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Abstract

I model and quantify the impact of a new dimension of global integration: offshore R&D.
In the model, firms match with heterogeneous researchers to develop new product blueprints,
and then engage in offshore production and exporting. Cross-country differences in the dis-
tributions of firm managerial efficiency and researcher talent generate a “talent-acquisition”
motive for offshore R&D, while the frictions impeding offshore production and trade lead to
a “market-access” motive. I find empirical support for both motives using firm-level paten-
ting data. I find additional evidence for these motives via counterfactuals using the calibrated
model: international differences in endowment distributions and the market access motive
collectively account for 90% of the average observed level of offshore R&D. Offshore R&D in-
creases countries’ gains from global integration by a factor of 1.2 on average, with much larger
increases for developing than for developed countries. Incorporating offshore R&D also has
important implications for understanding the welfare impact of traditional forms of global in-
tegration, namely trade and offshore production.
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1 Introduction

Global integration in the form of international trade and multinational activities is one of the most
significant economic phenomena of the past decades. Its impact has become an important topic
for policy discussion and academic research. Existing studies on globalization focus on trade
and multinationals’ offshore production activities, but abstract from their offshore R&D activities,
which also occur at significant levels. Figure 1 plots the share of R&D expenditures in a country
incurred by the affiliates of foreign multinationals located in that country as a measure of offshore
R&D. Uncolored bars are for 2012, and colored bars are for the first year with available data for
each country, dating back to as early as 1985. By this measure, offshore R&D increased in most
countries in the past two decades. In 2012, foreign affiliates accounted for more than 30% of R&D
expenditures in the median country in the sample.1

Figure 1: The Level and Growth of Offshore R&D, 1985-2012

Notes: The measure for offshore R&D in country i is Total private R&D expenditures in country i by foreign firms
Total private R&D expenditures in country i . Uncolored bars indicate the value

of this variable in 2012; colored bars indicate the value at the beginning of the sample, which differs by country and dates back to as
early as 1985. Data source: OECD.

The offshore R&D decisions of multinationals could have important aggregate implications.
By determining the location and efficiency of R&D activities, offshore R&D directly affects the
income of countries. Moreover, in a world interconnected through trade and offshore production,
offshore R&D can affect income indirectly, by shaping countries’ specialization in innovation or
production.

In this paper I model and quantify the impact of offshore R&D. I address three questions. First,
what are the determinants of offshore R&D? Second, how large are the welfare gains of opening
up to offshore R&D? Third, how do these gains depend on and interact with the traditional forms

1In appendix I show that the importance of offshore R&D can also be established using international patent statistics.
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of economic integration, namely trade and offshore production?2

I develop a unified framework for firms’ global R&D and production decisions. In the model,
firms differ along two dimensions: innovation efficiency, which governs how effective a firm is
in converting researcher input into new product blueprints, and production efficiency, which go-
verns a firm’s productivity in converting production labor into output. Researchers differ in their
talent. Firms can enter foreign countries (hosts) to perform offshore R&D. In each host, the firm
matches with local researchers to develop new varieties. I model R&D as an assignment problem
between firms and researchers, in which researcher talent and firm efficiency are complements.
This setup deviates from the efficiency units assumption, and implies that quality and quantity of
researchers are not perfect substitutes, an important feature of R&D in reality.3

I embed this offshore R&D decision into a multi-country general equilibrium model of global
production and trade (Arkolakis et al., 2014). Specifically, after a product is developed by an R&D
center, whether onshore or offshore, the firm first chooses which countries to sell it to, and then
decides where to produce it. A firm from the U.S. therefore can develop a new product in the U.K.,
produce it in China, and export from there to India. These flexible decisions capture the complex
strategies employed by modern multinationals.4

The model allows for two motives for offshore R&D commonly cited by firms: “market-access”
and “talent-acquisition”.5 The former is straightforward: firms want to produce near their markets
to save on trade costs. If separating innovation from production is costly, firms have incentives
to offshore their R&D to large markets. The latter motive depends on both firm and host country
characteristics. First, it reflects the host country’s relative abundance of talented inventors, which
depends on the abundance of talented inventors—an input supply effect, and the abundance of
efficient firms competing for talent—an input demand effect. Second, because of the complemen-
tarity in innovation, host relative talent abundance interacts with firm efficiency to reinforce the
talent-acquisition motive for high-efficiency firms.

Empirically, these two motives imply that market size and relative talent abundance increase
offshore R&D into a host country, with the latter having a stronger effect for more efficient firms.
Moreover, as most models with firm heterogeneity would predict, more efficient firms enter more
countries for offshore R&D, and innovate more in each of them. I test these predictions using firm-
level patenting data from the United States Patent and Trademark Office (USPTO). I define a patent
as an output of offshore R&D in country A by a firm from country B, if its inventor is in country

2Throughout this paper, I use the term offshore production to refer to cases in which a product is produced in a
location different from where it is developed. This is related to the term “multinational production” used in recent stu-
dies (Ramondo, 2014; Ramondo and Rodrıguez-Clare, 2013; Irarrazabal et al., 2013; Arkolakis et al., 2014; and Tintelnot,
forthcoming).

3The output distribution of researchers is highly skewed. Akcigit et al. (2015) shows that the average top 1% inventor
has 1019 lifetime citations, while the median inventor has only 11.

4DuPont offers a good example. Headquartered in Delaware, U.S., it has major R&D centers located in the U.S.,
Brazil, China, Switzerland, Korea, Germany, and Japan. Moreover, it has production facilities in 19 countries, from
which it serves around 90 countries.

5According to firm-level surveys (see, for example, Thursby and Thursby, 2006), the quality of research personnel
and host country market potential are the two most important factors firms consider, when choosing where to build
their offshore R&D centers.
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A and its owner is in country B. Empirical exercises based on this measure confirm the model
predictions. In addition to these direct model implications, the assumption of complementarity
between firm efficiency and researcher talent also implies that efficient firms match with talented
inventors. I provide evidence for complementarity in the appendix.

I proceed to examine the quantitative implications of the model by calibrating it to 25 coun-
tries and a composite of 22 other countries. I parameterize each country’s distribution of firm
efficiency using the World Management Survey developed by Bloom et al. (2012), and its talent
distribution using the international cognitive test score database developed by Hanushek and
Woessmann (2012). I determine other parameters by matching various statistics of the firm size
distribution in the U.S. and the intensities of bilateral international activities, including trade, offs-
hore production, and offshore R&D. The model reasonably matches several non-targeted patterns
in the data, while an otherwise similar model without complementarity between firm efficiency
and researcher talent does not.

I quantify the importance of international differences in the distributions of firm efficiency and
researcher talent in explaining the observed level of offshore R&D. I eliminate the incentives of
offshore R&D arising from these distribution differences by first giving each individual country
the management distribution of U.S. (the highest in the world), and then the talent distribution of
Brazil (the lowest in the world). The former reduces the average level of offshore R&D by around
three quarters, whereas the latter reduces this average by around one third. So differences in
the distributions of talent and management efficiency are an important driving force for offshore
R&D.

I further examine how a country’s access to foreign markets through exporting, and to foreign
producers through offshore production, affect its attractiveness as a destination for R&D. While
both consumer and producer access increase the return to innovation in partial equilibrium, I find
that they have opposite general equilibrium effects: consumer access reduces inward offshore
R&D, while producer access increases it. Therefore, increasing access to foreign markets through
reducing exporting costs would not necessarily help a country in attracting R&D-intensive FDI.
Country specialization in innovation or production is the key to understanding this result. When
a country loses access to foreign consumers through exporting, its competitiveness in production
weakens, which lowers wages and makes it more attractive as a host for offshore R&D centers. As
a result, it specializes more in innovation, and firms do R&D there and offshore their production
to other countries. Such specialization is not possible without offshore production, so when both
consumer and producer access are shut down, the average offshore R&D across countries decrea-
ses to less than half of the benchmark level.

Together, these two sets of experiments suggest that the talent-acquisition and market-access
motives in the model are strong enough to account for the observed level of offshore R&D on
average. I further examine the normative implications of offshore R&D. Under a special case, I
derive an analytic expression for the model-implied gains from openness, which augments the ex-
pression in Arkolakis et al. (2014) with an additional term that captures the importance of foreign

4



companies in domestic R&D.6 The expression makes it clear that offshore R&D represents a new
channel for countries to benefit from global integration. I use the calibrated model to evaluate
the quantitative relevance of this channel. The average welfare gains from offshore R&D, defined
analogously to the gains from trade, are around 2.5% of real income. Compared to a restricted
version of the model with only trade and offshore production, the welfare gains from openness in
the full model with offshore R&D are larger by a factor of 1.2. Importantly, this amplification is
substantially larger for emerging countries than for developed countries, mainly because a larger
share of R&D in emerging countries is carried out by foreign affiliates. Overlooking this channel
therefore will not only result in underestimating the gains from globalization, but also bias the
assessment of the relative size of the welfare gains across countries.

Existing quantitative studies on multinational activities do not separately model offshore R&D
and offshore production, even though they are very different activities that can be targeted by spe-
cific policies.7 Is this an innocuous assumption for policy simulations? To answer this question,
I compare the effects of policies designed to promote these two multinational activities, focusing
on China and India as an example.8 First, I reduce the inward offshore R&D costs in these two
countries; second, I reduce inward offshore production costs. I find that, in the first experiment,
China and India reap most of the benefits, whereas in the second experiment, developed coun-
tries also benefit significantly. The gains are small for developed countries in the first experiment
because offshore R&D liberalization weakens the comparative advantage of China and India in
production, which reduces the welfare gains from global specialization for everyone. In the se-
cond experiment, in contrast, the changes are more aligned with countries’ comparative advan-
tage. This comparison highlights the different implications for other countries of liberalization in
offshore R&D and production. Such differences are especially relevant for studying multilateral
investment agreements.

Offshore R&D also has implications for the welfare gains from other types of economic open-
ness. To make this point, I perform an experiment with the same unilateral reductions in inward
offshore production costs as in the previous experiment, but in a restricted version of the model
without offshore R&D. Compared to the previous experiment, this experiment leads to substan-
tially higher welfare gains for developed countries, and lower welfare gains for India and China.
The distribution of profit from innovation is the key to the difference. More offshore production
in China and India increases wages and reduces the profits from performing R&D there. With the
equilibrium level of offshore R&D, the profit decreases are shared among domestic and foreign
firms in these two countries; without offshore R&D, all the losses would be borne by domestic
firms. This experiment shows that it is important to model offshore R&D, even if one’s goal is to

6Gains from openness is defined as the change in real income as a country moves from complete isolation to the
observed equilibrium.

7For example, countries can grant tax credits or open their borders specifically to R&D intensive FDI. An example is
the U.K. “patent box,” which reduced the corporate tax rate on revenues from R&D by 10 p.p.

8This policy evaluation is interesting in its own right because these two emerging giants are becoming popular
destinations for offshore activities. Related to this trend, their governments are attempting to attract more foreign
companies, especially R&D intensive ones, by cutting red tape and speeding up the approval process.
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evaluate the effects of offshore production.
The rest of this paper is organized as follows. I review related literature in the next section. In

Section 3 I describe the theoretical framework, and derive testable implications. In Section 4 I test
these implications empirically. I then calibrate the model in Section 5, and perform counterfactual
exercises in Section 6. I conclude and discuss future directions in Section 7.

