
Cite as: N. Brown, T. Sandholm, Science
10.1126/science.aao1733 (2017).

 RESEARCH ARTICLES

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 1

In recent years the field of artificial intelligence (AI) has ad-
vanced considerably. The measure of this progress has, in
many cases, been marked by performance against humans in
benchmark games. AI programs have defeated top humans in
checkers (1), chess (2), and Go (3). In these perfect-infor-
mation games both players know the exact state of the game
at every point. In contrast, in imperfect-information games,
some information about the state of the game is hidden from
a player—for example, the opponent may hold hidden cards.
Hidden information is ubiquitous in real-world strategic in-
teractions, such as business strategy, negotiation, strategic
pricing, finance, cybersecurity, and military applications,
which makes research on general-purpose techniques for im-
perfect-information games particularly important.

Hidden information makes a game far more complex for
a number of reasons. Rather than simply search for an opti-
mal sequence of actions, an AI for imperfect-information
games must determine how to balance actions appropriately,
so that the opponent never finds out too much about the pri-
vate information the AI has. For example, bluffing is a neces-
sary feature in any competitive poker strategy, but bluffing
all the time would be a bad strategy. In other words, the value
of an action depends on the probability it is played.

Another key challenge is that different parts of the game
cannot be considered in isolation; the optimal strategy for a
given situation may depend on the strategy that would be
played in situations that have not occurred (4). As a conse-
quence, a competitive AI must always consider the strategy
for the game as a whole.

Poker has a long history as a challenge problem for devel-
oping AIs that can address hidden information (5–11). No-
limit Texas hold’em is the most popular form of poker in the

world. The heads-up (that is, two-player) variant prevents op-
ponent collusion and kingmaker scenarios where a bad
player causes a mediocre player to shine, and therefore allows
a clear winner to be determined. Due to its large size and
strategic complexity, heads-up no-limit Texas hold’em
(HUNL) has been the primary benchmark and challenge
problem for imperfect-information game solving for several
years. No prior AI has defeated top human players in this
game.

In this paper we introduce Libratus, (12) an AI that takes
a distinct approach to addressing imperfect-information
games. In a 20-day, 120,000-hand competition featuring a
$200,000 prize pool, it defeated top human professionals in
HUNL. The techniques in Libratus do not use expert domain
knowledge or human data and are not specific to poker; thus
they apply to a host of imperfect-information games.

Game-solving approach in Libratus
Libratus features three main modules:

(i) The first module computes an abstraction of the game,
which is smaller and easier to solve, and then computes
game-theoretic strategies for the abstraction. The solution to
this abstraction provides a detailed strategy for the early
rounds of the game, but only an approximation for how to
play in the more numerous later parts of the game. We refer
to the solution of the abstraction as the blueprint strategy.

(ii) When a later part of the game is reached during play,
the second module of Libratus constructs a finer-grained ab-
straction for that subgame and solves it in real time (13). Un-
like subgame-solving techniques in perfect-information
games, Libratus does not solve the subgame abstraction in
isolation; instead, it ensures that the fine-grained solution to

Superhuman AI for heads-up no-limit poker: Libratus
beats top professionals
Noam Brown and Tuomas Sandholm*

Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA.

*Corresponding author. Email: sandholm@cs.cmu.edu

No-limit Texas hold’em is the most popular form of poker. Despite AI successes in perfect-information
games, the private information and massive game tree have made no-limit poker difficult to tackle. We
present Libratus, an AI that, in a 120,000-hand competition, defeated four top human specialist
professionals in heads-up no-limit Texas hold’em, the leading benchmark and long-standing challenge
problem in imperfect-information game solving. Our game-theoretic approach features application-
independent techniques: an algorithm for computing a blueprint for the overall strategy, an algorithm that
fleshes out the details of the strategy for subgames that are reached during play, and a self-improver
algorithm that fixes potential weaknesses that opponents have identified in the blueprint strategy.

on D
ecem

ber 20, 2017

http://science.sciencem
ag.org/

D
ow

nloaded from

http://www.sciencemag.org/
http://science.sciencemag.org/

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 2

the subgame fits within the larger blueprint strategy of the
whole game. The subgame solver has several key advantages
over prior subgame-solving techniques (14, 15, 16). Whenever
the opponent makes a move that is not in the abstraction, a
subgame is solved with that action included. We call this
nested subgame solving. This technique comes with a prova-
ble safety guarantee.

(iii) The third module of Libratus—the self-improver—en-
hances the blueprint strategy. It fills in missing branches in
the blueprint abstraction and computes a game-theoretic
strategy for those branches. In principle, one could conduct
all such computations in advance, but the game tree is way
too large for that to be feasible. To tame this complexity, Li-
bratus uses the opponents’ actual moves to suggest where in
the game tree such filling is worthwhile.

In the following three subsections, we present these three
modules in more detail.

Abstraction and equilibrium finding: Building a blue-
print strategy
One solution to the problem of imperfect information is to
simply reason about the entire game as a whole, rather than
just pieces of it. In this approach, a solution is pre-computed
for the entire game, possibly using a linear program (10) or
an iterative algorithm (17–21). For example, an iterative algo-
rithm called counterfactual regret minimization plus (CFR+)
was used to near-optimally solve heads-up limit Texas
hold’em, a relatively simple version of poker, which has about
1013 unique decision points (11, 22).

In contrast, HUNL (23) has 10161 decision points (24), so
traversing the entire game tree even once is impossible. Pre-
computing a strategy for every decision point is infeasible for
such a large game.

Fortunately, many of those decision points are very simi-
lar. For example, there is little difference between a bet of
$100 and a bet of $101. Rather than consider every possible
bet between $100 and $20,000, we could instead just con-
sider increments of $100. This is referred to as action abstrac-
tion. An abstraction is a smaller, simplified game that retains
as much as possible the strategic aspects of the original game.
This drastically reduces the complexity of solving the game.
If an opponent bets $101 during an actual match, then the AI
may simply round this to a bet of $100 and respond accord-
ingly (25–27). Most of the bet sizes included in Libratus’s ac-
tion abstraction were nice fractions or multiples of the pot
[roughly determined by analyzing the most common bet sizes
at various points in the game taken by prior top AIs in the
Annual Computer Poker Competition (ACPC) (28)]. However,
certain bet sizes early in the game tree were determined by
an application-independent parameter optimization algo-
rithm that converged to a locally optimal set of bet sizes (29).

An additional form of abstraction is abstraction of actions

taken by chance, that is, card abstraction in the case of poker.
Similar hands are grouped together and treated identically.
Intuitively, there is little difference between a King-high flush
and a Queen-high flush. Treating those hands as identical re-
duces the complexity of the game and thus makes it compu-
tationally easier. Nevertheless, there are still differences even
between a King-high flush and a Queen-high flush. At the
highest levels of play, those distinctions may be the difference
between winning and losing. Libratus does not use any card
abstraction on the first and second betting rounds. The last
two betting rounds, which have a significantly larger number
of states, are abstracted only in the blueprint strategy. The 55
million different hand possibilities on the third round were
algorithmically grouped into 2.5 million abstract buckets,
and the 2.4 billion different possibilities on the fourth round
were algorithmically grouped into 1.25 million abstract buck-
ets. However, the AI does not follow the blueprint strategy in
these rounds and instead applies nested subgame solving, de-
scribed in the next section, which does not use any card ab-
straction. Thus, each poker hand is considered individually
during actual play. The card abstraction algorithm that we
used was similar to that used in our prior AIs Baby Tar-
tanian8 (30), which won the 2016 ACPC, and Tartanian7 (31–
33), which won the 2014 ACPC (there was no ACPC in 2015).

Once the abstraction was constructed, we computed the
blueprint strategy for Libratus by having the AI play simu-
lated games of poker against itself (while still exploring the
hypothetical outcomes of actions not chosen) using an im-
proved version of an algorithm called Monte Carlo Counter-
factual Regret Minimization (MCCFR). MCCFR (17, 34, 35)
has a long history of use in successful poker AIs (30, 31, 36,
37). MCCFR maintains a regret value for each action. Intui-
tively, regret represents how much the AI regrets having not
chosen that action in the past. When a decision point is en-
countered during self play, the AI chooses actions with higher
regret with higher probability (38). As more and more games
are simulated, MCCFR guarantees that with high probability
a player’s average regret for any action (total regret divided
by the number of iterations played) approaches zero. Thus,
the AI’s average strategy over all simulated games gradually
improves. We will now describe the equilibrium-finding algo-
rithm (4).

On each simulated game, MCCFR chooses one player
(who we refer to as the traverser) that will explore every pos-
sible action and update his regrets, while the opponent
simply plays according to the strategy determined by the cur-
rent regrets. The algorithm switches the roles of the two play-
ers after each game, that is, a single hand of poker. Every time
either player is faced with a decision point in a simulated
game, the player will choose a probability distribution over
actions based on regrets on those actions (which are deter-
mined by what he had learned in earlier games when he had

on D
ecem

ber 20, 2017

http://science.sciencem
ag.org/

D
ow

nloaded from

http://www.sciencemag.org/
http://science.sciencemag.org/

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 3

been in that situation). For the first game, the AI has not
learned anything yet and therefore uses a uniform random
distribution over actions. At traverser decision points,
MCCFR explores every action in a depth-first manner. At op-
ponent decision points, MCCFR samples an action based on
the probability distribution. This process repeats at every de-
cision point until the game is over and a reward is received,
which is passed up. When a reward is returned by every ac-
tion at a traverser decision point, MCCFR calculates the
weighted average reward for that decision point based on the
probability distribution over actions. The regret for each ac-
tion is then updated by adding the value returned by that ac-
tion, and subtracting the weighted average reward for the
decision point. The weighted average reward is then passed
up to the preceding decision point, and so on.

Our improved version of MCCFR traverses a smaller por-
tion of the game tree on each iteration. Intuitively, there are
many clearly suboptimal actions in the game, and repeatedly
exploring them wastes computational resources that could be
better used to improve the strategy elsewhere. Rather than
explore every hypothetical alternative action to see what its
reward would have been, our algorithm probabilistically
skips over unpromising actions that have very negative regret
as it proceeds deeper into the tree during a game (30, 39).
This led to a factor of three speedup of MCCFR in practice
and allowed us to solve larger abstractions than were other-
wise possible.

This skipping also mitigates the problems that stem from
imperfect recall. The state-of-the-art practical abstractions in
the field, including ours, are imperfect-recall abstractions
where some aspects of the cards on the path of play so far are
intentionally forgotten in order to be able to computationally
afford to have a more detailed abstraction of the present state
of cards (30–32, 40). Since all decisions points in a single ab-
stract card bucket share the same strategy, updating the
strategy for one of them leads to updating the strategy for all
of them. This is not an issue if all of them share the same
optimal strategy at the solution reached, but in practice there
are differences between their optimal strategies and they ef-
fectively “fight” to push the bucket’s strategy toward their
own optimal strategy. Skipping negative-regret actions
means that decision points that will never be reached in ac-
tual play will no longer have their strategies updated, thereby
allowing the decision points that will actually occur during
play to move the bucket’s strategy closer to their optimal
strategies.

We ran our algorithm on an abstraction that is very de-
tailed in the first two rounds of HUNL, but relatively coarse
in the final two rounds. However, Libratus never plays ac-
cording to the abstraction solution in the final two rounds.
Rather, it uses the abstract blueprint strategy in those rounds

only to estimate what reward a player should expect to re-
ceive with a particular hand in a subgame. This estimate is
used to determine a more precise strategy during actual play,
as described in the next section.

Nested safe subgame solving
Although purely abstraction-based approaches have pro-
duced strong AIs for poker (25, 30, 32, 41), abstraction alone
has not been enough to reach superhuman performance in
HUNL. In addition to abstraction, Libratus builds upon prior
research into subgame solving (14–16, 42), in which a more
detailed strategy is calculated for a particular part of the
game that is reached during play. Libratus features many ad-
vances in subgame solving that proved critical to achieving
superhuman performance (43).

Libratus plays according to the abstract blueprint strategy
only in the early parts of HUNL, where the number of possi-
ble states is relatively small and we can afford the abstraction
to be extremely detailed. Upon reaching the third betting
round, or any earlier point in the game where the remaining
game tree is sufficiently small (44), Libratus constructs a new,
more detailed abstraction for the remaining subgame and
solves it in real time.

However, there is a major challenge with subgame solving
in imperfect-information games: a subgame cannot be solved
in isolation because its optimal strategy may depend on
other, unreached subgames (4). Prior AIs that used real-time
subgame solving addressed this problem by assuming the op-
ponent plays according to the blueprint strategy. However,
the opponent can exploit this assumption by simply switch-
ing to a different strategy. For this reason, the technique may
produce strategies that are far worse than the blueprint strat-
egy and is referred to as unsafe subgame solving (42, 45). Safe
subgame solving techniques, on the other hand, guarantee
that the subgame’s new strategy makes the opponent no bet-
ter off no matter what strategy the opponent might use (14).
They accomplish this by ensuring that the new strategy for
the subgame fits within the overarching blueprint strategy of
the original abstraction. Ensuring the opponent is no better
off relative to the blueprint strategy is trivially possible be-
cause we could just reuse the blueprint strategy. However,
now that the abstraction is more detailed in the subgame and
we can better distinguish the strategic nuances of the sub-
game, it may be possible to find an improvement over the
prior strategy that makes the opponent worse off no matter
what cards she is holding.

We now describe Libratus’s core technique for determin-
ing an improved strategy in a subgame. For exposition, we
assume Player 2 (P2) is determining an improved strategy
against Player 1 (P1). Given that P2’s strategy outside the sub-

game is 2σ , there exists some optimal strategy *
2σ that P2

on D
ecem

ber 20, 2017

http://science.sciencem
ag.org/

D
ow

nloaded from

http://www.sciencemag.org/
http://science.sciencemag.org/

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 4

could play in the subgame. We would like to find or approxi-

mate *
2σ in real time. We assume that, for each poker hand

P1 might have, we have a good estimate of the value P1 re-
ceives in the subgame with that hand by playing optimally

against *
2σ , even though we do not know *

2σ itself. Although

we do not know these values exactly, we can approximate
them with the values P1 receives in the subgame in the blue-
print strategy. We later prove that if these estimates are ap-

proximately accurate, we can closely approximate *
2σ .

To find a strategy close to *
2σ in the subgame using only

the values from the blueprint, we create an augmented sub-
game (Fig. 1) which contains the subgame and additional
structures. At the start of the augmented subgame, P1 is pri-
vately dealt a random poker hand. Given that P2 plays ac-
cording to 2σ prior to the subgame, and given P1’s dealt

hand, there is a particular probability distribution over what
hands P2 might have in this situation. P2 is dealt a poker
hand according to this probability distribution. P1 then has
the choice of entering the subgame (which is now far more
detailed than in the blueprint strategy), or of taking an alter-
native payoff that ends the augmented subgame immediately.
The value of the alternative payoff is our estimate, according
to the blueprint strategy, of P1’s value for that poker hand in
that subgame. If P1 chooses to enter the subgame, then play
proceeds normally until the end of the game is reached. We
can solve this augmented subgame just as we did for the blue-
print strategy (46).

For any hand P1 might have, P1 can do no worse in the
augmented subgame than just choosing the alternative pay-
off (which awards our estimate of the expected value P1 could

receive against *
2σ). At the same time, P2 can ensure that for

every poker hand P1 might have, he does no better than what

he could receive against *
2σ , because P2 can simply play *

2σ

itself. Thus, any solution to the augmented subgame must do

approximately as well as *
2σ —where the approximation error

depends on how far off our estimates of P1’s values are. P2
then uses the solution to the augmented subgame as P2’s
strategy going forward.

