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Introduction 

With the advent of widely available data on mutual funds’ holdings, measures of fund 

performance based on holdings have become more widely used. However, no coherent statistical 

framework for the various measures has been offered, and the literature provides little 

information about their statistical properties.2  

We introduce a predictive panel regression framework for holdings-based performance 

measures, where future stock returns are regressed on a fund’s lagged portfolio weights in the 

stocks. An informed manager’s portfolio weights should predict the future stock returns. 

Depending on the specification, the slope coefficient on the lagged weights is proportional to the 

portfolio change measure of Grinblatt and Titman (GT, 1993), the Characteristic Selectivity 

measure of Daniel, Grinblatt, Titman and Wermers (DGTW, 1997), the Conditional Weight 

Measure of Ferson and Khang (CWM, 2002) or the stochastic discount factor (SDF) measure of 

Ferson and Mo (FM, 2016).  

Treating these “classical” measures as special cases of the panel regression makes statistical 

tools developed for panels available for holdings-based measures. This perspective reveals a 

lagged stochastic regressor bias, similar to that described by Stambaugh (1999) and Hjalmarsson 

(2008). We evaluate alternative approaches for addressing the bias using simulations, and find 

two bias correction methods that work well.  

Our panel regressions are run at the fund level, using all of the stocks held by a fund. Given 

that the number of observations in the panel is roughly the number of stocks multiplied by the 

                                                 
2 Ferson and Khang (2002) use simulations to examine conditional weight-based performance measures. Jiang, Yao and Tong (2007) use 

simulations to study weight-based timing measures. Kothari and Warner (2001) examine the power of the holdings-based measures of Grinblatt, 

Titman and Wermers (1997). None of these studies uses a panel regression framework. We examine the statistical properties of the various 

measures using this framework and provide a number of new insights about their properties.  
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number of time periods in a fund’s life, control variables can be easily handled. We also discuss 

the role of stock and time fixed effects.  

  Introducing stock fixed effects in the panel regressions isolates an “Average Alpha Effect” 

in three of the four classical measures (it does not appear in the CWM). The Average Alpha 

Effect is a cross-sectional relation between funds’ time-series average portfolio weights in the 

stocks, and the stocks’ average alphas in the benchmark model. One may view the average alpha 

effect as a bias to be removed from the measures, or as a valid component of performance. We 

show how to isolate the Average Alpha Effect empirically and find that the Effect is large and 

significant. We therefore present a detailed analysis of the Effect in an attempt to understand its 

interpretation. The evidence shows that the Effect is related to passive strategies like 

buy-and-hold, and our analysis tilts us in favor of viewing the Effect as a bias, but we think that 

the evidence also admits the alternative view. 

   The Average Alpha Effects appears as a large component of the three classical 

holdings-based performance measures for active equity mutual funds. The Effects are also large 

in simulated buy-and-hold fund strategies and they are larger in more recent than in older data. 

This is interesting in view of studies that find passive fund management and “closet indexing” to 

be more prevalent in more recent data (e.g. Cremers and Petajisto (2009), Kim, 2016). We find 

the Effect to be stronger in funds with a stronger tendency towards a buy-and-hold strategy. The 

Average Alpha Effects are also large in simulated momentum strategies, and they appear in 

passive index funds. The aggregate holdings of US active equity funds embeds an Average 

Alpha Effect that ranges from 0.3% to 1.8% per year across the three classical measures that 

have the Effect. 

    A striking result is that much of the cross-sectional variation when funds are sorted on their 
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classical performance measures, is driven by their Average Alpha Effects. We also examine the 

Average Alpha Effects in cross-sections of funds formed in relation to several well-known 

proxies for active management. We find no clear relation to active management. We investigate 

the ability of the holdings of funds, sorted by their Average Alpha Effects, to predict future stock 

returns. We find no evidence of predictive information for future one-month to two-year 

abnormal stock returns. 

  We examine the relation of the Average Alpha Effects to characteristics of funds that 

investors might have preferences over. We run regressions of funds’ Average Alpha Effects on 

fund size, dividend yield, age, turnover, expense ratio, the average market capitalization of the 

fund’s holdings and an indicator for an aggressive growth style. We also include a measure of 

the tendency of a fund toward momentum trading similar to Grinblatt, Titman and Wermers 

(1995). We find that funds with a greater tendency toward buy-and-hold tend to have larger 

Average Alpha Effects. The Effects are also associated with higher dividend yields, but only 

weakly correlated with the other characteristics.   

  We run regressions of funds’ new money flows on their Average Alpha Effects and fund 

characteristics. When the Effects are in the regressions alone, flows seem to respond to the 

Effects, but when we control for the other characteristics, the Average Alpha Effects become 

insignificant in the flow performance regressions.  

  If one makes the assumption that the Average Alpha Effect is a passive component of 

performance, or if it is a bias that should be removed from the measures, our analysis changes 

the overall inference about active mutual fund performance. Previous studies using 

holdings-based measures typically find positive performance in actively managed mutual funds 

on a before-cost basis. The performance is of a magnitude similar to funds’ expense ratios (see 
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the review and evidence in Wermers, 2000). At the same time, the abnormal after-cost returns for 

investors are close to zero. This conforms to a view of the mutual fund industry, advocated by 

Berk and Green (2004), where fund managers with skills at active management have positive 

before-cost performance, but face increasing costs with scale and leave no abnormal returns for 

investors after costs. When we remove the Average Alpha Effect from the classical 

holdings-based performance measures, the remaining before-cost performance averaged by fund 

groups and for the median fund, is negative under each of the measures. This evidence suggests 

that there may not be positive performance before costs, attributed to skilled active management, 

in the typical mutual fund. 

  Our finding that the Average Alpha Effect is a dominant component of measured 

performance may have been foreshaddowed to some extent by earlier work. Grinblatt, Titman 

and Wermers (1995) find that growth style mutual funds in particular tend to follow momentum 

strategies, and that much of their performance can be attributed to momentum. Momentum 

carries a positive average alpha in the CAPM and other models, so momentum trading can be a 

source of an Average Alpha Effect. However, we find strong Average Alpha Effects even in the 

DGTW (1997) model, which includes a factor to control for momentum. A fund’s tendency 

toward buy-and-hold is more strongly related to its Average Alpha Effect than its tendency 

towards momentum trading. 

The rest of the paper is organized as follows. Section 2 introduces the holdings-based 

measures of performance that we study and describes the Average Alpha Effect. Section 3 

presents the predictive panel regression approach and shows how the classical holdings-based 

measures are special cases. Incorporating fixed effects in the regressions, we isolate the Average 

Alpha Effects. We discuss the lagged stochastic regressor bias, and address the bias in our 
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context using results from Hjalmarsson (2008, 2010) and a differenced instrumental variables 

approach similar to Anderson and Hsiao (1981) and Wang (2015). Section 4 describes the data. 

Section 5 presents empirical results for active US equity mutual funds. Section 6 concludes the 

paper.  An Appendix presents our simulation methods, simulation results and other ancillary 

results.  

 

2. Holdings-Based Performance Measures 

   Denote the portfolio weights of a fund with N stocks at time t as ],,[= 1 N

ttt ww w , and 

denote the next-period stock returns in excess of a Treasury bill, as '.],,[= 1

1

11

N

ttt rr  r  

Holdings-based performance measures are versions of ,),(=)'( 11=1

i

t

i

t

N

itt rwcovcov  rw  the sum 

of the covariances between the current weights and the future stock returns. Grinblatt and Titman 

(1993) show that in a model with normally distributed returns, an agent with nonincreasing 

absolute risk aversion and an informative signal about future stock returns, will display a positive 

holdings-based measure. It is important to sum the covariances across the assets, because a 

manager might overweight some stocks and underweight others to implement an informed 

portfolio strategy, so the covariances between subsets of the stocks’ returns and their weights 

might not be positive even when a fund has information. 

   From the definition of covariance we can write:  

 .)'))(((=)))(('(=)'( 1111   tttttttt EEEEcov rwwrrwrw  (1) 

Thus, holdings-based measures can be computed by de-meaning the porftolio weights or the 

returns, or both. Versions of all three approaches appear in the literature. In place of the expected 

weight we typically find a benchmark weight, and in place of the expected return we find a 
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benchmark return.  

      Holdings-based measures are estimated as versions of (1/T) Σi Σt wi
t ri

t+1, where either the 

weights wi
t or the returns ri

t+1 are demeaned with a benchmark, or both are demeaned. The 

measures that we study in this paper are: 

                  .))((
1

= 1

1=








 ttt

T

tT
GT rww 


    (2a) 

                 ,))('(
1

= ,

11

1=

tD

ttt

T

tT
DGTW   rrw  (2b) 

 CWM = 
T

tT 1=

1
(wt - wbt)’(rt+1 - E(rt+1|Zt)),            (2c)     

                        FM = 
T

tT 1=

1
wt ’rt+1 (a-b’rBt+1),            (2d) 

Equation (2a) is the portfolio change measure of Grinblatt and Titman (1993). This is an example 

of demeaning the weights. The weight of the fund periods before the current period proxies for 

the expected weight. In this measure a manager records performance when the current portfolio 

wt’rt+1, achieves higher average hypothetical returns than the past portfolio weights, tw , would 

earn on the same returns.3  

    Grinblatt and Titman (1993) discuss the choice of the lag, τ. If is too small, the past 

weights might still contain information about the future stock returns, leading to an 

underestimation of the information in the current weights. If is too large, the portfolio’s risk 

might change between the two dates and the measure, because it involves no risk adjustment, 

might be biased. We adopt the same criteria as Grinblatt and Titman (1993). We use 4= with 

quarterly data and 12= with monthly data.  

                                                 
3 The returns are hypothetical because the weights are based on, say quarterly, snapshots of the actual fund holdings 

and the measured stock returns ignore all trading costs and other fund costs. 
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   Equation (2b) is the Characteristic Selectivity measure of Daniel, Grinblatt, Titman and 

Wermers (DGTW, 1997). This is an example of demeaning the stock returns, using the 

benchmark return vector '],,[=
,

1

,
1
1

,

1

t
N

D

t

tD

t

tD

t rr  r , matched to each stock’s size, book/market ratio 

and past momentum. Intuitively, a manager is informed if the hypothetical portfolio of stocks can 

beat the DGTW benchmark portfolio returns.4   

   Equation (2c) is the Ferson and Khang (2002) Conditional Weight-based Measure. This is an 

example of demeaning both the stock returns and the portfolio weights. The benchmark weight 

vector, wbt, is the actual weight from τ periods ago, updated with a buy-and-hold strategy: wi
bt =  

wi
t- τ Πj=1,…τ [Ri

 t-τ+j /Σi wi
 t-τ+j-1 Ri

 t-τ+j )], where Ri
 t is the gross (one plus the rate of) return of 

stock i at the subscripted date. The assumption is that, under the null hypothesis of no ability, the 

manager is expected to use a buy-and-hold strategy. The stock returns are demeaned using 

E(rt+1|Zt), the conditional mean returns given standard lagged instruments, Zt. The conditional 

expected returns are estimated using regressions of returns on the lagged instruments. We use the 

same lagged instruments as in Ferson and Khang in our illustrations. 

   The intuition for the CWM is that a truly informed manager should depart from a buy and 

hold strategy when she can predict returns, over and above their predictability using public 

information. A fund delivers performance in the CWM when the portfolio’s hypothetical 

unexpected return (based on the public information) exceeds that of the buy-and-hold benchmark. 

The hypothesis that the CWM is zero assumes semi-strong form efficient markets in the sense of 

                                                 
4 The DGTW measure is one term in a decomposition of the GT measure. The other terms refer to factor timing and 

average style exposure (see DGTW, 1997). The DGTW benchmark return for each stock is constructed as follows. 

First, stocks are ranked by firm size and divided into five size groups, with each group having the same number of 

stocks. Within each size group the stocks are ranked by their market-to-book values, and divided into five 

market-to-book groups. Finally, in each of the 25 groups, the stocks are sorted by their average returns during the 

past months (t-2 to t-12) before the current month t, and split into five groups according to their past average returns. 

This produces 125 stock groups, each containing the same number of stocks. The value-weighted returns of the 

stocks in each of the 125 groups become the DGTW benchmark returns. Each stock is assigned one of 

the125 benchmarks based on the closest match to its size, book/market and past returns. 
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Fama (1970), giving managers no credit for the mechanical use of the public information in Zt. 

   Equation (2d) is the Ferson and Mo (FM, 2016) measure. This measure is equivalent to the 

SDF alpha, αp = E(mt+1 rpt+1), where rpt+1 = wt‘rt+1 is the fund’s hypothetical portfolio excess 

returns and mt+1 is the stochastic discount factor. Ferson and Mo assume a linear factor model for 

the SDF: 

                             mt+1 = (a-b’rBt+1),                                (3) 

 

where rBt+1 is a vector of benchmark excess returns. Thus, the FM measure replaces ri
t+1 with the 

risk-adjusted excess stock returns, ri
t+1 (a-b’rBt+1), and is an example of demeaning the stock 

returns. A fund delivers abnormal performance in the FM measure by over-weighting stocks with 

subsequently high risk-adjusted returns and under-weighting those with low risk-adjusted returns. 

Ferson and Mo (2016) consider different choices for the benchmark returns, rBt+1, including the 

Carhart (1997) four factor model that we use here. 

    It is important to keep in mind that all of the holdings-based performance measures are on a 

before-cost basis. They are designed merely to capture the information in a fund’s portfolio 

weights about the future stock returns. They do not reflect the returns to investors, who must bear 

funds’ turnover-related trading costs, expense ratios and the impact of funds’ trading between 

reporting dates. 

 

2.1 The Average Alpha Effect 

     While the theoretical holdings-based measures are stated as covariances, they have  

been implemented as versions of of (1/T) Σi Σt wi
t ri

t+1, where the ri
t+1 and wi

t variables are  

not necessarily mean zero. This embeds an Average Alpha Effect in the measures. To  
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illustrate, if the predictive covariance is E{w’[r-E(r)]} and the returns are demeaned, but the 

proxy for E(r) used in the estimation, Ê(r), is such that α ≡ E[r- Ê(r)] ≠ 0, then E{w’[r- Ê(r)]} =  

Cov{w’r} + E(w)’α. The second term is the Average Alpha Effect. We find that the Average  

Alpha Effect looms large in three of the four classical measures (GT, DGTW, and FM).  

     In the DGTW measure the stocks’ alphas are given by α = E(r - rD), where rD is the N vector  

of stocks’ benchmark returns, and the expected value of (2d) is E(w)’α + Cov(w’(r - rD)). The  

Average Alpha Effect can be nonzero when the alphas of the stocks in the DGTW model are not  

zero, which we find to be the case.  

    In the FM measure the SDF is m = (a - b’rB) and the N-vector of stocks’ alphas in the model  

is α = E(r*m) and E(FM) = E(w’r*m) = E(w)’α + Cov(w’r*m). The first term on the right hand  

side is the Average Alpha Effect and the second term is the pure predictive covariance.  

    The Average Alpha Effect does not appear in the CWM, because in that model the  

adjusted return is an N-vector of regression residuals, with mean zero both in the population and  

when fit in the sample.  