2 Related Literature

This paper is related to the recent literature that quantifies the gains from globalization, especially
studies on the aggregate implications of technological transfer through multinational activities
(see, among others, McGrattan and Prescott, 2009; Burstein and Monge-Naranjo, 2009; Ramondo
and Rodrıguez-Clare, 2013; Arkolakis et al., 2014; Irarrazabal et al., 2013; Tintelnot, forthcoming;
Alviarez, 2016; and Holmes et al., 2015).9 Within this literature, the most closely related paper is
Arkolakis et al. (2014), which studies the welfare gains from trade and offshore production. The
present paper differs in two aspects. First, rather than treating innovation efficiency of a country as
a single exogenous parameter, I decompose it into two measurable components, firm innovation
efficiency and researcher talent, and examine the role of each in shaping a country’s comparative
advantage in innovation. Second, I allow firms to perform offshore R&D by mobilizing their
managerial capacity abroad, so a country’s comparative advantage in innovation is endogenous. I
show that this channel has quantitatively important implications for both the gains from openness,
and the effect of specific policy changes.

This paper is also related to the literature explaining the pattern of FDI, dating at least as far
back as the theoretical work by Helpman (1984) and Markusen (1984) (for horizontal and verti-
cal FDI, respectively). More recently, researchers have examined the determinants of M&A FDI
(Nocke and Yeaple, 2007; Nocke and Yeaple, 2008; and Head and Ries, 2008), and have incorpo-
rated firm heterogeneity into the model (Helpman et al., 2004).10 This paper contributes to this
literature in two ways. Theoretically, I outline a rich model of R&D, which can be viewed as a
model of FDI with two-tiered vertical linkage: one between headquarters and R&D centers, and
one between R&D centers and production sites. This structure allows the model to capture the
complex strategies frequently seen in modern multinationals, in a way that existing two-country
models of offshore R&D cannot (Gersbach and Schmutzler, 2011). Empirically, I test model pre-
dictions using patenting information at the USPTO for firms from multiple countries, and show
that relative talent abundance and firm efficiency matter for offshore R&D in a way that is consis-
tent with the model.11

9See Antràs and Yeaple (2014) for a recent review of the literature on multinational corporations. Also see Costinot
and Rodriguez-Clare (2014) for a review of quantitative studies on the aggregate implications of international trade,
which encompasses the bulk of the research on the gains from globalization.

10Studies have also examined empirically the impact on FDI flows of various factors, including skill endowments
(Yeaple, 2003), institutions (Alfaro et al., 2008), and taxes and corruption (Wei, 2000).

11The empirical results complement the management literature on firms’ incentives in doing offshore R&D, most of
which are either based on firms’ self-reported incentives or focus on firms in/from a single region. See, for example,
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In terms of modeling, this paper is related to a number of studies that use an assignment
framework to understand international trade and offshoring.12 I apply matching framework to
innovation decisions in a model of multinational production and trade, and quantify the effects of
complementarity between firms and researchers. In doing so, I develop a computational algorithm
that can solve the matching function efficiently in the presence of multiple countries and when
endogenous offshore R&D decisions lead to discontinuities in innovation efficiency distributions.
This setup and computational algorithm could have applications in other contexts.13 In addition,
while existing studies document positive assortative matching in general labor markets and the
market for managers, this paper is, to my knowledge, the first to document positive assortative
matching between inventors and firms.14

This paper’s focus on international cooperation in R&D is shared by several recent papers
(Kerr and Kerr, 2014; Kerr et al., 2016; and Branstetter et al., 2013). These papers discuss inter-
national cooperation either among inventors from different countries, or between inventors and
firms from different countries, made possible by international migration or multinational activi-
ties. This paper contributes to this literature by developing a model of offshore R&D, testing its
specific predictions, and quantifying the aggregate implications of offshore R&D.

3 A Model of Offshore R&D and Production

This section sets up the model and describes firms’ global innovation and operation decisions.

3.1 Environment

There are N countries in the model, indexed by i = 1, 2, ...N. Country i is endowed with LR
i

measure of researchers, who differ in their talent, θ ∈ Θ, distributed according to Hi(θ), and LP
i

measure of homogenous production workers.15 Researchers work with R&D centers to develop
new differentiated varieties. Production workers manufacture these varieties and perform opera-
tional tasks for R&D centers (in the form of fixed costs). Country i is also endowed with Ei measure
of heterogeneous firms with different innovation efficiencies, z̃R ∈ Z̃R, distributed according to
GE

i (z̃
R). Firms build R&D centers in different countries, which then recruit local researchers to

develop new varieties. I use Ri to denote the measure of R&D centers in country i. In equilibrium
Ri is an endogenous outcome determined by firms’ offshore R&D decisions.

Ambos (2005), Shimizutani and Todo (2008), and Ito and Wakasugi (2007). See also Hall (2011) for a review.
12See, among others, Grossman and Maggi (2000), Yeaple (2005), Costinot and Vogel (2010), and Antràs et al. (2006).
13Roys and Seshadri (2014) quantifies a general equilibrium model of team production based on Antràs et al. (2006)

in a closed-economy setting. Their model fixes the team size each of manager exogenously, so wages do not play an
allocative role. In the present paper, wages determine team size and firm size distribution.

14Existing research mostly focuses on the match between workers in general and firms (see for example, Abowd et
al., 1999 and the references thereto). More recently, research has focused on the match between firms/projects and
CEOs (Terviö, 2008, among others).

15The talent distribution in a country reflects the quality of the education system, education choice, as well as cultural
traits such as openness to innovation. By taking the talent distribution as given, this paper abstracts from the effect of
international integration on these factors.
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The representative consumer in country i decides how much to spend on each variety, accor-
ding to the following preference:

Ui = (
∫

Ωi

qi(ω)
σ−1

σ dω)
σ

σ−1 ,

where Ωi denotes the set of product varieties available in country i, qi(ω) is the consumption of
variety ω, and σ > 1 is the elasticity of substitution. Let the aggregate consumption expenditure
in country i be Xi. The demand for variety ω is:

qi(ω) = pi(ω)−σ Xi

Pi
1−σ

,

where Pi
1−σ =

∫
Ωi

pi(ω)1−σdω is the ideal demand price index aggregated over pi(ω), the price
of variety ω in country i.

3.2 Firm Decisions: Overview

This subsection overviews firms’ decisions. In the model, firms operate in multiple countries, and
make sequential decisions on R&D, production, and exporting. I will use the following indexing
conventions throughout this paper: o denotes a firm’s headquarters, that is, the country where
a firm originates; i denotes the country where a product is developed—the location of the R&D
center; l denotes the country where the product is manufactured; and d denotes the destination
country where it is consumed.

Consider a firm from country o. Knowing its innovation efficiency in the home country, z̃R,
the firm decides how many R&D centers to open and in which countries. To open an R&D center
in country i, it pays a fixed cost of cR

i in country i production labor. An R&D center’s innovation
efficiency depends on that of its parent.16 Motivated by evidence on spatial frictions in know-
ledge transfers within firms (see, for example, Irarrazabal et al., 2013; Keller and Yeaple, 2013),
I assume that firms can only transfer part of their innovation management efficiency to offshore
R&D centers. Letting φR

oi ≤ 1 be the proportion of innovation efficiency that can be transferred,
the innovation management efficiency for an R&D center in country i operated by a country o firm
is zR = z̃RφR

oi. This efficiency governs how many varieties can be developed by a given number of
researchers.

Innovative firms are not always the most efficient in carrying out manufacturing. To allow for
this heterogeneity, each R&D center upon entry also obtains a random draw of production ma-
nagement efficiency, denoted zP ∈ ZP, which is common to all products developed by the R&D
center. To capture positive correlation between innovation efficiency and production efficiency,
the distribution from which zP is drawn increases in zR in the sense of first-order stochastic domi-

16This assumption follows a long tradition in the theory of multinationals, see, for example, Helpman, 1984; Helpman
et al. (2004); and Nocke and Yeaple (2008). Empirically, Guadalupe et al. (2012) documents an increase in innovation
and adoption of foreign technology upon acquisition by foreign companies.
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Figure 2: Firm’s Two-tiered Decisions

(a) Offshore R&D Decisions
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(b) Offshore Production and Export
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nance. I use GP(zP|zR) to denote the CDF for production efficiency draws, with gP(zP|zR) being
the corresponding probability density function (PDF).17 This offshore R&D module is illustrated
in Figure 2a. As the figure indicates, firms can open multiple R&D centers in different countries,
but at most one R&D center in each country.

Given the production and innovation efficiency of affiliated R&D centers, (zP, zR), firms recruit
researchers in each center to develop new differentiated varieties, and decide which countries to
sell their products to. To sell products to destination country d, a per-variety fixed marketing cost
of cM

d in terms of country d production labor needs to be paid.
As Figure 2b indicates, firms can potentially manufacture products developed by their R&D

centers in a third country l , where they do not necessarily perform R&D, and then export to des-
tination countries. By separating production from R&D (offshore production), firms can take ad-
vantage of cheaper production labor and save on shipping fees. However, geographic separation
makes it difficult for R&D centers to communicate with production plants, reducing production
efficiency. I use φP

il ≤ 1 to denote the fraction of productivity that a firm can transfer from its
R&D center in country i to production site in country l. For an R&D center with production ef-
ficiency zP, the preserved plant-level offshore productivity in country l is zPφP

il . I further assume
that there is a stochastic element, ηl , idiosyncratic to a production site and a variety, which enters
productivity multiplicatively, so the variety-level productivity in l is zPφP

il ηl . The cost of producing

and delivering one unit of product is wP
l τld

zPφP
il ηl

, which takes into account the cost of production labor,

wP
l , and shipping fee, τld.

In the model, firms perform offshore R&D for several reasons. First, if a country is relatively
abundant in talented inventors, foreign firms might want to enter to make full use of their skills.
Anecdotes abound about MNCs establishing offshore R&D centers in order to tap into the local
talent pool. Google, for instance, recently announced a plan to train two million Android develo-
pers in India within the next three years. According to a survey of 200 R&D executives (Thursby
and Thursby, 2006), MNCs rank being close to highly qualified R&D personnel as the most im-
portant factor for the location choice of R&D centers in their home countries and other developed
countries, and as the second most important factor, right after growth potential, for their new R&D
centers in emerging economies.

The aforementioned production and trade decisions also imply that firms might choose to
perform R&D in places close to major destination markets, or places with good access to countries
with cheap production labor, in order to produce and distribute their products more efficiently.

By allowing for both offshore R&D and production decisions, the model captures the com-
plexity of multinationals’ global strategies. This stands in contrast to existing quantitative studies
of multinationals that do not allow for offshore R&D. Such restriction might not be important
if R&D activities performed by foreign affiliates are simply product adaption to local markets, a

17Under this assumption, the production management efficiency is specific to each R&D center. R&D centers with
different innovation management efficiencies affiliated with the same parent will draw from different distributions. An
alternative interpretation of this production management efficiency is the quality of products developed by an R&D
center.
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“by-product” of offshore production. Figure 3 demonstrates that, while U.S. multinationals’ R&D
expenditures in host countries increase strongly with host income, there is no such relationship
for their overall employment. So product adaption unlikely to be the whole story, and offshore
R&D is not simply a by-product of offshore production.

Figure 3: Overseas R&D and Employment by U.S. Multinationals

(a) U.S. Multinational Affiliate R&D (b) U.S. Multinational Affiliate Employment

Notes: The left panel plots the log of total R&D expenditures by U.S. multinationals in each host country against host income. The
right panel plots the total employment of U.S. multinationals against host income. Data source: Bureau of Economic Analysis.

Importantly, I assume that different varieties developed by a firm, either in the same or in dif-
ferent R&D centers, are differentiated from each other and from varieties developed by all other
firms. Such an assumption is consistent with how R&D is organized in many multinational firms.
General Electric, for example, organizes its ten research labs by scientific disciplines in five coun-
tries (the U.S., Germany, India, China, and Brazil).18 19 This assumption implies that firms make
offshore R&D decisions for each country independently and that R&D centers affiliated with the
same firm operate as if they are independent from each other.