All of this relied on the assumption that we have accurate

estimates of P1’s values against *
2σ . Although we do not know

these values exactly, we can approximate them with values
from the blueprint strategy. We now prove that if these esti-
mates are approximately accurate, subgame solving will pro-

duce a strategy that is close to the quality of *
2σ . Specifically,

we define the exploitability of a strategy 2σ as how much

more 2σ would lose, in expectation, against a worst-case op-

ponent than what P2 would lose, in expectation, in an exact
solution of the full game.

Theorem 1 uses a form of safe subgame solving we coin
Estimated-Maxmargin. We define a margin for every P1 hand
in a subgame as the expected value of that hand according to
the blueprint minus what P1 could earn with that hand, in
expectation, by entering the more-detailed subgame. Esti-
mated-Maxmargin finds a strategy that maximizes the mini-
mum margin among all P1 hands. It is similar to a prior
technique called Maxmargin (15) except that the prior tech-
nique conservatively used as the margin what P1 could earn
in the subgame, in expectation, by playing a best response to
P2’s blueprint strategy minus what P1 could earn, in expecta-
tion, by entering the more-detailed subgame.

Theorem 1. Let iσ be a strategy for a two-player zero-

sum perfect-recall game, let S be a set of non-overlapping sub-

games in the game, and let *
iσ be the least-exploitable strategy

that differs from iσ only in S. Assume that for any opponent

decision point (hand in the case of poker) and any subgame
in S, our estimate of the opponent’s value in a best response

to *
iσ for that decision point in that subgame is off by at most

Δ. Applying Estimated-Maxmargin subgame solving to any
subgame in S reached during play results in overall exploita-

bility at most 2Δ higher than that of *
iσ (47).

Although safe subgame solving techniques have been
known for three years (14, 15), they were not used in practice
because empirically they performed significantly worse than
unsafe subgame solving (42) head to head (48). Libratus fea-
tures a number of advances to subgame solving that greatly
improve effectiveness.

(i) Although we describe safe subgame solving as using
estimates of P1 values, past techniques used upper bounds on
those values (14, 15). Using upper bounds guarantees that the
subgame solution has exploitability no higher than the blue-
print strategy. However, it tends to lead to overly conserva-
tive strategies in practice. Using estimates can, in theory,
result in strategies with higher exploitability than the blue-
print strategy, but Theorem 1 bounds how much higher this
exploitability can be.

(ii) It arrives at better strategies in subgames than was
previously thought possible. Past techniques ensured that the
new strategy for the subgame made P1 no better off in that
subgame for every situation. It turns out that this is an un-

necessarily strong constraint. For example, 2♠7♥ is consid-
ered the worst hand in HUNL and should be folded
immediately, which ends the game. Choosing any other ac-
tion would result in an even bigger loss in expectation. Nev-
ertheless, past subgame solving techniques would be

concerned about P1 having 2♠7♥ in a subgame, which is un-
realistic. Even if subgame solving resulted in a strategy that

increased the value of 2♠7♥ a small amount in one subgame,
that increase would not outweigh the cost of reaching the

on D
ecem

ber 20, 2017

http://science.sciencem
ag.org/

D
ow

nloaded from

http://www.sciencemag.org/
http://science.sciencemag.org/

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 5

subgame (that is, the cost of not folding with 2♠7♥). Thus, P2
can allow the value of some “unimportant” P1 hands to in-
crease in subgames, so long as the increase is small enough
that it is still a mistake for P1 to reach the subgame with that
hand. We accomplish this by increasing the alternative re-
ward of P1 hands in the augmented subgame by the extra cost
to P1 of reaching the subgame, that is, the size of the mistake
P1 would have to make to reach that subgame with that hand.
By increasing the alternative reward in the augmented sub-
game of these “unimportant” hands, P2 develops a strategy in
the subgame that better defends against hands P1 might ac-
tually have (4).

(iii) Libratus crafts a unique strategy in response to oppo-
nent bets, rather than rounding it to the nearest size in the
abstraction. The optimal response to a bet of $101 is different
from the optimal response to a bet of $100, but the difference
is likely minor. For that reason, rounding an opponent bet of
$101 to $100 is reasonable. But the optimal response to a bet
of $150 is likely significantly different from the response to a
bet of $100 or a bet of $200. In principle one could simply
increase the number of actions in the abstraction, perhaps by
considering bets in increments of $10 rather than $100, so
that the error from rounding is smaller. However, the size of
the abstraction, and the time needed to solve it, increases pro-
hibitively as more actions are added.

Therefore, rather than round to the nearest action, Li-
bratus calculates a unique response in real time to off-tree
actions, that is, an action taken by an opponent that is not in
the abstraction. Libratus attempts to make the opponent no
better off, no matter what hand the opponent might have, for
having chosen the off-tree action rather than an action in the
abstraction. It does this by generating and solving an aug-
mented subgame following the off-tree action where the al-
ternative payoff is the best in-abstraction action the
opponent could have taken (the best action may differ across
hands).

Libratus repeats this for every subsequent off-tree action
in a process we call nested subgame solving (see Fig. 2). Later
we provide experiments that demonstrate that this technique
improves the worst-case performance of poker AIs by more
than an order of magnitude compared to the best technique
for rounding opponent actions to a nearby in-abstraction ac-
tion.

(iv) Because the subgame is solved in real time, the ab-
straction in the subgame can also be decided in real time and
change between hands. Libratus leverages this feature by
changing, at the first point of subgame solving, the bet sizes
it will use in that subgame and every subsequent subgame of
that poker hand, thereby forcing the opponent to continually
adapt to new bet sizes and strategies (49).

The authors of the poker AI DeepStack independently and

concurrently developed an algorithm similar to nested sub-
game solving, which they call continual re-solving (50). In an
Internet experiment, DeepStack defeated human profession-
als who are not specialists in HUNL. However, DeepStack
was never shown to outperform prior publicly-available top
AIs in head-to-head performance, whereas Libratus beats the
prior leading HUNL poker AI Baby Tartanian8 by a wide
margin, as we discuss later.

Like Libratus, DeepStack computes in real time a re-
sponse to the opponent’s specific bet and uses estimates ra-
ther than upper bounds on the opponent’s values. It does not
share Libratus’s improvement of de-emphasizing hands the
opponent would only be holding if she had made an earlier
mistake, and does not share the feature of changing the sub-
game action abstraction between hands.

DeepStack solves a depth-limited subgame on the first
two betting rounds by estimating values at the depth limit via
a neural network. This allows it to always calculate real-time
responses to opponent off-tree actions, while Libratus typi-
cally plays according to its pre-computed blueprint strategy
in the first two rounds.

Because Libratus typically plays according to a pre-com-
puted blueprint strategy on the first two betting rounds, it
rounds an off-tree opponent bet size to a nearby in-abstrac-
tion action. The blueprint action abstraction on those rounds
is dense in order to mitigate this weakness. In addition, Li-
bratus has a unique self-improvement module to augment
the blueprint strategy over time, which we now introduce.

Self-improvement
The third module of Libratus is the self-improver. It enhances
the blueprint strategy in the background. It fills in missing
branches in the blueprint abstraction and computes a game-
theoretic strategy for those branches. In principle, one could
conduct all such computations in advance, but the game tree
is way too large for that to be feasible. To tame this complex-
ity, Libratus uses the opponents’ actual moves to suggest
where in the game tree such filling is worthwhile.

The way machine learning has typically been used in
game playing is to try to build an opponent model, find mis-
takes in the opponent’s strategy (e.g., folding too often, call-
ing too often, etc.), and exploit those mistakes (51–53). The
downside is that trying to exploit the opponent opens oneself
to being exploited. (A certain conservative family of exploita-
tion techniques constitutes the sole exception to this down-
side (51–53).) For that reason, to a first approximation,
Libratus did not do opponent exploitation. Instead, it used
the data of the bet sizes that the opponents used to suggest
which branches should be added to the blueprint, and it then
computed game-theoretic strategies for those branches in the
background.

on D
ecem

ber 20, 2017

http://science.sciencem
ag.org/

D
ow

nloaded from

http://www.sciencemag.org/
http://science.sciencemag.org/

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 6

In most situations that can occur in the first two betting
rounds, real-time subgame solving as used in Libratus would
likely not produce a better strategy than the blueprint, be-
cause the blueprint already uses no card abstraction in those
rounds and conducting subgame solving in real time so early
in the game tree would require heavy abstraction in the sub-
game. For these reasons, Libratus plays according to the pre-
computed blueprint strategy in these situations. In those
rounds there are many bet sizes in the abstraction, so the er-
ror from rounding to a nearby size is small. Still, there is some
error, and this could be reduced by including more bet sizes
in the abstraction. In the experiment against human players
described in the next section, Libratus analyzed the bet sizes
in the first betting round most heavily used by its opponents
in aggregate during each day of the competition. Based on
the frequency of the opponent bet sizes and their distance
from the closest bet size in the abstraction, Libratus chose k
bet sizes for which it would try to calculate a response over-
night (54). Each of those bet sizes for which reasonable con-
vergence had been reached by the morning was then added
to the blueprint strategy together with the newly-computed
strategy following that bet size. In this way Libratus was able
to progressively narrow its gaps as the competition proceeded
by leveraging the humans’ ability to find potential weak-
nesses. Furthermore, these fixes to its strategy are universal:
they work against all opponents, not just the opponents that
Libratus has faced.

Libratus’s self-improvement comes in two forms. For one
of them, when adding one of the k bet sizes, a default sibling
bet size is also used during the equilibrium finding so as to
not assume that the opponent necessarily only uses the bet
size that will be added. For the other, a default bet size is not
used. This can be viewed as more risky and even exploitative,
but Libratus mitigates the risk by using that part of the strat-
egy during play only if the opponent indeed uses that bet size
most of the time (4).

Experimental evaluation
To evaluate the strength of the techniques used in Libratus,
we first tested the overall approach of the AI on scaled-down
variants of poker before proceeding to tests on full HUNL.
These moderate-sized variants consisted of only two or three
rounds of betting rather than four, and at most three bet sizes
at each decision point. The smaller size of the games allowed
us to precisely calculate exploitability, the distance from an
optimal strategy. Performance was measured in milli-big
blinds per hand (mbb/hand), the average number of big
blinds won per 1,000 hands.

In the first experiment, we compared using no subgame
solving, unsafe subgame solving (42) (in which a subgame is
solved in isolation with no theoretical guarantees on perfor-
mance), and safe subgame solving just once upon reaching

the final betting round of the game. Both players were con-
strained to choosing among only two different bet sizes, so
off-tree actions were not an issue in this first experiment. The
results are shown in Table 1. In all cases, safe subgame solv-
ing reduced exploitability by more than a factor of 4 relative
to no subgame solving. In one case, unsafe subgame solving
led to even lower exploitability, while in another it increased
exploitability by nearly an order of magnitude more than if
no subgame solving had been used. This demonstrates that
although unsafe subgame solving may produce strong strate-
gies in some games, it may also lead to far worse perfor-
mance. Safe subgame solving, in contrast, reduced
exploitability in all games.

In the second experiment, we constructed an abstraction
of a game which only includes two of the three available bet
sizes. If the opponent played the missing bet size, the AI ei-
ther used action translation [in which the bet is rounded to a
nearby size in the abstraction; we compared against the lead-
ing action translation technique (27)], or nested subgame
solving. The results are shown in Table 2. Nested subgame
solving reduced exploitability by more than an order of mag-
nitude relative to action translation.

Next we present experiments in full HUNL. After con-
structing Libratus, we tested the AI against the prior leading
HUNL poker AI, our 2016 bot Baby Tartanian8, which had
defeated all other poker AIs with statistical significance in
the most recent ACPC (55). We report average win rates fol-
lowed by the 95% confidence interval. Using only the raw
blueprint strategy, Libratus lost to Baby Tartanian8 by 8 ± 15
mbb/hand. Adding state-of-the-art post-processing on the 3rd
and 4th betting rounds (31), such as eliminating low-proba-
bility actions that are likely only positive owing to insufficient
time to reach convergence, led to the Libratus blueprint strat-
egy defeating Baby Tartanian8 by 18 ± 21 mbb/hand. Elimi-
nating low-probability actions empirically leads to better
performance against non-adjusting AIs. However, it also in-
creases the exploitability of the AI because its strategy be-
comes more predictable. The full Libratus agent did not use
post-processing on the third and fourth betting rounds. On
the first two rounds, Libratus primarily used a new, more ro-
bust, form of post-processing (4).

The next experiment evaluated nested subgame solving
(with no post-processing) using only actions that are in Baby
Tartanian8’s action abstraction. Libratus won by 59 ± 28
mbb/hand (56). Finally, applying the nested subgame solving
structure used in the competition resulted in Libratus defeat-
ing Baby Tartanian8 by 63 ± 28 mbb/hand. The results are
shown in Table 3. In comparison, Baby Tartanian8 defeated
the next two strongest AIs in the ACPC by 12 ± 10 mbb/hand
and 24 ± 20 mbb/hand.

Finally, we tested Libratus against top humans. In Janu-
ary 2017, Libratus played against a team of four top HUNL

on D
ecem

ber 20, 2017

http://science.sciencem
ag.org/

D
ow

nloaded from

http://www.sciencemag.org/
http://science.sciencemag.org/

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 7

specialist professionals in a 120,000-hand Brains vs. AI chal-
lenge match over 20 days. The participants were Jason Les,
Dong Kim, Daniel McCauley, and Jimmy Chou. A prize pool
of $200,000 was allocated to the four humans in aggregate.
Each human was guaranteed $20,000 of that pool. The re-
maining $120,000 was divided among them based on how
much better the human did against Libratus than the worst-
performing of the four humans. Libratus decisively defeated
the humans by a margin of 147 mbb/hand, with 99.98% sta-
tistical significance and a p-value of 0.0002 (if the hands are
treated as independent and identically distributed), see
Fig. 3 (57). It also beat each of the humans individually.

Conclusions
Libratus presents an approach that effectively addresses the
challenge of game-theoretic reasoning under hidden infor-
mation in a large state space. The techniques that we devel-
oped are largely domain independent and can thus be applied
to other strategic imperfect-information interactions, includ-
ing non-recreational applications. Owing to the ubiquity of
hidden information in real-world strategic interactions, we
believe the paradigm introduced in Libratus will be im-
portant for the future growth and widespread application of
AI.

REFERENCES AND NOTES
1. J. Schaeffer, One Jump Ahead: Challenging Human Supremacy in Checkers

(Springer, 1997).
2. M. Campbell, A. J. Hoane Jr., F.-H. Hsu, Deep Blue. Artif. Intell. 134, 57–83 (2002).

doi:10.1016/S0004-3702(01)00129-1
3. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J.

Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D.
Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K.
Kavukcuoglu, T. Graepel, D. Hassabis, Mastering the game of Go with deep neural
networks and tree search. Nature 529, 484–489 (2016).
doi:10.1038/nature16961 Medline

4. See supplementary materials for more details.
5. J. Nash, “Non-cooperative games,” thesis, Princeton University (1950).
6. J. F. Nash, L. S. Shapley, Contributions to the Theory of Games, H. W. Kuhn, A. W.