     The GT measure illustrates demeaning the weights, where (wt - wt-τ) replaces (w-E(w)) in 

Equation (1). The Average Alpha Effect is E{(wt - wt-τ)’α}, which will be small when the mean 

weight change is small, but positive if the weights drift toward higher-alpha stocks, which we 

find is the typical case.  

 

2.2 Intperpreting the Average Alpha Effect 

     The Average Alpha Effect, Σi E(wi)αi , captures the cross-sectional relation between the 
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mean weights in the stocks held by the fund and the stocks’ average alphas. The predictive 

covariance, without the Average Alpha Effect, is the focus of the original Grinblatt and Titman 

(1993) theory that motivates holdings-based measures.5 The Average Alpha Effect captures a 

differrent cross-sectional relation. As such, its interpretation may be debated.  

One view is that the Average Alpha Effect is simply a bias that should be removed from 

the measures. If the weights are properly demeaned, then the Average Alpha Effect is zero. If the 

stocks alphas are zero, the Average Alpha Effect is zero. One can view nonzero alphas in the 

factor model simply as a misspecification of the factor model. We find that passive index funds 

have nonzero average alpha effects. The aggregate holdings of funds embeds Average Alpha 

Effects. We also find using simulations, that clearly uninformed strategies like buy-and-hold, can 

have large Average Alpha Effects. These facts seem to support the view that the Average Alpha 

Effect is a bias. 

     A different view is that the average alpha effect is a valid component of performance. 

Measuring the expected product of the adjusted returns or weights through (1/T)ΣiΣtwi
t ri

t+1 lends 

the classical measures a natural and appealing interpretion as an average excess return relative to 

that of a benchmark. It is natural to interpret an average return in excess of the benchmark as 

performance. The Average Alpha Effect can be a large component of the return difference. A 

positive Average Alpha Effect says that the fund on average, overweights the high average alpha 

stocks and underweights the low alpha stocks. Imagine a hypothetical fund with constant weights 

over time. The alpha of its hypothetical return (formed from its holdings and the stock returns) in 

a factor model regression will equal its Average Alpha Effect.  

                                                 
5 In a precursor to the holdings-based measures, Grinblatt and Titman (1989) described a “positive period 

weighting” measure. They assumed that the benchmark was unconditionally minimum variance efficient, so that the 

average alphas of all the stocks would be zero. If this measure is implemented on a benchmark that is not efficient, it 

would also generate average alpha effects. 
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     Users of the performance measures might take the benchmark model as given, or not know 

about the cross-section of stocks’ average alphas relative to the model. When the benchmark 

model must be estimated in real time using past data, there may be a lot of uncertainty about the 

average alphas. Some “Quant” portfolio strategies are based in part on overweighting the larger 

average alphas relative to benchmark models. One can argue that funds which can use the 

cross-section of average alphas to beat the benchmark have a skill that should be measured and 

even rewarded.  

     Nonzero alphas are a fact of life for factor pricing models of stock returns, and we have to 

confront this fact in practice. Stocks’ average alphas relative to the DGTW factor model are not 

zero in the data. Cremers, Petajisto and Zitzewitz (2012) show that passsive indexes like the 

Russell 2000 have nonzero alphas in the standard factor models used in fund performance 

evaluation. We find that the average alpha effect drives the cross-sectional variation in the 

classical performance measures. We show how to use panel regression methods to isolate the 

Average Alpha Effect from the classical measures. The Effect may be considered as a 

component of performance or not, depending on the preferences of the user of the performance 

measure. The inferences about performance will likely be changed if the Effect is removed from 

the classical measures, and we find that the overall inference about before cost performance is 

changed if the Average Alpha Effect is removed. 

 

3. The Predictive Panel Regression Approach 

   Previous studies have employed panel regression methods in mutual fund research. Typically, 

the left-hand side variables are measured at the fund level. For example, flow-performance 

studies going back to Ippolito (1992) and Sirri and Tufano (1998) regress the new money flows 
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to mutual funds on past measures of fund performance and various fund-level control variables. 

Studies put measures of fund performance on the left hand side to investigate its relation to 

things like fund size (Ferreira, Keswanit, Miguel and Ramos, 2013), fund and industry size 

(Pastor, Stambaugh and Taylor, (2015), Magkotsios, 2017) or other variables. In contrast, stock 

returns are on the left hand side of our regressions, and a particular fund’s holdings of the stocks 

are on the right hand side. We estimate a separate panel regression for each fund, obtaining a 

fund-specific performance measure.  

   We start with the simplest case. For a given fund, assuming that the portfolio contains N 

stocks and exists for T periods, the regression is: 

 

             .= 11

i

t

i

t

i

t wr    , i=1,…,N; t=1,…T. (4) 

 

In this regression, i

tr 1  is the excess return of stock i at time 1t and i

tw  is the weight of the 

stock held in the fund at time t. The slope coefficient β captures the ability of the fund’s weights 

to predict future excess stock returns. The estimated β should be positive when the manager is 

informed. The OLS slope coefficent estimator in the panel regression (4) is: 

 

                   ̂ = (1/T)Σi Σt (ri
t+1 wi

t) / (1/T)Σi Σt (wi
t wi

t’) (5)   

 

Because the coefficient β is not stock-specific, the panel regression “automatically” sums across 

the stocks in a fund’s portfolio, precisely as specified by the holdings-based measures.  

     The numerator of the coefficient in Equation (5) includes all of the holdings-based 

measures as special cases:  
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                            (1/T) Σi Σt wi
t ri

t+1,   (6) 

 

when either the weights or the returns or both are demeaned with a benchmark. In particular, 

using the weight change, wit - wit-τ, in place of wi
t we obtain the GT measure. Replacing the stock 

returns with the DGTW benchmark-adjusted returns, we obtain the DGTW measure. Replacing 

wt with (wt - wbt) and ri
t+1with [ri

t+1- E(ri
t+1|Zt)], we obtain the CWM. Finally, replacing ri

t with  

ri
t (a-b’rBt+1) we obtain the FM measure. 

 

3.1 Introducing Fixed Effects 

   Equation (4) is unrealistic for stock returns, because under the null hypothesis that β=0, if the 

residuals are mean zero it implies that all the stocks have the same expected return equal to zero. 

We therefore introduce individual stock fixed effects, and the panel regression model becomes: 

 

                           .= 11

i

t

i

t

ii

t war                              (7) 

 

The model is estimated by introducing N stock dummy variables, which take the value of one 

(for each date) if the return belongs to stock i and zero otherwise. The coefficient of the dummy 

variable for stock i is ia , the fixed effect of stock i . Under the null hypothesis ( 0= ), the fixed 

effect is the expected return of the stock.  

   With stock fixed effects in the model, the Frisch–Waugh–Lovell theorem shows that the OLS 

slope coefficient estimator of the regression (7) is the same as that obtained by subtracting the 

time-series means from each of the left and right-hand side variables, and running the regression 
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on the demeaned variables with no intercept. This is the “Within” group estimator. Thus, the 

numerator of the OLS slope estimator of (7) is equal to: 

 

                     numw,̂  = Σi (1/T) Σt (ri
t+1 - 

ir )(wi
t - 

i

w ),               (8) 

 

where 
ir = (1/T) Σt ri

t+1 and  
iw = (1/T) Σt wi

t. The Within estimator captures the average across 

the stocks, of the time-series predictive covariances between the weights and the future returns. 

The numerator of the within estimator is an example of a holdings-based measure that demeans 

both the returns and the weights, although it is equivalent to de-meaning only the returns or only 

the weights, according to (8). 

 

3.2 Interpreting Fixed Effects  

    With stock fixed effects in the model, the slope coefficient does not reflect differences in 

the average returns across the stocks, only the predictive time-series covariances between the 

weights and the future returns. We can relate the estimator with the stock dummies to the 

estimator without dummies using:  

 

        (1/T)Σi Σt ri
t+1 wi

t = (1/T)Σi Σt (ri
t+1 -

ir )(wi
t -

i

w ) + (1/T)Σi Σt 
ir

i

w .          (9) 

 

Stock dummies remove the term (1/T) Σi Σt 
ir

i

w = Σi 
ir

i

w  from the OLS slope estimator’s 

numerator. If the time-series sample means of the benchmark-adjusted returns or weights used in 

the regression are zero for all stocks, then the far right hand term of Equation (9) is zero, the 

estimator with fixed effects is equivalent to the OLS estimator of Equation (5) and there is no 
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Average Alpha Effect.  

    In practice, the benchmark-adjusted returns and weights in the classical holdings based 

performance measures are not mean zero for each stock. We show in the Appendix that in this 

case, the difference between the numerator of the OLS estimator in (5) and that of the slope 

coefficient in the model with fixed effects is a good proxy for the Average Alpha Effect. 

    One might consider including time dummies in the panel regression. By the 

Frisch–Waugh–Lovell theorem the OLS slope coefficient in the regression with time dummies is 

the same as the one obtained by subtracting the cross-sectional mean values from both the left 

and right-hand side variables, and running the regression with the demeaned variables and no 

intercept. The cross-sectionally demeaned returns are the returns net of the return for an 

equally-weighted portfolio of the stocks. Since the weights in a fund’s portfolio sum to 1.0, the 

cross-sectional mean of the weights is (1/N). Thus, the numerator of the basic panel regression (4) 

is equal to the numerator of the regression with time dummies, less the time-series average return 

of an equally weighted portfolio of the stock returns. The impact of time fixed effects on the 

slope β in this problem is exactly the same as the impact of including a common intercept in the 

panel regression.6 

    It is common in panel regressions to include stock-specific control variables, xit as 

additional explanatory variables. Given that the panel regressions estimating the holdings-based 

performance measures have approximately TN observations, there will be enough degrees of 

freedeom for several control variables in actual practice. (The average fund holds N=114 stocks 

                                                 
6 Hajmarlsson (2008) proposes a panel regression with a common intercept: .= 11
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t war     With a common 

intercept in the regression, the Frisch–Waugh–Lovell theorem shows that slope coefficient estimator is the same as 

that obtained by subtracting the overall time-series and cross-sectional means from the left and right-hand side 

variables, and running the regression on the demeaned variables with no intercept. The numerator of the pooled OLS 

estimator is equal to the numerator of the OLS estimator of (4), minus the average over time of the return on an 

equally-weighted portfolio. While the model with a common intercept offers little economic insight, it has been 

suggested as a solution to finite sample bias by Hjalmarsson (2008), so we examine it below in that context. 
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and there are T=128 quarters in a sample for 1980-2012.) Consider a regression including the 

term a’xit, where a is an L-vector of coefficients. The coefficients are the same for each stock. 

Using the Frisch–Waugh–Lovell theorem, it is easy to show that including xit removes the 

information in the weights about the stock-specific control variables and finds any performance 

from the remaining information in the weights.       

     

3.3 Standard Errors 

     The basic panel regression, with fixed effects or other considerations, is essentially the 

model examined by Petersen (2009), except that the predictor variables here are endogenous, 

predetermined and persistent. Petersen focusses on panel standard errors for OLS slope 

coefficient estimators under various models for the error terms and various clustering strategies. 

This machinery may now be applied to holdings-based performance measures. The literature on 

holdings-based measures has not emphasized its standard error estimators. DGTW use the 

time-series variance of the CS measures for each period, CSt = ,))('( ,

11

tD

ttt   rrw  to compute 

standard errors. Ferson and Khang (2002) use time-series GMM-derived standard errors for their 

CWM. Seeing the measures as the result of a panel estimation allows future research to compute 

standard errors for holdings-based measures using results from panel econometrics. 

     We defer a detailed study of the accurracy of various standard error estimators to future 

work, and use simple panel methods to compute the standard errors in this study. Since stock 

returns are correlated at a point in time, but have little time-series correlation, we cluster the 

standard errors by time. When we estimate the panel using recursively demeaned or differenced 

estimation as described below, we include autocovariance terms as in Newey and West (1987) to 

accommodate the induced serial dependence.  
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3.4 Lagged Stochastic Regressor Bias 

     Our approach is to estimate holdings-based performance through predictive panel 

regressions. Predictive panel regressions are affected by a bias due to lagged stochastic 

regressors, studied by Hjalmarsson (2008, 2010). This bias, also known as the “Stambaugh bias,” 

is related to the persistence of the portfolio weights and the correlation of their future innovations 

with the stock returns. The Stambaugh bias is examined in time-series regressions for stock 

market returns by Stambaugh (1999), Pastor and Stambaugh (2009), Amihud and Hurvich (2004) 

and Amihud ..alet (2008, 2010). We examine three alternative methods to address the bias. These 

include a parametric bias correction (Hjalmarsson, 2008), a recursively demeaned instrumental 

variables approach, (Hjalmarsson, 2010) and a differenced instrumental variables approach 

(Anderson and Hsiao (1981), Wang, 2015). 

     To capture the fact that the fund’s portfolio weights are highly autocorrelated, the 

parametric bias correction assumes that they follow an (1)AR  model: 

 

                 .= 11
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t

i

t

ii

t vww       (10) 

 

Equations (7) and (10) form a panel “predictive system" (e.g., Pastor and Stambaugh, 2009).  

    The lagged stochastic regressor bias in the panel regression with fixed effects may be 

understood as follows. Consider the numerator of the least squares dummy variable estimator, 

written with only the weights demeaned: 
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               numw,̂ = (1/T)Σi Σt  ri
t+1 (wi

t - (1/T)Σt wi
t),                       (11) 

 

Substituting from Equation (7) for the returns yields: 

 

            E( numw,̂ - βnum) = -E[(1/T)Σi Σt εi
t+1 (1/T)Στ≥t+1 wi

τ].                 (12) 

 

Equation (12) shows that, on the assumption that the shocks to the stock returns are uncorrelated 

with lagged weights, the lagged stochastic regressor bias arises if εi
t+1 is correlated with Στ≥t+1 wi

τ. 

The implicit demeaning of the variables, because of the intercepts in the regresssion, introduces 

the future weights. Under a buy-and-hold portfolio strategy, for example, we would expect a 

positive correlation between εi
t+1 and wi

t+1, as a positive return shock increases the portfolio 

weight, and therefore we expect a negative bias. The larger is the serial correlation in the weights, 

the larger is the expected bias as the shocks at time t+1 accumulate in the future weights, wi
τ, 

τ≥t+1.  

    The Appendix describes several methods for correcting the lagged stochastic regressor bias 

and provides simulation analyses of their efficacy. Two methods perform well in samples of the 

sizes in this paper. One is a recursive demeaning approach from Hjalmarsson (Haj, 2010) and the 

other is a differenced instrumental variables approach from Anderson and Hsiao (1981) and 

Wang (Diff IV, 2015).  We use these methods in our subsequent analyses.  

             

3.5 Scaling 

   The panel slope coefficients are proportional to the various holdings-based performance 

measures. Thus, the coefficients will be zero under the null hypothesis that the performance is 
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zero. In order to test the null hypothesis of zero performance, the unbiased panel slope 

coefficients may be used directly. However, the holdings-based measures are the numerators of 

the slope coefficients, and these are set in economically meaningful units. For example, the FM 

measure is a certainty equivalent excess return for an agent with the SDF used in the model, 

economically equivalent to an extra risk-free return earned by the fund. Thus, we scale the panel 

slope coefficients to the scale of the original measures. This is a simple matter of multiplying the 

left-hand side variables by the variance of the weights, such as (1/T) Σi Σt wi
t
2 in the base case of 

Equation (4). For the Within estimator we use the de-meaned weights, and the appropriate 

weight variances for the other cases. We carry this scaling convention to our simulations and 

evaluate the sampling properties of the scaled measures. 

