30As presented in footnote 15, the total sample size is given by N = τ !L
(τ−2)!2! , which is an increasing function

of the adjacent period, τ , ceteris paribus.
31To be more precise, assumption 2.3 states that the covariance of the demeaned error terms is constant

between any two students, i and j, in different cohorts, c and c′. This assumption may be reasonable only for
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5 years as the benchmark when implementing the regression.

5.2 Overestimation of Supervisory Period

Another empirical issue concerns imprecise measurement of the supervisory period. We have

thus far implicitly assumed that, when the incident of advisor turnover happened, the professor

to which a student was reassigned supervised him or her for the entire doctoral course period.

However, the assumed supervisory period may be overstated. For instance, suppose that a

student experienced advisor turnover in the middle of his or her doctoral course. Then, the

advisor who was newly assigned may supervise the student for a period shorter than the

entirety of the doctoral program.

The issue of an overestimated supervisory period also arises when the professor who is

recorded as a research advisor in the thesis catalog is a “surrogate” of the true advisor.

In some cases of turnover, especially in cases where advisor relocates to other school, the

original advisor who left the program continues to provide substantial research influence on

the doctoral project of the former student. In this case, even if the student who experienced

advisor turnover was assigned a new advisor, this change is nominal. The substantive research

guidance is not provided by the“surrogate” advisor but by the “hidden” advisor. The length

of supervision of the “surrogate” advisor should be considered zero.

In Appendix D.1, we discuss how an overstated supervisory period affects the the lower-

bound estimate of the variance of advisor quality and show that the estimate is biased down-

ward. Nevertheless, since the estimated value is considered a conservative lower limit of

advisor effectiveness in enhancing an advisee’s research achievement gain, ultimately, the

interpretation of the estimate will not be changed.

5.3 Non-Random Turnover

Thus far, we have assumed that professor turnover is independent of various factors in the

value-added model and thus does not affect student research performance except through the

change in advisor quality. However, this assumption may be untenable. Arguably, a profes-

sor’s decision of whether to retire, move, or remain at a graduate program may be endogenous

to the student’s performance. Table D.1 in Appendix D presents evidence suggesting that

the sample is not balanced, that is, there are systematic differences between the groups with

and without professor turnover on some characteristics.

Consequently, the regression model in Equation (7) may suffer from the standard en-

dogenous variable problem, as the catch-all error term, εn, which influences student research

adjacent cohorts.
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outcome growth, will be confounded by the advisor switch dummy variable, Wn, through the

heterogeneity of advisors, who systematically differ between those with and without turnover.

In this case, we may not be able to obtain an unbiased estimate of β from the regression and

would thus be unable to obtain a reliable estimate of the lower bound of advisor quality.

To make the sample balanced and comparable, we thus employ a propensity score matching

method. The basic idea is to match a turnover case with a case of no turnover that has

approximately the same conditional likelihood, typically called the propensity score, that

an incident of advisor turnover would have occurred. After constructing a new balanced

sample based on the propensity score matching procedure, we estimate the regression model

in Equation (7) using the balanced sample, as if advisor changes due to turnover occurred at

random.

Note that, to account for the endogeneity of the advisor switch dummy variable in the

regression model, we only control for advisor characteristics. It is potentially justifiable not to

balance the sample on student characteristics because we exclude all cases in which a change in

advisor occurs for a student’s own reasons, as described in Section 4.2. The sample restriction

can eliminate the possibility that student factors are confounded with the occurrence of an

advisor switch, and therefore, it is deemed to occur exclusively for reasons on the faculty side.

Hence, we control for the professor’s characteristics in the propensity score analysis.

Appendix D.2 presents a detailed procedure for the propensity score matching method that

we employ to address the issue of non-random advisor turnover. Following standard practice in

the literature, we estimate the propensity scores using a logit model. We determine a baseline

specification of the model by a stepwise likelihood-test-based procedure, suggested by Imbens

(2014) and Imbens and Rubin (2015). To address the problem caused by the limited common

support of the propensity score distribution, we employ a systematic approach proposed by

Crump et al. (2009).

6 Estimation Results

6.1 Benchmark Results

This section presents the estimation results for professors’ value added to the students’ re-

search achievement gains.

Variance Comparison

To facilitate visual inspection of the results, we provide a graphical representation of how the

DD measure of student research achievement growth, given by Equation (5), fluctuates when

an incident of advisor turnover occurred. As explained previously, we ascribe the observed
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change in the variance in the DD measure to a disconnected change in advisor qualities due

to turnover.

Figure 6 (left) presents the sample variances of the DD measure for (a) labs in the cohort

where turnover occurred and (b) labs with the same advisor but with the last cohort before

turnover. Although the variances increase after turnover in all three cases of adjacent cohort

periods, the changes are not substantial. Figure 6 (right) repeats the same comparison of

the sample variances. However, here, with the non-randomness of turnover being taken into

account, we compare that for (c) labs in the treatment group where turnover occurred with

that for (d) labs in the corresponding control group that are matched through the propensity

score method. In contrast to the previous result, the increase in the variance is considerable

for all three cases of adjacent periods.

Insert Figure 6

Baseline Regression Estimates

To quantify the magnitude of a professor’s value added, we estimate the econometric model

(7). The main estimate of interest is the lower bound of the variance in advisor quality at the

doctoral level, which is given by one-fourth of the coefficient of the advisor switch indicator

variable in the regression model.

Table 2 presents the baseline results. We report the regression estimates in rows (1) and

(2). Columns (1), (2) and (3) are used to report the estimation results for the three cases

of adjacent periods between cohorts, τ = 3, 4 and 5 years, respectively. As the estimated

propensity scores are used for the true values, we compute resampling-based standard errors

to correct for the additional sampling variability arising from estimation.32 All estimates of

βs are positive and statistically significant from zero at the 10 percent level except for one

case.

Insert Table 2

Row (3) of Table 2 presents the estimated lower bound of advisor quality variance at the

doctoral level. As the variance must be non-negative, we perform one-sided tests such that

Lower bound of σ2
d

∧

= 0 against the alternative Lower bound of σ2
d

∧

> 0. The results indicate

that the null hypothesis is rejected at least at the 5 percent level for all cases, indicating

that a professor’s quality has a measurable effect on the research performance growth of the

student to whom he or she is assigned.

32Abadie and Imbens (2008) demonstrate that the bootstrap method generates biased estimates of the stan-
dard errors for a nearest-neighbor matching estimator and suggest using the subsampling method developed
by Politis and Romano (1994). We therefore use the subsampling method whereby we draw fewer observations
than the same size at each iteration without replacement.
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For the results that we have presented thus far, we base the student research outcome on

the research proficiency scores that are adjusted for the share of credit of each author. Alter-

natively, we can quantify the research outcome of a student without credit share adjustment.

To this end, we count the number of first-authored articles that the student published as a

lead author in the selected top general and field journals in physics. While the alternative

research outcome measure might be crude and subject to a certain amount of noise — it might

underrate the research achievement of a student because it ignores the articles for which he or

she is not a lead author, or it might overrate the student’s attainment because it accords him

or her all of the credit, even for multi-authored articles, irrespective of how many coauthors

are involved — it nonetheless serves as a simple and easily interpreted yardstick.

The estimation results using the alternative research outcome measure are presented in

columns (4) to (6) of Table 2. The regression estimates are larger than the previous results that

adjusted the author’s credit share. This is unsurprising because the first-author-based measure

is greater than the original measure to the extent that the credit share is not weighted.33

The estimated values of the lower bound of σ2
d, reported in row (3), are correspondingly

larger than those previously reported. Reassuringly, the null hypothesis that the variance in

advisor quality is zero cannot be rejected at least at the 5 percent level. We therefore obtain

qualitatively similar evidence on the professor’s value added as that found previously.

The results presented above indicate the effectiveness of professors in improving doc-

toral students’ research productivity growth. Indeed, better advisor quality causally affects

advisees’ research achievement gains in graduate school. If we use 0.0489 as the most con-

servative estimate of the lower bound of the advisor quality variance among those reported

in columns (1) to (3) of Table 2, we find that a one-standard-deviation increase in profes-

sor quality raises the average student research achievement gain at the doctoral level by at

least 0.221, which corresponds to approximately 0.54 standard deviations of the total doctoral

program research outcome distribution.

If we base the estimation results on the first-author-based research outcome measure re-

ported in columns (4) to (6) of Table 2, we find that, if professor quality increases by one

standard deviation, the average student publishes 0.64 more first-authored articles in top

journals at the doctoral level.34 We are thus able to conclude that a professor’s value added

to graduate student research outcomes is substantial.

Our estimates of value added provide an interesting comparison with the professor value-

added estimates at the undergraduate level reported by previous studies. For example, Hoff-

mann and Oreopoulos (2009) estimate professor value added to student’s achievement gains,

33The mean and standard deviation of the first-author-based research outcome at the doctoral level are
0.39 and 0.96.

34When computing the standard deviation increase, we use 0.410 as the estimated value of the lower bound
of advisor quality variance.
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measured by undergraduate course grades in a large Canadian university. They report that

a one-standard-deviation increase in professor quality yields an approximately 0.05-standard-

deviation increase in a student’s grade. Carrell and West (2010) obtain a similar value-added

estimate for professors at the U.S. Air Force Academy who teach introductory courses at

the undergraduate level. They report that the standard deviation of value added is approxi-

mately 0.05. Therefore, our estimates of professor-value added at the postgraduate level are

substantially larger than those standard-deviation estimates at the undergraduate level.

The observed difference in the estimates might not be too surprising considering the factors

that distinguish our study from other studies. First, the professor quality that we measure is

different. We evaluate the dimension of professor quality that promotes a student’s research

capability, whereas those previous studies assess the aspect of quality that enhances a student’s

academic capability. Second, closely related to the first point, the student outcome is different.

We focus on the research achievement gains of postgraduate students, while previous studies

investigate the academic achievement gains of undergraduate students.

Robustness against Various Specifications

We perform a series of checks on the estimation results regarding different specifications

of student research outcomes. First, we consider alternative configurations in terms of the

period over which the research proficiency scores are aggregated for each degree program.

Specifically, in addition to the benchmark case (M1-D2 for the master’s program and D1-P4

for the doctoral program), we examine alternative cases that change the aggregation period

at the master’s and doctoral levels. Second, we examine whether the results are driven by a

specific value of the threshold that is used to compute students’ research proficiency scores.

As explained above, we consider research articles that are actually published by a target

student if the author’s name matches the student’s name and, in addition, the degree of word

overlap in the titles between the article and the student’s thesis exceeds some predetermined

threshold value. While the default value is set to minimize both type 1 and type 2 errors, we

employ both over-matching and under-matching criteria in the robustness exercise. Finally,

we check the sensitivity of our estimates to the particular choice of top journals, we replicate

the baseline analysis by narrowing the coverage to nine journals (two general-interest science

and seven field journals) instead of twelve journals.35

The estimation results are presented in Table E.1 and Table E.2 of Appendix E.2. We

find that all of the results are qualitatively similar to the previously reported findings. The

null hypothesis that the variance in doctoral-level advisor quality is zero is rejected at the 10

35The three of the original twelve journals excluded here are PNAS in the general-interest science journal
category and Physics Letters A and B in the field journal category. This is based on suggestions that we
received from several physics researchers.
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percent level in all cases that change the aggregation period for the default value of the title

matching threshold, and in most cases for both over-matching and under-matching criteria.

Considering the results, we can conclude that the findings from the regression model are

not merely artifacts of the particular specifications of student research outcomes and endorse

the conclusion that professor quality plays a distinct role in enhancing a student’s research

capacity in the doctoral program.