Tucker, Eds. (Princeton Univ. Press, 1950), vol. 1, pp. 105–116.
7. D. A. Waterman, Generalization learning techniques for automating the learning of

heuristics. Artif. Intell. 1, 121–170 (1970). doi:10.1016/0004-3702(70)90004-4
8. J. Shi, M. Littman, in CG ’00: Revised Papers from the Second International

Conference on Computers and Games (Springer, 2002), pp. 333–345.
9. D. Billings et al., in Proceedings of the 18th International Joint Conference on

Artificial Intelligence (IJCAI) (Morgan Kaufmann Publishers, San Francisco,
2003), pp. 661–668.

10. A. Gilpin, T. Sandholm, in Proceedings of the National Conference on Artificial
Intelligence (AAAI) (AAAI Press, 2005), pp. 1684–1685.

11. M. Bowling, N. Burch, M. Johanson, O. Tammelin, Heads-up limit hold’em poker is
solved. Science 347, 145–149 (2015). doi:10.1126/science.1259433 Medline

12. Libratus is Latin and means balanced (for approximating Nash equilibrium) and
forceful (for its powerful play style and strength).

13. An imperfect-information subgame (which we refer to simply as a subgame) is
defined differently than how a subgame is usually defined in game theory. The
usual definition requires that a subgame starts with the players knowing the exact
state of the game, that is, no information is hidden from any player. Here, an
imperfect-information subgame is determined by information that is common
knowledge to the players. For example, in poker, a subgame is defined by the
sequence of visible board cards and actions the players have taken so far. Every

possible combination of private cards—that is, every node in the game tree which
is consistent with the common knowledge—is a root of this subgame. Any node
that descends from a root node is also included in the subgame. A formal
definition is provided in the supplementary material.

14. N. Burch, M. Johanson, M. Bowling, in AAAI Conference on Artificial Intelligence
(AAAI) (AAAI Press, 2014), pp. 602–608.

15. M. Moravcik, M. Schmid, K. Ha, M. Hladik, S. Gaukrodger, in AAAI Conference on
Artificial Intelligence (AAAI) (AAAI Press, 2016).

16. E. Jackson, in AAAI Workshop on Computer Poker and Imperfect Information (AAAI
Press, 2014).

17. M. Zinkevich, M. Johanson, M. H. Bowling, C. Piccione, in Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS) (Neural Information
Processing Systems Foundation, Inc., 2007), pp. 1729–1736.

18. Y. Nesterov, Excessive gap technique in nonsmooth convex minimization. SIAM J.
Optim. 16, 235–249 (2005). doi:10.1137/S1052623403422285

19. S. Hoda, A. Gilpin, J. Peña, T. Sandholm, Smoothing techniques for computing
Nash equilibria of sequential games. Math. Oper. Res. 35, 494–512 (2010).
doi:10.1287/moor.1100.0452

20. A. Gilpin, J. Peña, T. Sandholm, First-order algorithm with O(ln(1/ϵ)) convergence
for ϵ-equilibrium in two-person zero-sum games. Math. Program. 133, 279–298
(2012). doi:10.1007/s10107-010-0430-2.

21. C. Kroer, K. Waugh, F. Klnç-Karzan, T. Sandholm, in Proceedings of the ACM
Conference on Economics and Computation (EC) (ACM, New York, 2017).

22. O. Tammelin, N. Burch, M. Johanson, M. Bowling, in Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI) (AAAI Press, 2015),
pp. 645–652.

23. The version of HUNL that we refer to, which is used in the Annual Computer Poker
Competition, allows bets in increments of $1, with each player having $20,000 at
the beginning of a hand.

24. M. Johanson, “Measuring the size of large no-limit poker games,” (Technical
Report, Univ. of Alberta Libraries, 2013).

25. A. Gilpin, T. Sandholm, T. B. Sørensen, in Proceedings of the Seventh International
Joint Conference on Autonomous Agents and Multiagent Systems (International
Foundation for Autonomous Agents and Multiagent Systems, 2008), vol. 2, pp.
911–918.

26. D. Schnizlein, M. Bowling, D. Szafron, in Proceedings of the Twenty-First
International Joint Conference on Artificial Intelligence (AAAI Press, 2009), pp.
278–284.

27. S. Ganzfried, T. Sandholm, in Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence (AAAI Press, 2013), pp. 120–128.

28. Annual Computer Poker Competition; www.computerpokercompetition.org.
29. N. Brown, T. Sandholm, in Proceedings of the Twenty-Eighth AAAI Conference on

Artificial Intelligence (AAAI) (AAAI Press, 2014), pp. 594–601.
30. N. Brown, T. Sandholm, in Proceedings of the Twenty-Fifth International Joint

Conference on Artificial Intelligence (IJCAI-16) (AAAI Press, 2016), pp. 4238–
4239.

31. N. Brown, S. Ganzfried, T. Sandholm, in Proceedings of the 2015 International
Conference on Autonomous Agents and Multiagent Systems (International
Foundation for Autonomous Agents and Multiagent Systems, 2015), pp. 7–15.

32. N. Brown, S. Ganzfried, T. Sandholm, in AAAI Conference on Artificial Intelligence
(AAAI) (AAAI Press, 2015), pp. 4270–4271.

33. M. Johanson, N. Burch, R. Valenzano, M. Bowling, in Proceedings of the 2013
International Conference on Autonomous Agents and Multiagent Systems
(International Foundation for Autonomous Agents and Multiagent Systems,
2013), pp. 271–278.

34. M. Lanctot, K. Waugh, M. Zinkevich, M. Bowling, in Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS) (Neural Information
Processing Systems Foundation, Inc., 2009), pp. 1078–1086.

35. R. Gibson, M. Lanctot, N. Burch, D. Szafron, M. Bowling, in Proceedings of the
Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI Press, 2012), pp.
1355–1361.

36. M. Johanson, N. Bard, M. Lanctot, R. Gibson, M. Bowling, in Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems
(International Foundation for Autonomous Agents and Multiagent Systems,
2012), vol. 2, pp. 837–846.

on D
ecem

ber 20, 2017

http://science.sciencem
ag.org/

D
ow

nloaded from

http://www.sciencemag.org/
http://dx.doi.org/10.1016/S0004-3702(01)00129-1
http://dx.doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26819042&dopt=Abstract
http://dx.doi.org/10.1016/0004-3702(70)90004-4
http://dx.doi.org/10.1126/science.1259433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25574016&dopt=Abstract
http://dx.doi.org/10.1137/S1052623403422285
http://dx.doi.org/10.1287/moor.1100.0452
http://dx.doi.org/10.1007/s10107-010-0430-2
http://www.computerpokercompetition.org/
http://science.sciencemag.org/

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 8

37. R. Gibson, “Regret minimization in games and the development of champion
multiplayer computer poker-playing agents,” thesis, University of Alberta (2014).

38. There are a number of theoretically correct ways to choose actions on the basis of
their regrets. The most common is regret matching, in which an action is chosen
in proportion to its positive regret (58). Another common choice is hedge (59, 60).

39. An action a with regret R(a) that is below a threshold C (where C is negative) is
sampled with probability K/[K + C – R(a)], where K is a positive constant. There is
additionally a floor on the sample probability. This sampling is only done for about
the last half of iterations to be run; the first half is conducted using traditional
external-sampling MCCFR. Other formulas can also be used.

40. K. Waugh et al., in Symposium on Abstraction, Reformulation, and Approximation
(SARA) (AAAI Press, 2009).

41. M. Johanson, N. Bard, N. Burch, M. Bowling, in Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence (AAAI Press, 2012), pp. 1371–1379.

42. S. Ganzfried, T. Sandholm, in International Conference on Autonomous Agents and
Multiagent Systems (AAMAS) (International Foundation for Autonomous Agents
and Multiagent Systems, 2015), pp. 37–45.

43. N. Brown, T. Sandholm, Adv. Neural Inf. Process. Syst. 30, 689–699 (2017).
44. In Libratus, we considered “sufficiently small” to be situations where no additional

bets or raises could be made.
45. Despite lacking theoretical guarantees, unsafe subgame solving empirically

performs well in certain situations and requires less information to be
precomputed. For this reason, Libratus uses it once upon first reaching the third
betting round, while using safe subgame solving in all subsequent situations.

46. We solved augmented subgames using a heavily optimized form of the CFR+
algorithm (22, 61) because of the better performance of CFR+ in small games
where a precise solution is desired. The optimizations we use keep track of all
possible P1 hands rather than dealing out a single one at random.

47. Note that the theorem only assumes perfect recall in the actual game, not in the
abstraction that is used for computing a blueprint strategy. Furthermore, applying
Estimated-Maxmargin assumes that that subroutine maximizes the minimum
margin; a sufficient condition for doing so is that there is no abstraction in the
subgame.

48. Indeed, the original purpose of safe subgame solving was merely to reduce space
usage by reconstructing subgame strategies rather than storing them.

49. Specifically, Libratus increased or decreased all its bet sizes by a percentage
chosen uniformly at random between 0 and 8%.

50. M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh,
M. Johanson, M. Bowling, DeepStack: Expert-level artificial intelligence in heads-
up no-limit poker. Science 356, 508–513 (2017). doi:10.1126/science.aam6960
Medline

51. D. Billings, D. Papp, J. Schaeffer, D. Szafron, in Proceedings of the National
Conference on Artificial Intelligence (AAAI) (AAAI Press, 1998), pp. 493–499.

52. S. Ganzfried, T. Sandholm, in International Conference on Autonomous Agents and
Multiagent Systems (AAMAS) (International Foundation for Autonomous Agents
and Multiagent Systems, 2011).

53. S. Ganzfried, T. Sandholm, Safe opponent exploitation. ACM Transaction on
Economics and Computation (TEAC) 3, 1–28 (2015). doi:10.1145/2716322

54. Based on the available computing resources, we chose k = 3 so that the algorithm
could typically fix three holes to reasonable accuracy in 24 hours.

55. Baby Tartanian8 and all other AIs in the ACPC are available to ACPC participants
for benchmarking.

56. Baby Tartanian8 uses action translation in response to bet sizes that are not in its
action abstraction. Our experiments above demonstrated that action translation
performs poorly compared to subgame solving. Using only bet sizes in Baby
Tartanian8’s abstraction disentangles the effects of action translation from the
improvement of nested subgame solving. Baby Tartanian8 still used actions that
were not in Libratus’s abstraction, and therefore the experiments can be
considered conservative.

57. Because both the humans and the AI adapted over the course of the competition,
treating the hands as independent is not entirely inappropriate. We include
confidence figures to provide some intuition for the variance in HUNL. In any case,
147 mbb/hand over 120,000 hands is considered a massive and unambiguous
victory in HUNL.

58. S. Hart, A. Mas-Colell, A simple adaptive procedure leading to correlated

equilibrium. Econometrica 68, 1127–1150 (2000). doi:10.1111/1468-0262.00153
59. N. Littlestone, M. K. Warmuth, The weighted majority algorithm. Inf. Comput. 108,

212–261 (1994). doi:10.1006/inco.1994.1009
60. Y. Freund, R. Schapire, A decision-theoretic generalization of on-line learning and

an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).
doi:10.1006/jcss.1997.1504

61. M. Johanson, K. Waugh, M. Bowling, M. Zinkevich, in Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI) (AAAI Press, 2011),
pp. 258–265.

62. L. Kocsis, C. Szepesvári, in European Conference on Maching Learning (ECML)
(Springer, 2006), pp. 282–293.

63. R. Coulom, Computers and Games (Springer, 2007), pp. 72–83.
64. D. E. Knuth, R. W. Moore, An analysis of alpha-beta pruning. Artif. Intell. 6, 293–

326 (1975). doi:10.1016/0004-3702(75)90019-3
65. J. F. Nash, Equilibrium points in n-person games. Proc. Natl. Acad. Sci. U.S.A. 36,

48–49 (1950). doi:10.1073/pnas.36.1.48 Medline
66. N. Brown, T. Sandholm, in Proceedings of the Annual Conference on Neural

Information Processing Systems (NIPS) (2015), pp. 1972–1980.
67. N. Brown, T. Sandholm, in International Conference on Machine Learning

(Proceedings of Machine Learning Research, 2017).
68. S. Ganzfried, T. Sandholm, K. Waugh, in International Conference on Autonomous

Agents and Multiagent Systems (AAMAS) (International Foundation for
Autonomous Agents and Multiagent Systems, 2012), pp. 871–878.

ACKNOWLEDGMENTS

This material is based on research supported by the National Science Foundation
under grants IIS-1718457, IIS-1617590, and CCF-1733556, and by the ARO under
award W911NF-17-1-0082, as well as XSEDE computing resources provided by
the Pittsburgh Supercomputing Center. The Brains vs. AI competition was
sponsored by Carnegie Mellon University, Rivers Casino, GreatPoint Ventures,
Avenue4Analytics, TNG Technology Consulting, Artificial Intelligence, Intel, and
Optimized Markets, Inc. We thank Ben Clayman for computing statistics of the
play of our AIs against humans. The data presented in this paper are shown in
the main text and supplementary material. Additional data can be obtained from
the corresponding author upon request. Because HUNL poker is played
commercially, the risk associated with releasing the code outweighs the
benefits. To aid reproducibility, we have included the pseudo-code for the major
components of our program in (4). The technology has been exclusively licensed
to Strategic Machine, Inc., and the authors have ownership interest in the
company.

SUPPLEMENTARY MATERIALS
www.sciencemag.org/cgi/content/full/science.aao1733/DC1
Supplementary text
Figs. S1 and S2
Table S1
References (62–68)

22 June 2017; accepted 12 December 2017
Published online 17 December 2017
10.1126/science.aao1733

on D
ecem

ber 20, 2017

http://science.sciencem
ag.org/

D
ow

nloaded from

http://www.sciencemag.org/
http://dx.doi.org/10.1126/science.aam6960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28254783&dopt=Abstract
http://dx.doi.org/10.1145/2716322
http://dx.doi.org/10.1111/1468-0262.00153
http://dx.doi.org/10.1006/inco.1994.1009
http://dx.doi.org/10.1006/jcss.1997.1504
http://dx.doi.org/10.1016/0004-3702(75)90019-3
http://dx.doi.org/10.1073/pnas.36.1.48
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16588946&dopt=Abstract
http://www.sciencemag.org/cgi/content/full/science.aao1733/DC1
http://science.sciencemag.org/

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 9

Fig. 1. Subgame solving. Top: A subgame is reached during play. Middle: A more
detailed strategy for that subgame is determined by solving an augmented subgame,
in which on each iteration the opponent is dealt a random poker hand and given the
choice of taking the expected value of the old abstraction (red), or of playing in the
new, finer-grained abstraction (green) where the strategy for both players can
change. This forces Libratus to make the finer-grained strategy at least as good as in
the original abstraction against every opponent poker hand. Bottom: The new
strategy is substituted in place of the old one.

on D
ecem

ber 20, 2017

http://science.sciencem
ag.org/

D
ow

nloaded from

http://www.sciencemag.org/
http://science.sciencemag.org/

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 10

Fig. 2. A visualization of nested subgame solving. Every time a subgame is reached
during play, a more detailed abstraction is constructed and solved just for that
subgame, while fitting its solution within the overarching blueprint strategy.

Fig. 3. Libratus performance against top humans. Shown are the results of the
2017 Brains vs. AI competition. The 95% confidence intervals (if the hands are
treated as independent and identically distributed) are shown as dotted lines.

on D
ecem

ber 20, 2017

http://science.sciencem
ag.org/

D
ow

nloaded from

http://www.sciencemag.org/
http://science.sciencemag.org/

First release: 17 December 2017 www.sciencemag.org (Page numbers not final at time of first release) 11

Table 1. Exploitability of subgame solving techniques on smaller poker variants.