 

4. Data  

    We obtain quarterly holdings data for mutual funds from Thomson-Reuters. The holdings 

data cover 1980 to 2012. To avoid some standard biases, we employ several screening methods 

to filter the data. We exclude data before 1984 in most of our analyses, since Fama and French 

(2010) show that there is a selection bias in mutual fund data before 1984. Since most of the 

research papers using holdings data focus on US equity funds, we exclude other types of mutual 

funds. Evans (2010) discusses an incubation bias in fund performance measures, and following 

his suggestions, we exclude observations before the reported date of fund organization or when a 

fund first has total net asset value (TNA) of less than 15 million dollars. There are in total 3596 

equity funds in this sample. We also collect the holdings for a sample of 201 index funds for 

1994-2012, identified by either the CRSP index fund flag or by searching for the string “index” 

in the funds’ name. 
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In addition to the holdings data, we use monthly prices and returns of individual stocks 

from the CRSP monthly stock file. We obtain the delisting returns to deal with cases where firms 

go out of the market. The sample contains stocks with at least one month of returns from 1970 to 

2012. The DGTW benchmark returns are collected from Russ Wermers’ website, and are then 

combined with the monthly stock file7. For some of our analyses we use daily stock returns and 

mutual fund returns from CRSP, available starting in 1999 for the mutual funds. We also use 

daily data on interest rates from the Federal Reserve Data base. 

We use holdings and stock prices to construct portfolio quarterly and monthly weights for 

the mutual funds. We first describe the quarterly weights. Let the holdings of the stocks 

(measured as the number of shares held) and stock prices at the t ’th quarter be th  and tp , 

where ,],,[= 1


Nttt hh h  and ],,[= 1


Nttt pp p . The weights of the stocks in the fund portfolio 

are .
'

=
tt

ititi

t

ph
w

ph
 

    To construct monthly weights we assume that for the months between consecutive reporting 

dates the funds keep holding the same number of shares. The monthly weights at month t  are 

constructed as the product of a fund’s preceding reported holdings and the month t  prices of 

the held stocks. The with-dividend stock returns are used, implicitly assuming that a fund 

reinvests the dividends in the same stock. Weights constructed in this way are used by DGTW 

(1997), Kacperczyk, Sialm and Zheng (2008), Busse and Tong (2012), Amihud and Goyenko 

(2013) and others. We explore the impact of using quarterly versus monthly weights on our main 

results in a robustness section and find little change. 

Summary statistics for the data are shown in Table 1. In panel A, for each fund in the 

                                                 
7 We only select stocks with non missing values of the returns and DGTW benchmark returns. According to Wermers (2004), the stocks selected 

for the DGTW benchmarks have at least two years of data on book values, returns and market capitalization. We exclude stocks with less than 48 

months of data.  
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sample we compute the time-series average of its total net assets (TNA) in millions of dollars, 

the average number of stocks held, the return gap from Kacperczyk, Sialm and Zheng (2008) and 

the active weight as in Doshi et al. (2013). We compute the sample standard deviations of the 

reported fund returns, σ, and the R-squares of factor model regressions in the Carhart (1997) 

four-factor model. We also compute the sample autocorrelations of the funds’ portfolio weights, 

ρj, averaged across the holdings, at various lags j, j=1,…5. The means, std, maximum and 

minimum are taken across the funds in the sample.  Finally, for each fund we compute the 

correlation between the errors of the portfolio weight autoregression and the panel regression of 

future stock returns on the weights, averaged across the holdings. The average correlation is 

denoted as Error Corr in the table, and the covariance for fund i serves as Cov(εi,vi) in the 

bias-adjusted estimator of Hjalmarsson (2008). The sample period is from 1984 to 2012, and the 

number of funds is 3596.  We exclude the sample of index funds from these summary statistics. 

     The average fund has total assets of $684 million and holds 114 stocks. As shown by 

Kacperczyk, Sialm and Zheng (2008), the return gap (the gross of expense-ratio reported returns 

minus the hypothetical returns formed from fund weights and stock returns), is small on average. 

However, the maximum and minimum values for the return gap are vary substantially across 

funds. The average first order autocorrelation of the funds’ weights is 0.90, so the weights are 

persistent time-series. This value is slighly below the value where the simulation evidence in 

Ferson, Sarkissian and Simin (2003a) indicates that spurious regression becomes a concern. 

However, the autocorrelation is high enough to make the lagged stochastic regressor bias a 

concern.  

As a reality check for the AR(1) model assumption on the weight process we estimate the 

coefficients j  in the following panel regressions: ,= 111

i

t

i

jtj

ii

t ww     where j runs 
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from 1  to 5.  If the weights follow an (1)AR  process, we should observe that .= 1

j

j   

Panel A of Table 1 suggests this is a good approximation. The values of 
j

1 , are close to the 

values of j  (for example, at the mean values, 0.815=2

1  and 0.813=2 , while ρ1
5 = 0.599 

and ρ5 = 0.586).  In Panel C of Table 1, we compute the autocorrelation of the first differences in 

the weights. The first order autocorrelations are small. 

The last row of Panel A in Table 1 presents statistics for Error Corr, the sample 

correlations of two errors ( i

t  and i

tv ), averaged across the stocks in the predictive regression 

system for a given fund. While the average value is small, at -0.004, the values can be either 

positive or negative. The maximum and minimum values are 0.24 and -0.19, respectively, which 

suggests that the Stambaugh bias can change signs for different funds.  

 

5. Empirical Results for Mutual Funds 

We begin our analysis by revisting some of the main results in DGTW (1997) for the GT and 

DGTW measures, focusing on the results of pulling the Average Alpha Effects out of the 

measures. Table 2 summarizes, in panel A, the sample period from 1980-1994, ending on the 

same date as the sample in DGTW (1997). The subscript H indicates a model with fixed effects, 

estimated using the Haj10 bias-adjusted method. Avg α is the difference between the classical 

estimator and the Haj10 estimator -- our proxy for the Average Alpha Effect. (In the Internet 

Appendix Table A.3 we report the similar results using the DiffIV estimator.) T-ratios are on the 

second line, calculated as in DGTW as the time series standard errors of the monthly values of the 

equally-weighted averages of the measures for the funds in each group in that month. (For the 
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adjusted measures, 30 Newey West lags are used to control for autocorrelation.)8 

     The results in Panel A of Table 2 closely match those reported in DGTW (1997). The GT 

measure for All Active funds is about two percent per year, with a large t-ratio. The DGTW 

measures are smaller but positive, ranging from 38 basis points to 1.15% per year across the active 

fund groups. The GT measures are strongly significant, but the t-ratios for the DGTW measures 

are all less than 2.0.  

    The Haj10 estimates of performance under the GT measure in Panel A are 63-93 basis points 

per year smaller than the classical GT measures, revealing a substantial positive average alpha 

effect. The t-ratios of the Haj10 measures remain significant; larger than 3.7. Thus, the conclusion 

of significantly positive before-cost performance in the earlier sample period holds up under the 

GTH measure.  

    Grinblatt and Titman (1993) note that the GT measure might show performance if funds 

follow momentum strategies. DGTW (1997) point out that while the DGTW measures should not 

have exposure to the size, book/market and momentum factors, in practice they might because the 

benchmarking may be imperfect. Following DGTW (1997), we report Carhart adjusted measures, 

which are the intercepts from regressing the monthly performance measures on the four Carhart 

(1997) factors.  

    With results very similar to those reported by DGTW (1997), the classical GT measures in 

Panel A indicate smaller performance after Carhart adjustment, now between 0.44 and 1.9% per 

year, although the Aggressive Growth funds’ 1.9% is still quite significant. Carhart adjustment 

reduces both the GT and the GTH measures. The Average Alpha Effects are positive, between 18 

                                                 
8 The monthly measures are estimated as follows, taking the DGTW measure as an example. The classical measure 

is DGTWt = wt-1’(rt – rt
D), where rt

D is the N-vector of DGTW adjusted returns. The monthly Haj10 estimator is 

(wt-1 – (1/(t-τ ) ∑ s=1.,,,.t-τ ws)’(rt – rt
D - (1/(T-t-τ+1))∑ s=t+τ.,,,.T (rs – rs

D)) and the monthly Average Alpha Effect is the 

difference between the two. We use a lag of τ=12 months. 
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and 50 basis points per year in the GT measures. The DGTW measure is affected less by the 

Carhart adjustment, posting slightly higher DGTW values and lower DGTWH values after 

adjustment. The Average Alpha Effect in DGTW is positive, between 26 and 56 basis points per 

year after Carhart adjustment. 

      Panel B of Table 2 examines the 1980-2012 period. Recent studies (e.g. Chen and Ferson 

(2017), Jones and Mo, 2017) find that mutual fund performance deteriorates in more recent data, 

and all of the measures reflect that pattern. The raw performance is smaller than in the earlier 

subperiod by 60 basis points to 1.5% per year under the GT measure. Removing the Average 

Alpha Effects, which are similar to the values found in Panel A for the GT measures, the 

performance is smaller still. The Aggressive Growth funds still show the strongest performance, 

with 2.1% per year under GTH, with a t-ratio of 2.3 in the recent sample.  

    The DGTW measures of performance remain smaller than the GT measures in the full sample. 

The DGTWH measures are negative for each of the fund groups, and the Average Alpha Effects are 

positive and larger than in the earlier period, ranging from 0.51% to 1.35% per year across the 

groups. (Using DiffIV it is 0.30 to 0.66% per year).  Thus, the Average Alpha Effects are positive 

and large in the more recent data under both measures.  

    We include a row for index funds in Panel B of Table 2, covering 201 finds during the 

1994-2012 period. The index fund performance is close to zero under GT and GTH.  The 

performance is slightly larger after Carhart adjustment, and the Average Alpha Effect in the GT 

measure is small after Carhart adjustment. The DGTW measure attaches a large Average Alpha 

Effect to the index funds, 1.35% per year, and this is not changed by the Carhart adjustment.   

    Overall, while the Average Alpha Effect in the classical measures would likely not change the 

conclusions of the original DGTW (1997) paper for data up to 1994, in more recent data the 
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Average Alpha Effect is more important. Removing it flips the signs of the performance under the 

DGTW measure from positive to negative. The performance net of the Average Alpha Effect is 

negative for each of the fund groups, in three of the four cases presented in Panel B of Table 2. 

The Average Alpha Effect has become larger in more recent data. It is also large for the index 

funds under the DGTW measure after 1994. Thus, in the more recent sample the overall inference 

about before-cost performance of the mutual funds is more pessimistic and is strongly influenced 

by the Average Alpha Effect. 

      

5.1 Average Alpha Effects in Simulated Strategies 

     To help better interpet the Average Alpha Effects we simulate strategies for hypothetical 

mutual funds. The first strategy is a buy-and-hold strategy, motivated by the results for index 

funds in Table 2, where large positive Average Alpha Effects are found under the DGTW 

measure. A positive Average Alpha Effect is expected under a buy-and-hold strategy, as the 

weights “automatically” drift toward the higher average return stocks. In our sample of funds, the 

correlations between the estimated average alphas of individual stocks and their sample mean 

returns vary from 0.71 to 0.84 across the various models, so when the weights drift toward 

higher average returns they likely drift toward larger average alphas.  

    The simulations also examine a stylized momentum strategy. Results in Table 2 are 

consistent with the claim of Grinblatt and Titman (1993) that the GT measure can record positive 

performance if a fund uses momentum, and the positive GT performance is removed after 

adjustment using the Carhart factors, which include a momentum factor. The Average Alpha 

Effect in the GT measure is smaller after adjustment with the Carhart factors, suggesting a 

relation between momentum and the Average Alpha Effect.  
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    Jointly simulating stock returns and portfolio weights for the hypothetical strategies 

introduces some complications. These include missing data patterns and realistic restrictions on 

funds’ portfolio weights. The Appendix describes how we handle these complications.  

 

5.2 Results for Simulated Strategies 

Using the bootstrapped returns and the simulated strategy weights we estimate the 

various performance measures and calculate the standard errors and T-statistics in each 

simulation trial. We simulate monthly weights and returns. By simulating the returns and 

strategies 1000 times, we have 1000 point estimates, standard errors, and T-ratios for each case.  

The Average Measures in the first rows of Table 3 are the averages across the 1000 

simulated performance measure estimates. The expected values of the GT, DGTW and FM 

measures are positive for both the buy-and-hold and momentum strategies. Consistent with the 

claim of Grinblatt and Titman (1993) the GT measure does record positive performance under 

the momentum strategy, averaging 0.42% per year. Under buy-and-hold, the GT performance is 

even larger, at 1.04% per year. Even though the DGTW measure includes a momentum 

adjustment, the performance according to the classical measure is more than 7½ percent per year 

under the momentum strategy and 9.4% for buy-and-hold. The FM measures are also larger than 

9% per year under buy-and-hold.  

The average Diff IV and Haj10 estimators in Table 3 are less than ten basis points per 

year for most of the measures. Thus, the performance of these hypothetical strategies as captured 

by the classical measures is driven by their Average Alpha effects.  

It is striking that the Average Alpha Effects are so large, and even larger under 

buy-and-hold than under momentum. We see much smaller effects in the mutual fund data. In 
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the mutual fund data we examine averages; either portfolios of funds each month (Table 2) or the 

estimates for individual funds averaged within groups (tables 4 and 5 below). One reason these 

averages show smaller effects is that the Average Alpha Effects can be negatively skewed in the 

cross-section of individual funds. We calculate the skewness to be -9.62 in the GT measure, 

-3.51 in DGTW and -6.6 in FM. Extreme negative skewness reduces the average values taken 

across funds. 

With 1000 T-ratios, we can study the distributional properties of the T-statistics for the 

performance measures. We rank the 1000 simulated T-ratios and select the 25-th, 50-th, 950-th 

and 975-th values and report them in Table 3. The distributions of the T-ratios show that all of 

the classical performance measures would find significant performance in a large fraction of the 

cases (nearly 100% for DGTW), and this is driven by the positive average alpha effects under 

buy-and-hold or momentum. When the average alpha effect is removed using the Diff IV or 

Haj10 estimators, the distributions of the T-ratios appear slightly more peaked than a normal, 

with slighly thinner tails. However, the critical values of the T-statistics are pretty close to the 

corresponding values for the standard normal distribution. Although the classical measures are 

strongly influenced by the average alpha effect, once it is removed the distributions of the 

simulated T-statistics are close to standard normal.9  

Overall, Table 3 shows that simulated buy-and-hold or momentum strategies can cause 

large Average Alpha Effects in the classical measures. Under the DiffIV or Haj10 measures, 

neither strategy shows abnormal performance, so all of the performance for the simulated 

                                                 
9 We test whether the distributions of 1000 T-ratios for each performance measure are normal following the 

Jarque-Bera (JB 1986) test and Lilliefors (1967) test . The JB test compares the skewness and kurtosis of the 

distributions with those of a normal distribution. The Lilliefors test examines the difference between the CDF of the 

sample distribution and that of a normal distribution. The JB and Lilliefors tests show that, for most of the measures 

after the aveage alpha effect is removed, the distributions of the T-statistics are not significantly different from those 

of a normal. 
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strategies comes from the Average Alpha Effect. To the extent that the Average Alpha Effect is 

driven by buy-and-hold strategies in actual mutual funds, this tilts us toward the bias 

interpretation of the effect.  