Given this independence, in the remainder of this section, I first consider the production and
trade decision of a firm, after a variety has been developed. I then describe the innovation decision
of each R&D center, and firms’ decisions to build offshore R&D centers. Finally, I characterize the
market for researchers and analyze the welfare gains from openness under a special case.

18Alternatively, this assumption can be interpreted as capturing M&A FDI. More than 70% of FDI flows in the data
are in the form of mergers and acquisitions (Nocke and Yeaple, 2008). One explanation for this observation is that, by
transferring know-how and managerial capacity to targets, acquiring firms can improve the operating efficiency of the
targets. The differentiated-variety assumption adopted in the present paper is consistent with this perspective of FDI—
multinationals transfer their managerial technology to newly acquired foreign R&D centers, and increase the efficiency
of these R&D centers in carrying out their independent product development.

19This assumption treats R&D at headquarters and R&D in offshore centers symmetrically. Recently, Bilir and Mora-
les (2016) estimates the effects of R&D on productivity for multinational firms. They find that R&D at headquarters have
stronger spillover effects to foreign affiliates than R&D at affiliates to other affiliates. The current model cannot account
for this finding. But an extension of the model that allows firms to first invest in R&D to build up "core management
capacity" before performing product innovation at home and abroad would be consistent with this finding.
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3.3 Production and Trade

Consider a variety developed by an R&D center (zP, zR) in country i, which can potentially be
produced in any country by production labor using a linear production technology. For each vari-
ety, an R&D center obtains a vector of N idiosyncratic productivity draws, one for each potential
production site, denoted η = (η1, η2, .., ηN). I assume that ηl is independent across countries,
and follows a Frechet distribution: F(x) ≡ Prob(η ≤ x) = exp(−Λlx−δ), where Λl governs the
mean of the draws for country l, and δ governs the dispersion of the draws across varieties and
countries. The productivity for a variety in country l is: zPφilηl .

Letting wp
l denote the wage rate for each unit of production labor in country l, the cost of

serving country d by producing in country l is cild =
wp

l τld

zPφ
p
ilηl

, where τld is the iceberg shipping cost
from l to d. Given the monopolistic competition market structure, the price for a variety sold in
country d, if produced in country l, is

pild =
σ

σ− 1
wp

l τld

zPφ
p
ilηl

.

Conditional on serving destination market d, a firm chooses the lowest cost production location
for each of its varieties. Because there are no fixed costs in offshore production, all countries are
potentially production sites. The price of this variety in country d is simply the lowest one among
all possible choices:

pid(η) = minl{
σ

σ− 1
wp

l τld

zPφ
p
ilηl
}.

For each variety and each destination market, production will take place in one country. However,
since each R&D center develops a continuum of varieties, in equilibrium, a firm will serve each
destination through all countries in the world.20 For tractability, I assume that each R&D center
needs to decide first which destination markets to enter and pays the fixed marketing cost before
knowing the idiosyncratic country-specific productivity draws, so firms make destination market
entry decisions based on expected profits. The expected per-variety profit from market d for the
R&D center from country i , defined as πd

i (z
P), is

πd
i (z

P) =
1
σ
(

σ

σ− 1
)1−σΓ(

δ + 1− σ

δ
)Pσ−1

d Xd(
1
zP )

1−σΨ
σ−1

δ

id − cM
d wp

d ,

where Γ is the Gamma function, and Ψid = ∑l Λl(
wp

l τln

φ
p
il
)−δ. The first term in this expression is cal-

culated from 1
σ Pσ−1

d Xd
∫

minl(pild(η)
1−σ)dF̃(η), with F̃(η) being the distribution of η = (η1, η2, ..., ηN).

This expected profit increases in the production efficiency of an R&D center, zP, so there exists
a threshold ẑp

id such that R&D centers from i will expend marketing costs and enter country d if

20This result implies that the model cannot capture the extensive-margin of firms’ offshore production decisions. This
is not necessarily an important drawback, as the focus of this paper is on offshore R&D and its interaction with offshore
production in the aggregate. In the next section I show the model predictions on firms’ offshore R&D decisions are
supported empirically.
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and only if their production efficiency is above this threshold. This cutoff is given by:

πd
i (ẑ

P
id) = 0. (1)

A firm makes an independent entry decision for each destination market. The per-variety
expected profit for a firm with production efficiency draw zP, taking into account its potential
entry into all destination markets, is

πi(zP) = ∑
d
IzP≥ẑp

id
πd

i (z
P). (2)

3.4 Innovation and the Market for Researchers

R&D centers choose the talent of researchers, θ, and their quantity, l(θ), to develop new differen-
tiated varieties. Let y be the measure of differentiated varieties developed:

y = f (zR, θ)l(θ)γ,

where γ measures the return to the number of researchers, and f (zR, θ) captures how firm inno-
vation efficiency and researcher talent affect innovation output. I assume that γ < 1, implying
decreasing returns to scale in the number of researchers. This assumption has several interpretati-
ons. First, it can be thought of as a reduced-form approximation to a model in which R&D requires
supervision from the top management, but managerial time is limited in a company. In such a con-
text, hiring more researchers results in less supervision time for each of them, reducing researcher
productivity.21 An alternative is to think of innovation output as a function of both accumulated
knowledge capital and researcher input. In a static model in which the distribution of knowhow
and accumulated knowledge is given, the research output features decreasing returns to resear-
cher input. Finally, decreasing returns to scale might stem from increases in coordination costs,
free-riding, and disagreement among researchers as teams expand.22

Given πi(zP), the per-variety expected profit, the optimization problem for the R&D center is

πR
i (z

P, zR) = maxθ∈Θ,l(θ)[πi(zP) f (zR, θ)l(θ)γ − wi(θ)l(θ)],

where wi(θ) is the wage for a researcher with talent θ. As is clear from the equation, the production
efficiency of a firm affects innovation incentives because it determines the profit for each variety.
I make the following assumption about f :

Assumption 1 f is twice continuously differentiable and increasing in its arguments, i.e., f1, f2 > 0.
Further, f is log-supermodular, i.e., ∂2log f (zR,θ)

∂zR∂θ
> 0.

21See Antràs et al. (2006) for an analysis of the effects of offshoring in a model in which managers can only supervise
a fixed number of workers.

22Such coordination costs have been documented empirically. For example, Haas and Choudhury (2015) finds that,
while total patenting increases with the number of members in a team, the increase is smaller than the increase in the
team size—there is decreasing returns in the number of researchers in a team.
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The assumption that f1, f2 > 0 simply means that more efficient firms and more able rese-
archers are more productive in innovation. The log-supermodularity assumption implies strong
complementarity between researcher ability and firm efficiency. Under this assumption, more
productive firms have a comparative advantage in working with more able researchers.23 R&D
activities require cooperation between researchers, and a large amount of managerial and mone-
tary resources. Moreover, after a product prototype is developed, testing and marketing costs are
big hurdles to clear before the product can reach consumers. A well-managed firm can do all of
these tasks better, so it is especially profitable for them to work with talented researchers. The
model captures this idea with the log-supermodularity of f .

The setup here deviates from the efficiency units assumption. A researcher with high talent is
more valuable than multiple researchers with lower talent. Similarly, a firm with high innovation
efficiency is more productive in R&D than multiple firms with lower efficiencies. These implica-
tions are in line with a few observations in the literature. First, as mentioned earlier, the quality
of research talent is one of the top considerations when firms choose where to build their offshore
R&D centers, along with the cost of research labor.24 Second, it is well documented that there
are a large number of small and less productive firms in developing countries, the prevalence of
which can account for an important fraction of cross-country income differences (Hsieh and Kle-
now, 2009). Management efficiency might be a source of performance differences between firms
(Bloom et al., 2013). To the extent that many developing countries have a large number of very
small firms, they might not necessarily the lack a sufficient stock of management efficiency. The
model here is consistent with view that it is not necessarily lack of management efficiency stock,
but rather the lack of exceptional firms like Apple and Google, that explains the low incomes in
developing countries.25 Finally, the complementarity also implies that the same inventor will be
paid more to work in a more efficient firm. This is consistent with the finding that larger and more
productive firms pay a wage premium (see, for example, Schank et al., 2007), and the evidence on
positive assortative matching between firms and inventors I provide in the appendix.

I now characterize the market for researchers. Let Ti(zP, zR) : (ZP
i , ZR

i ) → Θ be the optimal
choice of θ for an R&D center characterized by (zP, zR). We have the following lemma:

Lemma 1 Ti is continuous and strictly increasing in zR. Moreover, Ti is independent of zP.

Proof See appendix.
The proof of Lemma 1 is an extension of assortative matching results in the literature (see, for

example, Grossman and Helpman, 2014; Grossman et al., 2015; Sampson, 2014) to the case with
an additional source of heterogeneity, namely the production efficiency. Because high zR R&D

23The log-supermodularity assumption has been adopted in a growing literature in international trade which uses
assignment models to study questions such as the determinants of specialization and the impacts of trade integration,
as reviewed recently by Costinot et al. (2015). The framework here is similar to the one in Grossman et al. (2015).

24Branstetter et al. (2013) conducts interviews with foreign-affiliated R&D centers in China. The interview responses
stress the scale and quality of the research talent in China, rather than its cost.

25Roys and Seshadri (2014) builds a model of matching between heterogeneous entrepreneurs and workers, enriched
with human capital accumulation, to show that the model can account for the differences in life cycle dynamics between
firms in rich and poor countries, and can explain a substantial share of income differences between countries.
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centers enjoy a higher marginal productivity increase from hiring better researchers, they have a
comparative advantage in working with high-ability researchers, leading to assortative matching.
Since zP enters firms’ innovation output multiplicatively in the form of πi(zP), higher zP does not
affect the type of researchers hired by an R&D center, but only their quantity. In the following I
will write the matching function simply as Ti(zR), omitting the argument zP.

Given the equilibrium wi(θ), the demand of an R&D center for researchers, if it chooses rese-
archers with talent θ, is

li(zP, zR) = (
γπi(zP) f (zR, θ)

wi(θ)
)

1
1−γ . (3)

The corresponding measures of invention and profit are therefore:

yi(zP, zR) = (γ
πi(zP)

wi(θ)
)

γ
1−γ f (zR, θ)

1
1−γ , (4)

πR
i (z

P, zR) = (γ
γ

1−γ − γ
1

1−γ )wi(θ)
− γ

1−γ [πi(zP) f (zR, θ)]
1

1−γ . (5)

In equilibrium, firms choose the type of researchers to maximize profit. This requires the im-
provement in marginal output from higher-quality researchers to be exactly offset by their higher
wages. We can obtain this equation by differentiating Equation (5) with respect to θ:

Lemma 2 wi(θ) satisfies the following relationship:

w′i(θ)
wi(θ)

=
f2(zR, θ)

γ f (zR, θ)
|θ=Ti(zR). (6)

Proof See appendix.
The formal proof of Lemma 2 establishes the differentiability of wi(θ). The proof is similar to

that in Sampson (2014) and is delegated to the appendix.
Since researchers are heterogeneous, labor market clearing requires that the total demand

equals total supply for each type. Let θi and θi be the lower and upper limits of the support
for the researcher talent distribution, and let zR

i and zR
i denote the lower and upper limit of the

support for the innovation efficiency distribution, respectively. To derive the researcher market
clearing conditions for each type, I start with an aggregate version: for all θi < θ < θi, the number
of researchers with talent lower than θ is equal to the total demand for researchers with talent
below θ. Formally,

LR
i

∫ Ti(zR)

θi

dHi(θ) = Ri

∫ zR

zR
i

[
∫

ZP
li(zP, z)gP

i (z
P|z)dzP]gR

i (z)dz

= Ri

∫ zR

zR
i

(
γ f (z, Ti(z))

wi(Ti(z))
)

1
1−γ [

∫
Zp

πi(zp)
1

1−γ gP
i (z

P|z)dzp]gR
i (z)dz,

where Ri is the measure of R&D centers in country i and gR
i (z) is their PDF, both of which are

determined in equilibrium by firms’ offshore R&D decisions. On the left of this equation is the
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total number of researchers with talent below Ti(zR), and on the right side is the corresponding
total demand.