Simplified Game: Small 2-Round

Large 2-Round Hold’em 3-Round Hold’em
No subgame solving 91.3 mbb/hand 41.3 mbb/hand 346 mbb/hand
Unsafe subgame solving 5.51 mbb/hand 397 mbb/hand 79.3 mbb/hand
Safe subgame solving 22.6 mbb/hand 9.84 mbb/hand 72.6 mbb/hand

Table 2. Exploitability of nested subgame solving. Shown is the comparison to no nested subgame solving (which
instead uses the leading action translation technique) in a small poker variant.

 Exploitability
No nested subgame solving 1,465 mbb/hand
Nested unsafe subgame solving 148 mbb/hand
Nested safe subgame solving 119 mbb/hand

Table 3. Head-to-head performance of Libratus. Shown are results for the Libratus blueprint strategy as well as
forms of nested subgame solving against Baby Tartanian8 in HUNL.

 Performance against Baby Tartanian8
Blueprint –8 ±15 mbb/hand
Blueprint with post-processing 18 ± 21 mbb/hand
On-tree nested subgame solving 59 ± 28 mbb/hand
Full nested subgame solving 63 ± 28 mbb/hand

 on D
ecem

ber 20, 2017

http://science.sciencem
ag.org/

D
ow

nloaded from

http://www.sciencemag.org/
http://science.sciencemag.org/

Superhuman AI for heads-up no-limit poker: Libratus beats top professionals
Noam Brown and Tuomas Sandholm

published online December 17, 2017

ARTICLE TOOLS http://science.sciencemag.org/content/early/2017/12/15/science.aao1733

MATERIALS
SUPPLEMENTARY http://science.sciencemag.org/content/suppl/2017/12/15/science.aao1733.DC1

REFERENCES

http://science.sciencemag.org/content/early/2017/12/15/science.aao1733#BIBL
This article cites 15 articles, 3 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the

registered trademark of AAAS.
 is aScienceAmerican Association for the Advancement of Science. No claim to original U.S. Government Works. The title

Science, 1200 New York Avenue NW, Washington, DC 20005. 2017 © The Authors, some rights reserved; exclusive licensee
(print ISSN 0036-8075; online ISSN 1095-9203) is published by the American Association for the Advancement ofScience

on D
ecem

ber 20, 2017

http://science.sciencem
ag.org/

D
ow

nloaded from

http://science.sciencemag.org/content/early/2017/12/15/science.aao1733
http://science.sciencemag.org/content/suppl/2017/12/15/science.aao1733.DC1
http://science.sciencemag.org/content/early/2017/12/15/science.aao1733#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://science.sciencemag.org/

www.sciencemag.org/cgi/content/full/science.aao1733/DC1

Supplementary Materials for
Superhuman AI for heads-up no-limit poker: Libratus beats top professionals

Noam Brown and Tuomas Sandholm*

*Corresponding author. Email: sandholm@cs.cmu.edu

Published 17 December 2017 on Science First Release
DOI: 10.1126/science.aao1733

This PDF file includes:

Supplementary Text
Figs. S1 and S2
Table S1
References

SUPPLEMENTARY MATERIAL

The challenge of hidden information

In this section we provide intuition for why imperfect-information games are difficult, and what

it means to “solve” a game. Having perfect information is critical to all top-performing AIs in

games such as checkers, chess, and Go because it allows the AI to only consider the subgame

it is in—the “mini-game” formed by the current state of the game (for example, the current

positions of all pieces on the board in chess) and all future states that can be reached from that

point on (62–64). Other unreachable states, or past states, are irrelevant to determining the

optimal strategy. For example, in chess, if an opponent opens with the Queen’s Gambit, then

knowing how to play the Sicilian Defense is irrelevant. This is not true in imperfect-information

games.

In imperfect-information games, it is not generally possible to reason about a part of the

game in isolation because the optimal strategy in the subgame reached during play may depend

on the optimal strategy of subgames not reached. We demonstrate this in a simple game we call

Coin Toss, Figure S1. It is played between players P1 and P2. A coin is flipped and lands either

Heads or Tails with equal probability; only P1 sees the outcome. P1 can then choose between

actions “Sell” and “Play.” If the coin lands Heads, it is considered lucky and P1 can receive

$0.50 for choosing Sell. On the other hand, if the coin lands Tails, it is considered unlucky and

P1 must pay $0.50 to get rid of it (that is, the Sell action results in P1 receiving −$0.50). If P1

instead chooses Play, then P2 has the opportunity to guess how the coin landed. If P2 guesses

correctly, P1 receives a reward of−$1 and P2 receives a reward of $1 (the figure shows rewards

for P1; P2 receives the negation of P1’s reward). We now discuss what would be the optimal

strategy for P2 in the subgame S that occurs after P1 chooses Play.

On the one hand, were P2 to always guess Heads, P1 would receive $0.50 for choosing Sell

2

when the coin lands Heads, and $1 for choosing Play when it lands Tails. This would result in

an average of $0.75 for P1. On the other hand, were P2 to always guess Tails, P1 would receive

$1 for choosing Play when it lands Heads, and −$0.50 for choosing Sell when it lands Tails.

This would result in an average reward of $0.25 for P1. However, P2 would do even better by

guessing Heads with 25% probability and Tails with 75% probability. In that case, P1 could

only receive $0.50 (on average) by choosing Play when the coin lands Heads—the same value

received for choosing Sell. Similarly, P1 could only receive −$0.50 by choosing Play when

the coin lands Tails, which is the same value received for choosing Sell. This would yield an

average reward of $0 for P1. It is easy to see that this is the best P2 could do, because P1 can

receive at least $0 in expectation by always choosing Sell. Therefore, choosing Heads with 75%

probability and Tails with 25% probability is a solution to the game, or optimal strategy (aka.

minmax strategy), for P2.

Now suppose the coin is considered lucky if it lands Tails and unlucky if it lands Heads.

That is, the reward for selling the coin when it lands Heads is now −$0.50 and $0.50 when

it lands Tails. It is easy to see that P2’s optimal strategy for the “Play” subgame is now to

guess Heads with 75% probability and Tails with 25% probability. This shows that a player’s

optimal strategy in a subgame can depend on the outcomes and optimal strategies in other parts

of the game. Therefore, one cannot solve a subgame using information about that subgame

alone. This is a key challenge in playing imperfect-information games as opposed to perfect-

information games.

Description of heads-up no-limit Texas hold’em

No-limit Texas hold’em is the most popular form of poker. It is also an extremely large game

at 10161 decision points. The head’s up (that is, two-player) variant prevents opponent collusion

and kingmaker scenarios where a bad player causes a mediocre player to shine, and therefore al-

3

lows a clear winner to be determined. For all of these reasons, heads-up no-limit Texas hold’em

(HUNL) is the primary testbed for research on solving large imperfect-information games.

In the common form of HUNL poker agreed upon by the research community, each player

starts each hand with $20,000 in chips. One player is designated P1, while the other is P2,

and this assignment alternates between hands. HUNL consists of four rounds of betting. On a

round of betting, each player can choose to either fold, call, or raise. If a player folds, that player

immediately surrenders the pot to the opponent and the game ends. If a player calls, that players

places a number of chips in the pot equal to the opponent’s contribution. If a player raises, that

player adds more chips to the pot than the opponent’s contribution. A round of betting ends after

a player calls. Players can continue to go back and forth with raises in a round until running out

of chips.

If either player chooses to raise first in a round, they must raise a minimum of $100. If a

player raises after another player has raised, that raise must be greater than or equal to the last

raise. The maximum amount for a bet or raise is the remainder of that player’s chip stack, which

in our model is $20,000 at the beginning of a game.

At the start of HUNL, both players receive two private cards from a standard 52-card deck.

P1 must place a big blind of $100 in the pot, while P2 must place a small blind of $50 in the

pot. There is then a first round of betting (called the preflop), where P2 acts first. When the

round ends, three community cards are dealt face up between the players. There is then a second

round of betting (called the flop), where P1 acts first. After that round of betting ends, another

community card is dealt face up, and a third round of betting (called the turn) commences where

P1 acts first. Finally, a fifth community card is dealt face up, and a fourth betting round (called

the river) occurs, again with P1 acting first. If neither player folds before the final betting round

completes, the player with the best five-card poker hand, constructed from her two private cards

and the five face-up community cards, wins the pot. In the case of a tie, the pot is split evenly.

4

Brains vs. AI competition setup

As is common in bridge and in the ACPC, we used duplicate matches to reduce the role of

luck. The four humans were matched into two pairs. Within each pair, whatever cards one

human received against Libratus, Libratus received against the other human. This way neither

the human team nor Libratus could get systematically lucky.

In order to try to reduce variance, we split the pot by averaging over all possible roll-outs of

remaining cards—as opposed to just one roll-out—in situations where the players went all-in

before the final card had been dealt.

There are many further design choices in setting up a man-machine poker competition. The

2017 Brains vs. AI competition was conservatively designed to favor the humans, so that in

case the AI won, the results would be conclusive. These choices included the following.

• A large number of hands (120,000) was played. This gave the humans the best chance to

find weaknesses in the AI and to exploit them.

• The humans were allowed to choose how many days they would spend to play the 120,000

hands, how many break days to have, etc. They chose to play the hands in 20 back-to-

back days. This was likely the best choice for the humans in that it minimized the time

the AI had available to fix its strategy as the humans found and exploited its weaknesses.

The humans were also allowed to choose the times of day to play, how many hands each

session had, and the lengths of the coordinated breaks. Furthermore, they were allowed

to take breaks at any time. They were also allowed to stop playing for the day if they felt

tired or sick; they exercised this option infrequently.

• The humans were allowed, but not required, to play two tables at once. This enabled each

human to switch to the other table while the AI was thinking. Each human had the choice

5

of playing any number of actions and hands of the session on one table before switching

to the other table, and so on.

• Per the humans’ request, a 4-color deck was used in the user interface so flushes were

easier for the human visual system to recognize.

• User-programmable hot keys (most importantly for making bets that are various unusual

fractions of the pot) were provided for the humans in the user interface.

• The humans requested specific high-resolution monitors, and two of them were provided

for each human, one per table.

• The humans were allowed to bring their preferred computer mice.

• Each human was allowed to choose whether to keep the streaming video chat (Twitch) on

or off—even dynamically. The humans made different choices on this dimension. Some

felt that they play better when while interacting with a supportive audience while others

felt they perform better in private.

• Due to the duplicate matches, only one human in each pair could play in public and the

other had to be isolated in a private room (otherwise they, or the audience, could tell each

other what cards are coming next). We let the humans decide which human in each pair

played in public versus in private because they had different preferences between these

options. We also allowed them to alter that decision dynamically during the competition.

• Each hand started with each player having 200 big blinds in their chip stack. This is the

standard in the ACPC and is consider a “deep stack”. Another common stack size is 100

big blinds, but that would be more favorable for the AI due to the smaller game size.

6

• It is well known that sometimes a player’s timing leaks information about the player’s

cards to the opponent. We agreed that the AI would not use timing tells while the humans

were allowed to use them.

• The action history in the hand was displayed on the user interface. This helped the human

in case he forgot what had happened in the hand so far.

• Both sides had access to the day’s hand histories every evening, including hands that the

opponent folded. The self-improver in Libratus used information about which opponent

actions were taken, but did not use information about the opponents’ hands.

• The humans were allowed to use computers and any software for analysis in the evenings

and breaks. They did that for hours per day. The humans were also allowed to bring

outsiders to help them with their analysis, and they exercised this option.

• The humans were allowed to collaborate and coordinate actions (except not within each

hand). They exercised this option heavily. For example, they coordinated how they ex-

plored the AI’s potential weaknesses via using different bet sizes.

• The humans were allowed to think as long as they wanted. On average, Daniel McCauley

thought for 22.4 seconds per hand, Jason Les for 21.7, Dong Kim for 20.1, and Jimmy

Chou for 16.4. These averages do not include any hands that took more than 10 minutes

for them to decide; we are interpreting those hands as ones where the human took a break.

Libratus thought for 13.0 seconds per hand on average.

Furthermore, because the humans were allowed to take advantage of timing tells while

the AI was not, Libratus had to be designed so that its timing did not depend on its private

cards. In contrast, the humans could safely play quickly in obvious situations.

7

• The humans were allowed to claim that they accidentally clicked the wrong action button

on the user interface. In each occurrence, we canceled the hand.

Hardware

Libratus ran on Bridges, the newest and most powerful supercomputer at the Pittsburgh Super-

computing Center. Libratus used between 200 and 600 nodes on Bridges before and during the

Brains vs. AI competition and used approximately 12 million core hours in total (some of which

was used for exploratory experiments before the production runs). Each node has 128 GB of

memory and two Intel Haswell CPUs with 14 cores each. Since Libratus was bottlenecked pri-

marily by memory access, only 14 cores were used on each node rather than the 28 available.

Counting the unused 14 cores on each node would double the core hour tallies reported in this

section. No GPUs were used.

The blueprint strategy was computed using 196 nodes. We computed multiple blueprint

strategies which Libratus would switch between depending on whether Libratus was the first or

second mover and on the opening action behavior of the humans. Roughly 3 million core hours

were used to compute blueprint strategies.

Nested subgame solving was conducted in real time during the Brains vs AI competition.

Each of the four humans had two copies of Libratus available to play against simultaneously,

for a total of 8 simultaneous games. Each game used 50 nodes on Bridges, for a total of 400

nodes. Overall, Libratus used roughly 1.5 million core hours for nested subgame solving in the

competition.

In the self-improvement component, three bet sizes were solved for in parallel at night and

one during the day (because we had fewer nodes available during the day since most of the

nodes were used for endgame solving in daytime). Each bet size used 196 nodes for a total of

588 nodes at night. Roughly 1.5 million core hours were used for self improvement.

8

Notation and background

In a two-player zero-sum imperfect-information extensive-form game there are two players,

P = {1, 2}. H is the set of all possible nodes in the game tree. A(h) is the actions available in

a node and P (h) ∈ P ∪ c is the player who acts at that node, where c denotes chance. Chance

plays actions with fixed probability. The node h′ reached after an action is taken in h is a child

of h, represented by h · a = h′. If a sequence of actions leads from h to h′ then we can write

h ≺ h′. Z ⊆ H are terminal nodes from which no actions are available. For each player i ∈ P ,

there is a payoff function ui : Z → < where u1 = −u2.

Imperfect information is represented by information sets (infosets) for each player i ∈ P by

a partition Ii of h ∈ H .1 For any infoset Ii ∈ Ii, all nodes h, h′ ∈ Ii are indistinguishable to i,

so A(h) = A(h′) and P (h) = P (h′). Ii(h) is the infoset Ii belonging to i where h ∈ Ii. A(Ii)

is the set of actions such that for all h ∈ Ii, A(Ii) = A(h). P (Ii) is the player such that for all

h ∈ Ii, P (Ii) = P (h).

A strategy σ(Ii) is a probability vector over A(Ii). σ(Ii) is only defined if P (Ii) = i. The

probability of a particular action a is denoted by σ(Ii, a). Since all nodes in an infoset belonging

to player i are indistinguishable, the strategies in each of them must be identical. A full-game

strategy σi ∈ Σi defines a strategy for each infoset where player i acts. A strategy profile σ is

a tuple of strategies, one for each player, and σ−i denotes the strategies in σ of all players other

than i.

Let πσ(h) =
∏

h′·a�h σP (h′)(h
′, a) denote the joint probability of reaching h if all players

play according to σ. πσi (h) is the contribution of player i to this probability (that is, the proba-

bility of reaching h if all players other than i, and chance, always chose actions leading to h).