 

5.3 The Cross-sectional Variation in Fund Performance Measures 

    So far, the analysis has focused on broad groups of funds or hypothetical strategies, and we 

saw that the classical measures and the measures net of the Average Alpha Effects can lead to 

different inferences. Now we turn to cross-sections of individual funds. Correlations taken across 

funds (Internet Appendix, Table A.1) reveal that the classical measures and their Haj10 estimates 

have modest correlations, ranging from 0.08 (FM) to 0.56 (GT). Thus, inferences about the 

performance of individual funds will likely be different with the different measures.  

    We first sort funds into five quintiles on the basis of the classical performance measures, 

shown as the first column of Table 4. The classical performance measures are estimated by 

pooled OLS on monthly data. We then estimate the model with fixed effects for each fund using 

the Haj10 estimator and average the estimates across the funds in each quintile. In the Internet 

Appendix Table 5A we use the differenced IV approach and the results are similar. We discuss 

quarterly estimates in a robustness section. Panel A of Table 4 shows that the average style 

exposure change component of the GT measure is small, and since this component is absent from 

the other measures, it further justifies our use of the difference between a classical measure and 

the fixed effects estimate as the Average Alpha Effect.10  

     The bottom rows of each panel of Table 4 show results for a group of 201 index funds, for 

1994-2012. The DGTW measures characterize the index funds as having poor selectivity 

                                                 
10 To calculate the average style change effect in the GT measure, we estimate the betas for each stock using daily 

stock returns with the carhart four factors as the benchmark, and compute (Σi

i

w βi)’
Br .   
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performance in DGTWH (-0.09% to -0.10% per year) masked by a positive average alpha effect 

of 0.11%. The sum of the two parts in the classical DGTW is near zero. The index funds produce 

negative Average Alpha Effects in the GT and FM measures. 

    The approach in Table 4 weights the underlying fund-period observations differently from 

Table 2. In Table 2 a portfolio of funds is formed each month, and the monthly time-series of the 

portfolio measures are averaged over time. Each month gets the same weight in the average, 

independent of how many funds are present that month. In Table 4 we estimate a single value of 

the measure for each fund using its time-series data, and then average across the funds in each 

quintile. This gives each fund equal weight. Because there are many more funds later in the 

sample period, Table 4 puts greater weight on the more recent data than Table 2. Thus, we expect 

that some of the differences observed between panels A and B of Table 2, because of more 

recent data in Panel B, should be found in Table 4. 

   The index funds illustrate how the differences in weighting influence the results. In Table 

4 we calculate a measure for each fund over its existing sample period and then take the 

cross-sectional average. This is not likely to be a good proxy for a buy-and-hold portfolio, such 

as examined in Table 3. If instead we calculate a cross-sectional average index fund at each 

month, and take its average measure over time as in Table 2, the index funds show large positive 

Average Alpha Effects in the GT and especially, the DGTW measures. The same calculation for 

the FM and FMH measures produce 0.3% and -2.10% per year, and thus large positive Average 

Alpha Effects for index funds. Many index funds started after 2000, and their Average Alpha 

Effects are negative and large during the financial crisis, as many stocks had negative alpha 

estimates. Like the skewness affect described above, if we average the measures across funds as 

in Table 2, we get small or even negative Average Alpha Effects. But if we average a portfolio of 
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the measures over time, the financial crisis only impacts a short interval during the 20 year time 

series, and the Average Alpha Effects are larger for the index funds.  

   In Table 4 the performance under the GT measure is lower on average, and the Average 

Alpha Effects in the GT measures are smaller than in Table 2. Also, consistent with the greater 

weight on more recent data, the performance in Table 4 under the classical DGTW measure is 

worse than in Table 2, and the Average Alpha Effect is positive. The spread across the quintiles 

shows that the Average Alpha Effects have negatively-skewed distributions, as previously 

described, which has the effect of making the average effects smaller.  

  The third quintile in Table 4 contains the median fund, and finds that the Average Alpha 

Effect is positive under every classical measure. This is consistent with previous holdings-based 

studied that find positive before-cost performance for the typical fund (e.g., Wermers, 2000).  

At the same time, studies find that the after cost performance of the typical mutual fund is zero 

or negative (e.g. Chen and Ferson, 2017), which is consistent with the view of the money 

management industry taken by Berk and Green (2004). However, Table 4 shows that the median 

fund records negative performance under every performance measure when the Average Alpha 

Effect is removed. For this to be consistent with the Berk and Green (2004) view of the fund 

management industry, the Average Alpha Effects should be associated with skilled fund 

management. 

    Table 4 presents the average differences between the performance measures for the top and 

bottom quintiles (HML), summarizing the cross-sectional variation. Sorts on the classical 

measures produce HMLs of 0.64% per month for GT, 0.55% for DGTW and 2.31% for FM. The 

H measures show smaller HML spreads, ranging from 0.09 to 0.34% per month.  

    The GT and GTH estimates show similar patterns across the GT quintiles, until we find the 
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lowest performance group with a large, negative average alpha effect. When the average alpha 

effect is removed in GTH, the lower quintile performance changes from -0.29% per month to 

only -0.08% per month. Thus, the poor performers under GT experience large negative average 

alpha effects which capture most of their poor performance. This means that they increase their 

holdings on average in the lower average alpha stocks.  

The Average Alpha Effect in the DGTW measure has a large amount of cross-sectional 

variation, ranging from -0.19% to +0.25% per month across the DGTW-sorted quintiles, and it 

accounts for much of the differences in the classical DGTW quintiles. The good performers 

under DGTW have positive Average Alpha Effects, while the bad performers have negative 

Average Alpha Effects. The sample correlation across individual funds between their classical 

DGTW measure and its Average Alpha Effect is 0.69. Sorting funds on their classsical DGTW 

measures is a lot like sorting them on the their Average Alpha Effects. 

Panel C of Table 4 presents results for the conditional weight measure, CWM. The 

classical measure is (1/T)Σi Σt ((ri
t+1 - ri,C

t+1)(wi
t - wibt), with the conditional mean of the stock 

returns as benchmark return: ri,C
t+1 = δi’Zt., which is estimated by a regression in the first step. 

There is no Average Alpha Effect in the original CWM, but there is a lagged stochastic regressor 

bias due to the regression that predicts the stock returns. We therefore present only an unbiased 

version of the CWM, estimated using the Haj10 approach. The performance under CWMH is 

negative for all but the best performing quintiles, broadly consistent with the results of the other 

H measures. 

Panel D of Table 4 presents results for the FM measure. The results show very large 

values of the FM measures at the high and low quintiles, and also large average alpha effects that 

vary between -1.44% and +.80% per month across the quintiles. Once again, the average alpha 



34 

 

effect largely drives the variation in the measured performance across the FM quintiles. At the 

fund level, the correlation between FM and its Average Alpha Effect is 0.94. Removing the 

average alpha effects, the FMH measures produce with an HML difference of only 0.07% per 

month. Sorting funds on their FM measures is a lot like sorting them on the their Average Alpha 

Effects.  

Overall, the analyses in Table 4 show that variation in the cross-section of the classical 

holdings-based performance measures is driven to a large extent by variation in the Average 

Alpha Effects. When the Average Alpha Effects are removed, the remaining performance is 

negative for the median fund under all of the measures. These results present a puzzle. If active 

fund managers are to have positive performance before costs (Berk and Green, 2004) then the 

Average Alpha Effects should be associated with skilled fund management. However, our 

simulations show that large Average Alpha Effects can arise in a buy-and-hold strategy. This 

motivates further analysis of the relation between the Average Effects and active fund 

management. 

 

5.4 Cross-sections Related to Active Managment 

In this section we ask if grouping funds by proxies for active fund management reveals 

differrences in their Average Alpha Effects. If the Average Alpha Effects are related to active 

management it tilts us toward the view that the Average Alpha Effect is a valid component of 

performance. Previous studies suggest several proxies for active fund management, including 

higher return gap (Kacperczyk, Sialm and Zheng, 2008) lower factor model regression R-square 

(Amihud and Goyenko, 2013), larger active weight (Doshi, Elkamhi and Simutin, 2015) and 

higher fund return volatility (Jordan and Riley, 2016).  
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    In Table 5 we sort funds by the different active managment measures, calculate the classical 

and Haj10 measures and average them across the funds in each group. (The Internet Appendix 

Table 6A shows the similar results using DiffIV.) The sample period for return-gap and active 

weight is from 1980 to 2012. For R-squared and fund return volatility we start the analyses in 

1999 when daily fund return data become available. The estimated measures and their 

T-statistics are shown in the table. To compute the T-statistics we cluster by time and apply a 

Newey-West (1987) estimator for panels allowing for nonzero autocovariance up to 30 months. 

     The bottom row of Table 5 reports the differences between the high and low quintile 

performance. With four performance measures and four measures of active management, there 

are 16 HMLs in the bottom rows of Table 5. Using the classical measures, seven of the HMLs 

sport t-ratios larger than 2.0. This evidence is broadly consistent with the previous studies 

finding that active management is associated with better performance under the classical 

measures.  

Sorting on return gap in Panel A of Table 5 shows that the differences between the 

original measures and the Haj10 estimates, approximating the average alpha effects, are fairly 

similar across the return gap quintiles. The remaining three panels of Table 5 record similar 

results for the other measures of active management. For the FM sorted by R-squares there might 

be significant variation, but there is otherwise relatively little variation in the Average Alpha 

Effects across the quintiles of funds, sorted by R-square, active weight or return volatility. The 

average alpha effects are large but they vary little across the quintiles, so the quintile spreads for 

the classical and Haj10 measures are similar. In the Internet Appendix Table 6B we present a 

similar exercise using a few more sorting criteria. These include the portfolio-weighted size of 

the fund, the rank gap, a backwards return gap and fund turnover. Other than a weak relation to 
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turnover (consistent with Pastor, Stambaugh and Taylor, 2017) we find little relatiion between 

the Average Alpha Effects and the measures of active management. 

 

5.5 Predictive Inability  

 We compare the ability of the various holdings-based performance measures and their 

embedded Average Alpha Effects to detect funds whose holdings emphasize stocks that will 

subsequently outperform. For these predictive exercises we estimate the measures for each 

month using the “up-to-t” version of the Haj10 estimator described in the Appendix, so that the 

performance measure uses only data available at the forecast date. We average each monthly 

measure over the past 12 months to reduce noise. We then rank the funds on the averaged 

measures each month and group them into quintiles. We form equal weighted portfolios of the 

stocks held by each quintile of funds, and examine the following one-month returns of the stocks 

before any costs. Rolling this procedure forward in time, we record the subsequent Carhart (1997) 

four-factor alphas for the five monthly portfolio returns. We also examine the one year ahead and 

two-year ahead performance of the portfolios, the high-low decile spreads and their t-ratios. We 

find no evidence that any of the measures can predict the future stocks’ abnormal performance.  

 

5.6 Fund Characteristics Associated with Average Alphas 

    The evidence so far suggests that Average Alpha Effects are not related to active fund 

management. When the Average Alpha Effect is removed, the remaining performance of the 

average mutual fund is negative, even before costs. This seems inconsistent with the Berk and 

Green (2004) view of performance in the fund management industry. This also seems to deepen 

the puzzle of active management, as raised by Gruber (1996) and others. Why would investors 
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pay for active management that delivers negative excess returns even before fund costs? One 

potential answer is fund clientelles, as suggested by Glode (2011), Ferson and Lin (2014) and 

Chretien and Kammoun (2017).  

     Subsets of investors may disagree with the benchmark risk adjustments used in the 

measures and reward funds with particular characteristics. Funds that cater to such preferences 

may be viable even with negative performance measured relative to benchmark risks. If the 

Average Alpha Effects are associated with fund characteristics that investors have a preference 

for, the the classical measures by including the Average Alpha Effects, could better reflect 

investors’ preferences for funds. We examine the relation between Average Alpha Effects and 

various fund characteristics that investors may have preferences for. 

    Table 6 presents panel regressions of the Average Alpha Effects in the classical performance 

measures on lagged fund characteristics. The simulation results of Table 3 show that buy and hold 

and momentum strategies can have large Average Alpha Effects, so we include as controls 

measures of funds’ tendencies toward buy-and-hold and momentum strategies. TBH is our 

measure of the tendency towards buy-and-hold: 

 

 TBHt = 1 - (1/24)Σs=0,…,11 |wt-s - wbh
t-s|, (12)   

 

where wbh
t is what the fund’s weights would have been at time t, had the fund had the same share 

holdings as 12 months before. The monthly measure is averaged over the past year to reduce noise. 

It takes a value between zero and one, and is equal to one if the fund exactly follows the 

buy-and-hold strategy.  

     Fund investors might have a preference for momentum or contrarian trading styles, and the 
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simulations of Table 3 show that a momentum strategy produces a positive Average Alpha Effect. 

We include a lagged momentum measure similar to Grinblatt, Titman and Wermers (1995): 

 

 LMt = Σi (wt - wbh
t)’(Σs=t-12,…,t-2 rs).  (13) 

 

This measures a relation between a fund’s deviation from buy-and-hold weights and the average 

returns on the stocks over the previous 11 months, after skipping one month. A positive LM means 

that the fund pursues a momentum trading strategy and a negative value indicates a “contrarian” 

strategy.  

      Some investors might have preferences for funds with high dividend yields (e.g. Harris, 

Hartzmark and Solomon, 2017). The variable Div Yield is a fund-portfolio-weighted average of 

the dividends per share of each stock held during the past 12 months divided by its price per share. 

Some investors may prefer a tilt towards large or small-capitalization stocks that is not perfectly 

captured by the factor loadings in the model. HLDSize is the portfolio weighted market 

capitalizations of the stocks held by the fund. Investors might have preferences for fund 

characteristics associated with expense ratios, annual turnover, age or fund size.  We include 

these characteristics in the regressions.  We also include the dummy variable Aggressive, which 

turns on if the fund is classified as an Aggressive Growth fund. All of these fund characteristics are 

lagged one month relative to the performance measures used to construct the Average Alpha 

Effects. The Average Alpha Effects are estimated monthly as the difference between a classical 

measure, estimated as in Table 2, and its up-to-t version of the Haj10 estimate. 

    Panel A of Table 6 covers the 1980-1994 period and panel B the full 1980-2012 sample. The 

table shows, as the simulations foreshadowed, a positive association between Average Alpha 
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Effects and a fund’s tendency toward buy-and-hold as captured in TBH, for all of the measures.  

     To some surprise, the panel regressions indicate that the Average Alpha Effects are not 

significantly correlated with a tendency for momentum trading as captured by LM, controlling for 

the other variables, excepting in the GT measure during the full sample, where the coefficient is 

negative. In the DGTW measure the coefficient on LM is negative but insignificant.  