Differentiating this equation with respect to zR, we have the following equation:26

LR
i T′(zR)hi(Ti(zR)) = Ri(

γ f (zR, Ti(zR))

wi(Ti(zR))
)

1
1−γ

∫
ZP

gR
i (z

R)πi(zP)
1

1−γ gP(zP|zR)dzP (7)

Equation (7) then characterizes the market clearing condition for each researcher type. Equations
6 and 7, together with two boundary values,

Ti(zR
i ) = θi, Ti(zR

i ) = θi, (8)

determine the matching function Ti(zR) and the wage schedule wi(θ). In summary, we have the
following results:

Proposition 1 Under Assumption 1, 1) Firms with higher innovation efficiency hire strictly better resear-
chers. Firms with the same innovation efficiency but different production efficiencies hire the same type of
researchers in different quantities. 2) The researcher labor market is characterized by Equations 6, 7, and 8.

How does the output of R&D centers with different innovation efficiencies depend on the
talent distribution of a country? Since a change in the talent distribution affects the entire matching
function, characterizing the effect of a general change is difficult. I consider changes to the talent
distribution that can be ranked by the following criterion:

Definition 1 Consider h(θ) and h̃(θ), probability density functions for the talent distribution. h̃(θ) is
more talent abundant relative to h(θ), if h̃(θ2)h(θ1) ≥ h̃(θ1)h(θ2), ∀θ1 < θ2.

This notion of factor abundance, which is stronger than first-order stochastic dominance, is
introduced by Costinot and Vogel (2010) to characterize how relative factor supply and factor
demand determine allocation and prices.27 Under this notion, we have the following proposition:

Proposition 2 Consider two R&D centers in country i, with innovation efficiencies zR
2 > zR

1 and a com-
mon production efficiency zP. Then [log(y(zP, zR

2 )) − log(y(zP, zR
1 ))], the log difference of R&D output

between these two R&D centers, increases when the inventor distribution in country i becomes more talent
abundant according to Definition 1, if one of the following are satisfied: 1) zP and zR are independent; 2)
cM

d = 0 for all d.

Proof See appendix.

26Because of offshore R&D decisions, gR
i is not necessarily continuous. At the finite discontinuous points of gR

i , the
matching function might not be differentiable. In this case, Equation 7 is not defined on the discontinuous points of
gR

i . While Ti is still well defined and continuous, the kinks in T′i make it challenging to solve the matching function
numerically. In the quantitative section, I describe a computational algorithm suited for this context.

27According to this definition, when θ1 and θ2 are in the support of both distributions, h̃(θ2)

h̃(θ1)
> h(θ2)

h(θ1)
, meaning h′ has

a higher relative share of the higher-skill type.
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The intuition for this result is that, under the additional conditions stated above, increases in
talent abundance improve the quality of researchers for all firms. This benefits efficient firms dis-
proportionately more, because of the complementarity between talent and efficiency.28 Since this
proposition works through improving of match quality for firms, it also applies to a change in the
firm innovation efficiency distribution that results in improvements in match quality for all firms
between (zR

1 , zR
2 ). An example of such a change is a decrease in the “efficiency abundance” of the

firm distribution in the spirit of Definition 1. The talent abundance in the proposition should thus
be broadly interpreted as a relative measure—the talent abundance of the inventor distribution,
relative to the efficiency abundance of the firm distribution.

Although Proposition 2 is stated in the context of domestic firms, it applies to all active R&D
centers in a host country. We can test the model by comparing the innovation output of R&D
centers affiliated with companies with different innovation efficiencies. If Proposition 2 is correct,
then this difference will be larger in host countries with higher relative talent abundance. In the
next section, I test this implication directly. Later I show that the complementarity channel under-
lying this prediction is quantitatively relevant in determining the pattern of offshore R&D across
host countries with different talent distributions.

3.5 Offshore R&D

Now we can characterize firms’ decisions to open offshore R&D centers. I make the following
assumption about gP(zP|zR).

Assumption 2 The distribution from which an R&D center draws its production efficiency zP increases
in the innovation efficiency of the R&D center in the sense of first-order stochastic dominance.

Define πR
i (z

R) as the expected profit (over the possible zP draws) for an R&D center in country
i, with innovation efficiency zR:

πR
i (z

R) =
∫

ZP
πR

i (z
P, zR)gP(zP|zR)dzP

Firms compare the expected profit from building an offshore R&D center to the fixed cost of
setting up the center, cR

i wP
i . By definition (Equations 5 and 2) , πR

i (z
P, zR) increases in zP. We can

also show that πR
i (z

P, zR) increases with zR.29 Assumption 2 then implies that πR
i (z

R) increases
strictly in zR, so the decision to offshore R&D follows a threshold rule: there exists a cutoff ẑR

oi,
so that firms from country o will perform offshore R&D in country i if and only if its innovation
efficiency is above ẑR

oi. This cutoff is given by the following zero profit condition:

πR
i (ẑ

R
oiφ

R
oi) = cR

i wP
i . (9)

28Grossman et al. (2015), Sampson (2014), and Costinot and Vogel (2010) obtain similar results on the effects of trade
on income inequality under the log-supermodularity assumption. Compared to these papers, additional technical
assumption is needed to ensure that equilibrium changes in return to R&D, πi(zP), due to the distribution change do
not decrease the quality of match for any firms.

29From Equation 5, ∂log(πR
i (z

P ,zR))
∂zR |θ = Ti(zR) =

1
1−γ

∂log( f (zR ,θ))
∂zR > 0.
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3.6 R&D Center Efficiency Distribution

Firms’ offshore R&D decisions determine gR
i , the distribution of innovation management effi-

ciency, and hence the distribution of production management efficiency, in each country. Given ẑR
oi,

we can now derive R&D centers’ production and innovation efficiency distributions. Let GR
i (z

R)

be the CDF for innovation management efficiency of the R&D centers active in country i, and let
GE

o (z̃R) be the CDF of the distribution of innovation efficiency for firms from country o. Then we
have the following equation:

RiGR
i (z

R) =
N

∑
o=1

I zR

φR
oi
>ẑR

oi
EoGE

o (
zR

φR
oi
)

Differentiating this equation with respect to zR, we obtain the density function:

gR
i (z

R) =
1
Ri

N

∑
o=1

I zR

φR
oi
>ẑR

oi
EogE

o (
zR

φR
oi
)

1
φR

oi
. (10)

The PDF for R&D centers with (zP, zR) is gi(zP, zR) = gP(zP|zR)gR
i (z

R).

3.7 Aggregation

Knowing gi(zP, zR), I derive the total measure of varieties that are invented in a country, denoted
Mi, and the distribution of these varieties over different production efficiencies. Letting mi(zP) be
the measure of varieties innovated in country i by R&D centers with a production efficiency of zP,
then we have:

mi(zP) = Ri

∫
ZR

yi(zP, zR)gi(zP, zR)dzR

Mi =
∫

ZP
mi(zP)dzP,

(11)

where yi(zP, zR) is given by Equation 4. The price index in country d is then given by the following
equation:

P1−σ
d = ∑

i

∫
zP>ẑp

id

mi(zP)[
∫

minl{pild(η)
1−σ}dF̃(η)]dzP

= Γ(
δ + 1− σ

δ
)(

σ

σ− 1
)1−σ ∑

i
Ψ

σ−1
δ

id

∫
zP>ẑp

id

mi(zP)zPσ−1
dzP

(12)

To express the aggregate objects in the model, let Xid be the total sales in country d of the
products developed in country i. We have the following:
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Xid = Pσ−1
d Xd

∫ ∞

ẑP
id

mi(zP)[
∫

minl{pild(η)
1−σ}dF̃(η)]dzP

= (
σ

σ− 1
)1−σΓ(

δ + 1− σ

δ
)Pσ−1

d XdΨ
σ−1

δ

id

∫ ∞

ẑP
id

mi(zP)(zP)σ−1dzP.
(13)

These sales can be fulfilled through production in any country. Letting Xild denote the value of
production in country l, then we have ∑l Xild = Xid. I further define Yl to be the total production of
the varieties in country l, so ∑i,d Xild = Yl . The Frechet assumption on idiosyncratic productivity
draws also implies that, for each R&D center located in country i, the share of products it sells in
country d that are fulfilled through production in country l is:

ψild =
Λl(

wP
l τld

φP
il
)−δ

Ψid
,

with Ψid = ∑l Λl(
wp

l τld

φ
p
il
)−δ. Because this probability is the same for all R&D centers from country

i, it also applies to the aggregate sales:

Xild = ψildXid. (14)

Production workers are used to produce output, and to pay fixed R&D and marketing costs.
The production labor market clearing condition is:

wP
d LP

d =
σ− 1

σ
Yd︸ ︷︷ ︸

Production

+∑
o

EocR
d wP

d (1− GR
o (ẑ

R
od))︸ ︷︷ ︸

Fixed R&D center setup costs

+ cM
d wP

d ∑
i

∫ ∞

ẑP
id

mi(zP)dzP

︸ ︷︷ ︸
Fixed marketing costs

. (15)

Recall that the density of firms from country o with innovation efficiency z̃R is gE
o (z̃R). We can

integrate πR
i over gE

o (z̃R) to compute the total profits made by country i R&D centers affiliated to
firms from country o, denoted Πoi:

Πoi = Eo

∫ z̃R
i

ẑR
oi

πR
i (z̃

RφR
oi)gE

o (z̃
R)dz̃R,

This profit is after deducting R&D, marketing, and production costs, but before deducting
fixed costs for building R&D centers.

Let Ii be the total R&D expenditures in country i, defined as total compensation to researchers
in country i. Let Ioi be the expenditures in Ii that are incurred by affiliates of firms from country o.
Equations 3 and 4 imply that:

Ii = ∑
o

Ioi =
γ

1− γ ∑
o

Πoi

The income of country d comes from three sources: wages of production labor, compensation
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to researchers, and the net profit made by domestic firms from the country. Current account
balance requires that total consumption of each country equals total income:

Xd = wP
d LP

d︸ ︷︷ ︸
Production Labor

+∑
i
[Πdi − EdcR

i wP
i (1− GR

d (ẑ
R
di))]︸ ︷︷ ︸

Net Profit

+ Id︸︷︷︸
Researcher Compensation

. (16)

Definition 2 The competitive equilibrium is defined as a set of allocations and prices, such that:

1. Firms’ market entry decisions satisfy Equation 1.

2. The matching function, Ti, and wage schedule for researchers, wi satisfy Equations 6, 7, and 8.

3. Firms’ offshore R&D decisions satisfy Equation 9.

4. The distribution of R&D center innovation efficiency in each country satisfies Equation 10.

5. The distribution of productivity efficiency for varieties satisfies Equation 11.

6. The price index in each country satisfies Equation 12.

7. The wage for production labor satisfies Equation 15.

8. The total expenditure in each country satisfies Equation 16.

3.8 The Gains from Openness

In this subsection I focus on a special case to derive an expression for the welfare gains from open-
ness, defined as the percentage change in real income ( Xd

Pd
), as a country moves from complete

isolation to the degree of openness observed in the data. This expression makes it clear that offs-
hore R&D is a new channel for countries to benefit from globalization. It also relates the size of
this benefit to observable information and model parameters. Specifically, I make the following
assumption:

Assumption 3 1) f (zR, θ) = zRθβ;
2) Production efficiency, zP, is independent of zR, and follows a Pareto distribution: GP

d (x) = 1− ( x
zP

d
)−κP ;

3) There is no fixed marketing cost: ∀d, cM
d = 0;

4) Firm innovation efficiency, z̃R, follows a Pareto distribution: GE
d (x) = 1− ( x

z̃R
d
)−κR .