πσ−i(h) is the contribution of all players other than i, and chance. Similarly, πσ(h, h′) is the

1This is a non-standard definition, which facilitates our—arguably more natural—definition of subgame. Tra-
ditional definitions have defined Ii to only include a node h ∈ H if P (h) = i.

9

probability of reaching h′ given that h has been reached, and 0 if h 6≺ h′. In a perfect-recall

game, a player never forgets information. Thus ∀h, h′ ∈ Ii, πi(h) = πi(h
′). In all subgames in

Libratus we used a perfect-recall abstraction. We define πi(Ii) = πi(h) for h ∈ Ii. Moreover,

I ′i ≺ Ii if for some h′ ∈ I ′i and some h ∈ Ii, h′ ≺ h. Similarly, I ′i · a ≺ Ii if h′ · a ≺ h. Finally,

πσ(Ii, I
′
i) is probability of reaching I ′i from Ii according to the strategy σ.

An imperfect-information subgame is a set of nodes S ⊆ H such that for all h ∈ S, if

h ≺ h′, then h′ ∈ S, and for all h ∈ S, if h′ ∈ Ii(h) for some player i then h′ ∈ S.

A Nash equilibrium (65) is a strategy profile σ∗ such that ∀i, ui(σ∗i , σ∗−i) = maxσ′i∈Σi ui(σ
′
i, σ
∗
−i).

In two-player zero-sum games, all Nash equilibria give identical expected values for a player. A

best responseBR(σ−i) is a strategy for player i such that ui(BR(σ−i), σ−i) = maxσ′i∈Σi ui(σ
′
i, σ−i).

The exploitability exp(σ−i) of a strategy σ−i is defined as ui(BR(σ−i), σ−i)−ui(σ∗), where σ∗

is a Nash equilibrium.

The value of a node h is the value player i expects to achieve if all players play according to

σ, having already reached h. Formally, vσi (h) =
∑

z∈Z
(
πσ(h, z)ui(z)

)
. The value of an infoset

vσ(Ii) is the value player i expects to achieve if all players play according to σ, having already

reached infoset Ii. Formally, vσ(Ii) =
∑

h∈Ii

(
πσ−i(h)vσi (h)

)
/
∑

h∈Ii π
σ
−i(h) and vσ(Ii, a) =∑

h∈Ii

(
πσ−i(h)vσi (h · a)

)
/
∑

h∈Ii π
σ
−i(h).

A counterfactual best response (15)CBR(σ−i) is similar to a best response, but additionally

maximizes value at every infoset. Specifically, a counterfactual best response is a strategy

σi that is a best response with the additional condition that if σ(Ii, a) > 0 then vσ(Ii, a) =

maxa′ v
σ(Ii, a

′).

We further define counterfactual best response value CBV σ−i(Ii) as the value player i ex-

pects to achieve by playing according to CBR(σ−i), having already reached infoset Ii. For-

mally,CBV σ−i(Ii, a) = v〈CBR(σ−i),σ−i〉(Ii, a) andCBV σ−i(Ii) = v〈CBR(σ−i),σ−i〉(Ii). Through-

out the paper, 〈CBR(σ−i), σ−i〉 denotes the strategy profile where player(s)−i use strategy σ−i

10

and player i uses a strategy that is a counterfactual best response to σ−i.

Further details of the equilibrium-finding algorithm

As discussed in the body text, Libratus uses a modified form of External-Sampling Monte Carlo

Counterfactual Regret Minimization (ES-MCCFR) (34) in order to determine the blueprint

strategy. In this section we formally describe the algorithm and present pseudocode for its

implementation.

ES-MCCFR is an iterative algorithm in which a sampled portion of the game tree is traversed

on each iteration. We maintain two values for each action a in each infoset Ii where P (Ii) = i:

a regret value R(Ii, a) which roughly corresponds to how much we “regret” having not taken

this action in past traversals (which we formally define later), and a count φ(Ii, a) of how many

times the action is sampled during an opponent traversal.

Let R+(Ii, a) = max{0, R(Ii, a)}. Whenever a non-chance and non-terminal node h is

encountered during a traversal on iteration t, ES-MCCFR sets the strategy at the node’s infoset

as σt(I, a) =
Rt−1

+ (I,a)∑
a′∈A(I)R

t−1
+ (I,a′)

where I = IP (h)(h). In the case where
∑

a′∈A(I)R
t−1
+ (I, a′) = 0,

ES-MCCFR sets σt(I, a) = 1
|A(I)| .

We assume the algorithm runs for T iterations. On each iteration t we traverse the game tree

once for each player. For simplicity of explanation, we refer to the player traversing the game

tree as Pi and refer to all other players (or the single other player in the case of HUNL), as P−i.

The game tree is traversed in a depth-first manner. When a chance node is encountered, we

sample a single action according to the fixed probability distribution for that node and explore

only that action. When a P−i node is encountered, we also sample and explore a single action,

where the probability that action a is selected is σt(I−i, a). Additionally, the value φ(I−i, a)

of the sampled action is incremented by 1. When a Pi node is encountered, every action is

explored. Eventually, a terminal node is reached and its value is passed up to the preceding

11

node. Chance and P−i nodes pass this exact value farther up the game tree. For Pi nodes,

after every action a has returned a value vt(Ii, a), the weighted average value is calculated as

vt(Ii) =
∑

a∈A(Ii)
(vt(Ii, a) · σt(Ii, a)). The regret for each action is updated to be Rt(Ii, a) =

Rt−1(Ii, a) + vt(Ii, a)− vt(Ii). The weighted average vt(Ii) is then passed up to the preceding

node.

After running ES-MCCFR for T iterations, we calculate the strategy σ̄Ti for each player by

simply normalizing φ(Ii, a) at every infoset where P (Ii) = i so that
∑

a∈A(Ii)
φ(Ii, a) = 1. ES-

MCCFR guarantees that as T →∞, with high probability σ̄T will approach a Nash equilibrium

in two-player zero-sum games without abstraction. In cases where imperfect-recall forms of

abstraction prevent convergence to a Nash equilibrium (as is possibly the case with the blueprint

strategy of Libratus), ES-MCCFR still approaches a good strategy in practice.

Libratus improves upon ES-MCCFR by sometimes pruning an action from the tree traversal

if it has very negative regret. This pruning only occurs after some number of iterations have

passed; prior to that point, traditional ES-MCCFR is used. Formally, on iterations t > T0, in an

infoset Ii where P (Ii) = i, an action a with regret R(Ii, a) that is below a threshold C (where

C is negative) is sampled with probability K/
(
K +C −R(a)

)
, where K is a positive constant.

This sampling applies to each action independently—multiple actions may be sampled at the

same decision point. We also apply a floor of 2% on the probability of an action being sampled.

This floor is applied to the chained sampling probability: if the action leading to the current

node had only a 10% chance of being sampled, then the floor on each action at the current node

being sampled is 20%. This ensures that as the opponent’s strategy changes, we will detect if

a seemingly bad action starts to lead to higher payoffs. If an action is sampled, the algorithm

proceeds identically to ES-MCCFR except in any descendant opponent infoset I−i, φ(I−i, a) is

updated by 1/p rather than by 1, where p is the chained sampling probability so far. If an action

is not sampled, then the game tree below it is not traversed on that iteration and the action’s

12

regret is not updated on that iteration. Since an action will only be pruned if it has negative

regret and therefore σt(Ii, a) = 0, pruning an action does not affect the calculation of v(Ii).

This form of pruning empirically leads to better performance by allowing more iterations to

be conducted in the same amount of time by spending less time on situations that are unlikely

to be relevant to the final strategy. If an action has extremely negative regret, then the action has

performed very poorly in past iterations and is unlikely to be part of the final strategy. We do

not prune an action completely because it is possible that an action that has performed poorly

in the past may improve as both players’ strategies adjust. As discussed in the main body of the

paper, this form of pruning also mitigates the problems of using an imperfect-recall abstraction.

The form of sampled pruning we use does not have theoretical guarantees of convergence

to a Nash equilibrium. It was inspired by similar non-sampled algorithms that we developed,

which do have theoretical guarantees, called regret-based pruning (66) and best-response prun-

ing (67).

Further details of the nested subgame-solving algorithm

The purpose of subgame solving is to calculate a better strategy for a specific part of the game,

while fitting that strategy within the overarching blueprint that has already been calculated. In

this section we provide more detail about subgame solving.

Subgame solving is accomplished by solving an augmented subgame, which contains the

subgame as well as additional structure. This additional structure depends on the form of sub-

game solving used. We define Stop as the set of earliest-reachable nodes in S. More formally,

h ∈ Stop if for h′ ≺ h, h′ 6∈ S.

In unsafe subgame solving (which lacks theoretical guarantees but performs well empiri-

cally in some cases) the augmented subgame starts with a single chance node which connects

to a node h ∈ Stop with probability πσ(h)∑
h′∈Stop

πσ(h′)
. The rest of the augmented subgame is iden-

13

Algorithm 1 ESMCCFR with Negative-Regret Pruning
During actual play, when in infoset Ii, sample action a in proportion to φ(Ii, a).

1: function ESMCCFR-P(T) . Conduct External-Sampling Monte Carlo CFR with Pruning
2: for Pi ∈ P do
3: for Ii ∈ Ii where P (Ii) = i do
4: for a ∈ A(Ii) do
5: R(Ii, a)← 0, φ(Ii, a)← 0

6: for t = 1 to T do
7: for Pi ∈ P do
8: if t > T

2 then
9: TRAVERSE-ESMCCFR-P(∅, Pi, 1)

10: else
11: TRAVERSE-ESMCCFR(∅, Pi)

12: function TRAVERSE-ESMCCFR(h, Pi) . Traverses the game tree once for Pi
13: if h is terminal then
14: return ui(h)
15: else if P (h) = Pi then
16: Ii ← Ii(h) . The Pi infoset of this node
17: σ(Ii)← CALCULATE-STRATEGY(R(Ii), Ii) . Determine the strategy at this infoset
18: v(h)← 0 . Initialize expected value at zero
19: for a ∈ A(h) do
20: v(h, a)← TRAVERSE-ESMCCFR(h→ a, Pi) . Traverse each action
21: v(h)← v(h) + σ(Ii, a) · v(h, a) . Update the expected value
22: for a ∈ A(h) do
23: R(Ii, a)← R(Ii, a) + v(h, a)− v(h) . Update the regret of each action
24: return v(h) . Return the expected value
25: else if P (h) = P−i then
26: I−i ← I−i(h) . The P−i infoset of this node
27: σ(I−i)← CALCULATE-STRATEGY(R(I−i), I−i) . Determine the strategy at this infoset
28: a ∼ σ(I−i) . Sample an action from the probability distribution
29: φ(I−i, a)← φ(I−i, a) + 1 . Increment the action counter
30: return TRAVERSE-ESMCCFR(h→ a, Pi)
31: else . h is a chance node
32: a ∼ σ(h) . Sample an action from the chance probabilities
33: return TRAVERSE-ESMCCFR(h→ a, Pi)

14

1: function TRAVERSE-ESMCCFR-P(h, Pi, p) . ESMCCFR with sampled pruning
2: if h is terminal then
3: return ui(h)
4: else if P (h) = Pi then
5: Ii ← Ii(h) . The Pi infoset of this node
6: σ(Ii)← CALCULATE-STRATEGY(R(Ii), Ii) . Determine the strategy at this infoset
7: v(h)← 0 . Initialize expected value at zero
8: for a ∈ A(h) do
9: if R(Ii, a) < C then

10: thresh← max{0.02
p , K

K+C−R(Ii,a)}
11: else
12: thresh← 1

13: q ∼ [0, 1)
14: if q < thresh then . C < 0 < K
15: v(h, a)← TRAVERSE-ESMCCFR-P(h→ a, Pi, p ·min{thresh, 1})
16: explored(a)← True
17: v(h)← v(h) + σ(Ii, a) · v(h, a) . Update the expected value
18: else
19: explored(a)← False
20: for a ∈ A(h) do
21: if explored(a) = True then
22: R(Ii, a)← R(Ii, a) + v(h, a)− v(h) . Update the regret for this action
23: return v(h) . Return the expected value
24: else if P (h) = P−i then
25: I−i ← I−i(h) . The P−i infoset of this node
26: σ(I−i)← CALCULATE-STRATEGY(R(I−i), I−i) . Determine the strategy at this infoset
27: a ∼ σ(I−i) . Sample an action from the probability distribution
28: φ(I−i, a)← φ(I−i, a) + 1/p . Increase the action counter
29: return TRAVERSE-ESMCCFR-P(h→ a, Pi, p)
30: else . h is a chance node
31: a ∼ σ(h) . Sample an action from the chance probabilities
32: return TRAVERSE-ESMCCFR-P(h→ a, Pi, p)

15

1: function CALCULATE-STRATEGY(R(Ii), Ii) . Calculates the strategy based on regrets
2: sum← 0
3: for a ∈ A(Ii) do
4: sum← sum +R+(Ii, a)

5: for a ∈ A(Ii) do
6: if sum > 0 then
7: σ(Ii, a)← R+(Ii,a)

sum
8: else
9: σ(Ii, a)← 1

|A(Ii)|

10: return σ(Ii)

tical to S. Unsafe subgame solving assumes the opponent is playing according to the blueprint

strategy, but that might not be the case and therefore the opponent may be able to exploit us by

changing her strategy. This motivates safe subgame solving, discussed below.

Libratus uses unsafe subgame solving upon first reaching the third betting round, and uses

safe subgame solving in response to every subsequent opponent bet or raise. Unsafe subgame

solving was used because it only requires storing the strategy for the first two betting rounds. In

contrast, safe subgame solving would have required storing infoset values for the third betting

round (which would have increased the space used by the blueprint strategy by about a factor of

50). In medium-scale experiments, we found that unsafe subgame solving exhibited competitive

head-to-head performance and typically low exploitability.

In safe subgame solving, without loss of generality, say we wish to find a strategy for player

P2 in the subgame. The opponent is P1. We modify the augmented subgame used in unsafe

subgame solving so that for every node h ∈ Stop, there is an additional node hr belonging to

P1 such that the initial chance node instead leads to hr and an action aS leads from hr to h. In

other words, hr · aS = h. The set of all such hr nodes is represented by the set Sr. The initial

chance node connects to hr ∈ Sr with probability πσ−2(h)∑
h′r∈Sr

πσ−2(h′)
. In other words, a root node

hr’s probability is proportional to the probability P1 would reach that node if P1 always took

actions that attempted to reach that node with probability 1, rather than play according to the

16

blueprint.

At each node hr ∈ Sr there are two actions which P1 can choose between. The first action

is aS , which leads to h ∈ Stop, after which the rest of the augmented subgame is identical to S.

The second action is aalt which leads to a terminal reward of valt(h) = vbp(I1(h)) + g[c], where

vbp(I1(h)) =
∑T
t=1 v

t(I1)

T
after playing T iterations of a CFR variant in the blueprint and g[c] is a

“gifts” modifier discussed in the next paragraph. In the case of nested subgame solving, in which

we conduct subgame solving repeatedly as we descend the game tree, vbp(I1(h)) comes from

the previous augmented subgame’s solution; that strategy acts as the blueprint until subgame

solving occurs again.