     In the GT measure the Average Alpha Effect refers to average weight changes, and the 

Average Alpha Effects are thus smaller than in the FM and DGTW measures. The Average Alpha 

Effect in the GT measure presents no significant relation to TBH or any of the other variables, 

excepting Div Yield. (We examine the robustness of these results to the use of Fama MacBeth 

(1973) regressions in the Internet Appendix and find similar results.) 

     The Average Alpha Effect is positively associated with the dividend yields of the stocks held 

by a fund in all of the measures, and is significantly related to yields for all of the measures in the 

full sample period in Panel B. A positive relation between the Average Alpha Effect and Dividend 

Yield could arise if the dividend yields of the stocks are correlated with their average alphas in the 

DGTW and Carhart factor models. This would be implied by the Brennan (1970) after-tax CAPM, 

which predicts a positive premium associated with a stock’s dividend yield. We find correlations 

across the stocks in our sample, between their average alphas and their dividend yields, of 0.074 in 

the DGTW model and 0.258 in the Carhart model.  If high yield funds are doing dividend capture 

trades, and if ex-dividend price declines are less than the amount of the dividend (Elton and 

Gruber, 1970) then high yield funds could have larger average alphas before trading costs. 

    As a further check on the Div Yld we estimate a dividend yield adjusted excess return for each 

stock and run Table 6 again using the adjusted returns. The adjusted returns contain an adjustment 

for a premium associated with the dividend yield. These are formed by running Fama and 
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MacBeth (1973) style regressions of stock returns on rolling estimates of their market betas and 

their dividend yields. The cross-sectional regression coefficient each month, multiplied by the 

stock’s dividend yield, is subtracted from the adjusted excess return.   

    Using the dividend yield adjusted excess returns in place of the original excess returns we find 

that the relation between the Average Alpha Effect and dividend yield remains marginally 

significant over the full sample period, with a coefficient about 2/3 of the previous size, but it flips 

sign in the DGTW model. In the earlier subperiod Div Yld remains strongly significant for the 

Average Alpha Effect in the GT measure but becomes insignificant in FM and flips sign in 

DGTW.  

    To summarize, Table 6 shows that funds with a greater tendency toward buy-and-hold 

strategies have larger Average Alpha Effects. Controlling for the TBH effect, there is no relation 

between funds’ Average Alpha Effects and their tendency toward momentum strategies. We find 

no strong relations between Average Alpha Effects and the other fund characteristics, other than 

dividend yields. Differences in Average Alphas across funds are related to their dividend yields, so 

if investors have a preference for yield this would show up in the Average Alpha Effects in the 

classical measures. The dividend yield relation to Average Alpha is reduced but not eliminated by 

including a premium for dividend yield in the model. 

 

5.7 Fund Flows and Average Alphas 

    Even if the Average Alpha Effect is a passive component of performance, that does not 

imply that fund investors would pay no attention to it. Studies by Del Guercio and Tkac (2002), 

Berk and van Binsbergen (2015) and Barber, Huang and Odean (2016) find that investor flows 

respond to relatively simple measures of abnormal fund performance. If fund investors reward 
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larger Average Alpha Effect with greater fund flows, then fund managers would be induced to 

produce large Average Alpha Effects. Table 7 examines this conjecture. Annual new money 

flows are regressed on the Average Alpha Effects in the performance measures over the past year. 

The Average Alpha Effects are estimated as in Table 2 and are used to form ranked performance 

measures within each of five performance quintiles, as in Sirri and Tufano (1998). In panel A there 

are no controls for fund characteristics, and in panel B fund characteristics are included as control 

variables. The sample period is 1980-2012. T-ratios are calculated by clustering by time and using 

Newey-West (1987)-weighted autocovariances to 30 lags. The units of the Average Alpha Effects 

are annual percent. 

      Panel A of Table 7 finds a strong relation of flows over the next year to funds’ Average 

Alpha Effects over the previous year, consistent with the idea that funds may be motivated by 

investor flows to generate large average alpha effects. While the results vary some across the 

models, the coefficients for the performance quintiles positive and significant coefficients for the 

high group and smaller, typically negative signs for the lower quintiles. The t-ratio on performance 

measured by the Average Alpha Effect is 3.68 for the FM measure and 7.25 for the DGTW 

measure in the top performance quintile.11 

       Panel B of Table 7 includes the fund characteristics from Table 6 as additional control 

variables in the flow performance relation. None of the performance rankings based on the 

Average Alpha Effects produce significant coefficients, indicating that the flow response to the 

Average Alpha Effects in Panel A is subsumed by the other fund characteristics. Style flow and 

turnover are strong flow predictors, and some of the other characteristics like fund Age, TNA, 

                                                 
11 We also examine regressions where the Average Alpha Effect is measured over the previous three years, which 

produces similar but less statstically significant results. We also examine regressions where the classical measures 

are introduced with the Average Alpha Effects in the regression and find that the original measures subsume the 

Average Alpha Effects.  
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market capitalization and the BHL and LM measures are significant or marginally significant. We 

conclude that the response of flows to the Average Alpha Effects is subsumed by the other fund 

characteristics. 

 

6.8 Robustness 

     Table 4 uses monthly stock returns and monthly weights constructed from the quarterly 

holdings data as described above. These features raise potential concerns about the robustness of 

the results. 

     The first concern is errors or microstructure effects in the closing prices used to compute 

the weights and the returns. At the beginning of each month the same price appears in the weight 

and in the denominator of the future return calculation, so an error in the price might induce a 

spurious negative relation between the lagged weight and the future return. In momentum studies 

(e.g. Grinblatt and Titman, 1993) it is common to skip a day between the formation period and 

the future return calculation interval to handle such concerns. In a similar spirit we replicate 

Table 5 using 29-day returns on the left hand side of the regressions, skipping a day relative to 

the price data in the weights. 

     Table 5B in the Internet Appendix presents results using the 29-day returns. The 

holdings-based measures are not larger than in the original Table 4, in constrast to what would be 

expected if errors in prices caused a negative bias in the original results. The DGTW measures 

are actually smaller using the 29-day returns, but otherwise the results are very similar. 

     A second potential concern about the fund level results is the implicit buy-and-hold 

assumption that is applied between the quarterly reporting dates. We saw in Table 3 that a 

simulated buy-and-hold strategy can generate a positive average alpha effect. The concern here is 
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that the large average alpha effects of the actual funds are partly an artifact of the buy-and-hold 

assumption. 

     Table 5C in the Internet Appendix replicates Table 4 using quarterly data for the returns 

and portfolio weights, this avoiding the buy-and-hold assumption. The results for the GT 

measure show slightly more extreme average alpha effects in both the high and low quintiles, as 

would be expected given the higher estimation error of the quarterly measures. However, the 

differences with the Table 5 results are only .01% or .02% per month. The average alpha effect 

under the GT measure for the W5000 fund is more negative in the quarterly data. It changes from 

-0.06% to -0.13% per month under GT. The W5000 average alpha effect is also slightly smaller 

at +0.06% per month (versus 0.11%) under DGTW in the quarterly data. The DGTW measures 

display slightly higher average alpha effects across the quintiles in the quarterly data (about 

0.01% to 0.03% higher), in contrast to what would be expected if there was a positive bias in the 

monthly results from the buy-and-hold assumption between quarterly reporting dates. 

     Tables 6A and 6B in the Internet Appendix present furhter robustness checks on the 

analysis of Table 5 where funds are grouped according to proxies for active management. We 

sort on portfolio-weighted size, rank gap, backwards return gap and turnover.  

 

7. Conclusions 

   We introduce a predictive panel regression framework for the estimation of holdings-based 

measures of portfolio performance. Previous measures appear as special cases of a panel 

regression. Estimating the measures from a panel regression makes the tools of panel 

econometrics available to holdings-based measures. This perspective reveals that the classical 

holdings-based performance measures can suffer from a panel version of a lagged stochastic 
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regressor bias similar to Stambaugh (1999). We examine several bias-adjusted measures with 

simulation and find two that work well.  

      Our analysis reveals an Average Alpha Effect in the classical performance measures and 

shows how to isolate it using a regression with stock fixed effects. The Average Alpha Effect is a 

cross-sectional relation between the time-averaged portfolio weights held by a fund and the 

average stock alphas in the model. It arises because the average alphas of the stocks are not zero. 

Funds with positive Average Alpha Effects put more weight, on average, on the higher alpha 

stocks.  

    The Average Alpha Effect is interesting because it dominates the variation in the classical 

performance measures across funds. It appears larger in more recent fund data, where previous 

studies find more passive management and closet indexing. The Effect is stronger in funds with a 

stronger tendency towards a buy-and-hold strategy and for funds with higher dividend yields. 

Average Alpha Effects are large in simulated buy-and-hold and momentum strategies, and also 

appear in passive index funds.  

  We find no strong relation between the Average Alpha Effect and well-known proxies for 

funds’ active management, including factor model R-squares (Amihud and Goyenko, 2013), 

fund volatility (Jordan and Riley, 2016), the active weight measure of Doshi, Elkamhi and 

Simutin (2015) the return gap of Kacperczyk, Sialm and Zheng, (2008) or other measures. We 

find no information about future stock returns in the holdings of funds are sorted by their 

Average Alpha Effects.   

 Our analysis leads to a different inference about mutual fund performance in holdings-based 

measures. Previous studies find positive performance on a before-cost basis, of a magnitude 

similar to funds’ expense ratios, while the after-cost abnormal returns for investors is close to 
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zero. This conforms to a view of the mutual fund industry, advocated by Berk and Green (2004), 

where fund managers with skills at active management have significant before-cost performance, 

but leave no abnormal returns for investors after costs. Assuming that the Average Alpha Effect 

is either a passive component of performance or a bias, it is interesting to remove it from the 

classical performance measures.  We find that when it is removed the remaining before-cost 

performance of the average mutual fund is negative. This casts doubt on the presence of skilled 

active management in the average mutual fund, even on a before-cost basis. 
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Appendix 

A.1 Extracting the Average Alpha Effect 

    The difference between a classical holdings-based performance estimator and an estimate of 

a fixed-effects model can serve as an empirical measure of the Average Alpha Effect. Suppose 

that we estimate the regression (4) when the true model has stock fixed effects as in (7). The 

OLS estimator in (5) can then be written as: 

 

  ̂ = β + ΣiΣt aiwi
t /ΣiΣt wi

t
2 + ΣiΣt wi

t ɛi
t/ΣiΣt wi

t
2,             (A.1) 

 

where β is the true value of the slope in (7) and the ɛi
t are the residuals of (7). Hjalmarsson’s 

(2010) evidence and Panel B of our Table A.1 below suggest that the sample mean of the 

right-most term involving the residuals is close to zero. The fixed effects produce the middle 

term on the right hand side of (A.1). This term is evaluated using a factor model regression for 

the stocks on the vector of benchmark excess returns rB: 

 

                         ri
t+1 = αi + βi’rBt+1 + uit+1.   (A.2) 

 

This regression is not very restrictive, allowing for a stock-specific intercepts or alphas.12 Note 

that the DGTW benchmark is a special case of the term βi’rBt+1, where there are 125 benchmarks 

and the elements in βi are either zero or 1.0. We make the standard regression assumption, E(uit+1) 

= 0 and E(rBt+1 uit+1) =0.   

                                                 
12 Regression (A.2) is explicitly an unconditional regression, and its specification does not in principal preclude the 

existence of a conditional model with a time-varying alpha. The interpretation is similar in this case. 
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Substituting ai = αi + βi’ Br - β
i

w . The expected values of the first two of the three terms in (A.1) 

that result are the average alpha effect, Σi αi
i

w , and the average style effect, (Σi
i

w βi)’
Br . 

Denote those as [AA+AS], the decomposition implies: 

 

         E ̂ = [AA+AS] + β [1 - (1/T)ΣiΣt
i

w wit /(1/T)ΣiΣt wit
2]  (A.3) 

 = [AA+AS] + β [1 - (1/T)2Σi{Σt wit
2

 + ΣτΣt≠τ wit wiτ}/(1/T)ΣiΣt wit
2], 

             = [AA+AS] + β [1 - (1/T)(1+2ρ/(1-ρ)], 

 

where the last line uses an AR(1) approximation for the weights. If the final term in (A.3) is 

close to β it justifies using the original estimator of (4) minus an unbiased estimator for the 

model with fixed effects to proxy for [AA+AS]. As the AS part is small in the GT measure, and 

is equal to zero as in the other measures, this is approximately the Average Alpha Effect. As T 

gets large the approximation is exact, but it is likely to be close in realistic finite samples. If ρ = 

0.9 and T = 200, the term multiplying β on the right-hand side of (A.3) is about 0.905.  

 

A.2 Corrections for Bias            

    Hjalmarsson (2008) proposes a parametric correction for the Stambagh bias in a panel 

regression. He assumes a local-to-unity structure for the autoregressive parameter for the 

portfolio weights, ρ = 1 - c/T. He also makes the strong assumption that the errors in (7) are 

independent across stocks. (We relax this assumption in our simulations.) He uses sequential 

limit theory (first, fix N and let T go to infinity, then let N go to infinity) to obtain several results. 
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First, perhaps surprisingly, when there are no fixed effects in the model there is no Stambaugh 

bias and the pooled OLS estimator of Equation (4) is consistent.  

    Hjalmarsson (2008) proposes a bias-corrected estimator for the fixed effects case.  Letting 

Ri
t+1 = ri

t+1 - 
ir  and Wi

t = wi
t - 

i

w , the corrected estimator is: 

 

  c̂ = Σi Σt (Ri
t+1 Wi

t  - NT Cov(ε,v)θ(c) ) / Σi Σt (Wi
t Wi

t’), (A.4) 

 

where Cov(ε,v) = (1/N) Σi Cov(εit,vit) is consistently estimated from the OLS residuals of the 

panel predictive regression system. Hjalmarsson finds that the estimator is relatively insensitive 

to how the residuals are estimated. The crucial parameter is c in θ(c) = -(ec - c - 1)/c2.  He 

proposes to estimate the parameter c as T(1-ρpool ), where ρpool is the pooled estimator of ρ with 

no intercept in the regression. Equation (A.4) is the first bias corrected estimator that we 

evaluate. 

   Hjalmarsson (2010) notes that with a common intercept in the model, the pooled OLS 

estimator is consistent and asymptotically normal. We evaluate this estimator with simulations. 

He also proposes a forward recursively-demeaned estimator for the fixed effects case.  Let wbd
it 

= wi
t - [1/(t-τ)]

t

s 1=

wi
s , wfd

it = wi
t - [1/(T-t+τ)] 



T

ts =

wi
s , and rfd

it = ri
t - [1/(T-t+τ)] 



T

ts =

ri
s  (We use 

τ=12 months as the gap between the current and mean value) be the backward and forward 

demeaned weights, and the forward demeaned returns. The estimator is: 

 

 H̂ = Σi Σt (rfd
it+1 wbd

it ) / Σi Σt (wbd
it wfd

it). (A.5) 
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Note that the backward demaning weight, wbd
it , is used as an instrument in (A.5). The intuition 

is that the forward demeaned returns are independent of the lagged weights. The recursive 

demeaning induces a moving average term in the covariance matrix of the errors of the 

demeaned model, which should be reflected in the panel equivalent of HAC standard errors. We 

use this approach. 