The first part of the assumption maintains that f (zR, θ) takes a multiplicative form.30 Under
this assumption, ∂2log f (zR,θ)

∂z∂θ = 0, so f (zR, θ) no longer satisfies the strict log-supermodularity re-
quirement in Assumption 1. Since a CES function with elasticity of substitution smaller than 1
satisfies strict log-supermodularity, the multiplicative case represents the limiting case as the elas-
ticity approaches 1. This simplification will allow us to solve for the equilibrium wage schedule
and firm-level decisions analytically.

30The assumption that the power of zR is 1 is without loss of generality, because the units of zR can always be scaled
so that it enters f (zR, θ) with a power of 1.
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In the general model, because firms endogenously choose how many varieties to develop,
aggregation is difficult. The first three components of Assumption 3, however, imply the Pareto
distribution of production efficiency for varieties, which admits analytical aggregation. The fourth
component in turn allows us to derive the total fixed costs of R&D in each country. With these
simplifications, we have the following:

Proposition 3 Under Assumption 3, the gains from openness for country d, defined as the percentage
change in Xd

Pd
as a country moves from complete isolation to the observed equilibrium, is

GOd = (
Xddd

∑l Xdld
)−

1
δ (

∑l Xdld

Xd
)−

1
σ−1 (

Idd

Id
)−

1−γ
σ−1 (

σ−1
σ

σ−1
σ

Yd
Xd

+ (1−γ)κR−1
γκR

Id
Xd
(1− Idd

Id
)
)− 1. (17)

Proof See appendix.
This expression highlights various forces through which a country benefits from economic

integration. The first term, Xddd
∑l Xdld

, captures the benefits from offshore production for consumption.

The second term, ∑l Xdld
Xd

, captures the benefits from foreign innovation for consumption. These two
terms are direct effects of offshore production and trade in the model. The third term, Idd

Id
, captures

the importance of foreign firms in domestic R&D. Intuitively, the smaller is this ratio, the more a
country relies on foreign affiliates for R&D, and the more significant are the welfare gains from
offshore R&D. The last term in the equation captures the effects of profit flows on welfare through
their impacts on total expenditures. This indirect effect tends to bring positive welfare impacts,
for countries that specialize in R&D (smaller Yd

Xd
), and countries that rely more on domestic firms

in R&D (smaller Id−Idd
Xd

).31

In the appendix, I compare this formula to that from Arkolakis et al. (2014). The first two and
the fourth terms in Equation 17 also appear in their formula, with minor adjustments to reflect the
modeling differences. The third term, Idd

Id
, does not show up in their formula. To have an idea of

how large this term is, consider the median country in the quantitative section, with about 30% of
its R&D done by foreign affiliates. The value of ( Idd

Id
)−

1−γ
σ−1 is around 1.055, when γ = 0.4 and σ = 5.

All else equal, this term generates a 5% real income change. So offshore R&D indeed represents a
quantitatively important channel through which countries benefit from global integration.

4 Empirical Evidence

The model generates several predictions that relate offshore innovation to firm innovation effi-
ciency and host country characteristics. Specifically, firm heterogeneity implies that more efficient
firms will offshore their R&D to a larger number of host countries, and perform more R&D in each
of them. At host country level, the market-access motive implies that larger countries are more
attractive as a host for offshore R&D centers. The talent-acquisition motive has two implications.
First, host countries with higher relative inventor talent abundance attract more offshore R&D.

31Finite aggregate fixed R&D costs require (1− γ)κR − 1 > 0.
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Second, as Proposition 2 indicates, this effect is especially strong for more efficient home country
firms, because of the complementarity between researcher talent and firm innovation efficiency in
R&D. I will test these predictions in this section.

The complementarity in innovation also implies that more innovative firms work with more
talented researchers (Lemma 1). In the appendix, I test this implication using firm- and inventor-
level data from the USPTO. Using past innovation as a proxy for inventor talent, and various
measures of firms’ R&D efficiency, I show that, among a sample of job-switching inventors, the
more talented ones tend to switch to more efficient firms, consistent with assortative matching. I
now proceed to discuss my tests of the model’s implications for the location and output of research
centers.

4.1 Specification

I use mainly the following specification to test model predictions:

log(y f oi) = δ f + γi + β1γiq f + β2xoi + ε f oi, (18)

where f , o and i are index for parent company, home country, and host country, respectively. The
dependent variable, y f oi, is a measure of innovation output by company f ’s affiliated R&D center
in country i (multiple affiliates in the same countries are aggregated into one). The first indepen-
dent variable, δ f , is the firm fixed effect, which controls for characteristics that are common to all
R&D centers affiliated to the same firm. I exclude the firm fixed effect in some specifications to
examine the effect of firm innovation efficiency. γi is a vector of host country characteristics that
might affect offshore R&D and patenting, including size, relative talent abundance, per-capita in-
come, intellectual property right protection (IPR), and general human capital. When these charac-
teristics are not of primary interest, I use host country fixed effects instead. q f is firm innovation
efficiency. The interaction term γiq f captures how host country characteristics affect firms with
different efficiencies. Of prime interest among these is the interaction between host country rela-
tive talent abundance and firm efficiency. xoi is a vector of variables that vary across host-home
pairs, including various measures of distance. When the interest is not in host country or bilateral
characteristics, I use country-pair fixed effects to capture this term. ε f oi is the error term.

4.2 Data Description

I use patent data from the USPTO to construct three key measures in the specification: offshore
R&D center innovation output, firm innovation efficiency, and host country relative talent abun-
dance.

Firm and inventor classification To construct these measures, I need to be able to identify
individual inventors and firms. This is challenging because patent data is self-reported, so there
are no individual or firm identifiers. Moreover, typos and misspellings are frequent, and the same
company might have different abbreviations. I follow the patent literature in addressing these
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issues. For the firm side, I use the 2006 update of the disambiguated data set introduced by Hall et
al. (2001), which covers the patents granted from 1976 to 2006. By combining automatic cleaning
procedures—which take care of common abbreviations in company names—with manual checks,
Hall et al. (2001) generates a unique identifier for each patent owner. For inventors, I use the
unique inventor identifiers provided in Li et al. (2014), which uses a supervised learning approach
to automatically generate inventor identifiers.

Offshore R&D output measure When applying for a patent at the USPTO, the applicant, usu-
ally the owner, reports address information for both the inventor and the owner of the proposed
patent. I classify a patent as invented in a country-i offshore R&D center, affiliated to firm f from
country o, if its inventor is in country i and its owner in country o.32 Counting the total number of
such patents by each firm in each host country, I obtain the benchmark measure for y f oi.

Firm innovation efficiency measure I use the total number of patents invented by firm f in
its home country o as a proxy for its innovation efficiency. I focus on home country for this mea-
sure, and drop observations from the home country of each firm from the regression, so that the
results are not driven by the mechanical correlation between home innovation and the measure
of innovation efficiency. To reduce measurement error, in benchmark regressions, I classify a firm
according to whether its innovation efficiency is above the median in its home country. Later I
will show results with different cutoffs.

Host country relative talent abundance All research firms in a country compete for talent. It is
the abundance of talented inventors relative to the abundance of efficient firms that matters for the
type of inventor a foreign offshore R&D center is able to recruit. Following Definition 1, I construct
the measure for inventor talent abundance as the share of inventors in a country that are in the top
1% most productive inventors in the world; I construct the measure for firm efficiency abundance
analogously. I then use the log of the ratio between the two as the benchmark measure for relative
abundance. Taking the ratio also nets out some of the differential selection across countries into
patenting in the U.S.33

I use a relative quality measure, not relative quantity measures (e.g., the number of inventors
relative to the number of firms), because the model predicts that a change in the relative quantity
will have no impact on the matching function or the wage schedule.34 In robustness, I also include
this relative quantity. The choice to use the top 1% of inventors and firms in constructing this me-
asure is motivated by the importance of exceptional inventors and firms in aggregate innovation.
In robustness exercises, I use different cutoffs for computing the top shares, and other measures
of quality in constructing the ratio.

32The information is reported at the time of patent application, so transfers of patents between owners from different
countries are unlikely to be important.

33For example, patenting might be easier in some countries, so marginal firms and inventors self select into patenting,
resulting lower measured average inventor and firm quality.

34By inspecting Equation 7, we can see that LR
i

Ri
only enters as a ratio, and by taking derivatives of both sides with

respect to zR, we can see that this ratio does not affect T
′′

i ; hence it will not affect the matching function or the shape of

the wage schedule. The ratio LR
i

Ri
will thus only affect the research team size and output of all R&D centers in country i

proportionally.
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Discussion on the use of patent data to measure R&D The advantages of using patent data
for these measures are obvious: in addition to having a wide country coverage, patents are also
highly correlated with firm-level R&D. Figure B.1 and Table B.1 in the appendix show that a
patent-based offshore R&D measure correlates reasonably well across countries with a measure
based on R&D expenditures. However, the drawbacks of patent data are also well known (Pavitt,
1988). First, the benefits of patents differ across countries, so that firms might have different incen-
tives to apply for patents in the U.S. These differences might stem from market size, intellectual
property right protection, or other country characteristics, such as connections to the U.S. Second,
different industries have different reliance on patents for the protection of their intellectual pro-
perties. Third, patents have heterogeneous values, so patent counts are a noisy measure of firms’
innovation output.

I add additional controls to address these concerns. Specifically, for the first concern, I either
control directly for host country size, IPR protection, and other country characteristics, or simply
include host country fixed effects. For the second concern, I use firm fixed effects to absorb firms’
characteristics, including their industry. Moreover, I construct measures at the patent-category
level so that host country specialization does not drive the results. Finally, to address the third
concern, I also use citation as an alternative measure of innovation output.

Sample period The patent data spans 1976-2006. Since both the dependent variable, offshore
R&D output, and the key independent variable, the relative talent abundance, are constructed
based on patenting data, measurement error will lead to correlation between the two measures.
To avoid this problem, I split the sample into two periods, 1976-1996 and 1997-2006. I use only
information from the first period to measure the number and quality of innovating firms and in-
dividuals. I then use the 1997-2006 data to measure R&D output for each parent company and its
foreign subsidiaries. Further, my regressions include only observations from new offshore R&D
centers—those that enter in the second period—in order to prevent any R&D centers used as re-
gression observations from affecting host talent quality measures. This sample split also prevents
reverse causality, i.e., the entry of innovative and efficient foreign firms attracting more talented
individuals to become inventors.

Additional data Additional variables used for the regressions are from the following sources:
GDP, population, per-capita income, and a human capital index come from the Penn World Table
8.0; bilateral distance information is from the CEPII geodistance database (Mayer and Zignago,
2011); intellectual property protection information is taken from Park (2008). All these variables
are averaged over 1997-2006 for consistency.

4.3 Main Results

Figure 4 provides evidence on the effect of firm innovation efficiency on offshore R&D through the
extensive margin over the period 1997-2006, focusing on firms headquartered in the U.S. Each dot
represents a firm. The horizontal axis is the number of patents granted to the firm and invented
in the U.S. The vertical axis is the number of countries in which the firm performs R&D. The
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figure indicates that firms with higher innovation efficiency tend to perform offshore R&D in more
countries. Among the firms that enter the largest number of countries, IT and chemical companies
are the most common.