When an opponent takes some action, we may be able to gain information about what her

private information is by examining the actions the opponent did not take. For example, suppose

the opponent is faced with a choice between action A and action B. Action A leads to a terminal

reward of $1,000,000 only if the opponent’s private cards are 2♠2♣, while Action B leads to

an expected value of $0 if her private cards are 2♠2♣ and both players play a Nash equilibrium

strategy beyond that point. If the opponent chooses action B, we can be fairly confident in our

future decisions that she does not hold 2♠2♣ because the only way she would have that hand

is if she had made a mistake earlier. Thus, when conducting safe subgame solving following

action B, we can afford to let the opponent’s value for holding 2♠2♣ increase, and instead focus

on decreasing the opponent’s values for other hands. However, in order to ensure the opponent

cannot exploit us for making this assumption, we must ensure when conducting subgame solv-

ing that we do not let the opponent’s value for taking action B with 2♠2♣ increase to more

than $1,000,000. This must be true even when conducting subgame solving independently in

every subgame following action B, because applying subgame solving to any subgame reached

during play has the same exploitability as conducting subgame solving at every subgame prior

to play beginning.

17

We capture this idea by maintaining a gifts vector ~g over possible opponent (P1) poker

hands. It shows for each pair of private cards how much of a mistake the opponent would have

made to get to the current infoset with that pair. This vector is initialized to zeros either at

the beginning of the game or, in the case of Libratus, immediately after the unsafe subgame

solving. The vector is updated after each opponent action. When we (P2) are in infoset I2

and observe P1 take some action a, we consider every node h ∈ I2 that we might have been

in. Each node h ∈ I2 corresponds to a poker hand the opponent might be holding. For each

h ∈ I2, we compare the value vbp(I1(h)) that the opponent would have expected to receive

with that hand to the value vbp(I1(h), a) (or the equivalent augmented subgame value if we

conducted subgame solving in response to the action) that the opponent would have expected

to receive with that hand for the action she ultimately chose. We add this difference to ~g,

so gnew[c] = gold[c] + vbp(I1(h)) − vbp(I1(h), a), where c is the opponent poker hand that

corresponds to h ∈ I2. In future subgames, g[c] is added to valt(h) (where h corresponds to

the node where the opponent holds poker hand c). Thus if the opponent would only have a

particular hand if she previously made a “mistake” by giving up a larger expected reward and

instead choosing a (that is, vbp(I1(h)) > vbp(I1(h), a)), then we can afford to be less concerned

about that hand. This is captured by increasing valt for that hand.

If one were to solve only a single subgame before play begins, then it would be possible

to scale up the gifts dramatically. For example in the 2♠2♣ example, suppose there are 100

non-overlapping subgames following the B action and for each one the opponent could only

reach it with 1% probability if she tried to do so (e.g., there is a chance node immediately after

the B action which leads to each subgame with 1% probability). If we were to solve just one of

those subgames, then the gift for 2♠2♣ could be $100,000,000 in that subgame, because this

would still only increase the opponent’s value for the B action to $1,000,000. However, if we

were to solve all 100 subgames independently and apply this same reasoning to each subgame,

18

then the opponent’s value for the B action could increase to $100,000,000. Since applying

subgame solving in real time to any subgame we happen to encounter is, from an exploitability

standpoint, equivalent to applying subgame solving to every subgame independently, we cannot

scale up gifts and still maintain safety guarantees.2

The augmented subgame can be solved with any equilibrium-finding algorithm. In Libratus,

we used CFR+. The number of iterations of CFR+ we used varied depending on the size of the

pot. If at most $1,600 were committed to the pot by both players combined, then we used 1,000

iterations of CFR+. Otherwise, we used 1,900 iterations of CFR+. This was motivated by the

observation that subgames with larger pots were more important, due to the larger amounts of

money at stake, and that they were also faster to iterate over, due to fewer remaining actions in

the game tree.

In order to more quickly evaluate the performance of subgame solving in Libratus against

Baby Tartanian8, we employed a variance reduction technique. We first measured the perfor-

mance of the Libratus blueprint strategy (without subgame solving) against Baby Tartanian8,

which can be determined quickly due to the lack of real-time computation. Next, we randomly

chose a set of subgames starting on the third betting round from the hands played between the

two AIs and measured how much nested subgame solving would improve performance, in ex-

pectation, in each of those subgames for each set of private cards the players may be holding.

We then calculated the weighted average of those values, weighted by the probability of the

players holding each set of private cards based on the sequence of actions leading to the sub-

game. This allowed us to evaluate the improvement of nested subgame solving across a large

number of hands by solving a subgame only once. The results are in Table S1.

2In Libratus and the pseudocode in this supplementary material, the different subgames are, in effect, weighted
according to the probability that the opponent could reach those subgames, that is, the product of chance’s and our
action probabilities on the path but not the opponent’s action probabilities. In other words, each subgame gets to
take advantage of 100% of the gift, and no more or less. Any other way of splitting the gift among subgames could
also be employed as long as the reach-weighted sum of the gift pieces allocated to the subgames does not sum up

19

Algorithm 2 Safe Subgame Solving
Assume the opponent is P1 and we are P2

1: function OPPONENTACTION(S, a,~g) . Opponent chose action a. Construct and solve a subgame.
2: for each node h ∈ Stop do
3: π−i[h]← π−i(h) . The probability P1 would reach this node, if she tried to
4: for each P1 infoset I1 ∈ Stop do
5: c← the private cards P1 would hold in I1

6: vbp[I1]← vbp(I1) . Estimated optimal value of P1 infoset based on last-computed strategy
7: valt[I1]← g[c] + vbp[I1] . Add gifts from previous potential P1 mistakes

8: S′ ← CONSTRUCTSUBGAME(S, a) . Construct subgame following action a
9: SOLVEAUGMENTED(S′, ~valt, ~π−i) . Conduct safe subgame solving

10: for each P1 infoset I1 ∈ Stop do
11: c← the private cards the opponent would hold in I1

12: gnew[c]← g[c]+ vbp[I1]− vbp(I1, a) . Update gifts based on value of newly-solved subgame

13: return ~gnew . Return updated gifts vector

Further details of the self-improvement algorithm

As described in the body of this paper, Libratus’s third module is a self-improvement algorithm.

Libratus used two versions of it, which we will call Type 1 and Type 2. They are illustrated in

Figure S2. Both versions were only applied to actions in the first betting round. We now

describe both techniques in detail. In all cases, bet sizes are measured as fractions of the size of

the pot.

Each evening after the day’s games were over, Libratus determined one opponent bet size

to solve with a Type 1 self-improver and two opponent bet sizes to solve with Type 2 self-

improvers.

For the Type 2 self-improvers, the two bet sizes to add were determined by scoring each

“gap” between existing bet sizes in the abstraction. A gap is defined by two neighboring bet

sizes A and B already in the abstraction. If, during the day, an opponent chose a bet size x

such that A < x < B, then the gap’s score would increase by the distance of x from A or

to more than the entire gift.

20

B. Formally, the score would increase by min{x − A, B − x}. The two bet sizes to add (one

per Type 2 self-improver) were the pseudo-harmonic midpoints (27) of the two highest-scoring

gaps. Specifically, i f a gap between bet s izes A and B was selected, the bet s ize to add was

(A + B + 2AB)/(A + B + 2).

For the Type 1 self-improver, the bet size to add was determined by simply choosing the

most common opponent bet size (aggregated across the four opponents) from that day.

In the Type 1 self-improver, a subgame was solved using unsafe subgame solving, which

means we assume both players play according to the blueprint strategy for all moves preceding

the subgame. At the beginning of the subgame the opponent was given the choice between

folding, checking, or calling (except in the first action of the game, where calling was not

provided as a valid option), or betting the self-improvement bet size. After the subgame was

solved, the strategy in the subgame of the response to the self-improvement bet size was used

if the opponent consistently bet that particular size in the future. Specifically, if an opponent

bet that particular size for each of the last eight times he bet in that particular situation, then

Libratus would use the Type 1-created strategy to respond to the bet size. One can view the

Type 1 self-improver as enabling Libratus to somewhat exploit an opponent in a fairly safe way

if he were not playing a balanced strategy. However, during the Brains vs. AI competition the

human opponents changed the bet sizes they used almost every day in order to prevent Libratus

from calculating an effective response to their strategy. As a result, the Type 1 self-improver

played little role in the competition.

In the Type 2 self-improver, a subgame was solved in a manner similar to the Type 1 self-

improver, but with the addition of at least one default bet size that was commonly played in the

blueprint strategy (which we had computed in advance of the competition using the first module

of Libratus as described in the body of this paper). The sole role of including the default action

was to determine a balanced strategy in the game tree following the self-improvement bet size:

21

we do not want to assume that the opponent uses the selected new bet size for all private cards.

For computational speed, our algorithm used a significantly coarser abstraction following the

default action, and its strategy was discarded after subgame solving finished, because that bet

size was already in the blueprint. Using unsafe subgame solving with default actions still has

theoretical bounds on exploitability when applied to the first action of the game—because there

is no assumption being made about the opponent’s prior play. For situations other than the

first action of the game, unsafe subgame solving lacks theoretical guarantees, but empirically

we found it to produce competitive strategies with generally low exploitability—as shown, for

example, in the experiments discussed in the body of this paper. The strategy in the subgame

of the response to the self-improvement bet size (but not the default bet size) was added to the

overall blueprint strategy of Libratus. If an opponent chose an action that was close to the self-

improvement bet size, then Libratus would use the self-improvement strategy as a response.

This is in contrast to the Type 1 self-improvements, which were used only if the opponent

played that bet size fairly consistently in that point of the game, as described above. The Type 2

self-improver played a more significant role in the competition. By the end of the competition,

roughly half of all the hands played by Libratus were played using a strategy determined by it.

Post-processing

Post-processing the action probabilities before acting is a common and beneficial technique

used in the AI community working on imperfect-information games. The most basic post-

processing technique sets low-probability actions’ probabilities to zero and renormalizes the rest

of the probabilities so they sum to one. This is motivated in two ways. First, iterative algorithms

like CFR always have—after any finite number of iterations—some positive probability on all

actions, even ones that are not part of an equilibrium, and rounding the small probabilities

to zero facilitates getting to an exact equilibrium. Second, a solution to an abstraction is not

22

necessarily a solution to the full unabstracted game, and empirical results suggests that high-

probability actions in abstractions are more likely to do well when played in the full game (68).

However, setting low-probability actions to zero also potentially increases the exploitability

of an AI because its strategy may no longer be balanced and may be more predictable. We

actually have observed this in our 2015 AI Claudico. For example, limping (not betting in the

first action in the game and instead simply calling) is an action that most HUNL AIs use, but

with a small probability among all hands. Suppose an AI limps with 6% probability with bad

hands and 4% probability with good hands. When faced with a limp, it would be difficult to

determine whether the AI has a good hand or a bad hand. However, applying a threshold at 5%

such that any action with less than 5% probability is set to zero probability would result in the

AI only limping with bad hands, which would be extremely exploitable!

Libratus uses a new form of post-processing we refer to as range thresholding that mitigates

the exploitability typically caused by post-processing. Rather than set any probability below

some threshold to zero, range thresholding only reduces an action to zero probability if every

hand has a probability below that threshold. In the limping example, using range thresholding

with a threshold of 5% would be no different than not applying thresholding at all, because at

least one hand limps with probability above 5%. Alternatively, if the threshold were set to 7%,

then the AI would not limp in any situation. Libratus used a range threshold of 4% on the first

two betting rounds during the 2017 Brains vs. AI competition.

Proof of Theorem 1

Without loss of generality, we assume that it is player P2 who conducts subgame solving. We

define a node h in a subgame S as earliest-reachable if there does not exist a node h′ ∈ S such

that h′ ≺ h. For each earliest-reachable node h ∈ S, let hr be its parent and aS be the action

leading to h such that hr ·aS = h. We require hr to be a P1 node; if it is not, then we can simply

23

insert a P1 node with only a single action between hr and h. Let Sr be the set of all hr for S.

Applying subgame solving to subgames as they are reached during play is equivalent to

applying subgame solving to every subgame before play begins, so we can phrase what follows

in the context of all subgames being solved before play begins. Let σ′2 be the P2 strategy

produced after subgame solving is applied to every subgame. We show inductively that for any

P1 infoset I1 6∈ S where it is P1’s turn to move (i.e., P (I1) = P1), the counterfactual best

response values for P1 satisfy

CBV σ′2(I1) ≤ CBV σ∗2 (I1) + 2∆ (S1)

Define Succ(I1, a) as the set of infosets belonging to P1 that follow action a in I1 and where it

is P1’s turn and where P1 has not had a turn since a, as well as terminal nodes follow action a in

I1 without P1 getting a turn. Formally, a terminal node z ∈ Z is in Succ(I1, a) if there exists a

history h ∈ I1 such that h · a � z and there does not exist a history h′ such that P (h′) = P1 and

h · a � h′ ≺ z. Additionally, an infoset I ′1 belonging to P1 is in Succ(I1, a) if P (I ′1) = P1 and

I1 · a � I ′1 and there does not exist an earlier infoset I ′′1 belonging to P1 such that P (I ′′1) = P1

and I ′ · a � I ′′1 ≺ I ′1. Define Succ(I1) as ∪a∈A(I1)Succ(I1, a). Similarly, we define Succ(h, a)

as the set of histories belonging to P (h) and terminals that follow action a and where P (h) has

not had a turn since a. Formally, h′ ∈ Succ(h, a) if either P (h′) = P (h) or P (h′) ∈ Z and

h · a � h′ and there does not exist a history h′′ such that P (h′′) = P (h) and h · a � h′′ ≺ h′.

Now we define a level L for each P1 infoset where it is P1’s turn and the infoset is not in the

set of subgames S.

• For immediate parents of subgames we define the level to be zero: for all I1 ∈ Sr for any

subgame S ∈ S, L(I1) = 0.

• For infoset that are not ancestors of subgames, we define the level to be zero: L(I1) = 0

for any infoset I1 that is not an ancestor of a subgame in S.

24

• For all other infosets, the level is one greater than the greatest level of its successors:

L(I1) = `+ 1 where ` = maxI′1∈Succ(I1) L(I ′1) where L(z) = 0 for terminal nodes z.

Base case of induction

First consider infosets I1 ∈ Sr for some subgame S ∈ S. We define Mσ′2(I1) = vσ(I1, aS) −

CBV σ′2(I1, aS). Consider a subgame S ∈ S. Estimated-Maxmargin subgame solving ar-

rives at a strategy σ′2 such that minI1∈Sr M
σ′2(I1) is maximized. By the assumption in the

theorem statement, |vσ(I1, aS) − CBV σ∗2 (I1, aS)| ≤ ∆ for all I1 ∈ Sr. Thus, σ∗2 satis-

fies minI1∈Sr M
σ∗2 (I1) ≥ −∆ and therefore minI1∈Sr M

σ′2(I1) ≥ −∆, because Estimated-

Maxmargin subgame solving could, at least, arrive at σ′2 = σ∗2 . From the definition of Mσ′2(I1),

this implies that for all I1 ∈ Sr, CBV σ′2(I1, aS) ≤ vσ(I1, aS) + ∆. Since by assumption

vσ(I1, aS) ≤ CBV σ∗2 (I1, aS) + ∆, this gives us CBV σ′2(I1, aS) ≤ CBV σ∗2 (I1, aS) + 2∆.

Now consider infosets I1 that are not ancestors of any subgame in S. By definition, for all

h such that h � I1 or I1 � h, and P (h) = P2, σ∗2(I2(h)) = σ2(I2(h)) = σ′2(I2(h)). Therefore,

CBV σ′2(I1) = CBV σ∗2 (I1).

So, we have shown that (S1) holds for any I1 such that L(I1) = 0.

Inductive step

Now assume that (S1) holds for any P1 infoset I1 where P (I1) = P1 and I1 6∈ S and L(I1) ≤ `.