6.2 Robustness Tests

This section provides various robustness checks for the benchmark results. First, we imple-

ment a falsification test that investigates whether a false instance of an advisor switch predicts

an increase in the volatility of student research outcomes between programs and cohorts. Sec-

ond, we discuss the possibility that the lower bound of the estimate of the advisor quality

variance might be overestimated. Third, we examine the robustness of the estimation results

under a weaker conditional independence assumption on advisor switch due to turnover.

Falsification Test

In our estimation framework, the variance in advisor quality is identified by an increase in the

squared difference of the student research outcome gain at the time of advisor turnover. We

thus implement a falsification exercise that examines whether the timing agrees with what is

predicted by the empirical model.

To do so, we construct a false advisor switch dummy variable, W̃n, that takes value one

for the lab in one cohort before the actual incident and zero otherwise. Specifically, given

lab ℓ(a, c), where advisor turnover occurred, the variable W̃n is one in the latest cohort, c′,

in which advisor a supervised at least one student before cohort c. We estimate a regression

similar to regression model (7) using the dummy variable W̃n as the regressor instead of using

the true advisor switch dummy variable, Wn, with β̃ being the coefficient of the variable W̃ .

We report the estimated value of β̃ in panel (A) of Table 3, where we adopt the same

definition of the student research outcome measures as in the baseline case, and replicate the

regression results except that we use the false advisor switch dummy variable.36 It is shown

that the false advisor switch dummy variable is sometimes negative and has no systematic

impact on the the squared difference of the student research outcome gain. Indeed, in all cases

except one, the false advisor switch dummy variable is not statistically significant, suggesting

that the results survive the falsification test.

36The full estimation results are reported in Table E.3 of Appendix E.2.
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Factors that Lead to Upward Bias

As we are interested in estimating a lower bound of the variance in advisor quality, downward

bias would not be problematic. There is, however, a set of potential sources of upward bias.

The first possibility that might introduce upward bias concerns the allocation of the re-

search credit share between advisor and advisee. One would assume that students are merely

assigned a part of a larger research project, or subtopic, that the advisor has pursued, and

thus, their contribution to the project in collaboration with their advisors is marginal.37 If

this is true, our turnover estimator for the lower bound of the variance in advisor quality

might suffer from systematic upward bias, as we would then mistakenly ascribe the advisor’s

research contribution to the student’s research achievement.

Because the actual collaboration process is not observed for joint research activities, it is

impossible for us to allocate the true share of credit to each member of an advisor-advisee

pair that engaged in a joint research project. We therefore consider an extreme case in which

the student’s contribution is zero whenever he or she collaborated with a research advisor to

highlight the sensitivity of the previous estimation results to the assumption on the allocation

of research credit.

Panel (B) of Table 3 presents the estimated lower bound of advisor quality variance,

assuming that the research proficiency score of a student publication is equal to zero if it

is coauthored with the advisor.38 Looking across the columns of the table, the size of the

estimated coefficients and the lower bound of advisor quality variance tend to be lower.

Nonetheless, the one-sided test of the null hypothesis that doctoral-level advisor quality has

no effect on an advisee’s research achievement growth is rejected at the 10 percent level.

Because we consider a severe restriction on the allocation of the credit share to the side of

advisees, which is overly severe for the advisees in terms of their research contributions, the

reported evidence of positive professor value added reassuringly supports the conclusion that

professors enhance their students’ research achievement gains by advising and mentoring their

research projects at the postgraduate level.

Another potential source of upward bias is that the assumption on the time-invariance

of advisor quality, given by assumption 1.1, might be violated. Suppose, contrary to the

assumption, that it varies across cohorts within a professor. In particular, if it fluctuates

as the end of a professor’s research career approaches, the squared difference measure, the

37Note that our empirical study relies on the assumption that the student made an original and substantial
contribution to his or her thesis research projects and that the articles with titles that are closely associated
with the master’s thesis or doctoral dissertation can be used as an unbiased yardstick to gauge the student’s
in-school research achievement. The assumption appears somewhat reasonable for physics departments in
Japanese universities, where, as described in Section 2.2, graduate students are typically accorded a fair
amount of autonomy when choosing a research topic and approach.

38The full estimation results are reported in Table E.4 of Appendix E.2.
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dependent variable in regression model (7), becomes more volatile in the last cohorts before

a professor’s turnover. In this case, the regression coefficient of the advisor switch dummy

variable might overstate the lower bound of advisor quality variance.

To shed some light on this concern, we augment the regression model in Equation (7)

by including a set of dummy variables that capture the possible change in advisor quality

variance in the period near turnover.39 Panel (C) of Table 3 presents the estimated lower

bound of the variance in advisor quality from the augmented specification.40 As shown,

the estimates are not substantially affected by the inclusion of the cohort-specific dummy

variables. Encouragingly, the null hypothesis that advisor quality in the doctoral program

has no effect on student research outcome growth is rejected at least at the 10 percent level

in all cases.41

Insert Table 3

Non-Retirement Turnover

Our identification strategy for a lower limit of advisor quality relies on the assumption that

advisor switch is incidental, that is, it is independent of an advisee’s unobservables conditional

on the advisor’s observable characteristics. The assumption leads us to consider the baseline

regression model where the advisor switch indicator, Wn, is assumed to be orthogonal to the

student-specific catch-all error term, εn, once the observables of professors are controlled for

by the propensity score method.

There might be a concern about the validity of the conditional randomness of advisor

switch, however. Indeed, advisor switch (and non-switch) will be intentional for students.

It might be possible for students, having prior information on faculty members, to predict

“scheduled” retirement events and choose their advisors and labs. If this type of self-selection

occurs, students in a lab with turnover might be systematically different from those in the

lab without turnover. This may cause the advisor switch indicator to be correlated with the

error term in the regression model through confounding factors related to a student’s research

performance. The problem of unobserved heterogeneity in the regression cannot be eliminated

by the propensity score method since it takes into account only selection on observables on

the side of advisors.

To mitigate this concern, we examine how the lower-bound value estimates of the variance

in advisor quality are robust under a more plausible assumption on the conditional indepen-

39Specifically, we consider a regression that includes dummy variable D(a,c,c′)
k for k = 1, 2, and 3. The

dichotomous variable takes value one if cohort c is within k years before professor a exited and zero otherwise,.
40The full estimation results are reported in Table E.5 of Appendix E.2.
41Furthermore, the estimation results shown in Table E.5 indicate that none of the coefficients concerning

the added dummy variables are statistically significant.
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dence of advisor turnover. We perform regression analyses under an assumption that turnover

due to non-retirement reasons is accidental and thus that the event of advisor switch caused

by the turnover is incidentally orthogonal to unobserved student characteristics.42 It may be

true that students can predict the timing of the scheduled mandatory retirement of a faculty

member with some degree of accuracy.43 Nonetheless, it does not seem unreasonable to as-

sume that students do not have sufficient information to foresee the future relocation, not to

mention decease, of a faculty member ax ante at the time of graduate enrollment. Given the

limited ability of students to predict the timing of faculty members’ relocation and death,

it seems less controversial to assume that an advisor switch caused by non-retirement-based

turnover is more incidental than one caused by retirement-based turnover and thus is likely

to be uncorrelated with student-specific unobserved factors.

Table 4 reports the estimated lower bounds for the variance of advisor quality when the in-

cidents of turnover are restricted to those due to non-retirement reasons.44 Panel (A) presents

the estimates when we replicate the baseline specification, while the panel (B) presents the

estimates for the case in which the research proficiency score of a student publication is set

to zero if it is a joint work with the advisor.

Overall, we find that the estimates are positive and statistically significant, which bolsters

the previous finding that advisor quality matters for an advisee’s research performance growth.

Indeed, the estimated lower bounds for the variance of advisor quality are larger than those

found in the corresponding baseline case. However, as the results only pertain to advisor

switches that occurred due to non-retirement reasons, we do not use them to update the

information on the magnitudes of the variance of advisor quality. It seems nonetheless safe

to say that the previous finding on the effectiveness of advisors is not driven by self-selection

behavior by advisees.

Insert Table 4

42Since the available information on students’ background characteristics is rather limited comparing to
that on professors, we do not opt for including as many characteristics as possible to absorb all the potential
student-side heterogeneity across labs.

43It appears that not all retirement events are perfectly predictable, however. As explained in footnote
22, the mandatory retirement policy changed at UTokyo in the year 2001. The policy was made an official
decision in the year 2000, but there had been considerable uncertainty as to whether the policy would be
enacted at the time. Thus, it seems highly likely that faculty members, not to mention graduate students,
who were at UTokyo’s physics program in the late 1990s were able predict the change in the retirement age
that happened in the early 2000s.

44The full estimation results are reported in Table E.6 and Table E.7 of Appendix E.2.
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6.3 Additional Evidence for Professors’ Influence on Students

Other Mechanisms

The estimation results have shown that advisor turnover generates significant variations in

an advisee’s research achievement gains at UTokyo’s department of physics. According to a

standard value-added model, we ascribe the increased diversity of student research achieve-

ment gains to the discrete change in advisor quality at the time of turnover. Admittedly,

however, there may remain other mechanisms that create such a pattern.

One possibility is that professor turnover always has a positive effect on students’ research

capacity and thus increases the variability in student achievement gains between cohorts with

and without turnover. The positive advisor turnover effect could be caused by a mechanism

that reflects a well-known understanding that innovation (and thus economic growth) is due

to the recombination of existing ideas (e.g., Weitzman 1998). This follows from this view

that, as new innovation is likely to arise from recombining old knowledge elements, students

who are supervised by different professors would have access to a wider variety of knowledge

and ideas and can thus enhance their research capabilities.

Another mechanism yields a negative effect of professor turnover on students’ research

achievement gains. Turnover may lead to a disruption that impacts the students who are

forced to change their research advisors. As is often noted in the education literature (e.g.,

Wisker and Robinson 2013), if an advisor is lost due to turnover, an advisee who becomes

an “orphan” occasionally perceives this as a traumatic event and suffers from psychological

problems that might occasionally result in the under-development of academic achievement. If

this understanding is correct, advisor turnover would retard the advisee’s research progress,

irrespective of how high the quality of the newly assigned advisor is and thus generate a

noticeable gap in student research outcome gains between cohorts with and without turnover.

Recall that, according to the mechanism captured by the value-added model, the advisee’s

research outcome growth can be positive or negative after turnover – indeed, as explained in

Section 3.1, the direction of growth depends decisively on the relative levels of advisor quality

that were switched when turnover occurred and will thus not be predicted a priori unless the

information on the exact quality levels is available. In the analysis that follows, we investigate

which mechanism is more likely by estimating a regression similar to the regression model

in Equation (7), except with the dependent variable being in levels,
(
DD∆outcomen

)
, not in

squares
(
DD∆outcomen

)2
. To identify the mechanism in place, we focus on the sign of the

turnover effect on the advisor’s research achievement gain.

Panel (A) of Table 5 presents the regression results for which all estimated coefficients

of the advisor switch indicator are shown to be positive but are not statistically significant
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in all cases.45 We can interpret the results as indicating that, contrary to the predictions of

the alternative mechanisms, advisor turnover can have a positive or negative impact on an

advisee’s research productivity growth. As the individual impacts cancel one another out, the

aggregate effect, as reflected by the integration, is not significantly different from the null in

levels. It thus appears to confirm that the mechanism that the value-added model postulates

should be a main driver of the empirical findings obtained thus far.