Figure 4: Firm Efficiency and Offshore R&D Entry

Notes: Each dot represents a firm headquartered in the U.S. The horizontal axis is the log of the number of patents the firm invented
in the U.S. The vertical axis is the number of host countries it entered for offshore R&D, defined as ∑i Iy f oi>0.

I now estimate Equation 18 to test additional model predictions. Table 1 presents the base-
line results. The first column includes the indicator for firm innovation efficiency, a vector of host
country characteristics, bilateral distance measures, and home country fixed effects. Consistent
with the first implication of the talent-acquisition motive, host country relative talent abundance
has a positive and statistically significant impact on innovation output. The estimate has an elas-
ticity interpretation: a 1% increase in host relative talent abundance increases firm-level offshore
R&D by around 0.1%. Consistent with the market-access motive, host GDP also has a positive
effect with a similar point estimate. Firms with above median innovation efficiency generate 63%
higher R&D output, on average, so innovation efficiency increases offshore R&D through not only
the extensive margin, but also the intensive margin. The estimate for host country intellectual
property right protection is small and statistically insignificant, reassuring us that differential se-
lection into patenting due to intellectual property protection differences are not driving the results.
Host per-capita income does not have a significant effect. Distance measures are mostly insignifi-
cant, except for the common language indicator.

The second column adds the interaction term between the host country relative talent abun-
dance and firm innovation efficiency. This interaction term is positive and statistically significant,
with a point estimate of 0.15. While most other coefficients do not change, the coefficient for host
relative talent abundance is no longer significant: consistent with the prediction from Proposition
2, the impacts of host talent quality are mainly concentrated in the top half of firms as ranked by
innovation efficiency.
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Results so far are supportive of a market-access motive and a talent-acquisition motive. Since
the market-access motive is closely related to the extensive existing literature on the effects of mar-
ket size on innovation (Acemoglu and Linn, 2004) and the location choice of multinational firms
(Head and Mayer, 2004), I now focus on the talent-acquisition motive by further examining the
interaction term. In the third column, I add host country and parent firm fixed effects to furt-
her absorb unobserved heterogeneity. The point estimate of the interaction term rises to 0.177,
meaning that a 1% increase in relative talent abundance in the host country increases the R&D
output by 0.17% more for R&D centers with above-median efficiency. After adding these better
controls for host country and firm heterogeneity, bilateral geographic distance becomes signifi-
cant, with an elasticity of -0.119. Common language, on the other hand, is no longer significant.
The fourth column adds country pair fixed effects to capture differential economic connections
between countries. The point estimate of the interaction term barely changes.

4.4 Robustness and Heterogeneous Effects

As discussed earlier, firms’ incentives to perform R&D and to patent their R&D output are poten-
tially affected by country characteristics. There may be plausible alternative theories that generate
heterogeneous effects of these other characteristics for higher productivity firms. I now examine
whether such alternatives can explain the baseline findings and generally find they cannot.

First, relative talent abundance might pick up an income effect. High-income consumers prefer
high-quality products, which might be more R&D intensive than low-quality products. If efficient
firms have comparative advantage in doing R&D, they might perform more R&D in high income
host countries. I capture this by including the interaction between host country per-capita income
and firm efficiency.

Second, the returns to both R&D and patenting are higher in large countries. Firms with hig-
her efficiency might benefit disproportionately more because they tend to be more efficient in
production. This concern motivates me to include the interaction between host country GDP and
firm efficiency. Following the same reasoning, the effect of stronger patent protection enforcement
might also benefit efficient firms more, encouraging them to patent more. Therefore I further
include the interaction between firm efficiency and the IPR protection index.

Finally, the complementarity between talent and firm efficiency might happen in the pro-
duction stage. Firms with better management can make better use of skilled workers in pro-
duction, which reduces production costs and increases the return to R&D. I incorporate the inte-
raction between the host country human capital index and firm efficiency to address this concern.

The first column of Table 2 reports the regression with these additional terms. The interaction
between host talent and home efficiency is still significant, although it shrinks by about 40%. The
variable that explains this drop is the interaction between host GDP and firm efficiency. Other
interaction terms do not have strong effects.

I use a quality-based relative talent abundance measure in my baseline regressions because
according to the model, the relative quantity of inventors and research firms will affect firms with
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Table 1: Determinants of Offshore R&D: Baseline Results

Dependent Variable: Log (Offshore patents invented in a host country)
(1) (2) (3) (4)

Host relative talent abundance 0.091** 0.020
(0.039) (0.041)

I (Parent R&D >median) 0.625*** 0.994***
(0.076) (0.077)

Host inventor relative abundance * I (Parent R&D >median) 0.147*** 0.177*** 0.171***
(0.026) (0.040) (0.040)

Host GDP 0.083** 0.088**
(0.035) (0.035)

Host per-capita income -0.004 -0.001
(0.076) (0.075)

Host IPR protection 0.032 0.026
(0.117) (0.118)

Distance -0.007 0.003 -0.119**
(0.026) (0.028) (0.055)

Common border -0.009 0.003 0.203
(0.051) (0.052) (0.131)

Common language 0.152*** 0.151** 0.095
(0.056) (0.056) (0.094)

Colonial tie -0.075 -0.074 0.027
(0.049) (0.051) (0.092)

Home country FE X X X
Host country FE X
Home-Host FE X
Firm FE X X
Observations 14803 14803 7914 7716
R2 0.050 0.053 0.454 0.490
Notes: The level of observation is host country-parent company. The dependent variable is the log of the
total number of patents invented by an affiliate of a parent company in a host country over 1997-2006. For
the I(Parent R&D >median) indicator, Parent R&D is measured by the total number of patents invented by
the parent in its home country during the same period, and median is computed for all patenting firms
in the home country of the parent company. Host relative talent abundance is defined as the log difference
between the share of inventors in a host country that fall into the global top 1%, and the share of firms in
that country that falls into the global top 1%. This measure is constructed using only patenting information
for 1976-1996 to avoid mechanical correlation. Host IPR is the intellectual property right protection index
from Park (2008), averaged over 1997-2006. Other host country characteristics are from the Penn World
Table 8.0, averaged over 1997-2006.
Standard errors (two way clustered at the host-country and parent-company levels) are in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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different efficiencies proportionally. To make sure the empirical finding is not the result of im-
properly measuring the relative talent abundance, in the second column, I add the interaction
between firm efficiency and the ratio of the number of inventors and the number of R&D active
firms. Reassuringly, this quantity ratio does not have a statistically significant impact itself and
does not substantially change the interaction term between host relative talent quality and firm
efficiency.

For a fuller picture of how host talent affects firms with different efficiencies, in the third co-
lumn, I add indicators for firms with R&D efficiency above the 25th, 75th, and 90th percentiles of
the R&D efficiency distribution in their home countries, as well as the interaction of these indica-
tors with the full set of controls in the second column. The effect of a better host talent distribution
is substantially larger for firms in the upper tail of the distribution. A 1% increase in host relative
talent abundance leads to a 0.45% larger increase in R&D output for firms in the top 10% of the
firm efficiency distribution than for firms in the bottom 25% of the distribution.

So far, all regressions patents pooled over all categories to construct measures for both the
dependent and independent variables. Aggregation reduces measurement errors, but given that
industries do not equally rely on patents for IPR, using aggregate patenting data might confound
sectoral composition with country-level relative talent quality. For robustness, I also construct all
variables within each individual patent category, classified by Hall et al. (2001).35 For each firm,
I keep only the category in which it patents most. Columns four and five perform regressions
using category-level data. The fourth column controls for host-category fixed effects, and the last
column controls for bilateral pair-category fixed effects. Both columns confirm that, the effect of
host country talent is significantly larger for more efficient firms. Although the sample size is
substantially smaller as more fixed effects are added, the coefficients are quantitatively similar to
those in the third column, so the differential sectoral specializations of countries are unlikely to be
the explanation for the benchmark results.

In Table B.2 in the appendix, I report robustness checks using alternative measures of host
relative talent abundance, R&D center innovation output, and firm innovation efficiency. First, to
address concerns about differential selection into patenting, and about the heterogeneous value of
patents, I use citation counts, instead of patent counts, to measure R&D center innovation output
and firm efficiency. Second, the benchmark measure for host talent abundance is somewhat ad-
hoc, so I also use the following alternatives: 1) define “top” inventors and “top” firms as being the
top 10% as opposed to the top 1%; 2) use the ratio between per-inventor patent counts and per-
firm patent counts; 3) use the ratio between the standard deviation of inventor patent counts and
the standard deviation of firm patent counts.36 In all regressions, I include the control variables
used in the second column of Table 2. The point estimates in these regressions are all similar to
those in the benchmark estimate.

In summary, this section presents evidence that is consistent with the main predictions of the

35There are in total six categories: chemical (excluding drugs), computers and communications, drugs and medical,
electrical and electronics, mechanical, and others.

36A higher standard deviation captures a higher share of inventors with a large quantity of patents.
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Table 2: Determinants of Offshore R&D: Alternative Explanations and Heterogeneous Effects

Dependent Variable: Log (Offshore patents invented in a host country)
Aggregated Across All Categories Only Firms’ Main Category

(1) (2) (3) (4) (5)
Host relative talent abundance * I (Parent R&D >25%) 0.131 0.107 0.187

(0.084) (0.142) (0.158)
Host relative talent abundance * I (Parent R&D >median) 0.105* 0.093* 0.117 0.134 0.217

(0.054) (0.051) (0.091) (0.159) (0.175)
Host relative talent abundance * I (Parent R&D >75%) 0.208** 0.126 0.217

(0.095) (0.148) (0.185)
Host relative talent abundance * I (Parent R&D >90%) 0.465*** 0.354* 0.579**

(0.146) (0.173) (0.217)
Host per-capita income * I (Parent R&D >median) -0.093 -0.063

(0.148) (0.146)
Host GDP * I (Parent R&D >median) 0.119*** 0.101**

(0.039) (0.043)
Host human capital * I (Parent R&D >median) -0.102 -0.161

(0.214) (0.224)
Host IPR * I (Parent R&D >median) 0.167 0.155

(0.196) (0.197)
Host inventor relative quantity * I (Parent R&D >median) 0.125

(0.146)
Home-Host FE X X X X X
Firm FE X X X X X
Host-Category FE X
Host-Home-Category FE X
Host Characteristics *Full set of firm efficiency indicators X X X
Observations 7687 7687 7687 4381 3907
R2 0.490 0.490 0.496 0.562 0.605
Notes: See Table 1 for descriptions of variables and sample period. The first three columns use information aggregated over
all patent categories. The last two columns use variables similarly constructed at the patent category level. For each firm, only
the category in which it generates the most patents is used in regressions. Although not reported, columns 3-5 also include the
interaction of host country characteristics in column 2 with the full set of firm R&D efficiency indicators.
Standard error (two way clustered at the host-country and parent-company levels) are in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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model in terms of how host country relative talent abundance affects firms with different R&D
efficiencies. Additional exercises that consider alternative explanations and measurements do not
substantially weaken the evidence.

5 Parameterization

I now perform a quantitative analysis of the model outlined in Section 3. I focus on a sample
with 25 countries and a statistical aggregation of another 22 countries.37 I parameterize the model
to be consistent with the data in its predictions on the international interactions between coun-
tries and the size distribution of firms within the U.S. This section describes the parameterization
procedures, starting with the functional form assumptions.

5.1 Additional Assumptions

In the quantification, I embed an occupational choice into the model. Throughout the rest of the
paper, I assume that each country is endowed with Li number of workers, with talent distribution
Hi(θ). Workers sort into production labor or research. Each production worker has one unit of
production labor, and each researcher has θ units of talent in research. Adding occupational choice
generates endogenous responses in the supply of inventors in counterfactuals experiments.