Consider an I1 such that P (I1) = P1 and I1 6∈ S and L(I1) = `+ 1.

From the definition of CBV σ′2(I1, a), we have that for any action a ∈ A(I1),

CBV σ′2(I1, a) =
(∑
h∈I1

((
π
σ′2
−1(h)

)(
v〈CBR(σ′2),σ′2〉(h · a)

)))
/
∑
h∈I1

π
σ′2
−1(h) (S2)

Since for any h ∈ I1 there is no P1 action between a and reaching any h′ ∈ Succ(h, a), so

25

π
σ′2
1 (h · a, h′) = 1. Thus,

CBV σ′2(I1, a) =
(∑
h∈I1

(
π
σ′2
−1(h)

∑
h′∈Succ(h,a)

π
σ′2
−1(h, h′)

(
v〈CBR(σ′2),σ′2〉(h′)

)))
/
∑
h∈I1

π
σ′2
−1(h)

=
(∑
h∈I1

∑
h′∈Succ(h,a)

((
π
σ′2
−1(h′)

)
v〈CBR(σ′2),σ′2〉(h′)

))
/
∑
h∈I1

π
σ′2
−1(h)

Since the game has perfect recall,
∑

h∈I1
∑

h′∈Succ(h,a) f(h′) =
∑

I′1∈Succ(I1,a)

∑
h′∈I′1

f(h′)

for any function f . Thus,

CBV σ′2(I1, a) =
(∑
I′1∈Succ(I1,a)

∑
h′∈I′1

((
π
σ′2
−1(h′)

)(
v〈CBR(σ′2),σ′2〉(h′)

)))
/
∑
h∈I1

π
σ′2
−1(h) (S3)

From the definition of CBV σ′2(I ′1) we get

CBV σ′2(I1, a) =
(∑
I′1∈Succ(I1,a)

(
CBV σ′2(I ′1)

∑
h′∈I′1

π
σ′2
−1(h′)

))
/
∑
h∈I1

π
σ′2
−1(h) (S4)

Since (S1) holds for all I ′1 ∈ Succ(I1, a),

CBV σ′2(I1, a) ≤
(∑
I′1∈Succ(I1,a)

(
(CBV σ∗2 (I ′1) + 2∆)

∑
h′∈I′1

π
σ′2
−1(h′)

))
/
∑
h∈I1

π
σ′2
−1(h) (S5)

Since P2’s strategy is fixed according to σ2 outside of S, we have that for all I1 6∈ S, πσ
′
2
−1(I1) =

πσ2−1(I1) = π
σ∗2
−1(I1). Therefore,

CBV σ′2(I1, a) ≤
(∑
I′1∈Succ(I1,a)

(
(CBV σ∗2 (I ′1) + 2∆)

∑
h′∈I′1

π
σ∗2
−1(h′)

))
/
∑
h∈I1

π
σ∗2
−1(h) (S6)

Separating out the two addends and applying equation (S4) for CBV σ∗2 (I1, a) we get

CBV σ′2(I1, a) ≤ CBV σ∗2 (I1, a) + 2∆
((∑

I′1∈Succ(I1,a)

∑
h′∈I′1

π
σ∗2
−1(h′)

)
/
∑
h∈I1

π
σ∗2
−1(h)

)
(S7)

Since
(∑

I′1∈Succ(I1,a)

∑
h′∈I′1

π
σ∗2
−1(h′)

)
=
∑

h∈I1 π
σ∗2
−1(h) we arrive at

CBV σ′2(I1, a) ≤ CBV σ∗2 (I1, a) + 2∆ (S8)

Thus, (S1) holds for I1 as well. So, the inductive step is satisfied. Extending (S1) to the root

of the game, we get exp(σ′2) ≤ exp(σ∗2) + 2∆.

26

Figure S1: The example game of Coin Toss. “C” represents a chance node. S is a Player 2
(P2) subgame. The dotted line between the P2 nodes means that P2 cannot distinguish them.

27

Board Pot Size No subgame solving On-tree subgame solving Libratus subgame solving
TsQhTcJh 520 -75.23 -38.55 -41.41
KsKh4dTs 1092 75.21 159.78 163.91
7s4d9d9h 520 8.28 59.01 59.06
8s9sKhTd 728 95.45 99.30 117.76
5hTd5cKh 780 -247.02 -208.57 -211.50
6s9h3cAd 520 -126.85 -92.15 -59.19
As4d2cJc 520 -151.94 -86.30 -70.30
4hQd5c3s 2256 1227.03 1038.71 1007.39
QsTd8c6d 520 -13.91 28.36 38.52
5s4d9dAc 520 -150.97 -101.26 -81.42
9sAs5c2s 2600 -389.93 -349.89 -306.15
KhQcAc2s 1352 336.16 502.44 516.27
Kh7d7cQh 8580 2338.06 2651.35 2825.91
4s6sQsTd 780 -165.98 -119.19 -116.21
KsKhQd9d 520 -133.13 -120.79 -108.70
2s5dJdQs 520 -89.03 2.03 17.39
6s6hTdTc 780 155.89 177.40 193.27
Qh3d9cKd 520 -49.39 45.82 57.01
7s5dAc8s 780 -403.14 -275.20 -274.15
3s7hAdJs 520 10.33 60.96 70.35
8sAhJdKc 780 94.97 132.76 135.92
7h7d8d3s 520 9.08 72.90 76.82
7hQd4cQc 1352 1303.02 1240.78 1247.54
9s3cAc3d 520 -217.77 -132.11 -125.55
7h7d7c8s 1092 -568.40 -571.03 -590.47
Js9d2c8d 1300 552.52 646.54 681.49
Qs7h7d2s 1092 241.72 282.08 279.79
6dJcQc2h 1352 201.72 276.59 271.48
QsKhTcAc 1352 -280.37 -167.85 -165.82
3hKdJcTh 520 -131.42 -91.74 -86.58
8hJd2cKc 520 -113.94 -34.56 -18.38
2sJs3h9c 520 -174.23 -93.54 -75.81
8h4d2c6h 520 169.69 216.60 224.91
Qh5c9cAd 1352 -813.72 -633.45 -639.38
8s5h6c2d 520 155.94 179.78 188.28
4sAsAh9d 520 -78.62 5.94 10.01
7s9s3dAc 520 -190.03 -118.76 -98.08
5h4dTc6s 520 121.58 177.83 188.94
3sThJh7s 1528 469.15 614.37 631.98
8sKs4d8d 520 -122.02 -51.29 -58.84

28

Board Pot Size No subgame solving On-tree subgame solving Libratus subgame solving
7d9dQd4c 520 -117.01 -61.63 -55.00
KhQd4c2c 520 18.25 52.79 64.53
Th5dKc3c 1528 106.44 28.27 27.89
5hTdKd5d 520 -112.83 -51.58 -51.14
8sAsQd3c 520 -23.29 11.88 25.58
JsQsAh8c 520 2.00 48.29 57.12
2h4c8c7h 1092 -440.96 -302.17 -300.19
KhTdJc9d 520 149.99 252.14 258.13
8dKdJc7d 520 97.12 109.29 113.36
4s5dQc9d 520 -189.63 -148.10 -154.40
KsAdTc2c 1612 289.54 310.62 317.29
7sJs3hKh 1092 -647.40 -540.64 -543.01
As9cJcAd 1612 815.01 851.62 856.96
2sTd3c3d 520 -27.02 22.20 23.99
5s7s8hAh 1612 86.36 185.57 201.80
9s6dKc7h 520 155.74 150.35 153.13
2s8d5c7h 1612 -932.11 -699.46 -696.78
2c4c8cTc 520 179.47 194.87 192.98
2s8h2cAh 1560 -178.13 -105.25 -101.20
5h4c5cJh 780 -892.96 -810.03 -803.20
4sQdKc6d 1612 -505.65 -509.44 -500.73
4h2c5cKs 520 -221.57 -130.80 -116.83
3d8cJc3c 520 -72.23 34.85 38.82
6s8hQhAd 520 -203.37 -111.32 -105.72
Js6c8c6h 4836 -2249.11 -2092.56 -2031.98
Js9h2d7c 1352 526.09 678.14 671.05
3h6hTdQc 520 11.64 74.34 84.66
5h8hTcTh 1352 47.53 186.05 181.73
3dTd4c6d 1560 917.74 888.56 916.29
TsTcQc5c 780 -212.49 -172.65 -168.73
3s4dKdTd 1560 1247.06 1280.26 1284.98
3s5s5c7s 1560 1265.86 1487.49 1517.39
8h8cAc3h 780 -162.50 -147.70 -149.50
4s9cTc2d 1352 -727.41 -630.83 -635.38
2c4cQc7s 520 -63.12 4.93 10.63
6h9h9c8h 520 144.15 234.16 250.82
8s7h2c3h 520 108.11 126.82 116.77
6h5d3c4d 520 42.51 107.51 113.62
9s8dQd2s 1040 924.84 898.25 913.95
Jh8dAc3c 520 -21.25 -8.82 -3.73

29

Board Pot Size No subgame solving On-tree subgame solving Libratus subgame solving
5s9h3d4d 3250 -1708.69 -1520.19 -1405.83
6s6d7cAh 780 -173.77 -191.10 -187.85
8h9d9cQh 1092 -557.55 -529.21 -514.26
3s5sAcAs 520 -175.24 -149.30 -126.65
4d8d3cTs 1528 -1820.90 -1649.05 -1656.47
Js4d8dAc 1612 -230.33 -141.24 -141.94
6d5cJcAc 520 45.69 67.99 83.00
4sKs8d6c 2600 -320.31 -252.69 -206.71
Qh3d4dAd 1092 170.19 225.92 239.47
JdAd9cJc 520 -201.31 -125.81 -126.42
As5hTcJc 520 -93.34 -85.89 -78.74
5hJh4d5d 2340 888.33 955.21 976.24
2dQd2c8d 1092 -289.68 -215.88 -213.99
Qd4cQcKd 728 -114.28 -76.71 -75.00
Js2hKh6d 520 -80.67 -57.63 -51.86
QsThQh5s 520 -39.13 -18.47 -14.80
4sQdAdQc 520 -300.33 -198.81 -196.46
7sTsAcTd 520 -178.02 -81.26 -88.38
2h3h7hTd 520 55.23 136.49 151.27
2sJs3c9c 520 -226.71 -146.81 -135.62
4dJcAc9d 2296 -1034.20 -474.41 -469.85
Ks5d7d3c 600 172.84 280.07 277.34
8h6c9cTd 840 -971.34 -777.72 -760.64
Ks5dKdAd 400 -182.61 -91.91 -95.73
3hTh2c5s 500 -34.19 16.19 17.14
6h3d8cKd 2870 -3567.41 -3081.27 -3063.21
Jh6d7d2s 400 -34.05 30.77 27.71
Qh5cAc6c 1800 -358.43 -243.44 -172.53
7hQh4cJh 840 -411.06 -289.09 -283.06
5hJd9c3c 400 -46.98 43.96 43.73
7s7hJh3c 750 428.49 499.65 512.14
7h5dKdKh 840 -722.57 -748.68 -750.67
Qh6c7c2c 500 -198.70 -106.36 -101.85
Kd2c7cJc 1500 -1037.45 -825.45 -805.20
9hAd5cQh 500 -15.98 54.23 48.47
AsAh9c4d 600 121.25 209.73 217.16
As9h4dKs 200 61.19 93.94 93.18
5hKd8c3d 500 44.38 88.45 91.13
Kh7dJdJc 500 164.96 213.16 207.76
9h7d2c2s 3720 -707.91 -111.95 -77.88

30

Board Pot Size No subgame solving On-tree subgame solving Libratus subgame solving
8hThAhJs 400 -51.38 26.14 33.01
Ah4d7d6c 400 -83.75 -49.52 -45.26
Qd4c7cAc 500 -129.45 -59.69 -62.48
As4d7c5c 400 57.90 109.01 118.80
5h9cJc6s 820 63.85 219.76 220.22
TsQcKc4s 600 -213.01 -133.21 -132.06
As5h2c3s 400 -41.16 -2.73 0.78
2s3d8c4s 750 790.74 825.09 832.87
2s5h9d6c 1736 -1208.04 -1009.04 -1023.91
2c6cQcKc 820 -497.50 -264.09 -261.04
KsThQhAs 500 -219.12 -132.67 -115.43
AsJd9c4h 600 -116.09 -121.14 -130.61
QsAh8d6c 500 -16.98 -8.09 -10.06
JsKhTdTh 1148 -531.94 -231.56 -233.51
Th5dAcAd 600 -43.45 58.15 59.69
Qh2cTc9h 200 18.60 13.84 25.11
5sJh4cTh 500 154.19 234.89 233.41
4s7dKcAd 400 109.78 165.07 169.29
8s7hKh9c 200 -116.57 -68.41 -61.54
8hAd2c6s 1000 43.91 202.78 275.15
Td6cQc7h 500 -15.18 4.53 -1.09
Ts6h2dAh 1200 -469.32 -158.67 -120.48
6h8c9c8s 820 190.24 208.49 211.93
8sJdKcAd 1560 -59.44 483.56 503.69
6d7c9cAs 500 -37.92 34.55 43.12
As3c6cTs 200 34.60 60.03 58.57
2h9h5c6h 500 -278.54 -201.04 -205.13
JhAhTc3h 200 14.55 30.04 26.95
3h5h5d6h 750 804.25 868.59 879.38
Js8h8dKs 800 -657.86 -422.25 -422.26
Js7d9cKh 2000 -768.82 -802.70 -729.70
4s4c5c6c 1000 289.90 463.65 492.33
4sJsAd5c 500 3.49 56.67 56.72
Qs4dTdAd 750 -50.79 47.67 51.79
7sKd4cTs 2170 -1583.66 -964.11 -973.51
2d3dJcTd 1000 248.53 389.11 401.54
9h8cAcQc 2170 72.84 364.51 364.78
3h5dKdQc 500 149.32 170.97 169.80
4s8s7h4c 600 245.88 301.93 313.03
KsJhAd3s 500 -193.76 -123.54 -128.88

31

Board Pot Size No subgame solving On-tree subgame solving Libratus subgame solving
3s6sKd9c 2050 -1207.35 -942.42 -950.63
Qs6hJc4h 900 595.00 688.62 703.47
5h6d7d9h 1000 -814.50 -696.74 -646.74
7sKh2c2h 500 -278.04 -169.95 -164.57
JdAd7c9c 200 13.40 49.60 50.96
2s2c3c4d 1000 388.22 554.00 558.09
Js4hJhKd 4100 -2391.94 -1760.21 -1732.97
Js8hJcAh 500 -93.74 -29.43 -18.92
8s2h7dAd 900 578.77 712.53 725.38
Ah7c8c6h 750 270.70 271.89 276.54
8sKsQc3d 700 -85.27 69.62 68.10
2h4h8dQh 1500 454.59 538.38 520.63
KhAdAcTh 1148 167.00 163.70 185.03
3s5d9dQh 820 -284.74 -164.53 -159.39
Kd7cJcTd 1000 58.34 143.92 159.36
Ks8d6c3c 500 -117.37 8.45 8.15
9s5h9c5d 1736 -1051.14 99.60 125.06
Ks2h3hAh 750 143.04 217.25 201.98
5s9sQhQc 500 8.95 27.56 32.80
2sJh7c3s 1200 403.91 672.09 706.53
3sAsKh7h 600 77.68 135.95 146.43
JhJd6c5h 800 186.89 281.78 280.71
3s6sTcKs 500 -237.53 -159.56 -161.37
6s2h9c8c 500 -165.05 -121.95 -125.86
2sQh8d2d 1148 -861.12 -464.76 -467.09
As2h6hKc 700 -201.82 -105.74 -93.06
8hKd5c4s 500 -148.49 -15.04 -14.16
7s4hJcJd 400 -76.97 -45.56 -33.83
Ad4c5c7s 750 285.43 371.72 389.62
Qh2d9d5d 750 379.64 455.14 468.81
7hJhJc8s 500 -129.49 -59.89 -58.37
As5h4d5c 400 -179.49 -116.61 -110.66
6hTh9dJh 2050 -250.22 -137.60 -152.96
4s6s6hTh 1000 203.52 315.36 313.61
8d9cQcKd 500 -197.92 -125.92 -125.19
6s5dJc6d 2050 -1265.94 -986.52 -1003.76
Kh9d4cJh 1000 -156.65 40.33 19.59
4sJdQd7s 200 81.59 100.17 108.55
7h3d3cTh 1000 524.70 652.06 657.05
5sAhQc4c 600 -237.31 -101.09 -104.96

Table S1: Performance against Baby Tartanian8 in various subgames. Measured in mbb/h.
“No subgame solving” measures Libratus’s blueprint strategy using fold-call-bet purifica-
tion (31). “On-tree subgame” solving shows the performance of Libratus with nested subgame
solving using only bet sizes in the abstraction of Baby Tartanian8. “Libratus subgame solving”
measures the full strength of our final A I. N o p ost-processing w as u sed i n t he s ubgames in
nested subgame solving.