Indirect Influence

Our analysis thus far has concentrated on the advisor-advisee relationship within a lab and

intended to measure the effectiveness of knowledge transmission through a direct interaction

channel within a lab. However, knowledge might be transmitted beyond master-apprentice-

style contact.

We modify the baseline specification in Equation (2) by incorporating an “indirect” effect

of professors. Consider the following augmented model of student research outcome gains:

∆outcome
ℓ(e,c)
eg = γ̄ℓ(e,c) + θeg +

∑

f∈A

πefθfg + ν̄ℓ(e,c)eg , (10)

where we consider lab ℓ(e, c) of professor e ∈ A in cohort c ∈ C . The parameter πef captures

the magnitude of the indirect influence from non-advisor faculty member f on the average

research outcome gain in program g for students in lab ℓ(e, c). In what follows, for the purpose

of simplicity, we assume that πef = π if the research field or subfield of professor f is the

same as or closely related to that of the direct advisor, e, and πef = 0 otherwise.46

Analogous to Equation (6), we compute the conditional expectation of the squared double-

differenced average student research outcome growth and construct a regression model based

on the comparison of the conditional expectations between labs with and without a “treat-

ment” assignment. To achieve this aim, let us use V ℓ(e,c,c′) to denote an assignment indicator

of an “indirect” turnover incident. Specifically, define V ℓ(e,c,c′) = 1 if a professor whose re-

search subfield is the same as that of professor e is replaced due to turnover in cohort c and

V ℓ(e,c,c′) = 0 otherwise.

We obtain the following result under the same assumptions as above on the distributions

45The full estimation results are reported in Table E.8 of Appendix E.2.
46In other words, we restrict the scope of indirect influence to that between professors and students within

the same research field (or subfields).
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of advisor quality and the idiosyncratic error terms:

E

[(
DD∆outcome

ℓ(e,c,c′)
)2

|W ℓ(e,c,c′) = 0, V ℓ(e,c,c′)

]

= α

(
1

Iℓ(e,c)
+

1

I l(e,c′)

)
+ π2

{
2σ2

d(1− ρd)
}
V ℓ(e,c,c′), (11)

where α is the same as that given in Equation (6). This, in turn, leads to the following

regression model using the subsamples that consist of labs in which advisor turnover did not

occur (W ℓ(e,c,c′) = 0):

(
DD∆outcomem

)2
= αindXm + βindVm + εm, (12)

where m = 1, · · · ,M is the index of observations.47

Comparing Equations (11) and (12) leads to the parameter relationship that βind =

π2{2σ2
d(1 − ρd)}. Let us use β̂dir to denote an estimate of the coefficient of Wn from the

baseline regression model given by Equation (7), and let β̂ind be an estimate of the coefficient

of Vm from Equation (12) presented above. We therefore obtain π̂ =
√
β̂ind/β̂dir, which can

be used as a measure of indirect knowledge transfer from a non-advisor professor in the same

research field.

An empirical challenge is to identify a group of professors whose research subjects were

close enough to that of the professor experiencing turnover. As the type of data necessary to

judge the similarity between research subjects is absent or rarely present, we adopt a simple

and heuristic method for identifying the same research subject groups, which exploits the

information revealed by the actual turnover events. It is conceivable that, when an instance

of professor turnover occurred, the students in the lab of the professor who exited were highly

likely to be re-assigned to a professor whose research area was closely related to that of the

original professor. In the empirical analysis that follows, we therefore assume that the original

professor who exited and the re-assigned professor were working in the same research area.

The detailed situation is illustrated in Appendix E.1.

The results shown in panel (B) of Table 5 represent the regression estimates.48 We adopt

the default setting for the student research outcome and use the same estimation method as

before.49 As shown, the estimates are ambiguous for βind. One of the estimates is negative,

and in the case in which the estimates are positive, they are not statistically significant at

47Here, the unit of observation is each element of (e, c, c′) such that W ℓ(e,c,c′) = 0 for any advisor e ∈ A
and cohorts c, c′ such that 0 < c− c′ ≤ τ .

48The full estimation results are reported in Table E.9 of Appendix E.2.
49The research outcomes in the master’s degree and doctoral degree programs are aggregated over the

period from M1 to D2 and the period from D1 to P4, respectively. Furthermore, the set of “top journals”
here consists of twelve journals.
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the 10 percent level in any specification except one. The estimates of the squared indirect

influence parameter, π2, are reported in row (3).50 Again, the signs of the estimates differ.

The maximum estimate is 0.269, while the value where β̂ind is statistically significant is as

low as approximately 0.1, as reported in column (6). This result implies that the indirect

knowledge transfer effect from non-advisor faculty is π̂ = 0.33, suggesting that it is, at most,

less than one-third of the direct effect from the advisor.

On balance, therefore, there appears to be little or no indirect influence from non-advisor

faculty members across labs on doctoral student research productivity growth.

7 Conclusion

In this paper, we investigated the extent to which professors can affect the development of

the research performance of the graduate students whom they supervise. By using detailed

data on professors and students at UTokyo’s department of physics, we estimated a lower

bound of the professor value added to student research achievement growth while in school.

The estimation results consistently show that postgraduate research education based on an

advisor-advisee relationship is quite effective — professors have a substantial impact on the

students’ achievement gains in terms of the number of publications in top journals in physics.

This corroborates the view of earlier studies (e.g., Azoulay, Zivin and Wang 2010; Borjas and

Doran 2014; Moser, Voena and Waldinger 2014) that research interactions among scientists

in vertically aligned relationships, including senior-and-junior-collaborator, teacher-student,

and advisor-advisee relationships, matter for the creation and diffusion of scientific ideas and

knowledge.

Our findings also suggest that the accumulation of prominent scientists in a comparatively

small number of universities is explained, at least partially, by the results of successful edu-

cation at the postgraduate level. For example, in Japan, five out of ten Nobel Prize winners

in physics completed their doctoral degrees at UTokyo, and four earned their doctorate de-

grees at Nagoya University. Given our results on the effectiveness of professors in enhancing

students’ research capability growth, we can speculate that the relatively high concentration

of physics Nobel laureates in these two universities in Japan might be caused not only by the

processes of students’ self-selection or schools’ selective recruitment but also by the beneficial

reproduction of elite physicists, which was enabled by a deliberate process of teaching and

learning in a lab. While previous studies (e.g., Waldinger 2010) suggest that high-quality

universities can facilitate human capital accumulation among graduate students, our paper

specifically adds that this outcome is based on advisor-advisee-based education.

50We compute π̂2 as the quotient of the estimate β̂ind over the estimate β̂dir that appears in the corre-
sponding number of columns in Table 2.
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We need to highlight some limitations of this paper. First, our analysis of the professor’s

value added is essentially short run. Although the estimation results reveal that research

advisors can influence the research development of their students, the impact might be lim-

ited to the short span of time while the student is in graduate school or several years after

the completion of graduate school. It is left to future research to examine whether a pro-

fessor’s supervision during a graduate program has a long-term impact on students’ research

performance during their postgraduation careers.

Second, the analysis in the paper is limited to a small, albeit prominent, group of physicists.

Thus, our conclusion regarding a professor’s value added might not be generalizable to groups

of other scientists from different disciplines or other graduate schools. We hope that the

findings of this paper regarding the efficacy of professors in promoting student progress in

research performance will be helpful to stimulate further research in related areas including

the economics of higher education and the economics of science and technology.
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Figure 1: Distribution of Students across Initial Advisors and Cohorts

Notes: Initial advisors are on the vertical axis and cohorts are on the horizontal axis. The
red square and blue circle markers represent a lab where the advisor was replaced due to
turnover and a lab where the advisor was not replaced, respectively. The darker the marker
color is, the more students in a lab.

turnover

timeline

professor a

professor b

ℓ(a, c0) ℓ(a, c1) ℓ(a, c2)

Figure 2: Example of Labs with and without Turnover

Notes: There are three labs with different cohorts, c0, c1 and c2, whose initial advisor is
professor a. Each lab is portrayed by a connected line segment, which represents the two-
year masterʟs degree program and the three-year doctoral degree program. Advisor turnover
did not occur in labs ℓ(a, c0) or ℓ(a, c1) before cohort c2. However, in lab ℓ(a, c2), professor
a exited the school due to turnover, and professor b took charge of the doctoral students.
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Figure 3: Number of Turnover Incidents in Each Year (1970-2004)

Notes: The reasons for turnover are classified into the following three categories: (1) re-
tirement if the instance of turnover occurred at the mandatory retirement age; (2) move if
turnover occurred before the retirement age and the faculty name began to appear on other
universities’ roasters beginning in the year after the turnover instance; and (3) decease/quit
otherwise.
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Figure 4: Average Student Research Proficiency Scores

Notes: The research proficiency score is defined as the number of publication counts of a
student’s publication records during a given year. Two quality adjustment methods are
employed. First, we limit the publications to those published in twelve high-quality peer-
reviewed journals. Second, we consider a student’s share of credit for an article if there are
multiple authors.
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Figure 5: Decomposition of the Student Research Proficiency Scores

Notes: The average student research proficiency scores are decomposed into those related
to the master’s thesis and those related to the doctoral thesis. We determine whether
research articles are actually published by a target student if the degree of word overlap in
the titles between the article and the student’s master’s and doctoral theses exceeds some
predetermined threshold value.
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Figure 6: Comparison of the Double-differenced (DD) Average Student Re-
search Outcome Growth between Labs with and without Turnover

Notes: The left figure presents the sample variances of the DD measure for (a) labs in
the cohort where turnover occurred and (b) labs of the same advisor but their cohort is
the last before turnover. The right figure provides the same comparison of the sample
variances between (c) labs in the treatment group where turnover occurred and (d) labs in
the corresponding control group that are matched through the propensity score method.
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Tables

Table 1: Descriptive Statistics for the Student Research Outcomes in Levels and in
Differences

Research Outcome Research Outcome Research Outcome Gain
at the Master’s Level at the Doctoral Level at the Doctoral Level

outcomeciam outcomeciad ∆outcomeciad
Mean 0.0677 0.2202 0.1481
S.D. 0.2184 0.5075 0.4068
Min 0.0000 0.0000 -0.4738
Max 2.3175 4.7303 4.7303
Sample Size 1019 1019 1019

Notes: The research outcome at each degree level is computed based on the research pro-
ficiency scores. The aggregation years are M1-D2 for the master’s level and D1-P4 for the
doctoral level. The gain in research outcome at the doctoral level is given by the difference
in the research outcome from the doctoral level to the master’s level. Since the research
outcome at the bachelor’s level is normalized to zero, the gain in research outcome at the
master’s level is equal to the research oucome at the master’s level.
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Table 2: Baseline Estimation Results: The Effect of Advisor Turnover on Student Re-
search Outcome Growth at the Doctoral Level

Dependent Credit Share Weighted First-authored-paper Based

[DD∆outcome]2 [DD∆outcome]2

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

(1) α̂ 0.0667 *** 0.0742 *** 0.0960 *** 0.0570 0.1267 ** 0.4025 ***

(0.0237) (0.0225) (0.0134) (0.0682) (0.0545) (0.0720)
(2) β̂ 0.3371 * 0.2663 ** 0.1956 ** 2.3091 * 2.1322 ** 1.6401 **

(0.1746) (0.1204) (0.0985) (1.3249) (0.9220) (0.8251)

(3) Lower bound of σ2
d

∧

0.0843 ** 0.0666 ** 0.0489 ** 0.5773 ** 0.5331 ** 0.4100 **

[0.0268] [0.0135] [0.0236] [0.0407] [0.0104] [0.0234]
Sample Size
Total 925 1202 1446 925 1202 1446
After matching 104 186 271 104 186 271