The function f (zR, θ) determines the complementarity between the innovation management
efficiency of firms and the talent of researchers. I assume that f is a CES function with elasticity of
substitution α < 1:

f (zR, θ) = (zR
α−1

α + θ
α−1

α )
α

α−1 .

This specification satisfies the log-supermodularity assumption. As α approaches 1, the comple-
mentarity between researcher talent and firm efficiency weakens.

The distributions of worker talent and firm innovation efficiency are parameterized to be trun-
cated Pareto distributions, given below:

Hi(θ) =
(θ
−κθ
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i − θ−κθ
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In these expressions, the letters with upper and lower bars indicate the upper and lower bounds
for their respective distributions. κR

i and κθ
i are the truncated-Pareto counterparts to the shape

parameter in the Pareto distribution.
To capture the correlation between innovation and production efficiency at the firm level, I

assume that there are two distributions, indicated by H and L (for high and low, respectively), from
which firms draw their productivity zP. The probability of drawing from the high distribution

37The list of countries in this statistical aggregation is provided in the appendix.
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depends on a firm’s innovation efficiency in the following fashion:

Prob(zP ∈ H|zR) =
exp(A + B× zR)

1 + exp(A + B× zR)
, (19)

where A and B are parameters to be estimated. A positive value for B means that more innovative
firms tend to be more productive as well. H and L are both Pareto distribution with the same
shape parameter κP:

GH(zP) = 1− (
zP

H
zP )κP , GL(zP) = 1− (

zP
L

zP )
κP .

I assume that zP
L < zP

H, so the H distribution first-order stochastically dominates the L distribution.

5.2 Parameters Assigned Directly

I set the number of workers in a country, L, to total employment from the Penn World Tables. To
focus on differences in the firm efficiency distributions and to abstract from the differences in the
number of firms, I set E, the measure of firms, to be proportional to L. This proportion is chosen
so that the average employment per firm in the model equals the average employment per firm in
the U.S.

I directly assign values to a few parameters in the model. Parameter σ, the elasticity of sub-
stitution between varieties, determines the markup charged by firms. I set this parameter to be
5, following recent studies in international trade (see Simonovska and Waugh, 2014, for exam-
ple). This value also implies that 20% of sales are variable profits. In the U.S., R&D expenditures
account for about 8% of manufacturing sales. The model counterpart of R&D expenditures is re-
searcher compensation. I set γ, the share of researcher compensation in variable profit, to 0.4, so
that researcher compensation accounts for about 8% of sales in the model.

Equation 14 implies log(Xild) = αid + βil − δlog(τld), where αid and βld are pair fixed effects. δ

therefore determines the elasticity of Xilds with respect to the cost of shipping from l to d. Based on
Arkolakis et al. (2014), which estimates this specification using the affiliate production and sales
data of U.S. multinationals (i = U.S.), I set δ to 10.9.

Calibrating firm efficiency and worker talent distributions for each country requires compa-
rable data across countries. I use the World Management Survey by Bloom et al. (2012) and the
cognitive test score data by Hanushek and Woessmann (2012) to calibrate these distributions.

The World Management Survey provides firm-level management scores for each country in
the sample. In the survey, interviewers rate each firm based on its talent management policy and
production efficiency along various dimensions. The overall management score for a firm is then
averaged over these sub scores. The talent management score intends to capture whether firms
follow good managerial practice for retaining and incentivizing its talent, so it is closely related
to whether a firm is able to make full use of its research talent. I use it to calibrate innovation
management distributions. I obtain three distribution statistics of z̃R for each country: mean,
standard deviation, and dispersion.
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Table 3: Parameters Calibrated Externally

Symbol Descriptions Value Source

σ Elasticity of substitution between varieties 5 Simonovska and Waugh (2014)
γ Return to research team size in R&D 0.4 Manufacturing R&D share
δ Dispersion in offshore production efficiency draws 10.9 Arkolakis et al. (2014)
A Probability of having a high production efficiency -6.3 Estimated
B Dependence of zP on zR 0.17 Estimated

I use firm-level talent and production management scores to estimate A and B, the coefficients
linking a firm’s innovation and production efficiencies. Specifically, I classify a firm as being from
a high productivity distribution if its production management score falls into the top 1% of the
distribution in the world (the top 4% in the U.S.). I then estimate the relationship between a firm’s
innovation management score and the probability that it is from a high productivity distribution
using the Logit model given by Equation 19. This procedure determines A = −6.3, B = 0.167.38

For the talent distribution, I obtain average cognitive score and the share of students reaching
“basic” and “top” performance from the test score database, which are defined based on a com-
mon absolute level across countries. To pin down the relative scale of management efficiency and
talent, I take the U.S. as the benchmark. Specifically, I set HUS(θ) and GR

US(z̃
R) to be the same,

and use the three statistics on the talent management score to pin down all three parameters in
GR

US(z̃
R).39 I then determine the distributions for other countries, by relating their distribution

statistics to those of the U.S.40

Table 3 summarizes the information on the parameters determined directly. I choose additional
parameters jointly in equilibrium, a process I describe below.

5.3 Parameters Determined in Equilibrium

Overview The remaining parameters to be determined include international frictions, {τld},
{φR

oi}, {φP
il}, {cM

d }, and {cR
i }; country-specific productivity, {Λl}; production efficiency distri-

38The choice of the top 1% cutoff is motivated by the importance of the most productive firms in international bu-
siness and in production in general. A high cutoff allows me to better capture the distribution of the very top firms.
The implicit assumption underlying this calibration strategy is that firms drawing their production efficiency from the
L distribution constitute the bottom 99% in the production efficiency distribution, whereas firms drawing from the
H distribution constitute the top 1% of production efficiency. This assumption does not hold exactly because under
the Pareto assumption, GL(zP) will always overlap with GH(zP). Given the choice of the cutoff (1%), however, the
calibrated ZP

H will be large enough so the overlap is negligible.
39The talent management score is approximately normal in the data. Since it is well known that the firm size distribu-

tion has a fat tail, I take the exponential of original scores and use that to match firms’ innovation efficiency distribution.
The statistics I use to pin down each country’s distribution are based on these exponents of scores. A few countries in
the quantitative analysis are not covered by the World Management Survey. I impute their statistics based on country
characteristics. The calibration appendix reports the procedures used in the imputation process.

40For firm innovation distributions, the three moments can be perfectly matched by the three parameters in the
truncated Pareto distribution. For the talent distribution, however, the truncated Pareto distribution cannot perfectly
match all three moments. I therefore use only the average score and the top student share to pin down the upper bound
and the shape parameter, while setting the lower bound to be the same across countries. This simplification, however,
does not leave out important information, as the correlation between the share of students reaching basic performance
and the average score is 0.92.
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bution parameters, zP
L , zP

H, and κP; and complementarity between management and talent, α.
Although in equilibrium these parameters are jointly identified, for certain parameters some mo-
ments are more informative than others. I describe below how each parameter is determined.

The iceberg components of international frictions, {τld}, {φR
oi}, and {φP

il}, determine the ag-
gregate flows of international integration. I use them to match bilateral trade shares, offshore
R&D shares, and offshore production shares. The data sources for these bilateral relationship
include: the multinational production data sets introduced in Ramondo et al. (2015); bilateral
trade including domestic absorption from the World Input-Output Database; and bilateral offs-
hore R&D information based on patenting statistics at USPTO from the OECD patent database.
To reduce measurement errors, I average the bilateral patenting and trade data over the period of
1998-2007.41

The fixed components of international costs, {cM
d } and {cR

i }, determine the extensive margin
of firms’ global operation. Due to lack of this information for a large sample of countries, I as-
sume that these fixed costs are the same for all country pairs, and choose them to match the share
of exporters (0.35) and the share of foreign affiliates among research active firms (0.037) in the
U.S. manufacturing sector, respectively. I calibrate {Λl}, the labor productivity in production, by
matching the real per-capita income of each country.

I normalize zP
L to 1, and determine α, zP

H, and κP jointly. α affects both the pattern of matching
between firms and researchers, and the firm size distribution. Strong complementarity (small α)
puts efficient firms at an advantage in working with talent, which affects the shape of the matching
function and the concentration of researchers. Figure 5a plots the model matching function under
various α. The matching functions corresponding to smaller α tend to be more convex, with a
larger share of researchers working for the top firms.42 I measure the overall convexity of the
matching function using the ratio between the average slope of the matching function for the top
50% zR firms, and the average slope for the bottom 50% firms. This convexity conveys information
about the value of α, and will be used as a calibration target. I discuss below how I construct the
model and empirical measures for this convexity.

By determining the distribution of talent across firms, α also affects the number of products a
firm develops, and hence the firm size distribution. Numerically, it is mostly informative about
the size of firms in the top 1%. In addition to α, κP and zP

H are also important about the firm size
distribution: κP directly affects the Pareto shape of the firm size distribution at the very top, while
zP

H effectively determines the scale of the top 4% firms relative to the bottom 96%, as about 4% of
U.S. firms draw from the H distribution.

Specifics about the matching function I estimate parameters of matching function based on
the test of positive assortative matching between inventors and firms, presented in the appendix.
Specifically, I measure firm innovation efficiency using the per-inventor innovation output, and

41The multinational production database is averaged over 1996-2001 in the original source.
42From Equation 7, other things equal, the slope of the matching function reflects the size of the research teams.

The steeper the curve, the larger is the research team. A more convex matching function thus means a more unequal
distribution of research team size, similar to the Lorenz curve.
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inventor talent using past innovation. Focusing on a sample of job switchers, I then estimate
nonparametrically how the talent of an inventor is related to the innovation efficiency of the new
firm, controlling for inventor and firm characteristics as well as time and patent category fixed
effects. A positive correlation indicates positive assortative matching. The solid line in Figure 5b
presents the estimates, along with a 2 s.e. band. The overall convexity measure of this empirical
matching function is 1.71.

We cannot directly compare the model convexity measure to its data counterpart. In the data,
matches are noisy, so the range of the estimated matching function is not [1, 100], whereas in the
model, this is always the case. To make the two comparable, I take the stand that in choosing
the optimal types of researchers, firms make mistakes. They cannot differentiate workers whose
talent satisfies firms’ first order condition (Equation 6) within a certain “error margin”. I fix the
wage schedule at the benchmark equilibrium, and then choose the size of this margin so that the
estimated matching function using simulated data has the same range as the empirical matching
function. I then compute the convexity measure based on this simulated matching function.43

Figure 5b plots the simulated noisy matching function when α is 0.7, which will be the bench-
mark calibration, and two different values. The benchmark value offers the best fit for the overall
concavity, determined by the value of the matching function at the 50th firm percentile. A smaller
α could fit the overall shape reasonably well, but misses the top range. A larger α, on the other
hand, is a poor fit overall.

5.4 Computational Algorithm

A detailed account of the computational algorithm is provided in the appendix. This section
briefly describes the nested procedure I use. In the outer loop, I choose zP

H, κP, cM, cR, and α to
match the targets described above. In the middle loop, I iterate over {τ}, {φR}, {φP}, and {T} to
match all bilateral shares and per-capita real income of countries. The inner loop solves the model
given exogenous parameters.