32

Figure S2: Self-improvement. The solid blue lines are existing actions in the abstraction. The
dashed blue lines are bet sizes used by the opponents that are not in the abstraction. The red
arrow shows the bet sizes included in the subgame solving. Top: Type 1 self-improvement.
Here the red arrow is the most commonly played opponent bet size from the previous day. We
solve a subgame following this bet size and add its solution to the blueprint strategy. Bottom:
Type 2 self-improvement. Here the top red arrow is the highest-score opponent bet size from
the previous day and the bottom red arrow is a default bet size that is already present in the
blueprint abstraction. We add only the response to the top red arrow to the blueprint strategy.

33

References and Notes

1. J. Schaeffer, One Jump Ahead: Challenging Human Supremacy in Checkers (Springer, 1997).

2. M. Campbell, A. J. Hoane Jr., F.-H. Hsu, Deep Blue. Artif. Intell. 134, 57–83 (2002).
doi:10.1016/S0004-3702(01)00129-1

3. D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N.
Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, D.
Hassabis, Mastering the game of Go with deep neural networks and tree search. Nature
529, 484–489 (2016). doi:10.1038/nature16961 Medline

4. See supplementary materials for more details.

5. J. Nash, “Non-cooperative games,” thesis, Princeton University (1950).

6. J. F. Nash, L. S. Shapley, Contributions to the Theory of Games, H. W. Kuhn, A. W. Tucker,
Eds. (Princeton Univ. Press, 1950), vol. 1, pp. 105–116.

7. D. A. Waterman, Generalization learning techniques for automating the learning of heuristics.
Artif. Intell. 1, 121–170 (1970). doi:10.1016/0004-3702(70)90004-4

8. J. Shi, M. Littman, in CG ’00: Revised Papers from the Second International Conference on
Computers and Games (Springer, 2002), pp. 333–345.

9. D. Billings et al., in Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI) (Morgan Kaufmann Publishers, San Francisco, 2003), pp. 661–668.

10. A. Gilpin, T. Sandholm, in Proceedings of the National Conference on Artificial Intelligence
(AAAI) (AAAI Press, 2005), pp. 1684–1685.

11. M. Bowling, N. Burch, M. Johanson, O. Tammelin, Heads-up limit hold’em poker is solved.
Science 347, 145–149 (2015). doi:10.1126/science.1259433 Medline

12. Libratus is Latin and means balanced (for approximating Nash equilibrium) and forceful (for
its powerful play style and strength).

13. An imperfect-information subgame (which we refer to simply as a subgame) is defined
differently than how a subgame is usually defined in game theory. The usual definition
requires that a subgame starts with the players knowing the exact state of the game, that
is, no information is hidden from any player. Here, an imperfect-information subgame is
determined by information that is common knowledge to the players. For example, in
poker, a subgame is defined by the sequence of visible board cards and actions the
players have taken so far. Every possible combination of private cards—that is, every
node in the game tree which is consistent with the common knowledge—is a root of this
subgame. Any node that descends from a root node is also included in the subgame. A
formal definition is provided in the supplementary material.

14. N. Burch, M. Johanson, M. Bowling, in AAAI Conference on Artificial Intelligence (AAAI)
(AAAI Press, 2014), pp. 602–608.

15. M. Moravcik, M. Schmid, K. Ha, M. Hladik, S. Gaukrodger, in AAAI Conference on
Artificial Intelligence (AAAI) (AAAI Press, 2016).

34

http://dx.doi.org/10.1016/S0004-3702(01)00129-1
http://dx.doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26819042&dopt=Abstract
http://dx.doi.org/10.1016/0004-3702(70)90004-4
http://dx.doi.org/10.1126/science.1259433
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25574016&dopt=Abstract

16. E. Jackson, in AAAI Workshop on Computer Poker and Imperfect Information (AAAI Press,
2014).

17. M. Zinkevich, M. Johanson, M. H. Bowling, C. Piccione, in Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS) (Neural Information
Processing Systems Foundation, Inc., 2007), pp. 1729–1736.

18. Y. Nesterov, Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim.
16, 235–249 (2005). doi:10.1137/S1052623403422285

19. S. Hoda, A. Gilpin, J. Peña, T. Sandholm, Smoothing techniques for computing Nash
equilibria of sequential games. Math. Oper. Res. 35, 494–512 (2010).
doi:10.1287/moor.1100.0452

20. A. Gilpin, J. Peña, T. Sandholm, First-order algorithm with O(ln(1/ϵ)) convergence for ϵ-
equilibrium in two-person zero-sum games. Math. Program. 133, 279–298 (2012).
doi:10.1007/s10107-010-0430-2.

21. C. Kroer, K. Waugh, F. Klnç-Karzan, T. Sandholm, in Proceedings of the ACM Conference
on Economics and Computation (EC) (ACM, New York, 2017).

22. O. Tammelin, N. Burch, M. Johanson, M. Bowling, in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI) (AAAI Press, 2015), pp. 645–652.

23. The version of HUNL that we refer to, which is used in the Annual Computer Poker
Competition, allows bets in increments of $1, with each player having $20,000 at the
beginning of a hand.

24. M. Johanson, “Measuring the size of large no-limit poker games,” (Technical Report, Univ.
of Alberta Libraries, 2013).

25. A. Gilpin, T. Sandholm, T. B. Sørensen, in Proceedings of the Seventh International Joint
Conference on Autonomous Agents and Multiagent Systems (International Foundation for
Autonomous Agents and Multiagent Systems, 2008), vol. 2, pp. 911–918.

26. D. Schnizlein, M. Bowling, D. Szafron, in Proceedings of the Twenty-First International
Joint Conference on Artificial Intelligence (AAAI Press, 2009), pp. 278–284.

27. S. Ganzfried, T. Sandholm, in Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence (AAAI Press, 2013), pp. 120–128.

28. Annual Computer Poker Competition; www.computerpokercompetition.org.

29. N. Brown, T. Sandholm, in Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence (AAAI) (AAAI Press, 2014), pp. 594–601.

30. N. Brown, T. Sandholm, in Proceedings of the Twenty-Fifth International Joint Conference
on Artificial Intelligence (IJCAI-16) (AAAI Press, 2016), pp. 4238–4239.

31. N. Brown, S. Ganzfried, T. Sandholm, in Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems (International Foundation for
Autonomous Agents and Multiagent Systems, 2015), pp. 7–15.

32. N. Brown, S. Ganzfried, T. Sandholm, in AAAI Conference on Artificial Intelligence (AAAI)
(AAAI Press, 2015), pp. 4270–4271.

35

http://dx.doi.org/10.1137/S1052623403422285
http://dx.doi.org/10.1287/moor.1100.0452
http://dx.doi.org/10.1007/s10107-010-0430-2
http://www.computerpokercompetition.org/

33. M. Johanson, N. Burch, R. Valenzano, M. Bowling, in Proceedings of the 2013 International
Conference on Autonomous Agents and Multiagent Systems (International Foundation for
Autonomous Agents and Multiagent Systems, 2013), pp. 271–278.

34. M. Lanctot, K. Waugh, M. Zinkevich, M. Bowling, in Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS) (Neural Information Processing
Systems Foundation, Inc., 2009), pp. 1078–1086.

35. R. Gibson, M. Lanctot, N. Burch, D. Szafron, M. Bowling, in Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence (AAAI Press, 2012), pp. 1355–1361.

36. M. Johanson, N. Bard, M. Lanctot, R. Gibson, M. Bowling, in Proceedings of the 11th
International Conference on Autonomous Agents and Multiagent Systems (International
Foundation for Autonomous Agents and Multiagent Systems, 2012), vol. 2, pp. 837–846.

37. R. Gibson, “Regret minimization in games and the development of champion multiplayer
computer poker-playing agents,” thesis, University of Alberta (2014).

38. There are a number of theoretically correct ways to choose actions on the basis of their
regrets. The most common is regret matching, in which an action is chosen in proportion
to its positive regret (58). Another common choice is hedge (59, 60).

39. An action a with regret R(a) that is below a threshold C (where C is negative) is sampled
with probability K/[K + C – R(a)], where K is a positive constant. There is additionally a
floor on the sample probability. This sampling is only done for about the last half of
iterations to be run; the first half is conducted using traditional external-sampling
MCCFR. Other formulas can also be used.

40. K. Waugh et al., in Symposium on Abstraction, Reformulation, and Approximation (SARA)
(AAAI Press, 2009).

41. M. Johanson, N. Bard, N. Burch, M. Bowling, in Proceedings of the Twenty-Sixth AAAI
Conference on Artificial Intelligence (AAAI Press, 2012), pp. 1371–1379.

42. S. Ganzfried, T. Sandholm, in International Conference on Autonomous Agents and
Multiagent Systems (AAMAS) (International Foundation for Autonomous Agents and
Multiagent Systems, 2015), pp. 37–45.

43. N. Brown, T. Sandholm, Adv. Neural Inf. Process. Syst. 30, 689–699 (2017).

44. In Libratus, we considered “sufficiently small” to be situations where no additional bets or
raises could be made.

45. Despite lacking theoretical guarantees, unsafe subgame solving empirically performs well in
certain situations and requires less information to be precomputed. For this reason,
Libratus uses it once upon first reaching the third betting round, while using safe
subgame solving in all subsequent situations.

46. We solved augmented subgames using a heavily optimized form of the CFR+ algorithm (22,
61) because of the better performance of CFR+ in small games where a precise solution
is desired. The optimizations we use keep track of all possible P1 hands rather than
dealing out a single one at random.

36

47. Note that the theorem only assumes perfect recall in the actual game, not in the abstraction
that is used for computing a blueprint strategy. Furthermore, applying Estimated-
Maxmargin assumes that that subroutine maximizes the minimum margin; a sufficient
condition for doing so is that there is no abstraction in the subgame.

48. Indeed, the original purpose of safe subgame solving was merely to reduce space usage by
reconstructing subgame strategies rather than storing them.

49. Specifically, Libratus increased or decreased all its bet sizes by a percentage chosen
uniformly at random between 0 and 8%.

50. M. Moravčík, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh, M.
Johanson, M. Bowling, DeepStack: Expert-level artificial intelligence in heads-up no-
limit poker. Science 356, 508–513 (2017). doi:10.1126/science.aam6960 Medline

51. D. Billings, D. Papp, J. Schaeffer, D. Szafron, in Proceedings of the National Conference on
Artificial Intelligence (AAAI) (AAAI Press, 1998), pp. 493–499.

52. S. Ganzfried, T. Sandholm, in International Conference on Autonomous Agents and
Multiagent Systems (AAMAS) (International Foundation for Autonomous Agents and
Multiagent Systems, 2011).

53. S. Ganzfried, T. Sandholm, Safe opponent exploitation. ACM Transaction on Economics and
Computation (TEAC) 3, 1–28 (2015). doi:10.1145/2716322

54. Based on the available computing resources, we chose k = 3 so that the algorithm could
typically fix three holes to reasonable accuracy in 24 hours.

55. Baby Tartanian8 and all other AIs in the ACPC are available to ACPC participants for
benchmarking.

56. Baby Tartanian8 uses action translation in response to bet sizes that are not in its action
abstraction. Our experiments above demonstrated that action translation performs poorly
compared to subgame solving. Using only bet sizes in Baby Tartanian8’s abstraction
disentangles the effects of action translation from the improvement of nested subgame
solving. Baby Tartanian8 still used actions that were not in Libratus’s abstraction, and
therefore the experiments can be considered conservative.

57. Because both the humans and the AI adapted over the course of the competition, treating the
hands as independent is not entirely inappropriate. We include confidence figures to
provide some intuition for the variance in HUNL. In any case, 147 mbb/hand over
120,000 hands is considered a massive and unambiguous victory in HUNL.

58. S. Hart, A. Mas-Colell, A simple adaptive procedure leading to correlated equilibrium.
Econometrica 68, 1127–1150 (2000). doi:10.1111/1468-0262.00153

59. N. Littlestone, M. K. Warmuth, The weighted majority algorithm. Inf. Comput. 108, 212–261
(1994). doi:10.1006/inco.1994.1009

60. Y. Freund, R. Schapire, A decision-theoretic generalization of on-line learning and an
application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).
doi:10.1006/jcss.1997.1504

37

http://dx.doi.org/10.1126/science.aam6960
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28254783&dopt=Abstract
http://dx.doi.org/10.1145/2716322
http://dx.doi.org/10.1111/1468-0262.00153
http://dx.doi.org/10.1006/inco.1994.1009
http://dx.doi.org/10.1006/jcss.1997.1504

61. M. Johanson, K. Waugh, M. Bowling, M. Zinkevich, in Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI) (AAAI Press, 2011), pp. 258–265.

62. L. Kocsis, C. Szepesvári, in European Conference on Maching Learning (ECML) (Springer,
2006), pp. 282–293.

63. R. Coulom, Computers and Games (Springer, 2007), pp. 72–83.

64. D. E. Knuth, R. W. Moore, An analysis of alpha-beta pruning. Artif. Intell. 6, 293–326
(1975). doi:10.1016/0004-3702(75)90019-3

65. J. F. Nash, Equilibrium points in n-person games. Proc. Natl. Acad. Sci. U.S.A. 36, 48–49
(1950). doi:10.1073/pnas.36.1.48 Medline

66. N. Brown, T. Sandholm, in Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS) (2015), pp. 1972–1980.

67. N. Brown, T. Sandholm, in International Conference on Machine Learning (Proceedings of
Machine Learning Research, 2017).

68. S. Ganzfried, T. Sandholm, K. Waugh, in International Conference on Autonomous Agents
and Multiagent Systems (AAMAS) (International Foundation for Autonomous Agents and
Multiagent Systems, 2012), pp. 871–878.

38

http://dx.doi.org/10.1016/0004-3702(75)90019-3
http://dx.doi.org/10.1073/pnas.36.1.48
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16588946&dopt=Abstract

	Superhuman AI for heads-up no-limit poker: Libratus beats top professionals
	scienceSupplement.pdf
	aao1733_Brown_SM.refs.pdf
	References and Notes