Notes: The dependent variable is the squared double-differenced average student research
outcome growth. The total sample size is given by the number of observations for each tuple
of (a, c, c′) for any advisor a in A and cohort c, c′ such that 0 < c − c′ ≤ τ , where τ is
the period over which the difference is taken. To make the sample balanced, a propensity
score matching method is used. A logit model is used to estimate the propensity scores. The
after-matching sample size is the sum of the numbers of observations for the treatment group
where turnover occurred and the corresponding control group that are matched through the
propensity score method. The standard errors, which are computed by the subsampling
method of Politis and Romano (1994), are in parentheses. The numbers in square brackets

are p-values for the one-sided tests such that Lower bound of σ2
d

∧

= 0 against the alternative

Lower bound of σ2
d

∧

> 0.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table 3: Robustness Test Results

Dependent Credit Share Weighted First-authored-paper Based

[DD∆outcome]2 [DD∆outcome]2

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

(A) Falsification test
β̃ 0.2979 0.2039 0.0814 0.6315 ** -0.0969 -0.7784

(0.2123) (0.1725) (0.1270) (0.2616) (0.3965) (0.4350)
(B) The student proficiency score is zero if coauthored with advisor

Lower bound of σ2
d

∧

0.0514 0.0416 * 0.0593 ** 0.3444 * 0.3343 ** 0.3422 ***

[0.1168] [0.0803] [0.0101] [0.0790] [0.0247] [0.0093]
(C) When a change in advisor auality variance is allowed

Lower bound of σ2
d

∧

0.0848 ** 0.0608 ** 0.0536 ** 0.5830 * 0.5302 ** 0.4277 **

[0.0326] [0.0301] [0.0220] [0.0503] [0.0144] [0.0283]

Notes: The dependent variable is the squared double-differenced average student research
outcome growth. The estimated coefficient of the false advisor switch indicator, W̃n, and the
estimated lower bounds of the variance in advisor quality at the doctoral level are reported.
The full estimation results are in Table E.1, Table E.2 and Table E.3 of Appendix E.2. To
make the sample balanced, a propensity score matching method is used. A logit model
is used to estimate the propensity scores. The standard errors, which are computed by
the subsampling method of Politis and Romano (1994), are in parentheses. The numbers in

square brackets are p-values for the one-sided tests such that Lower bound of σ2
d

∧

= 0 against

the alternative Lower bound of σ2
d

∧

> 0.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table 4: Estimation Results when Non-Retirement Turnover Events Are Used: The
Estimated Lower Bounds for the Variance of Advisor Quality at the Doctoral
Level

Dependent Credit Share Weighted First-authored-paper Based

[DD∆outcome]2 [DD∆outcome]2

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

(A) Baseline Case

Lower bound of σ2
d

∧

0.1863 ** 0.1872 *** 0.1240 *** 1.2319 * 1.3214 ** 1.0214 **

[0.0496] [0.0035] [0.0087] [0.0917] [0.0129] [0.0097]
(B) The student proficiency score is zero if coauthored with advisor

Lower bound of σ2
d

∧

0.1482 * 0.1433 ** 0.1326 ** 0.9007 0.8801 ** 0.7196 **

[0.0926] [0.0195] [0.0103] [0.1019] [0.0227] [0.0164]

Notes: The dependent variable is the squared double-differenced average student research
outcome growth. The estimated lower bounds of the variance in advisor quality at the
doctoral level are reported. The full estimation results are in Table E.4 and Table E.5
of Appendix E.2. To make the sample balanced, a propensity score matching method
is used. A logit model is used to estimate the propensity scores. The standard errors,
which are computed by the subsampling method of Politis and Romano (1994), are in
parentheses. The numbers in square brackets are p-values for the one-sided tests such that

Lower bound of σ2
d

∧

= 0 against the alternative Lower bound of σ2
d

∧

> 0. The standard er-
rors, which are computed by the subsampling method of Politis and Romano (1994), are in
parentheses.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table 5: Additional Evidence for Professors’ Influence on Students

Dependent Credit Share Weighted First-authored-paper Based

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

(A) The DD Measure in Levels Is Used
β̂ 0.1439 0.1480 0.0310 0.2655 0.3968 0.2276

(0.1746) (0.1204) (0.0985) (2.1883) (1.5374) (1.3783)
(B) Effect of Non-Advisor Turnover

β̂ind -0.0230 0.0274 0.0527 0.0764 0.1007 0.1768
(0.0374) (0.0320) (0.0336) (0.1192) (0.0924) (0.0924)

π̂2 -0.0682 0.1030 0.2694 0.0331 0.0472 0.1078

Notes: The dependent variables are the double-differenced average student research outcome
growth in level and in square in panels (A) and (B), respectively. The estimated coefficients
of the advisor switch indicator due to turnover, Wn, and the assignment indicator of “indi-
rect” turnover, Vm, are reported. The full estimation results are in Table E.6 and Table E.7
of Appendix E.2. We define π̂2 = β̂ind/β̂dir, where β̂dir is taken from the estimates in Ta-
ble 2. To make the sample balanced, a propensity score matching method is used. A logit
model is used to estimate the propensity scores. The standard errors, which are computed
by the subsampling method of Politis and Romano (1994), are in parentheses.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.

45



Appendix

A Laboratory Democracy

Low (2005) notes that professor Shouichi Sakata at the physics department of Nagoya Imperial

University, an influential physicist at that time, played an important role in developing the

new democratic lab system in the Japanese physics community. Sakata, who was under

the philosophical influence of Marxism, introduced a charter for the physics department at

Nagoya in 1946. The charter holds that democracy should serve as the guiding principle in

department affairs; all faculty members and students should be treated equally concerning

physics research (Department of Physics, Nagoya University, 2015). The idealism of Sakata’s

“laboratory democracy” then spread. Soon after the Nagoya Charter was announced, several

physics departments at other universities introduced similar systems. See Tanabashi (2012)

for details on Sakata’s laboratory democracy.

Traweek (1988) reports that decision-making in Japanese physics labs was based on the

consensus of the members. Traweek, an anthropologist who studied various research groups

of elementary particle physicists in Japan and the U.S., offers a first-hand account of the

democratic nature of labs in Japan by asking group leaders of a lab for the source of new

ideas for experimental design or data analysis. She writes, (p.147) “ [lab leaders] generally

credited the graduate students ... they said the group then responds to their ideas, perhaps

modifying or amplifying them”.
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B The Assumption on the Random Shock

B.1 Assumptions on the Moments of the Idiosyncratic Shocks

The following assumptions impose restrictions on the moments of the idiosyncratic shock after

demeaning by each cohort.

assumption 2.1: The conditional expectation and variance of the demeaned random

shock, ν̃c, for student i ∈ I ℓ(a,c) are E(ν̃ciag|W ℓ(a,c,c′)) = 0 and Var(ν̃ciag|W ℓ(a,c,c′)) = φ2
g,

respectively, for any a ∈ A , g ∈ {m, d}, and c, c′ ∈ C .

assumption 2.2: The covariance of the demeaned random shocks between degree pro-

grams within the same student, i ∈ I ℓ(a,c), is given by Cov(ν̃ciam, ν̃
c
iad|W ℓ(a,c,c′)) = φmd

for any a ∈ A , and c, c′ ∈ C .

assumption 2.3: The covariance of the demeaned random shocks between different stu-

dents i ∈ I ℓ(a,c) and j ∈ I ℓ(a,c) who are advised by the same professor in degree

program g is given by Cov(ν̃ciag, ν̃
c
jag|W ℓ(a,c,c′)) = Cov(ν̃ciag, ν̃

c′
jag|W ℓ(a,c,c′)) = ψg, for any

a ∈ A , g ∈ {m, d}, and c, c′ ∈ C .

assumption 2.4: The covariance of the demeaned random shocks between different stu-

dents i ∈ I ℓ(a,c) and j ∈ I ℓ(a′,c′) who are advised by different professors in degree

program g is zero, that is,

Cov(ν̃ciag, ν̃
c
ja′g|W ℓ(a,c,c′)) = Cov(ν̃ciag, ν̃

c′

ja′g|W ℓ(a,c,c′)) = 0,

for any a, a′ ∈ A , a ̸= a′, g ∈ {m, d}, and c, c′ ∈ C .

assumption 2.5: The covariance of the demeaned random shocks between different stu-

dents i ∈ I ℓ(a,c) and j ∈ I ℓ(a′,c′) between degree programs is zero, that is,

Cov(ν̃ciam, ν̃
c′

ja′d|W ℓ(a,c,c′)) = Cov(ν̃ciad, ν̃
c′

ja′m|W ℓ(a,c,c′)) = 0

for any a, a′ ∈ A , and c, c′ ∈ C .

B.2 Derivation of Equation (6)

We compute the conditional expectation of the squared left-hand side of Equation (5). Under

the assumption that the random shock, νciag, is orthogonal to advisor quality, θg, for any

student i ∈ I ℓ(a,c), professor a ∈ A, cohort c ∈ C and program g ∈ {m, d}, the conditional
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expectation is given as follows:

E

[(
DD∆Outcome

ℓ(a,c,c′)
)2

∣∣∣∣W
ℓ(a,c,c′)

]

= E

[
(θbd − θad)

2

∣∣∣∣W
ℓ(a,c,c′) = 1

]
·W ℓ(a,c,c′)

+E

[{(
ν̄ℓ(a,c)bd − ν̄ℓ(a,c)am

)
−

(
ν̄ℓ(a,c

′)
ad − ν̄ℓ(a,c

′)
am

)}2
∣∣∣∣W

ℓ(a,c,c′) = 1

]
·W ℓ(a,c,c′)

+E

[{(
ν̄ℓ(a,c)ad − ν̄ℓ(a,c)am

)
−

(
ν̄ℓ(a,c

′)
ad − ν̄ℓ(a,c

′)
am

)}2
∣∣∣∣W

ℓ(a,c,c′) = 0

]
· (1−W ℓ(a,c,c′)). (A.1)

Under assumption 1.1-1.2, we can compute the first part of Equation (A.1 ) as follows:

E

[
(θbd − θad)

2

∣∣∣∣W
ℓ(a,c,c′) = 1

]
= 2σ2

d(1− ρd). (A.2)

We turn to the second part of Equation(A.1 ), which is related to the conditional expec-

tation of when turnover occurred, W ℓ(a,c,c′) = 1. We have the following equality concerning

the value within the expectation operator:

{(
ν̄ℓ(a,c)bd − ν̄ℓ(a,c)am

)
−

(
ν̄ℓ(a,c

′)
ad − ν̄ℓ(a,c

′)
am

)}2

=
{(

¯̃νℓ(a,c)bd − ¯̃νℓ(a,c)am

)
−

(
¯̃νℓ(a,c

′)
ad − ¯̃νℓ(a,c

′)
am

)}2

=
{(

¯̃νℓ(a,c)bd

)2
+
(
¯̃νℓ(a,c)am

)2 − 2
(
¯̃νℓ(a,c)bd

)(
¯̃νℓ(a,c)am

)}
+
{(

¯̃νℓ(a,c
′)

ad

)2
+
(
¯̃νℓ(a,c

′)
am

)2 − 2
(
¯̃νℓ(a,c

′)
ad

)(
¯̃νℓ(a,c

′)
am

)}

−2
{(

¯̃νℓ(a,c)bd

)(
¯̃νℓ(a,c

′)
ad

)
−

(
¯̃νℓ(a,c)bd

)(
¯̃νℓ(a,c

′)
am

)
−
(
¯̃νℓ(a,c)am

)(
¯̃νℓ(a,c

′)
ad

)
+
(
¯̃νℓ(a,c)am

)(
¯̃νℓ(a,c

′)
am

)}
, (A.3)

where ¯̃νℓ(a,c)ag is the lab ℓ(a, c) average of ν̃ciag, and hence, we use ν̄ℓ(a,c)ag = ¯̃νℓ(a,c)ag + ν̄g in the

computation above. We take the conditional expectation of each piece of the last term of

Equation (A.3 ) under assumptions 2.1 - 2.5.