    In our empirical work we investigate the ability of the various performance measures to 

identify funds that can predict future stock returns. The future demeaning in the H̂ measure 

cannot be used for this purpose. We therefore modifiy the approach so that the measure used to 

predict stock returns at month t+1 uses only data for time-t and before. The “up-to-t” version 

replaces wd
it with wit1 - [1/(t1-τ)]

1

1=

t

s

 wi
s  and rd

it = rit1+1 - [1/(t-t1-τ)] 


t

ts 11= 

ri
s for t1 < t - τ. We 

use τ=12 months as the gap between the current and mean value used to demean in all of our 

recursively demeaned estimators. When t1=t-13 the future demeaned return is just rt, and the 

weight used to predict the return for time t+1 is based on holding data at time t-13. For t1=t-24 

we demean using a one-year future mean return or weight, using data up to time t only.  The 

weight used to predict the return for time t+1 is based on holding data at time t-24.  

    When applied to the CWM, the estimators need to accommodate the estimation of the 

regression coefficients, δ, of the returns on the lagged information Zt. For example, we modify 

the Diff IV approach for the panel version of the CWM, replacing (ri
t+1 - ri

t+1+τ ) in (21) with ((ri
t+1 

- δt’Zt) - (ri
t+1+τ - δt+τ’Zt+τ )), where the estimator of δ is δt = (Zt

T-1 Zt
T-1)-1Zt

T-1’rt+1
T, with rt+1

T = 

(rt+τ+1, …, rT) and Zt
T-1 = (Zt+τ, …, ZT-1). We cancel the common intercepts from the difference 

between the two regression estimates. In the FM estimator we have to estimate the parameters of 

the SDF, [a;b]. We use monthly data on the benchmark factors to estimate these parameters, and 

evaluate the resulting two-step estimators by simulation.  
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A.3 Difference Estimation 

     Take the difference between equation (7) and the same equation periods before, and the 

fixed effects cancel out:  

 .)(= 1111
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The classical difference estimator is  
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We show that the classical difference estimator in Equation (A.7) suffers a Stambaugh bias for 

τ≥2. If we plug 
i

t

i

t

ii

t wr 11 =     into the numerator of the difference estimator, equation 

(A.7) is equal to β plus a term whose numerator is:  
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Using an AR(1) assumption for the weights,   
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and equation (A.8) becomes:  
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Under the null hypothesis of no ability, the past weights and future regression residuals are 

uncorrelated. However, if the innovations in the weights 
i

tv 1  and the return innovations 

i

t  1 are contemporaneously correlated, as seems highly likely, and if  is nonzero, the expected 

value of ))(( 111=

i

t

i

t

i

jt

j

j
v 


   is not zero when τ≥2. Thus, there is a Stambaugh bias in the 
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classical difference estimator when τ≥2. We evaluate this estimator for τ=1 in our simulations. 

    Finally, we evaluate a differenced IV estimator following Anderson and Hsiao (1981) and 

Wang (2015). This estimator uses the lagged weight difference as an instrumental variable, 

forward differences the returns and weights:  
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   We show that the differenced IV estimator of Equation (A.11) is consistent. Plug in 

i

t

i

t

ii

t wr 11 =    , and the numerator of Equation (A.11) can be written as  
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By assumption, 
i

t

i

t    11  is not correlated with 
i

t

i

t ww   for τ≥1. Therefore, equation (A.12) 

converges, for large T, to .)))((( i
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wwwwE      Using the AR(1) assumption for the 

weights we find: 
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The last equation depends on the stationarity assumption: ),(=),( i
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this result, A.4 converges to .)()(1 2 i

t

i

wVar   By similar logic, the denominator of equation 

(18) converges to .)()(1 2 i

t

i

wVar  Therefore, when number of stocks N is large, the 

differenced IV estimator converges to β. 

 

A.4 Evaluating Lagged Stochastic Regressor Bias Adjustments 

    We examine the effectiveness of the adjustments for Stambaugh bias using simulations. We 
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bootstrap versions of the predictive system of equations (7) and (10). We report results for 

various “true” values of the panel regression slope, β. To calibrate the regression slopes we 

estimate the pooled panel model for β using the differenced IV method (which turns out to have 

little bias) and sort funds based on the estimated slopes. We select five funds near the 5%, 10%, 

50%, 90% and 95% cutoff values, and use the holdings data of the five selected funds to 

calibrate the simulations. The differenced IV β is taken to be the true value in calibrating these 

simulations. For a given value of the slope β, the intercept for each stock in Equation (7) is 

chosen to match the sample average benchmark adjusted returns. Thus, the data generating 

process features heterogeneous fixed effects across the stocks. The parameter ρ for the simulated 

weights is also allowed to differ across the stocks in these experiments. For a given value of ρ 

the intercepts in Equation (10) are fixed to match the average values of the actual weights for 

each stock. 

     We boostrap the vector of residuals from equations (7) and (10) for all of the stocks 

together with the weight residual vector for a given month, selecting months randomly from the 

data, with replacement. We build up the simulated weight and return series recursively, using the 

calibrated values of β, ρ and the intercepts. This preserves the serial dependence of the weights, 

the dependence across the stock returns, and the dependence between the returns and weight 

innovations, which are important for the Stambaugh bias. The bias-adjusted estimator of 

Hjalmarsson (2008) assumes cross-sectional independence, so we wish to evaluate its 

performance in the face of dependence across stocks. The number of months for each fund in the 

simulations is the same as the number of months where the fund exists in the real data. When a 

stock held by the fund has a missing return, the weight is set to zero. 

   Panel A in Table A.1 presents the results of the simulations to address bias in the estimators. 
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The true values of the slopes are shown in the first column and the estimated values, averaged 

across 1000 simulation trials, are shown in the other columns. The regressions are scaled, where 

the dependent variable is the return multiplied by the variance of the weight, so as to deliver the 

numerator of the slope coefficient, measured as an excess return in percent per month. The first 

column shows that the median “true” measure in the simulations is small, at 0.06% per quarter, 

but the range of β values in the experiments cover -0.3% to almost 0.6% per quarter. 

   The second column of Panel A shows that the OLS estimator of Equation (4) is expected to 

be much larger than the slope if the model has fixed effects. When the true intercept is positive 

and the regression supresses the intercept, the estimated slope coefficient gets larger to 

compensate. The OLS estimator with a common intercept (column 3) is also larger than the true 

coefficient with fixed effects, but to a lesser extent. Including a single intercept is a step toward 

estimating fixed effects, but is not an adequate solution. 

   Column 4 of Table A.1, Panel A, shows results for the bias adjusted estimator from 

Hjalmarsson (2008). This estimator has a small upward bias. This estimator ignores the 

dependence across stocks in the regression residuals, which our simulations capture. 

   Columns 5 and 6 of Table A.1, Panel A, present results for the standard least squares dummy 

variable estimator (“Within”) and the classical difference estimator for the model with fixed 

effects (“Diff”). These estimators suffer from the Stambaugh bias and the bias for the slope is 

negative as expected. According to Equation (10) this is because the average correlation between 

the stock return residuals and the future weights is positive. Thus, without finite sample bias 

adjustment the standard panel regression estimators with fixed effects would likely be too 

pessimistic about fund performance. 

   Columns 7 and 8 of Table A.1, Panel A, present results for the differenced IV estimator (Diff 
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IV) and the Hjalmarsson (2010) estimator (Haj10). The differenced IV estimator performs pretty 

well in terms of bias. The largest bias across the five experiments is only 0.03% per month. For 

Haj10 the largest bias is only 0.01% per month. Thus, the two estimators that perform the best at 

removing the Stambaugh bias are differenced or forward demeaned instrumental variables 

estimators. We therefore concentrate on using these approaches to estimate the models in the 

sequel.  

   Panel B in Table A.1 presents simulations which show that the original holdings-based 

measures are close to unbiased when there are no fixed effects in the data generating model. The 

simulation procedure is the same as before, replacing the stock returns with either the DGTW 

adjusted returns, the conditional mean adjusted returns, where the conditional mean is δ’Zt, or the 

FM benchmark adjusted return, mt+1ri
t+1. The simulations for the FM measure incorporate the 

variability from estimating the δ in conditional model and the SDF parameters (a,b), by 

estimating them in each simulation trial.13 The key step for the simulations in Panel B is to set 

the firm fixed effects equal to zero in Equation (7) in the simulated returns. It is clear that each of 

the four measures in Panel B are close to their corresponding true values when there are no fixed 

effects in the data. This is consistent with the findings of Hjalmarsson (2008, 2010)14.  Of 

course, as Panel A shows, in the more realistic case where the data have fixed effects, it is 

necessary to use a bias adjusted estimator such as Haj10 or DiffIV.  

                                                 
13 To incorporate estimation error in δ, in each trial, we simulate stock returns by summing conditional mean 

adjusted returns and δ’Zt, where δ is the estimated paremter from the real data, and Zt is the simulated conditioning 

information based on an AR(1) model also estimated using the real data. We then apply the method described in 

section 3.7 to construct difference IV or Haj10 measure. To incorporate the estimation error in the parameters a and 

b we estimate them in each simulation trial based on simulated factors that we draw with each vector of return 

residuals. The estimated values of a and b from the data serve as the true values to calibrate the simulations, which 

produces mt+1, the SDF constructed using the true a and b and the original data. We resample the residuals from 

regressing the SDF adjusted returns, mt+1ri
t+1, on the weights. Using these coefficients and simulated residuals, we 

construct the SDF adjusted returns in each simulation trial. Final, we multiply the SDF adjusted return in each 

simulation trial by a factor m^
t+1 / m*

t+1, where m^
t+1 is the SDF constructed using the estimated a and b with the 

simulated factors, and m*
t+1 is the SDF constructed using the true a and b with the simulated factors.  

14 The original CWM suffers a lag stochastic bias from the estimation of δ; thus, we estimate the corresponding 

Haj10 measure which will not suffer this issue. We also simulate diff IV mesures and obtain the similar results. 
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A.5 Simulating Hypothetical Fund Strategies 

    This section describes simulations of hypothetical funds undertaking buy-and-hold and 

momentum trading strategies. In the real data, most stocks have returns that exist for a number of 

consecutive months, and then disappear. We wish to replicate this feature. Some short-lived 

stocks have extreme sample average returns and alphas with respect to the various models. If 

these stocks were included for more periods in the simulation than in the actual data, it will lead 

to inaccuracies in the simulations. Thus, we strive to keep the number of months during which a 

stock exists the same in the simulations as in the real data. The cross-sectional covariance among 

different stocks should also be preserved in the simulations.  

    We bootstrap the stock returns with the following method. Consider the DGTW model as an 

example. The bootstrap is based on ,)(= 1,1,   tiD

t

i

t

tiD

t

i

t rrrr where 
1,  tiD

t

i

t rr  are the DGTW 

benchmark adjusted returns, and the two parts of the returns are bootstrapped independently. 

(The approach using the other benchmarks is similar.) The first step is to construct a pool of 125 

DGTW benchmark returns, 
1, tiD

tr . We also create another pool of the DGTW benchmark 

adjusted returns, 
1,  tiD

t

i

t rr , covering only those periods during which the stock return ri
t exists. 

In each simulation draw we select all the benchmark returns at a randomly selected time point 

from the benchmark pool. Note that we draw all 125 DGTW benchmark returns (or all the 

benchmark excess returns, rB), thus preserving the cross-sectional covariance between the 

benchmark returns. For each stock that exists at this time point in calendar time in the real data, 

we independently bootstrap the corresponding benchmark adjusted return from the pool of 

adjusted returns for that stock, picking a separate time period at random for the adjusted return. 
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This is consistent with a regression residual being independent of the regressors in the factor 

model. If a stock does not exist on the (calendar) date, the adjusted return for that stock is set as 

missing. This assures that the stock returns exist during the same periods in the simulation as in 

the real data. The bootstrapped stock return for its nonmissing dates is the summation of its 

bootstrapped benchmark return and the benchmark-adjusted return. This procedure captures the 

correlations of the stocks only through their benchmarks. The benchmark-adjusted return 

captures the alpha of the stock relative to the benchmark, which enables us to examine the 

Average Alpha Effects with realistic stock alphas.  

     Under the null hypothesis of no performance, the holdings are uninformed about future 

stock returns. Our simulated buy-and-hold strategies have this feature. The buy-and-hold weights 

contain only information about past stock returns, and so are uninformed under weak-form 

informational efficiency (Fama, 1970). The momentum strategy weights use similar information, 

except they also “know” about the momentum effect. To make the strategies somewhat realistic 

we keep the weights between 0 and 1, and we keep the number of stocks in the portfolios similar 

to those in the real data. 

 

A.6 Simulated Buy-and-hold strategy weights 

The weights of the buy-and-hold strategy are simulated as follows: In each trial, we 

randomly select 1000 stocks and assume that the fund chooses the stocks from this pool. At time 

120=t (which corresponds to a fund that starts in 1984 in our simulation), the fund selects 

stocks and equally weights them. If a stock does not exist, the fund will not hold it. On average, 

there are 150 stocks in the starting portfolio (150 stocks exist in the pool at t=120); thus obtaining 

a similar number as the number of stocks held by funds in the real data. Next, for each time point 
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120>t , some new stocks start to exist and some old stocks disappear. For the new stocks in the 

pool, the manager will hold the stocks, and the weights are random numbers between 0%  and 

5% . For stocks in the pool that disappear, the fund will not hold these stocks.15 For stocks that 

exist in the previous period and do not disappear, the fund continues to hold them without 

changing the holdings (the weights are changing because prices fluctuate). The simulated 

weights thus contain only past price information. The number of stocks in each subsequent 

portfolio is between 150 and 200.  

The Investment Company Act of 1940 requires that the weight of each stock cannot be 

larger than 5% without triggering reporting requirements. As the simulation evolves there are 

multiple stocks with weights that could exceed 5%, so we use the following procedure to adjust 

the weights. We first rank the stocks by their weights in the portfolio. Then we select the stock 

with the highest weight and denote this weight by 1w  (by assumption, 5%>1w ). Next, we 

decrease the weight of this stock to 5% , and let the weights of lower-ranked stocks increase by 

1)5%)/(( 1  Nw , where N  is the number of stocks in the portfolio. Next, we select the stock 

with the second highest weight (denote this weight by 2w ). If 5%>2w , we decrease the weight 

of this stock to 5%  and let the weights of lower-ranked stocks increase by 2)5%)/(( 2  Nw  

(there are 2N  stocks with lower rank). We repeat this process until all the stocks have 

weights less than or equal to 5% . The only exception is the rare case when there are less 

than 20 stocks in the portfolio. In this case, we do not reduce the weights to 5%.  