1. Consider the squared term of the average demeaned error, ¯̃νℓ(a,t)pg , where professor p ∈
{a, b}, program g ∈ {d,m} and cohort t ∈ {c, c′}. We have the following equation:

(
¯̃νℓ(a,t)pg

)2
=

⎡

⎣ 1

Iℓ(a,t)

∑

i∈Iℓ(a,t)

(
ν̃tpig

)
⎤

⎦
2

=

(
1

Iℓ(a,t)

)2
⎧
⎨

⎩
∑

i∈Iℓ(a,t)

(
ν̃tpig

)2
+ 2

∑

j∈Iℓ(a,t)

∑

k ̸=j∈Iℓ(a,t)

(
ν̃tjpg

)(
ν̃tjpg

)
⎫
⎬

⎭ .
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Assumptions 2.1 and 2.3 lead to the following conditional expectation:

E

[(
¯̃νℓ(a,t)pg

)2
∣∣∣∣W

ℓ(p,c) = 1

]
=
φ2
g + 2ψg

Iℓ(a,t)
. (A.4)

2. Consider the cross-term of the average demeaned errors, ¯̃νℓ(a,t)pd and ¯̃νℓ(a,t)am , between mas-

ter’s and doctoral programs within lab ℓ(a, t) for cohort t ∈ {c, c′}, where professor

p = b if the professor switched from a to b due to turnover and p = a if not. Then, we

have:

(
¯̃νℓ(a,t)pd

)(
¯̃νℓ(a,t)am

)
=

⎡

⎣ 1

Iℓ(a,t)

∑

i∈Iℓ(a,t)

(
ν̃tipd

)
⎤

⎦ ·

⎡

⎣ 1

Iℓ(a,t)

∑

i∈Iℓ(a,t)

(
ν̃tiam

)
⎤

⎦

=

(
1

Iℓ(a,t)

)2
⎧
⎨

⎩
∑

i∈Iℓ(a,t)

(
ν̃tipd

)(
ν̃tiam

)
+

∑

j∈Iℓ(a,t)

∑

k ̸=j∈Iℓ(a,t)

(
ν̃tjpg

)(
ν̃tkam

)
⎫
⎬

⎭ .

Given Assumption 2.2 , the conditional expectation is given by:

E

[(
¯̃νℓ(a,t)pd

)(
¯̃νℓ(a,t)pm

)∣∣∣∣W
ℓ(p,c) = 1

]
=

φmd

Iℓ(a,t)
. (A.5)

3. Consider the cross-term of the average demeaned errors between ¯̃νℓ(a,c)pg and ¯̃νℓ(a,c
′)

p′g′ across

cohorts c and c′, where professors p ∈ {a, b} and p′ ∈ {a, b} and grad programs g ∈
{d,m} and g′ ∈ {d,m}. It is equal to:

(
¯̃νℓ(a,c)pg

)(
¯̃νℓ(a,c

′)
p′g′

)
=

⎡

⎣ 1

Iℓ(a,c)

∑

i∈Iℓ(a,c)

(
ν̃cipg

)
⎤

⎦ ·

⎡

⎣ 1

Iℓ(a,c′)

∑

j∈Iℓ(a,c′)

(
ν̃c

′

jp′g′
)
⎤

⎦

=

(
1

Iℓ(a,c)

)(
1

Iℓ(a,c′)

)⎧
⎨

⎩
∑

i∈Iℓ(a,c)

∑

j ̸=i∈Iℓ(a,c′)

(
ν̃cipg

)(
ν̃c

′

jp′g′
)
⎫
⎬

⎭ .

The conditional expectation is zero under Assumption 2.4-2.5. That is:

E

[(
¯̃νℓ(a,c)pg

)(
¯̃νℓ(a,c

′)
p′g′

)∣∣∣∣W
ℓ(a,c,c′) = 1

]
= 0. (A.6)

Using results (A.4 ), (A.5 ), and (A.6 ) presented above, the conditional expectation of
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Equation (A.3 ), regardless of whether an advisor switch occurred, is equal to:

E

[{(
ν̄ℓ(a,c)bd − ν̄ℓ(a,c)am

)
−

(
ν̄ℓ(a,c

′)
ad − ν̄ℓ(a,c

′)
am

)}2
∣∣∣∣W

ℓ(a,c,c′) = 1

]

=

(
1

Iℓ(a,c)
+

1

Iℓ(a,c′)

){
φ2
d + φ2

m + 4
(
ψd + ψm

)
− 2φmd

}
. (A.7)

Similar computation reveals that the third part of Equation (A.1 ), for the case in which

turnover did not occur, W ℓ(a,c,c′) = 0, is the right-hand side of Equation (A.7 ).

Based on Equations (A.2 ) and (A.7 ), we therefore have the following result:

E

[(
DD∆Outcome

ℓ(a,c,c′)
)2

∣∣∣∣W
ℓ(a,c,c′)

]
= α

(
1

Iℓ(a,c)
+

1

Iℓ(a,c′)

)
+ β ·W ℓ(a,c,c′),

where α = φ2
d + φ2

m + 4
(
ψd + ψm

)
− 2φmd and β = 2σ2

d(1− ρd).
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C Supplementary Materials for Section 4

C.1 On computation of coauthor’s credit share

What follows illustrates how the coauthor’s credit share is constructed. Suppose that the

names of the authors are ordered alphabetically. Then, the contribution weight is fractional:

each author receives equal credit. Suppose this alphabetical approach is not used. Then, each

author receives a share of credit that decreases in the authorship ranking. Following Liu and

Fang (2012), the credit formula is given by n−1/kr−(1−1/k) for the r-th author of a paper with n

authors. The integral constant, k, controls the declining rate of credit allocated in proportion

to that of the first author. According to the suggestion of Liu and Fang (2012), we set k = 3

for our analysis. Waltman (2012) notes that authorship could unintentionally be alphabetical,

especially when the number of authors is small, despite the authors’ intention to list their

names based on a non-alphabetical criterion. Therefore, we account for the probabilities of

both such incidental and intentional alphabetical authorship and use the expected value as

the final research outcome measure.

C.2 A Score of Word Overlap in Titles

As described in Section 4, our measure of a graduate student’s research achievement is based

on the number of articles that he or she published in selected physics journals.

To identify the articles that were authored by each student in the sample, we compile

physics papers from the Thomson Reuters WoS archive that satisfy the following three con-

ditions: (1) the author names match the name of the student; (2) the publication dates are in

the period from the year in which the student was enrolled in graduate school to four years

after he or she received a doctoral degree; and (3) the words in the title overlap to some

extent with those in the title of the student’s master or doctorate thesis.

The first and second conditions can be easily verified because the authors’ names and

publication dates of articles are available from the WoS database, whereas the student names

and the degree date of each student are found in the the master’s and doctoral thesis catalogs

of UTokyo’s physics department.

To enforce the third condition, we define a score that assesses the degree of overlap in the

words in titles. Let R̃i be the set of all physics articles that are associated with student i ∈ I

after the first and second conditions presented above are satisfied. Note that, although all

articles in the set R̃i include authors whose names are the same as student i, the student may

or may not actually be the author of these articles. Such misidentification arises because of

false positives in author name matching.

We use t(rij) to denote the title of article rij ∈ R̃i and use ti to denote the title of student
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i’s thesis (either master’s or doctoral, depending on the context). Each title of an article or

a thesis consists of words. For each article rij ∈ R̃i, we compute the following score of word

overlap in titles:

mij =

∑
w∈{ti∩t(rij)} φ(w)

max

{∑
w∈ti φ(w),

∑
w∈t(rij) φ(w)

} , (A.8)

where φ(w) is a weighting of word w that measures the rareness of the word.

Indeed, the frequency of words used in article titles varies substantially, some being com-

mon and others rare. Clearly, such information is potentially useful in deciding whether an

article sharing the author name with a thesis is actually authored by the person who wrote

the thesis. If the words included in both the titles of an article and thesis are relatively rare,

there is a higher likelihood that the authors are the same, whereas the converse is true if the

words are relatively common.

To utilize the intuition, φ(w) assigns high weight to relatively rare words and low weight to

relatively common words. Following a similar approach to that proposed by Tang and Walsh

(2010), we determine the weight, φ(w), based on the relative frequency of word w, which

is computed by dividing its count frequency by the total counts of all technical terms that

appear in all titles of the master’s and doctoral theses of UTokyo’s students. Specifically, we

sort all words used in titles into five categories or quintiles based on their relative frequencies.

For word wk that is in the k-th quintile, the weight is given by φ(wk) = (6 − k)−2/3 for

k = 1, 2, 3, 4, 5.

One remaining issue concerns words referring to the same concept in physics that are

rendered differently. For instance, words such as “energy”, “energies”, “energetics”, and

“energetic” are considered to represent the same notion. We address this issue by “standard-

izing” the words. Specifically, we undertake the following actions. First, we transform all

non-letter, non-Greek characters and symbols into spaces. Second, we convert all words into

lower case. Third, we reduce inflected (or derived) words to their word stem using a stemming

algorithm.51 For instance, the stemming algorithm reduces the words “energy”, “energies”,

“energetics”, and “energetic” to the unique root word, “energi”. Fourth, we eliminate all

of the non-informative “stopwords”, that is, very high-frequency words such as the, to, of ,

and study . For example, consider an article with the title “ENERGY-LEVEL STATISTICS

OF METALLIC FINE PARTICLES.” In this case, the title is decomposed into the set of

standardized root words as “energi”, “level”, “statist”, “metal”, “fine” and “particl”.

We use the title word overlap score, given by Equation (A.8 ), when we identify that

51Specifically, we use Porter’s stemming algorithm, which is the most commonly used algorithm for word
stemming in English.
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article rij ∈ R̃i is authored by student i, depending on whether the score, mij, exceeds the

predetermined threshold, m̄. Let R̂i be the set of articles associated with student i by the

word-overlapping-score method presented above such that R̂i ⊆ R̃i.

C.3 An Optimal Threshold

How can we determine the threshold, m̄, for the title word overlap score when matching

articles and theses? Two types of matching errors are possible. We refer the first as a type 1

error, which occurs if we under-match articles, i.e., if we miss articles that are indeed authored

by a student by regarding them as being written by another author. However, the second

error, referred to as a type 2 error, arises when we include articles that are not authored by

a target student. A type 1 error is likely to occur when we impose a threshold value, m̄, that

is too high, whereas a type 2 error will be more likely when we impose a low threshold, m̄,

and end up with spurious matches that actually belong to different authors.

One fundamental problem regarding the problem of identifying students’ publications is

that the true set, Ri, is unknown for student i ∈ I , and therefore, the degrees of type 1 and

type 2 errors cannot be assessed.

However, we might be able to obtain a reasonably accurate approximation set of pub-

lished articles for certain students, especially for those who became academic researchers and

published their CVs on the web. Let Ī ⊆ I be the set of such students/researchers. We

acquired the CVs of 40 such researchers by a random web search and parsed the research

publication information to create the benchmark set of articles. Our expectation is that the

benchmark article set, R̄i, will contain reliable and comprehensive information on the true

set, Ri, at least for student/researcher i ∈ Ī . Nevertheless, the set R̄i might include some

articles that are not directly related to their thesis projects. In this regard, the benchmark

set should be close to but somewhat larger than the true set.

We use the benchmark article set to evaluate the performance of the matching procedure

based on the word overlap score in titles. Specifically, to gauge the performance at each

threshold value, we use two goodness-of-fit indices, GOFI2a and GOFI2b, proposed by

Trajtenberg et al. (2006). Let R̄i be the benchmark set of student i ∈ Ī and R̂i(m) the

corresponding set estimated by the matching procedure based on the word overlap score in

titles, with m being the threshold value.

Those measures are defined as:

GOFI2a(m) ≡ Average
[
|R̄i∩R̂i(m)|

|R̄i|

]

GOFI2b(m) ≡ Average
[
|R̄i∩R̂i(m)|
|R̂i(m)|

]
,
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where the average is taken over all persons in the selected set Ī . In essence, if our match-

ing procedure tends to under-match or over-match, GOFI2a(m) or GOFI2b(m) decrease,

respectively. Therefore, we should seek to increase these indices to avoid type 1 and type 2

errors to the greatest extent possible, but a trade-off exists between the two goals.

Figure C.1 presents those two indices for various values of m in increments of 0.05.

GOFI2b(m), which is presented as a solid blue line, increases in the range of a smaller

threshold value, m, and reaches nearly 0.65 when m = 0.25 with no improvement being ob-

served if m > 0.25. This leads to the implication that type 2 error will no longer be reduced

dramatically if we set m > 0.25. Turning to GOFI2a(m), which is presented as a dashed red

line, it decreases consistently as the threshold value, m, rises, implying that type 1 error will

be alleviated as the value of m decreases.

Accordingly, we consider the optimal threshold to be m̄ = 0.25, as this is the value that

balances the two goodness-of-fit measures — GOFI2a(m) is maximized (thus, type 1 error

is minimized) on the condition that GOFI2b(m) remains at a high level (thus, an increase in

type 2 error is reduced as much as possible).

Figure
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Figure C.1: Comparison of Two Goodness-of-Fit Indices over Various Thresh-
olds for the Word Overlap Score in Titles

Notes: Two goodness-of-fit indices, GOFI2a and GOFI2b proposed by Trajtenberg et al.
(2006), are plotted for various values of the threshold value of the matching procedure based
on the word overlap score in titles in increments of 0.05.
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D Supplementary Materials for Section 5

D.1 Discussion on Overstated Supervisory Period

In this subsection we discuss the effect of overstated supervisory period on the the lower

bound estimate of the variance of advisor quality.

Consider a situation where advisor turnover happened in lab ℓ(a, c) and professor a left

the program and professor b took over the students who were left behind. Let i be a student

in lab ℓ(a, c) and let λi be a number between zero and one that captures the timing of student

i’ advisor switch. Figure D.1 illustrates the situation. Student i was supervised by professor

a at the master’s degree course and the earlier part of the doctoral course. Since advisor

switch happened in the middle of the doctoral course, the remaining proportion of (1 − λi)

of the doctoral course period was supervised by the newly assigned professor b. Assume for

simplicity that λi is random and independent of the factors that affect an advisee’s research

performance as well as the incident of advisor switch. Note that, in the baseline specification,

we assume that λi = 0.

Given mixed influence on research performance from two different advisors,the research

outcome growth of student i is given by

∆outcomeciad = γi + λiθad + (1− λi)θbd + νciad. (D.1)

It should be noted that the specification above encompasses the case of “hidden” supervision

where the advisor who left the program due to turnover continued to provide research guidance

on the former student, and the professor who was recorded as the research advisor on the thesis

catalog was indeed a “surrogate” of the true advisor. In this case, we interpret the parameter

λi as the magnitude of the research influence on student i from the true but “hidden” advisor

a. In other words, (1 − λi) represents the fraction of the research achievement growth of

student i that is attributable to the nominal “surrogate” professor b.

It follows that the DD average student research outcome growth between two labs, ℓ(a, c)

and ℓ(a, c′), conditional on the advisor switch due to turnover, W ℓ(a,c) = 1, is given by

DD∆outcome
ℓ(a,c,c′)

=
(
1− λ̄ℓ(a,c)

)
(θbd − θad) + error term (D.2)

where λ̄ℓ(a,c) is the average of λi over students in lab ℓ(a, c) and the definitions of the other

variables are the same as those shown in Equation (5) in Section 3.2. Then, we have the
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following conditional expectation of the squared left-hand side of Equation (D.2 )

E

[(
DD∆Outcome

ℓ(a,c,c′)
)2

∣∣∣∣W
ℓ(a,c,c′)

]

= E

[
(1− λ̄ℓ(a,c))2(θbd − θad)

2

∣∣∣∣W
ℓ(a,c,c′) = 1

]
·W ℓ(a,c,c′)

+E

[{(
ν̄ℓ(a,c)ad − ν̄ℓ(a,c)am

)
−

(
ν̄ℓ(a,c

′)
ad − ν̄ℓ(a,c

′)
am

)}2
∣∣∣∣W

ℓ(a,c,c′) = 1

]
·W ℓ(a,c,c′)

+E

[{(
ν̄ℓ(a,c)ad − ν̄ℓ(a,c)am

)
−

(
ν̄ℓ(a,c

′)
ad − ν̄ℓ(a,c

′)
am

)}2
∣∣∣∣W

ℓ(a,c,c′) = 0

]
· (1−W ℓ(a,c,c′)). (D.3)

The first part of Equation (D.3 ) is the same as the one found in Equation (A.1 ) in the

Appendix B.2, except that the squared difference of advisor qualities, (θbd−θad)2, is multiplied

by
(
1− λ̄ℓ(a,c)

)2
, while the second and third part of Equation (D.3 ) is exactly the same as

the corresponding terms of Equation (A.1 ). Under the assumptions presented in Section 3.2,

the first part of Equation (D.3 ) is equal to

(1− λ̄l(a,c))2 × 2σ2
d(1− ρd). (D.4)

Considering the agreement between Equation (A.1 ) and Equation (D.3 ) except the first

term, we therefore have the following result:

E

[(
DD∆Outcome

ℓ(a,c,c′)
)2

∣∣∣∣W
ℓ(a,c,c′)

]
= α

(
1

N ℓ(a,c)
+

1

N ℓ(a,c′)

)
+ β̌ ·W ℓ(a,c,c′),(D.5)

where α = φ2
d + φ2

m + 4
(
ψd + ψm

)
− 2φmd and β̌ = 2σ2

d(1− ρd)(1− λ̄l(a,c))2.

If we turn to the regression equation where
(
DD∆Outcomen

)2
is regressed on advisor

switch indicator variable Wn, as presented in Equation (7) in Section 3.2, the coefficient β̌ of

Wn relates to the variance through the following equation

β̌ = 2σ2
d(1− ρd)(1− λ̄l(a,c))2 (D.6)

Since correlation is imperfect (|ρd| < 1) and supervision is partial (0 < λ̄d < 1), a lower bound

estimate is still given by the last term of the following inequality

σ̂2
d =

β̌

2(1− ρd)(1− λ̄l(a,c))2
≥ β̌

2(1− ρd)
≥ β̌

4
. (D.7)

That is, Lower bound of σ2
d

∧

is given by one-fourth of the estimated coefficient of the advisor

switch indicator variable in the regression model.
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Figure D.1: Example of Partial Supervisory Period

Notes: Advisor turnover happened in lab ℓ(a, c) and professor a left the program and pro-
fessor b took over the students who were left behind. Let λi be a number between zero and
one that captures the timing of student i’ advisor switch.

D.2 Discussion on Non-random Turnover

(1) Evidence suggesting that the sample is not balanced

Table D.1 reports the descriptive statistics for some characteristics of advisors and compares

those of advisors when turnover occurred and the corresponding advisor characteristics when

it did not. We find that, for some characteristics, the differences in means between the

two groups, professors with turnover in column (1) and those without in column (2), are

statistically significant at the 5 percent level. We also find that the absolute values of the

standardized differences, reported in column (3), are large for some characteristics.52

(2) A procedure for the propensity score matching method

To make the sample balanced and comparable, we thus employ a propensity score matching

method. Following standard practice in the literature, we estimate the propensity scores using

a logit model. - We include all of the characteristics presented in Table D.1 scores. Specifically,

in the first step, we begin with a set of basic covariates and add an additional linear term based

on a likelihood ratio test for the null hypothesis that the coefficient of the added variable is

52The standardized difference considers the size of the difference in means of a conditioning variable, scaled
by the square root of the variances of the treatment and control groups in the original sample. According to
the suggestion of Rosenbaum and Rubin (1985), an absolute value of the standardized difference greater than
0.2 should be considered “large”.
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equal to zero. In the second step, we proceed to the choice of the quadratic and cross-product

terms and apply the same type of likelihood test as that used in the first step. We follow

the suggestion of Imbens and Rubin (2015) that the threshold values for the likelihood ratio

test should be CL = 1.0 and CQ = 2.71 for the linear and quadratic terms, respectively. The

results of the logit estimation of the propensity score can be found in Table XX Given the

estimated propensity scores, we match a case with Wn = 1 (a lab with an advisor switch)

to one with Wn = 0 (a lab without an advisor switch) that share approximately identical

estimated propensity scores. We employ a one-to-one nearest-neighbor matching method.

To assess the quality of the propensity score matching, we present Figure D.3 that depicts

the absolute values in the standardized differences of the variables for the original and matched

samples. The imbalance between the treatment and control cases is attenuated on many

professor characteristics. For example, professor’s age differs between the treatment and

control labs by more than the average standard deviation (the absolute standard deviation is

1.129) before matching, whereas the difference is considerably reduced (the absolute standard

deviation is 0.006) after matching.

Figure D.4 presents the distributions of the estimated propensity scores for the treatment

labs (left) and control labs (right) in each case of the adjacent period, τ = 3, 4, and 5. The top

and bottom groups in the graphs correspond to those before and after matching, respectively.

Before matching, the shapes of distributions differ considerably between the treatment and

control groups. Nevertheless, the propensity score distributions have some degree of overlap.

Moreover, after matching, the dissimilarity of the distributions between the treatment and

control groups is considerably reduced.