 

A.7 Simulated Momentum strategy weights 

Similar to the buy-and-hold strategy, the momentum strategy starts off holding all the 

                                                 
15 The delisting returns are included in the return data to avoid selection bias. 
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stocks in the pool that have non-missing returns at time t=120. After the first month, the fund 

manager rebalances her portfolio. She ranks the stocks by average returns from the preceding 2  

to 12  months, and removes 6%  of the stocks with the lowest past returns. This is to match the 

average monthly turnover in the data of 6% per month16. The stocks that have been removed are 

replaced by the stocks with the largest average past returns. The stocks added are weighted in 

proportion to their average past returns. On average, the momentum portfolios also contain 150  

to 200  stocks. 

                                                 
16 We would expect that the momentum manager may have a higher turnover ratio than an average fund manager. Therefore, we also simulate 

the momentum strategy with a 10% or 20% turnover ratio.  
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Table 1:  Summary Statistics  

In panel A, for each fund in the sample we compute the time-series average of its total net assets 

(TNA) in millions of dollars, the average number of stocks held, the return gap and the active 

weight. We compute the sample standard deviations of the reported fund returns, σ, and the 

R-squares of factor model regressions in the Carhart (1997) four-factor model.  We also compute 

the sample autocorrelations of the funds’ portfolio weights, ρj, averaged across the holdings, at 

various lags j, j=1,…5. The means, std, max and min are taken across the funds in the sample. 

Error Corr is the correlation between the errors of the portfolio weight autocorrelation regression 

and the panel regression of future stock returns on the weights, averaged across the holdings. The 

sample period is from 1984 to 2012, and the number of funds is 3596. In Panel B, we compute the 

autoregression for the weights for each stock and average across the funds that hold the stock. The 

descriptive statistics are calculated at the stock level. In Panel C, we compute the autocorrelation 

of the first differences in the weights.  

------------------------------------------------------------------------------------------------------------ 

Panel A: Descriptive statistics at the fund level 

------------------------------------------------------------------------------------------------------------ 

        Mean   Std   Max   Min 

------------------------------------------------------------------------------------------------------------ 

 

TNA ($million)   684    2102  44496  1.03 

Number of stocks   114     198   3317   10 

Return Gap (%)   0.03     0.23   1.85   -2.6    

Active Weight       0.40       0.10      0.90      0.01 

Return σ          0.01       0.01      0.21      0.00 

R-squares       0.87     0.14      0.99      0.06 

  ρ1        0.9424   0.0398    0.9981    0.1957 

  ρ2        0.8854    0.0730    0.9966   -0.0306   

  ρ3         0.8282    0.1092    0.9962   -0.5256 

  ρ4          0.7823    0.1277    0.9962   -0.5187 

  ρ5                0.7366    0.1478    0.9962   -0.5187 

Error Corr     -0.0043    0.0154    0.2430   -0.1868       

 

----------------------------------------------------------------------------------------------------------- 

Panel B: AR coefficients of the weights at the stock level 

------------------------------------------------------------------------------------------------------------ 

        Mean   Std   Max   Min 

------------------------------------------------------------------------------------------------------------ 

  ρ1        0.9027    0.0380    0.9971    0.2638 

  ρ2        0.8132    0.0656    0.9921    0.1978   

  ρ3          0.7289    0.0901    0.9868   -0.5539 

  ρ4          0.6553    0.1040    0.9853   -0.4970 

  ρ5          0.5856    0.1172    0.9852   -0.3851        

----------------------------------------------------------------------------------------------------------- 
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----------------------------------------------------------------------------------------------------------- 

Panel C: Average Autoregressive coefficients for weight differences 

------------------------------------------------------------------------------------------------------------ 

        Mean   Std   Max   Min 

------------------------------------------------------------------------------------------------------------ 

  ρ1        -0.0091    0.0180    0.0627   -0.1223 

  ρ2        -0.0090    0.0185    0.0634   -0.1833   

  ρ3         -0.0271    0.0422    0.1211   -0.4513 

  ρ4         -0.0091    0.0184    0.0650   -0.1897  

  ρ5         -0.0086    0.0177    0.0638   -0.0910      

----------------------------------------------------------------------------------------------------------- 
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Table 2: Performance Measures with and without Carhart Adjustment 

DGTW is the holdings-based performance measure from DGTW (1997) and GT is the Grinblatt and 

Titman (1993) measure.  The subscript H indicates a measure in a model with fixed effects, estimated 

using the Hjalmarsson (2010) bias adjusted method.  The Raw measures are without further adjustment, 

while the Carhart adjusted measures are the intercepts from regressing the monthly performance measures 

on the four Carhart (1997) factors. Avg α is the difference between a classical and a Hjalmarsson estimate.  

T-ratios are on the second line in parentheses, calculated similar to DGTW (1997) as the time series 

standard errors of the monthly performance measures for the average taken across the funds in the group. 

The Index Funds in Panel B are a sample of 201 index funds, 1994-2012. The units are annual percent. 

Panel A: 1980-1994 

       Measures 

        GT  GTH  Avg α   DGTW  DGTWH Avg α 

Raw Measures:   

All Active funds  2.08  1.45  0.63   0.40   0.55   -0.15 

        (5.89) (4.21)     (1.76)  (1.54)   

Aggressive Growth  4.06  3.13  0.93   1.15   1.62   -0.47 

        (6.97)  (5.72)     (1.66)  (2.34) 

Growth Funds   1.98  1.31  0.67   0.38   0.48   -0.10 

        (5.74)  (3.73)     (1.77)  (1.46) 

Carhart Adjusted: 

All Active funds  0.59  0.41  0.18   0.49   0.23   0.26 

        (1.95) (1.19)     (1.68)   (0.57) 

Aggressive Growth  1.90  1.40  0.50   1.59   1.03   0.56  

        (3.28) (2.52)     (2.35)  (1.31) 

Growth Funds   0.44  0.26  0.18   0.43   0.16   0.27 

        (1.48) (0.74)     (1.31)  (0.48) 
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Table 2 page 2 

Panel B: 1980-2012 

       Measures 

        GT  GTH  Avg α   DGTW  DGTWH Avg α 

Raw Measures:   

All Active funds  1.32  0.96  0.36   0.30   -0.21   0.51 

        (2.51) (2.13)     (1.53)  (-0.57)   

Aggressive Growth  2.55  2.11  0.44   0.98   -0.07    1.05 

        (2.62)  (2.29)     (1.90)  (-0.10) 

Growth Funds   1.28  0.85  0.43   0.32   -0.27   0.59 

        (2.19)  (1.67)     (1.49)  (-0.66) 

Index Funds    0.07  0.069  0.01   0.32   -1.03    1.35 

        (0.14)  (0.17)     (1.13)  (-3.02) 

 

Carhart Adjusted: 

All Active funds  -0.34  -0.28  -0.07   0.07   -0.64   0.72 

        (-1.30) (-1.71)     (0.38)  (-2.06) 

Aggressive Growth  -0.09  -0.16  0.07   0.69   -0.77   1.46  

        (-0.17) (-0.23)     (1.58)  (-1.21) 

Growth Funds   -0.52  -0.57  0.05   0.06   -0.72   0.79 

        (-1.75) (-1.71)     (0.29)  (-2.13) 

 

Index Funds    0.41  0.34  0.07   0.14   -1.18   1.32 

        (0.55) (0.75)     (0.36)  (-3.45) 
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Table 3: Simulations of Hypothetical Strategies 
 

Two strategies are simulated: buy-and-hold and momentum, following section 6.1. The average value of the 

measures (annualized percentage) are shown in the first row of each panel. The distributions of the 

T-statistics are summarized by reporting the values at the 2.5%, 5%, 50%, 95%, and 97.5% tails of the 1000 

simulations.  The percentage of simulated T-statistics larger than 1.96 are presented in the bottom row of 

each panel. GT and DGTW are the original estimates, while DiffIV uses the differenced IV method and 

Haj10 uses the Hjalmarsson (2010) estimator for the models with fixed effects. 

Panel A: Simulated Buy-and-Hold strategy for GT and DGTW measures 

 
GT DGTW 

DiffIV 
GT   

DIffIV 
DGTW 

Haj10 
GT 

Haj10 
DGTW 

Average 
Measure 

1.04 9.38 -0.03 0.03 0.04 

 
     

-0.03 
 

2.5% -0.96 3.00 -2.37 -2.10 -2.24 -2.33 
5.0% -0.74 3.51 -1.97 -1.76 -1.98 -2.04 
50% 1.18 7.50 -0.09 -0.01 -0.15 -0.34 
95% 2.50 10.08 1.78 1.69 1.52 1.26 

97.5% 2.77 10.48 2.10 1.86 1.74 1.52 
 

>1.96 16.80% 99.80% 3.10% 1.90% 1.40% 0.50% 

 

Panel B: Simulated Momentum strategy for GT and DGTW measures 

 
GT DGTW 

DiffIV 
GT   

DiffIV 
DGTW 

Haj10 
GT 

Haj10 
DGTW 

Average 
Measure 0.42 7.57 -0.06 -0.10 0.04 0.00 

 
2.5% -1.14 9.61 -2.31 -2.45 -2.20 -2.37 
5.0% -0.85 9.87 -2.00 -2.16 -1.83 -1.96 
50% 0.84 11.39 -0.09 -0.38 0.10 -0.09 
95% 2.70 13.38 1.90 1.48 1.87 1.73 

97.5% 3.15 13.79 2.33 1.87 2.25 2.09 
 

>1.96 16.70% 100.00% 4.80% 1.90% 4.20% 3.10% 
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Panel C: Simulated Buy-and-Hold strategy for CWM measures 

 
CWM 

DiffIV 
CWM   

Haj10 
CWM 

Average 
Measure -1.38 -0.05 -0.04 

 
2.5% -1.94 -1.94 -2.01 
5.0% -1.82 -1.69 -1.80 
50% -1.01 -0.04 -0.04 
95% 0.95 1.59 1.48 

97.5% 1.20 1.78 1.79 
 

>1.96 0% 1.9% 1.7% 

 

Panel D: Simulated Momentum strategy for CWM measures 

 
CWM 

DiffIV 
CWM   

Haj10 
CWM 

Average 
Measure 3.50 -0.01 0.04 

 
2.5% -0.43 -2.20 -1.92 
5.0% -0.17 -1.85 -1.64 
50% 1.81 0.00 0.05 
95% 3.07 1.77 1.63 

97.5% 3.29 2.08 1.91 
 

>1.96 43% 3.5% 2.3% 

 

Panel E: Simulated Buy-and-Hold strategy for FM measures 

 
FM 

DiffIV 
FM   

Haj10 
FM 

Average 
Measure 9.37 0.00 0.31 

 
2.5% 1.76 -1.97 -1.98 
5.0% 2.12 -1.81 -1.68 
50% 4.09 -0.05 0.03 
95% 6.09 1.57 1.39 

97.5% 6.49 1.82 1.67 
 

>1.96 96% 1% 1% 
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Panel F: Simulated Momentum strategy for FM measures 

 
FM 

DiffIV 
FM   

Haj10 
FM 

Average 
Measure 9.07 -0.02 0.02 

 
2.5% 5.51 -2.07 -2.10 
5.0% 5.76 -1.80 -1.75 
50% 7.11 -0.05 -0.01 
95% 9.06 1.81 1.86 

97.5% 9.41 2.17 2.21 
 

>1.96 100% 4% 4% 
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Table 4: The Cross-section of Holdings-based Performance Measures  

The various performance measures are estimated for each fund in the sample using 
panel regressions. GT is the portfolio change measure, DGTW is the DGTW 
characteristic selectivity measure, FM is the Ferson and Mo SDF-based measure and 
CWM is the conditional weight based measure. Funds are sorted into five groups on the 
basis of the original measures, shown in the first column. The third quintile is the 
Median quintile. The second column, subscripted with H, indicates an average of the 
estimates for the funds in that quintile, including stock fixed effects in the panel 
regression and using the Hjalmarsson (2010) method. The third column is the average 
alpha effect extracted by the fixed effects. The average style change component of the GT 
measure is described in the text. The units of the performance measures are percent per 
month. HML is the difference between the top and bottom quintile measure. The sample 
period is from 1980 to 2012, and the number of active funds is 3596. Index Funds refers to 
the average in a sample of 201 index funds, 1994-2012.   
 
------------------------------------------------------------------------------------------------------------ 
Panel A:  Grinblatt Titman Portfolio Change Measure 

------------------------------------------------------------------------------------------------------------- 

 

Fund Quintile: GT GTH Avg. Alpha    Avg. Style        

Low -3.49 -1.01 -2.70 0.21 

2 -0.72 -0.63 -0.26 0.18 

Median 0.19 0.00 0.04 0.15 

4 1.20 0.76 0.24 0.20 

High 4.19 3.14 0.81 0.25 

HML 7.69 4.15 3.50 0.04 

Index Funds -0.84 -0.28 -0.70 0.14 
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Table 4, page 2 

----------------------------------------------------------------------------------------------------------- 
Panel B:  DGTW Characteristic Selectivity Measure 

------------------------------------------------------------------------------------------------------------ 

 

Fund Quintile: DGTW DGTWH Avg. Alpha           

Low -3.65 -1.39 -2.26  

2 -0.80 -1.03 0.23  

Median 0.04 -0.68 0.71  

4 0.82 -0.65 1.47  

High 2.97 0.01 2.96  

HML 6.61 1.40 5.21  

Index Funds 0.31 -1.07 1.37  

 

 

Panel C:  Conditional Weight-based Measure 

------------------------------------------------------------------------------------------------------------ 

Fund Quintile: CWMH 

Low -0.93 

2 -0.17 

Median 0.03 

4 0.51 

High 0.98 

HML 1.91 

Index Funds -0.35 

 

Panel D:  Ferson and Mo Stochastic Discount Factor Measure 
------------------------------------------------------------------------------------------------------------- 

  

Fund Quintile: FM FMH Avg. Alpha           

Low -19.36 -2.13 -17.23  

2 -5.29 -2.48 -2.80  

Median -1.30 -1.69 0.39  

4 1.56 -1.32 2.88  

High 8.36 -1.28 9.64  

HML 27.72 0.85 26.87  

Index Funds -11.53 -1.95 -9.58  
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Table 5: Holdings-based Performance Measures and Active Management 
Funds are sorted by return-gap, R-square, active weight and volatility of returns in 

quintiles. Holdings-based measures are estimated for each fund using its available data 

and the averages are shown for each quintile. GT is the portfolio change measure, 

DGTW is the DGTW characteristic selectivity measure, and FM is the Ferson and Mo 

SDF-based measure and CWM is the conditional weight based measure. For each 

measure the second column, subscripted with H, indicates an estimate that includes 

stock fixed effects in the panel regression, estimated according to the method of 

Hajmarlsson (2010).   