One might worry that the spread of the common support of the propensity score distribu-

tions should not be across the full range [0 1] and hence that the observations of the treatment

group, especially those with high propensity scores, are matched forcibly with those of the

control group, the propensity scores of which are not sufficiently close. To address the prob-

lem caused by the limited common support of the propensity score distribution, we employ

a systematic approach proposed by Crump et al. (2009) and discard all observations with

estimated propensity scores outside the range of [0.1 0.9].
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Figure D.2: Box Plots of the Student Research Outcome Distributions in the
Master’s and Doctoral Programs

Notes: Student research outcomes are aggregated over the period from M1 to D2 for the
master’s degree, and the period from D1 to P4 for doctoral degree program.
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Figure D.3: Comparison of the Absolute Values of the Standardized Differences
between Treatment and Control Groups

Notes: The standardized difference considers the size of the difference in means of a con-
ditioning variable, scaled by the square root of the variances of the treatment and control
groups in the original sample. According to the suggestion of Rosenbaum and Rubin (1985),
an absolute value of the standardized difference greater than 0.2 should be considered large.
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Figure D.4: Distribution of the Propensity Score for the Treatment and Control
Groups: Before and After Matching

Notes: The distribution of the estimated propensity scores are presented for the treatment
labs and control labs (right) in each case of the adjacent period, τ = 3, 4, and 5. The top and
bottom groups in the graphs correspond to those before and after matching, respectively.
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Tables

Table D.1: Descriptive Statistics of Advisors: Comparison between Advisors When Turnover
Occurred and When It Did Not

Absolute
Variable Description With Without t-stat Standardized

Turnover Turnover Difference

Age Professor Age 53.72 47.06 -9.00 *** 1.10
(6.37) (5.77)

Num Stud Number of Students 1.16 1.27 1.63 0.22
(0.41) (0.52)

Outcome5 Profeessor’s Research Outcome 0.18 0.21 0.50 0.07
(5 years average) (0.29) (0.40)

Rank Assoc Associate Professor Dummy 0.21 0.44 3.73 *** 0.51
(0.41) (0.50)

Rank Prof Full Professor Dummy 0.79 0.53 -4.27 *** 0.59
(0.41) (0.50)

Dept Phys Department of Physics Dummy 0.72 0.75 0.62 0.08
(0.45) (0.43)

Inst Solid Institute of Solid State Dummy 0.72 0.22 0.27 0.03
(0.41) (0.41)

Inst Other Other Institutes Dummy 0.34 0.29 -0.85 0.11
(0.48) (0.45)

Period 70s 70’s Dummy 0.15 0.21 1.19 0.16
(0.36) (0.41)

Period 80s 80’s Dummy 0.16 0.26 1.71 * 0.23
(0.37) (0.44)

Period 90s 90’s Dummy 0.57 0.35 -3.72 *** 0.46
(0.50) (0.48)

Period 00s 00’s Dummy 0.12 0.19 1.46 0.20

Notes: The absolute standardized difference is given by the size of the difference in means
of a conditioning variable, scaled by the square root of the variances in the original samples
(Rosenbaum and Rubin 1985).
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table D.2: Estimation Results of Propensity Score

Adjacent Period τ = 3 τ = 4 τ = 5
Age -5.823 *** -6.494 *** -6.784 ***

[9.70] [9.39] [6.55]
Num Stud 21.900 -0.701 * -0.212

[0.02] [1.86] [0.46]
Rank Assoc 0.832 1.109 -0.552

[0.76] [1.00] [0.26]
Inst Other -0.208 -0.462 -0.308

[0.46] [0.99] [0.46]
Period 90s 1.014 ** 1.777 *** 1.101

[1.99] [4.11] [1.49]
Period 00s -1.724 *** -1.375 ** -1.782 *

[2.67] [2.44] [1.92]
Age2 0.063 *** 0.072 *** 0.073 ***

[10.11] [9.58] [6.84]
Num Stud2 -7.263

[0.02]
Age× Period 80s 1.465 ** 1.157

[2.47] [1.56]
Num Stude× Period 80s -80.110 ** -63.27

[2.43] [1.53]
Outcome5× Inst Other -1.816 * -2.325 ** -3.059 **

[1.76] [2.06] [1.99]
Rank Assoc× Inst Solid 2.346 * 2.941 *

[1.90] [1.83]
Inst Solid× Period 00s 3.487 *** 3.168 **

[3.02] [2.29]
Inst Other × Period 80s -3.700 *** -2.757 *

[2.95] [1.83]
Constant 111.7 138.900 *** 148.800 ***

[0.16] [8.98] [6.05]

Sample Size 1446 1202 925

Notes: The dependent variable is the advisor switch indicator due to turnover, Wn. The
definitions of the independent variables are given in Table D.1. The specification of the
model is given by a stepwise likelihood-test-based procedure, suggested by Imbens (2014)
and Imbens and Rubin (2015).
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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E Supplementary Materials for Section 6

E.1 Indirect Influence from Non-advisor

We explain an indirect effect from non-advisor faculty members on students across labs by

Figure E.1 illustrate, which parallels that illustrated in Figure 2. As we have assumed previ-

ously, there are three cohorts, c0, c1 and c2 where an instance of turnover involving professor

a occurred in cohort c2, and the students in lab ℓ(a, c2) switched their research advisor from

professor a to professor b in the doctoral program. Then, professor b, whose research area

is the same as that of professor a, took over the students in lab ℓ(a, c2), whereas he had

supervised two labs, ℓ(b, c0) and ℓ(b, c1), before the incident occurred, and oversaw another

lab, ℓ(b, c2), at the time of the incident. We assume that professor a’s turnover affects the

doctoral research productivity of the students in lab ℓ(b, c2) because the indirect influence

from the professor, θad, ceases to exist after turnover.

In the estimation that follows, we choose the lab of professor b that was influenced “indi-

rectly” by professor a’s turnover if the turnover occurred while the students in the lab were

in the doctoral program (i.e., from the first doctoral year to the final year of the doctoral

program). We require this because the indirect influence from professor a at the doctoral

degree level, not the master’s degree level, needs to be changed. In this case, to identify the

magnitude of the indirect impact, we essentially compare the gap in student research outcome

growth between labs ℓ(b, c2) and ℓ(b, c1) (treatment group with V ℓ(b,c2,c1) = 1 ) with the same

gap between labs ℓ(b, c1) and ℓ(b, c0) (control group with V ℓ(b,c1,c0) = 0).
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Figure E.1: Example of Labs with and without Turnover for Advisors and Non-
Advisors

Notes: There are three cohorts, c0, c1 and c2 where an instance of turnover involving
professor a occurred in cohort c2, and the students in lab ℓ(a, c2) switched their research
advisor from professor a to professor b in the doctoral program. Then, professor b, whose
research area is the same as that of professor a, took over the students in lab ℓ(a, c2), whereas
he had supervised two labs, ℓ(b, c0) and ℓ(b, c1), before the incident occurred, and oversaw
another lab, ℓ(b, c2), at the time of the incident.

64



E.2 Supplementary Tables

Table E.1: Estimation Results Regarding Different Specifications of Student Research
Outcomes: The Estimated Lower Bound of the Variance in Advisor Quality
at the Doctoral Level Is Reported for the Case of Twelve Journals

Dependent Credit Share Weighted First-authored-paper Based

[DD∆outcome]2 [DD∆outcome]2

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

Threshold 0.25 (default)
M1-D2/D1-P4†‡ 0.0843 ** 0.0666 ** 0.0489 ** 0.5773 ** 0.5331 ** 0.4100 **

[0.0268] [0.0135] [0.0236] [0.0407] [0.0104] [0.0234]
M1-D2/D1-P3† 0.0689 ** 0.0498 ** 0.0257 * 0.4578 ** 0.4099 *** 0.2793 **

[0.0232] [0.0181] [0.0973] [0.0310] [0.0080] [0.0338]
M1-D1/D1-P4† 0.1460 ** 0.1243 ** 0.0910 ** 0.9274 ** 0.8522 ** 0.7525 **

[0.0488] [0.0210] [0.0389] [0.0450] [0.0133] [0.0145]
M1-D1/D1-P3† 0.1215 ** 0.0966 ** 0.0572 * 0.7711 ** 0.6911 ** 0.5745 **

[0.0485] [0.0271] [0.0913] [0.0384] [0.0119] [0.0175]
Threshold 0.20 (overmatch)
M1-D2/D1-P4† 0.0953 ** 0.0790 ** 0.0576 ** 0.7246 ** 0.6833 ** 0.5492 **

[0.0407] [0.0184] [0.0341] [0.0460] [0.0115] [0.0213]
M1-D2/D1-P3† 0.0621 ** 0.0425 ** 0.0205 0.4672 ** 0.4179 *** 0.2641 **

[0.0323] [0.0341] [0.1505] [0.0280] [0.0071] [0.0438]
M1-D1/D1-P4† 0.1659 * 0.1466 ** 0.1214 ** 1.1114 ** 1.0467 ** 2.2262 ***

[0.0580] [0.0231] [0.0247] [0.0490] [0.0134] [0.0085]
M1-D1/D1-P3† 0.1159 * 0.0913 ** 0.0639 * 0.7805 ** 0.7055 ** 0.6066 **

[0.0565] [0.0349] [0.0665] [0.0364] [0.0105] [0.0127]
Threshold 0.30 (undermatch)
M1-D2/D1-P4† 0.0509 * 0.0378 ** 0.0191 0.3490 ** 0.3135 *** 0.1795 *

[0.0712] [0.0476] [0.1037] [0.0222] [0.0042] [0.0548]
M1-D2/D1-P3† 0.0401 * 0.0282 * 0.0023 0.2662 ** 0.2282 *** 0.0884

[0.0719] [0.0609] [0.4395] [0.0110] [0.0019] [0.1246]
M1-D1/D1-P4† 0.1123 * 0.0988 ** 0.0683 * 0.6166 ** 0.5541 *** 0.4385 **

[0.0599] [0.0237] [0.0541] [0.0345] [0.0094] [0.0220]
M1-D1/D1-P3† 0.0923 * 0.0783 ** 0.0360 0.4971 ** 1.0168 *** 0.3002 **

[0.0582] [0.0261] [0.1507] [0.0265] [0.0094] [0.0331]

Notes: The dependent variable is the squared double-differenced average student research
outcome growth. The estimated lower bounds of the variance in advisor quality at the

doctoral level, Lower bound of σ2
d

∧

are reported. To make the sample balanced, a propensity
score matching method is used. A logit model is used to estimate the propensity scores.
The standard errors that are computed by the subsampling method of Politis and Romano
(1994) are in parentheses. The numbers in square brackets are p-values for the one-sided

tests such that Lower bound of σ2
d

∧

= 0 against the alternative Lower bound of σ2
d

∧

> 0. The
standard errors that are computed by the subsampling method of Politis and Romano (1994)
are in parentheses.
† (master’s level aggregation period) / (doctoral level aggregation period)
‡ The baseline cases.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table E.2: Estimation Results Regarding Different Specifications of Student Research
Outcomes: The Estimated Lower Bound of the Variance in Advisor Quality
at the Doctoral Level Is Reported for the Case of Nine Journals

Dependent Credit Share Weighted First-authored-paper Based

[DD∆outcome]2 [DD∆outcome]2

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

M1-D2/D1-P4† 0.0449 *** 0.0363 *** 0.0211 *** 0.1862 *** 0.1591 *** 0.0241
[0.0005] [0.0000] [0.0079] [0.0039] [0.0003] [0.3100]

M1-D2/D1-P3† 0.0377 *** 0.0262 *** 0.0070 0.1403 *** 0.1117 *** 0.0753 **

[0.0027] [0.0000] [0.2448] [0.0010] [0.0000] [0.0449]
M1-D1/D1-P4† 0.0829 *** 0.0675 *** 0.0355 ** 0.4216 ** 0.3441 0.2079 **

[0.0080] [0.0017] [0.0431] [0.0130] [0.5151] [0.0395]
M1-D1/D1-P3† 0.0680 *** 0.0495 *** 0.0115 0.3389 *** 0.2588 *** 0.1168 *

[0.0085] [0.0026] [0.2533] [0.0084] [0.0025] [0.0873]

Notes: The dependent variable is the squared double-differenced average student research
outcome growth. The estimated lower bounds of the variance in advisor quality at the

doctoral level, Lower bound of σ2
d

∧

are reported. To make the sample balanced, a propensity
score matching method is used. A logit model is used to estimate the propensity scores.
The standard errors that are computed by the subsampling method of Politis and Romano
(1994) are in parentheses. The numbers in square brackets are p-values for the one-sided

tests such that Lower bound of σ2
d

∧

= 0 against the alternative Lower bound of σ2
d

∧

> 0. The
standard errors that are computed by the subsampling method of Politis and Romano (1994)
are in parentheses.
† (master’s level aggregation period) / (doctoral level aggregation period)
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table E.3: Falsification Test Results (Full Results)

Dependent Credit Share Weighted First-authored-paper Based

[DD∆outcome]2 [DD∆outcome]2

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

(1) α̃ 0.1827 *** 0.1902 *** 0.1736 *** 0.2819 *** 0.6911 *** 0.8996 ***

(0.0418) (0.0409) (0.0443) (0.0458) (0.1828) (0.2287)
(2) β̃ 0.2979 0.2039 0.0814 0.6315 ** -0.0969 -0.7784

(0.2123) (0.1725) (0.1270) (0.2616) (0.3965) (0.4350)
Sample Size
Total 887 1136 1351 887 1136 1351
After matching 422 763 603 422 763 603

Notes: The dependent variable is the squared double-differenced average student research
outcome growth. The total sample size is given by the number of observations for each
tuple of (a, c, c′) for any advisor a in A and cohort c, c′ such that 0 < c− c′ ≤ τ where τ is
the period over which the difference is taken. To make the sample balanced, a propensity
score matching method is used. A logit model is used to estimate the propensity scores. The
after-matching sample size is the sum of the numbers of observations for the treatment group
where turnover occurred and the corresponding control group that are matched through
the propensity score method. The standard errors that are computed by the subsampling
method of Politis and Romano (1994) are in parentheses. The numbers in square brackets

are p-values for the one-sided tests such that Lower bound of σ2
d

∧

= 0 against the alternative

Lower bound of σ2
d

∧

> 0.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table E.4: Estimation Results: The Student Proficiency Score is Set to Zero If the Student
Coauthored with the Advisor (Full Results)

Dependent Credit Share Weighted First-authored-paper Based

[DD∆outcome]2 [DD∆outcome]2

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

(1) α̂ 0.0544 *** 0.0670 *** 0.0439 *** 0.0215 0.0713 * 0.0528 **

(0.0230) (0.0225) (0.0091) (0.0448) (0.0419) (0.0250)
(2) β̂ 0.2057 0.1665 0.2374 ** 1.3776 1.3374 ** 1.3690 **

(0.1727) (0.1187) (0.1022) (0.9758) (0.6807) (0.5814)

(3) Lower bound of σ2
d

∧

0.0514 0.0416 * 0.0593 ** 0.3444 * 0.3343 ** 0.3422 ***

[0.1168] [0.0803] [0.0101] [0.0790] [0.0247] [0.0093]
Sample Size
Total 925 1202 1446 925 1202 1446
After matching 104 186 271 104 186 271

Notes: The dependent variable is the squared double-differenced average student research
outcome growth. The total sample size is given by the number of observations for each
tuple of (a, c, c′) for any advisor a in A and cohort c, c′ such that 0 < c− c′ ≤ τ where τ is
the period over which the difference is taken. To make the sample balanced, a propensity
score matching method is used. A logit model is used to estimate the propensity scores. The
after-matching sample size is the sum of the numbers of observations for the treatment group
where turnover occurred and the corresponding control group that are matched through
the propensity score method. The standard errors that are computed by the subsampling
method of Politis and Romano (1994) are in parentheses. The numbers in square brackets

are p-values for the one-sided tests such that Lower bound of σ2
d

∧

= 0 against the alternative

Lower bound of σ2
d

∧

> 0.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table E.5: Estimation Results: When a Change in Advisor Quality Variance Is Allowed
during the Period Near Turnover (Full Results)

Dependent Credit Share Weighted First-authored-paper Based

[DD∆outcome]2 [DD∆outcome]2

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

(1) α̂ 0.0717 *** 0.0604 *** 0.0982 *** 0.0622 0.1395 ** 0.4297 ***

(0.0234) (0.0156) (0.0144) (0.0674) (0.0614) (0.0752)
(2) β̂ 0.3391 * 0.2431 * 0.2145 ** 2.3320 2.1209 ** 1.7108 *

(0.1839) (0.1294) (0.1065) (1.4204) (0.9704) (0.8976)
(3) δ̂1 — -0.1207 -0.0085 — -0.2789 -0.5772

(0.032) (0.022) (0.123) (0.181)
(4) δ̂2 -0.1512 0.4291 -0.2504 -0.4563 -0.1015 -1.4842

(0.2259) (0.296) (0.152) (1.5777) (0.938) (1.093)
(5) δ̂3 -0.1195 — — -0.1036 — —

(0.0431) (0.0843)

(6) Lower bound of σ2
d

∧

0.0848 ** 0.0608 ** 0.0536 ** 0.5830 * 0.5302 ** 0.4277 **

[0.0326] [0.0301] [0.0220] [0.0503] [0.0144] [0.0283]
Sample Size
Total 925 1202 1446 925 1202 1446
After matching 104 186 271 104 186 271

Notes: The dependent variable is the squared double-differenced average student research
outcome growth. The total sample size is given by the number of observations for each
tuple of (a, c, c′) for any advisor a in A and cohort c, c′ such that 0 < c− c′ ≤ τ where τ is
the period over which the difference is taken. To make the sample balanced, a propensity
score matching method is used. A logit model is used to estimate the propensity scores. The
after-matching sample size is the sum of the numbers of observations for the treatment group
where turnover occurred and the corresponding control group that are matched through
the propensity score method. The standard errors that are computed by the subsampling
method of Politis and Romano (1994) are in parentheses. The numbers in square brackets

are p-values for the one-sided tests such that Lower bound of σ2
d

∧

= 0 against the alternative

Lower bound of σ2
d

∧

> 0.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table E.6: Estimation Results when Non-Retirement Turnover Events Are Used: Baseline
Case (Full Results)

Dependent Credit Share Weighted First-authored-paper Based

[DD∆outcome]2 [DD∆outcome]2

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

(1) α̂ -0.0047 0.0104 0.0659 ** 0.0953 0.0996 0.3749 ***

(0.0369) (0.0174) (0.0264) (0.2117) (0.1453) (0.1269)
(2) β̂ 0.7453 * 0.7490 *** 0.4959 ** 4.9277 5.2857 ** 4.0857 **

(0.4522) (0.2782) (0.2085) (3.7047) (2.3709) (1.7469)

(3) Lower bound of σ2
d

∧

0.1863 ** 0.1872 *** 0.1240 *** 0.0000 * 0.9448 ** 0.9980 **

[0.0496] [0.0035] [0.0087] [0.0000] [0.0907] [0.0110]
Sample Size
Total 894 1154 1381 894 1154 1381
After matching 27 52 85 27 52 85

Notes: The dependent variable is the squared double-differenced average student research
outcome growth. The total sample size is given by the number of observations for each
tuple of (a, c, c′) for any advisor a in A and cohort c, c′ such that 0 < c− c′ ≤ τ where τ is
the period over which the difference is taken. To make the sample balanced, a propensity
score matching method is used. A logit model is used to estimate the propensity scores. The
after-matching sample size is the sum of the numbers of observations for the treatment group
where turnover occurred and the corresponding control group that are matched through
the propensity score method. The standard errors that are computed by the subsampling
method of Politis and Romano (1994) are in parentheses. The numbers in square brackets

are p-values for the one-sided tests such that Lower bound of σ2
d

∧

= 0 against the alternative

Lower bound of σ2
d

∧

> 0.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.

Table E.7: Estimation Results when Non-Retirement Turnover Events Are Used: The
Student Proficiency Score is Set to Zero If the Student Coauthored with the
Advisor (Full Results)

Dependent Credit Share Weighted First-authored-paper Based

[DD∆outcome]2 [DD∆outcome]2

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

(1) α̂ -0.0316 0.0053 0.0436 -0.1398 0.0785 0.1862
(0.0298) (0.0171) (0.0218) (0.1937) (0.1079) (0.0760)

(2) β̂ 0.5929 0.5731 0.5303 3.6030 3.5205 2.8782
(0.4475) (0.2777) (0.2292) (2.8352) (1.7587) (1.3485)

(3) Lower bound of σ2
d

∧

0.1482 * 0.1433 ** 0.1326 ** 0.9007 0.8801 ** 0.7196 **

[0.0926] [0.0195] [0.0103] [0.1019] [0.0227] [0.0164]
Sample Size
Total 894 1154 1381 894 1154 1381
After matching 27 52 85 27 52 85
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Table E.8: Estimation Results: the Double-Difference Measure in Levels Is Used as the
Dependent Variable (Full Results)

Dependent Credit Share Weighted First-authored-paper Based

[DD∆outcome] [DD∆outcome]

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

(1) α̂ -0.0462 -0.0186 0.0362 *** -0.0655 -0.0693 0.0963
(0.0237) (0.0225) (0.0134) (0.0961) (0.0856) (0.0893)

(2) β̂ 0.1439 0.1480 0.0310 0.2655 0.3968 0.2276
(0.1746) (0.1204) (0.0985) (2.1883) (1.5374) (1.3783)

Sample Size
Total 925 1202 1446 925 1202 1446
After matching 104 186 271 104 186 271

Notes: The dependent variable is the squared double-differenced average student research
outcome growth. The total sample size is given by the number of observations for each
tuple of (a, c, c′) for any advisor a in A and cohort c, c′ such that 0 < c− c′ ≤ τ where τ is
the period over which the difference is taken. To make the sample balanced, a propensity
score matching method is used. A logit model is used to estimate the propensity scores. The
after-matching sample size is the sum of the numbers of observations for the treatment group
where turnover occurred and the corresponding control group that are matched through
the propensity score method. The standard errors that are computed by the subsampling
method of Politis and Romano (1994) are in parentheses. The numbers in square brackets

are p-values for the one-sided tests such that Lower bound of σ2
d

∧

= 0 against the alternative

Lower bound of σ2
d

∧

> 0.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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Table E.9: Estimation Results: Effect of Non-Advisor Turnover on Student Research Out-
come Growth at the Doctoral Level (Full Results)

Dependent Credit Share Weighted First-authored-paper Based

[DD∆outcome]2 [DD∆outcome]2

Adjacent Period τ = 3 τ = 4 τ = 5 τ = 3 τ = 4 τ = 5
(1) (2) (3) (4) (5) (6)

(1) α̂ind 0.0434 *** 0.0356 *** 0.0335 *** 0.0988 *** 0.0863 *** 0.0755 ***

(0.0175) (0.0056) (0.0060) (0.0358) (0.0094) (0.0136)
(2) β̂ind -0.0230 0.0274 0.0527 0.0764 0.1007 0.1768 *

(0.0374) (0.0320) (0.0336) (0.1192) (0.0924) (0.0924)

(3) π̂2 = β̂ind/β̂dir -0.0682 0.1030 0.2694 0.0331 0.0472 0.1078

Sample Size
Total 858 1105 1317 858 1105 1317
After matching 145 282 288 145 282 288

Notes: The dependent variable is the squared double-differenced average student research
outcome growth. The total sample size is given by the number of observations for each
tuple of (a, c, c′) for any advisor a in A and cohort c, c′ such that 0 < c− c′ ≤ τ where τ is
the period over which the difference is taken. To make the sample balanced, a propensity
score matching method is used. A logit model is used to estimate the propensity scores. The
after-matching sample size is the sum of the numbers of observations for the treatment group
where turnover occurred and the corresponding control group that are matched through
the propensity score method. The standard errors that are computed by the subsampling
method of Politis and Romano (1994) are in parentheses. The numbers in square brackets

are p-values for the one-sided tests such that Lower bound of σ2
d

∧

= 0 against the alternative

Lower bound of σ2
d

∧

> 0.
*** Significant at the 1 percent level.
** Significant at the 5 percent level.
* Significant at the 10 percent level.
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