Panel A:  Return-gap (1980-2012) 

------------------------------------------------------------------------------------------------------------- 
 
Fund 

Quantile 

GT DGTW FM CWMH GT-GTH DGTW-DGTWH FM-FMH 

High 2.37 0.45 1.69 1.32 0.32 0.49 2.39 

 (2.74) (1.22) (0.53) (1.37) (1.12) (1.07) (0.89) 
2 1.50 0.51 1.70 0.99 0.41 0.70 2.20 

 (2.60) (2.05) (0.53) (1.19) (1.63) (1.92) (0.82) 
3 1.02 0.29 1.43 0.75 0.34 0.74 2.28 

 (2.05) (1.48) (0.45) (0.98) (1.91) (2.15) (0.86) 
4 0.96 0.51 1.29 0.72 0.14 0.90 2.19 

 (1.94) (1.65) (0.40) (0.87) (0.75) (2.34) (0.81) 
Low 1.38 0.18 0.85 1.03 0.36 0.48 1.78 

 (2.45) (0.85) (0.27) (1.15) (1.34) (1.32) (0.67) 
Low-High -0.98 -0.38 -0.70 -0.28 0.04 0.00 -0.61 

 (-2.45) (-1.36) (-1.13) (-0.89) (0.22) (-0.01) (-1.41) 
  

Panel B:  R-square (1999-2012) 

------------------------------------------------------------------------------------------------------------ 

 
Fund 

Quantile 

GT DGTW FM CWMH GT-GTH DGTW-DGTWH FM-FMH 

Low 0.64 0.96 -0.65 0.12 0.29 1.80 1.57 

 (0.92) (1.88) (-0.11) (0.10) (0.91) (3.32) (0.31) 
2 -0.52 0.80 -1.52 -0.40 -0.09 2.41 2.19 

 (-0.68) (1.41) (-0.26) (-0.37) (-0.16) (2.93) (0.39) 
3 -0.77 0.24 -2.75 -0.09 -0.82 1.67 1.58 

 (-1.01) (0.46) (-0.48) (-0.10) (-0.94) (2.49) (0.28) 
4 -1.04 0.02 -3.46 -0.03 -0.98 1.56 0.93 

 (-1.37) (0.03) (-0.62) (-0.04) (-1.03) (2.37) (0.17) 
High -0.87 0.01 -4.22 -0.26 -0.62 1.44 -0.61 

 (-1.43) (0.04) (-0.74) (-0.36) (-0.87) (2.27) (-0.11) 
High-Low -1.50 -0.94 -3.58 -0.38 -0.91 -0.36 -2.18 

 (-2.47) (-1.84) (-3.28) (-0.54) (-1.34) (-0.83) (-1.80) 
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Panel C:  Active weight (1980-2012) 

------------------------------------------------------------------------------------------------------------- 

 
Fund 

Quantile 

GT DGTW FM CWMH GT-GTH DGTW-DGTWH FM-FMH 

Low 0.94 -0.14 0.24 0.67 0.10 0.40 1.17 

 (1.51) (-0.73) (0.08) (0.49) (0.55) (0.99) (0.49) 
2 0.78 0.24 0.71 0.65 0.20 0.82 1.93 

 (1.57) (1.09) (0.22) (0.52) (1.10) (2.23) (0.79) 
3 1.25 0.23 0.95 0.55 0.45 0.69 1.79 

 (2.49) (1.09) (0.30) (0.41) (3.19) (1.89) (0.74) 
4 1.13 0.38 1.22 0.62 0.28 0.90 2.14 

 (2.06) (1.43) (0.38) (0.49) (1.82) (2.43) (0.88) 
High 1.69 0.75 2.07 1.53 0.60 0.75 2.18 

 (3.23) (2.00) (0.63) (1.18) (2.96) (1.79) (0.89) 
High-Low 0.75 0.89 1.82 0.86 0.50 0.35 1.01 

 (2.06) (2.95) (2.49) (1.44) (2.65) (1.44) (2.44) 

 
 

 

Panel D:  Return volatility (1999-2012) 

------------------------------------------------------------------------------------------------------------ 
Fund 

Quantile 

GT DGTW FM CWMH GT-GTH DGTW-DGTWH FM-FMH 

Low 0.35 0.42 -1.53 -0.08 0.37 1.49 0.78 

 (0.75) (0.88) (-0.28) (-0.14) (1.48) (2.91) (0.16) 
2 -0.45 0.40 -2.33 -0.08 -0.18 1.70 0.43 

 (-0.86) (0.97) (-0.43) (-0.12) (-0.48) (2.62) (0.09) 
3 -0.54 0.28 -3.16 -0.08 -0.66 1.63 0.42 

 (-0.80) (0.78) (-0.55) (-0.09) (-1.07) (2.46) (0.08) 
4 -0.82 0.54 -2.96 -0.03 -0.80 2.01 1.28 

 (-0.94) (0.86) (-0.50) (-0.02) (-0.93) (2.31) (0.23) 
High -1.15 0.35 -2.68 -0.42 -1.00 2.05 2.72 

 (-1.09) (0.26) (-0.42) (-0.32) (-0.81) (1.70) (0.40) 
High-Low -1.50 -0.06 -1.15 -0.33 -1.37 0.57 1.94 

 (-1.60) (-0.04) (-0.45) (-0.43) (-1.24) (0.39) (0.57) 
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Table 6: Fund Characteristics and Average Alpha Effects 

The Average Alpha Effects in classical performance measures are regressed in a panel on lagged fund 

characteristics. DGTW is the performance measure from DGTW (1997) and GT is the Grinblatt and Titman 

(1993) measure, FM is the Ferson and Mo (2016) measure. TBH is a measure of the tendency towards 

buy-and-hold, measured as the average absolute difference between the funds’ portfolio weights and what 

they would have been had the fund had the same holdings as they did 12 months ago. The monthly measure 

is averaged over the past year to reduce noise. LM is the lagged momentum measure of Daniel, Titman and 

Wermers (1995), capturing the relation between a fund’s deviation from buy-and-hold weights and the 

average returns on the stocks over the last 12 months. Div Yield is a fund portfolio weighted average of the 

dividend per share of a stock during the past 12 months divided by its price per share. HLDSize is the 

portfolio weighted market capitalizations of the stocks held by the fund. Aggressive is a dummy variable 

indicating an aggressive growth style fund. Log(TNA) is the log of total net assets, Exp is expense ratio, 

Fund Age is the number of month from fund’s first offering date, and turnover is the reported annual 

turnover. T-ratios are on the second line, calculated by clustering by time and using Newey-West (1987) 

covariance terms to 30 lags. The units of the Average Alpha Effects are annual percent.  

---------------------------------------------------------------------------------------------------------------------

Panel A: 1980-1994 

 

GT alpha DGTW alpha FM alpha 

Const 0.00 0.00 0.00 

T Stat 0.06 -0.97 -1.28 

Fund age 0.00 0.00 0.00 

T Stat -0.74 -0.75 -1.59 

Turn ratio 0.00 0.00 0.00 

T Stat 0.93 0.38 0.31 

Aggressive_ind 0.00 0.00 0.00 

T Stat -0.74 -0.31 -0.44 

Expense ratio -0.01 0.03 0.08 

T Stat -0.41 1.13 0.71 

log(TNA) 0.00 0.00 0.00 

T Stat -0.40 0.27 -2.00 

Div yield 0.00 0.00 0.02 

T Stat 4.42 1.40 1.68 

log(Mkt_cap) 0.00 0.00 0.00 

T Stat -0.99 -1.08 -1.14 

BHL 0.00 0.00 0.01 

T Stat 0.37 7.47 5.81 

LM -0.01 -0.02 0.08 

T Stat -0.73 -0.95 1.39 
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-------------------------------------------------------------------------------------------------------------------------------

Panel B: 1980-2012 

 

GT alpha DGTW alpha FM alpha 

Const 0.00 0.00 0.00 

T Stat -0.23 -0.29 0.46 

Fund age 0.00 0.00 0.00 

T Stat 1.16 -0.45 -0.98 

Turn ratio 0.00 0.00 0.00 

T Stat -0.12 2.85 1.34 

Aggressive_ind 0.00 0.00 0.00 

T Stat -0.81 0.95 0.59 

Expense ratio 0.00 0.00 0.04 

T Stat -0.37 -0.03 0.55 

log(TNA) 0.00 0.00 0.00 

T Stat 0.32 -0.50 -1.94 

Div yield 0.00 0.00 0.03 

T Stat 2.62 2.16 2.36 

log(Mkt_cap) 0.00 0.00 0.00 

T Stat -1.14 0.14 -1.26 

BHL 0.00 0.00 0.00 

T Stat 0.55 2.80 0.94 

LM -0.04 -0.01 0.06 

T Stat -4.15 -1.09 1.52 
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Table 7: Fund Flows, Average Alpha Effects and Characteristics 

The annual new money flows are regressed on fund performance, measured as their Average Alpha Effects 

in various performance measures over the past year.  The Average Alpha Effects are estimated as in Table 

3 and are used to form ranked performance measures within each of five performance quintiles, as in Sirri 

and Tufano (1998). In panel A there are no controls for fund characteristics, and in panel B fund 

characteristics are included as control variables. The sample period is 1980-2012. DGTW is the 

performance measure from DGTW (1997) and GT is the Grinblatt and Titman (1993) measure, FM is the 

Ferson and Mo (2016) measure and Panel CWM is the panel version of the conditional weight measure of 

Ferson and Khang (2002). TBH is a measure of the tendency towards buy-and-hold, measured as the 

average absolute difference between the funds portfolio weights and what they would have been had the 

fund had the same holdings as they did 12 months ago. The monthly measure is averaged over the past year 

to reduce noise. LM is the lagged momentum measure of Daniel, Titman and Wermers (1995), capturing 

the relation between a fund’s deviation from buy-and-hold weights and the average returns on the stocks 

over the last 12 months. Div Yield is a fund portfolio weighted average of the dividend per share of a stock 

during the past 12 months divided by its price per share. HLDSize is the portfolio weighted market 

capitalizations of the stocks held by the fund. Aggressive is a dummy variable indicating an aggressive 

growth style fund. Log(TNA) is the log of total net assets, Fund Age is the log of number of month from 

fund’s first offering date, Exp is expense ratio, turnover is the reported annual turnover, style flow is the 

aggregate flows of funds within the same style, and return std and autocorrelations are standard deviation 

and autocorrelation of the fund returns. T-ratios are on the second line in parentheses, calculated by 

clustering by time and using Newey-West (1987) covariance terms to 30 lags. The units of the Average 

Alpha Effects are annual percent.  

--------------------------------------------------------------------------------------------------------------------- 

Panel A:  Average Alpha Effects Only 

--------------------------------------------------------------------------------------------------------------------- 

     

 

 

 

 

 

 

 

 

Measure GT DGTW FM 

Coeff Flow Flow Flow 

Const 0.02 0.01 0.01 

T 4.01 4.99 4.86 

alpha Bottom -0.09 0.05 -0.14 

T -2.41 0.39 -5.87 
alpha 2nd 
Quantile -0.11 -0.07 -0.05 

T -3.38 -6.27 -1.40 
alpha 3rd 
Quantile -0.09 -0.01 -0.01 

T -2.72 -0.37 -0.35 
alpha 4th 
Quantile -0.04 0.01 -0.04 

T -2.29 0.48 -1.89 

alpha top -0.01 0.07 0.07 

T -0.34 7.25 3.69 
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--------------------------------------------------------------------------------------------------------------------- 

Table 8 panel B: Fund Characteristics Included 

--------------------------------------------------------------------------------------------------------------------- 

Measure GT DGTW FM 

Coeff Flow Flow Flow 

Const 0.04 0.02 0.03 

T 3.85 2.43 2.72 

Fund Age -0.01 0.00 -0.01 

T -2.43 -3.53 -4.11 

Fees 0.19 0.20 0.19 

T 0.95 0.94 0.91 

Log(TNA) 0.00 0.00 0.00 

T 2.70 2.49 2.48 

Style flow 1.35 1.35 1.36 

T 25.63 25.35 25.31 

Return std -0.16 -0.17 -0.17 

T -2.03 -2.04 -2.09 

Autocorrelation 0.00 0.00 0.00 

T 1.17 1.18 1.19 

Turnover 0.01 0.01 0.01 

T Stat 6.27 6.37 6.29 

Aggressive 0.00 0.00 0.00 

T Stat 1.63 1.56 1.51 

Div yield -0.01 -0.01 -0.01 

T Stat -0.65 -1.12 -1.22 

HLDSize 0.00 0.00 0.00 

T Stat -2.53 -1.71 -1.82 

BHL -0.03 -0.03 -0.03 

T Stat -4.31 -2.81 -3.23 

LM -0.66 -0.66 -0.66 

T Stat -1.79 -1.75 -1.77 

alpha Bottom -0.03 -0.06 -0.07 

T -1.15 -2.61 -3.03 

alpha 2nd Quantile 0.01 -0.09 -0.10 

T 0.27 -1.59 -1.71 

alpha 3rd Quantile -0.02 -0.03 -0.05 

T -1.16 -0.42 -1.11 

alpha 4th Quantile 0.25 -0.03 0.01 

T 1.24 -0.77 0.35 

alpha top 0.03 -0.02 0.02 

T 1.74 -0.39 0.62 
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Table A.1: Simulations to Address Stochastic Regressor Bias 

The table reports the average across 1000 simulation trials, of estimated holdings based performance 
measures. The units are percent excess return per quarter. True denotes the actual values of the measures 
used to calibrate the simulations, bootstrapping from versions of Equations (8) and (14). These are found at 
various fractiles in the cross-section of actual fund data. The “No alpha” OLS estimates the slope coefficient in 
the baseline panel regression of (6), Diff IV is the differenced IV estimator, Diff no IV is the classical difference 
estimator of the regression (8) with stock dummies and Within is the classical within-group (least squares 
with dummy variables) estimator. OLS with alpha is based on the model in footnote 7.  Haj2010 is the bias 
adjusted estimator in (18) and Haj2008 is the bias adjusted estimator in (16). GT is the weight change measure 
of Grinblatt and Titman (1993), DGTW is the measure of Grinblatt, Titman and Wermers (1997). CWM is the 
panel conditional weight measure introduced in this paper.  FM is the stochastic discount factor measure of 
Ferson and Mo (2016).   
 

------------------------------------------------------------------------------------------------------------ 
Panel A:  Alternative Holdings-based Performance Estimators 

 
    True    No alpha OLS   OLS with alpha    Haj2008       Within          Diff         Diff IV         Haj2010 

-------------------------------------------------------------------------------------------------------------------------------- 

 -0.29    0.13   -0.16    -0.25     -0.37     -0.44   -0.30  -0.30 

 -0.19       0.17       -0.01       -0.14     -0.32      -0.22      -0.22  -0.20 

  0.06       0.08       0.04        0.17     -0.02        0.00       0.04      0.05 

  0.40       0.48       0.39        0.42      0.37        0.35       0.40      0.41 

  0.58       0.92       0.58        0.60      0.46        0.40      0.60     0.58 

----------------------------------------------------------------------------------------------------------- 
Panel B:  Classical Measures when there are no Fixed Effects 

 
   True (GT)       GT        True (DGTW)     DGTW     True (CWM)     Haj10(CWM)    True (FM)        FM 

-------------------------------------------------------------------------------------------------------------------------------- 

 -0.29    -0.29       -0.26       -0.29     -0.15      -0.15       -0.54     -0.54    

 -0.19       -0.17       -0.18       -0.18     -0.08      -0.08      -0.37     -0.37   

  0.06       0.06        0.00       0.03      0.07      0.06        0.00      0.01      

  0.40       0.41        0.22       0.23      0.20      0.20        0.23      0.24      

  0.58       0.59        0.35       0.32      0.28      0.26        0.38      0.38 

 

 

 