This computation algorithm requires solving the researcher market equilibrium for all coun-
tries at different parameter values. With offshore R&D decisions in the model, the distribution of
R&D center innovation efficiency, gR

i (z
R), is an endogenous outcome. The cutoff rule in offshore

R&D decisions implies that gR
i (z

R) could have multiple discontinuities. As a result, the matching
function, Ti(zR), is not necessarily differentiable. In this case, general boundary value problem
solvers routinely fail or takes a long time to find the solution. In the appendix, I develop a com-
putational algorithm that is well-suited for this exercise.
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Figure 5: The Model and Empirical Matching Function

(a) Model matching function

(b) Empirical and “noisy” model matching function

Notes: In both panels, the horizontal axis plots percentiles of firm innovation efficiency, and the vertical axis plots percentiles of
researcher talent. The upper panel is the model matching function under different α. The lower panel shows the empirical matching
function estimated by the author using the USPTO data (solid line), and simulated “noisy” model matching functions under different
α.
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Table 4: Fit of the Targeted Moments

Parameter Value Moments Model Data

cM 0.0693 Share of exporters 0.35 0.35
cR 2.6 Share of foreign affiliates 0.042 0.037

zP
H, α, κP

zP
H = 1.2 Fraction of firms with emp.<100 0.99 0.99

α = 0.7 Fraction of firms with emp.<20 0.95 0.95
κP = 8.16 Matching function slope between 0%-50%/ slope between 50-100% 1.58 1.71

Share of emp. in firms with>500 emp. 0.41 0.47
Power law coefficient of firm size dist. 1.04 1.05

5.5 Model Fit

The calibration process determines that cM = 0.069, cR = 2.6, zP
H = 1.2, κP = 8.16, and α =

0.7. Table 4 reports the value of parameters and the model moments that help pin down these
parameters. Overall, the model is able to fit data along these dimensions well.

The value of α suggests strong complementarity between innovation efficiency and researcher
talent. Since the complementarity and the resulting talent-acquisition motive are an important
channel in the model, in the following, I first discuss the role of α in determining the model pre-
dictions and explaining the patterns in the data. I then present additional implications of the
model under the benchmark calibration and compare them to the data whenever possible.

Figure 6: Complementarity and Offshore R&D

Notes: The vertical axis plots the percentage point difference between the benchmark parameterization and an alternative
parameterization with α = 0.98 in the share of R&D expenditures by foreign affiliates. The horizontal axis is host average
talent. Host average innovation efficiency is netted out from both axis.

43For different α, the size of the “error margin” needed to match the range of the empirical matching function varies.
But as long as α < 1, the simulated matching function can always match the range of its empirical counterpart. When
α approaches 1, firms become increasingly indifferent between different researchers. A small amount of mistakes in
recruiting would then result in a flat matching function.
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The importance of complementarity To understand the role of complementarity in shaping
offshore R&D between countries, I solve a counterfactual experiment with α = 0.98, keeping other
parameters at the benchmark. This parameter value implies much weaker complementarity than
the benchmark calibration. The vertical axis in Figure 6 shows the percentage point difference
between the benchmark and the counterfactual equilibrium in the share of domestic R&D done
by foreign affiliates. The horizontal axis is host average talent quality. The figure indicates that
higher complementarity increases offshore R&D, particularly in host countries with high talent,
so complementarity is an important force for the pattern of offshore R&D.

The calibration suggests that a relatively strong complementarity (α = 0.7) fits the pattern of
matches and moments of the firm size distribution well. Does it also explain the pattern of offshore
R&D better than under weak complementarity (as α approaches 1)? Although not reported here,
I find that the empirical results reported in Section 4 using firm-level patent data also hold at the
aggregate level. Specifically, offshore R&D between a country pair increases with home innovation
efficiency, host talent, and their interaction term.44 I evaluate the model’s ability to generate these
features under α = 0.7 and α = 0.98.

Because the calibration exactly matches bilateral offshore R&D and the distribution of talent
and innovation efficiency in the cross section, I evaluate the model in changes. I simulate a coun-
terfactual equilibrium in which countries receive random shocks to their distributions of talent
or efficiency.45 I then use the simulated data to perform a difference-in-difference regression of
changes in offshore R&D on changes in host talent distribution and home innovation efficiency, in
which each pair of country is an observation.

Table 5: Complementarity and the Patterns of Offshore R&D: Simulated Data

Benchmark Calibration Weak Complementarity
(1) (2) (3) (4) (5) (6)

Log(average home mgt. efficiency) 0.157*** -0.650* 0.010*** -0.018
(0.044) (0.375) (0.003) (0.025)

Log(average host talent) 0.071* -0.625** 0.006** -0.020
(0.038) (0.298) (0.003) (0.019)

Interaction 0.353** 0.012
(0.164) (0.011)

Bilateral FE X X X X X X
Observations 1352 1352 1352 1352 1352 1352
Within R2 0.019 0.005 0.025 0.019 0.007 0.021
Standard errors in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01

Columns 1-3 of Table 5 report the results under the benchmark specification. Bilateral pair
fixed effects are included in all three columns, so the model is identified from changes. The first
two columns show that host country talent and home country innovation efficiency both have

44Results from country-level regressions are available upon request.
45Specifically, I reduce the upper bound of the talent distribution by a random fraction for one third of the countries,

reduce the upper bound of innovation efficiency by a random fraction for one third of the countries, and then keep the
remaining one third of countries intact.
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significant positive impacts. The third column adds an interaction term. The interaction is positive
and significant, while the non-interactive terms turn negative. So the effects are concentrated
in the pairs of countries that experience improvements in both host talent and home efficiency,
consistent with the empirical findings. Columns 4-6 of Table 5 report the same specifications
under the case where α = 0.98. In this case, host talent and home efficiency both have significant
marginal impacts on offshore R&D. The within R square terms in the first two columns are also
similar to those under the benchmark specification. In contrast to the empirical finding, however,
the interaction term is not significant.

Together, these results suggest that under the benchmark calibration, the model is able to ge-
nerate a relationship between offshore R&D and the distributions of endowments similar qualita-
tively to that observed in the data, while a model without complementarity cannot.

Table 6: Additional Untargeted Moments

Management Score and Firm Size Model Data
Management score difference between large and small firms 1.18 1.32

The Management Efficiency of Foreign Affiliates
Foreign affiliate advantage 1.33 1.16
Coefficient of variation across countries 0.094 0.075
Correlation with domestic average score -0.67 -0.84

The management score difference between large and small firms The calibration procedure
for κP and zP

H takes the stand that management efficiency differences are the fundamental cause
of performance differences among firms.46 To validate this assumption, I examine the model’s
performance in matching the mapping from management score to firm size. This is a valid test
because the calibration uses the information on management scores and the firm size distribu-
tion separately, but puts no restrictions on how a one-point increase in the management score at
different percentiles of the firm size distribution translates into increases in firm size. For this com-
parison, I use the total management score, defined as the sum of the innovation and production
score, for a consistent comparison with the empirical evidence.

The first panel of Table 6 reports the difference in total management score between firms with
10000 employees and firms with 10 employees for the model and data.47 In the model, the diffe-
rence in total management score between an average firm with 10000 employees and an average
firm with 10 employees is 1.18 times the standard deviation of the management score, which is
close to the empirical counterpart of 1.32.

Figure 7 plots nonparametrically the relationship between management score and firm size
from the model and the data. The estimated curve from the data, in the left panel, displays some

46The calibration essentially takes the management score distribution from data, and chooses κP and zP
H so that the

variation in firm size is close to that in the data.
47The empirical counterpart of this number is from Bloom et al. (2014), which estimates this relationship nonparame-

trically, focusing on medium-sized U.S. manufacturing firms with 10-10000 employees. Because the two surveys have
different scales for scoring, I normalize the increase by the standard deviation of total management score.
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Figure 7: Management Score Difference Between Large and Small Firms

(a) Data (b) Model

Notes: The left panel shows the model relationship between management score and firm employment in the data estimated in Bloom
et al. (2014); the right panel shows the model counterpart. Both are based on the sub-sample of firms with employment between 10
and 10000. The range of variation in x-axis is 1.18 times the standard deviation of the management score in the data, and 1.32 in the
model.
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convexity: initially, firm size increases relatively slowly with management score; at the top range,
however, a small increase in management score results in a larger percentage increase in firm size.
Such a relationship can always be captured by the model by choosing how management score
scales into productivity, which is partially determined by zP

H. The question is whether the scale
chosen to match other moments is able to generate this relationship. The right panel is the model
relationship between management score and employment. Consistent with the data, the model
also generates some convexity.

The multinational managerial advantage One important assumption of the model is that af-
filiates’ innovation efficiency depends on that of their parents, rather than that of host country
domestic firms. This assumption, together with the self-selection mechanism, implies that foreign
affiliates tend to be more management efficient than domestic firms, and that the managerial ad-
vantage of foreign affiliates is larger in countries with worse domestic innovation management
efficiency.

I validate these implications quantitatively by calculating the foreign affiliate managerial ad-
vantage for each country. The measure I use is the ratio between average foreign affiliate innova-
tion efficiency and average domestic firm innovation efficiency, . I then compare the statistics of
this measure among the sample countries to their data counterpart, constructed using the database
introduced in Bloom et al. (2012).

The bottom panel of Table 6 reports the statistics of the foreign affiliate managerial advantage
for the sample countries. Both the model and the data indicates a larger innovation management
score for foreign affiliates compared to domestic firms, although the difference is larger in the
model (33%) than in the data (16%). The variability of the foreign affiliate advantage measure
across countries, captured by its coefficient of variation, is 0.094 in the model, and 0.075 in the
data. The correlation between this measure and the host country average domestic innovation
score is −0.67 in the model, and −0.84 in the data. So quantitatively, the model fits the cross-
country pattern of foreign affiliate innovation advantage well. In the appendix, I also plot the
model foreign affiliate managerial advantage against its data counterpart for individual countries
that are common to both samples. Overall the model is a reasonable fit.

Share of non-production income in GDP The model predicts countries will specialize dif-
ferently in R&D or production. Figure 8 plots the share of income from non-production labor in
the model against its counterpart in the data, the share of R&D in GDP. There is a strong correla-
tion between the model and the data across countries, even though the model best captures the
manufacturing industry while the data is from the aggregate economy.48

International Frictions Finally, I check if the calibrated bilateral frictions are reasonable by
comparing their correlations with geographic distance. The correlations between the logs of τ,
φR, and φP and the log of distance are 0.2, −0.22, and −0.42, respectively. The signs of these
correlations are consistent with larger international frictions for longer distances (φP and φR are
the inverse of costs). The difference between offshore production and offshore R&D in distance

48The model prediction better matches the ratio between R&D expenditures and manufacturing value added.
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Figure 8: Share of R&D in Income: Model versus Data

Notes: This figure plots the share of income from non-production labor in the model against the share of R&D in GDP in the data
across countries. The measure for the U.S. is normalized to have 1 in both the model and the data.

elasticity also supports that these two activities are different in nature.

6 Counterfactual Experiments

In this section I perform counterfactual experiments using the parameterized model to shed light
on the determinants and impacts of offshore R&D.

6.1 What Determines Offshore R&D

I first examine the quantitative importance of the talent-acquisition and market-access motives for
offshore R&D. This is a relevant exercise, because policy makers around the world are looking to
attract R&D intensive FDI. Domestic research talent and access to foreign countries through trade
and offshore production are cited as important determinants of the attractiveness of a country as
a host for offshore R&D centers (Guimón, 2009). I perform a set of experiments in which I either
change the distribution of talent or management endowments, or the market access of a coun-
try. To isolate the effects from changes in other countries, when computing these counterfactual
equilibria, I change parameters for one single country at a time, keeping model parameters at the
benchmark for all other countries.

The role of endowment distributions The first set of experiments aim to quantify the impor-
tance of cross-country differences in the distributions of firm efficiency and researcher talent in
determining offshore R&D. Specifically, I increase innovation efficiency of each host country, and
decrease the talent of their workforce, to see how these two factors affect the equilibrium offshore
R&D. I choose the U.S. innovation efficiency distribution and the Brazilian talent distribution as

41



Table 7: The Determinants of Offshore R&D

“Talent Acquisition” “Market Access” All

Country Benchmark Efficiency Talent Both Consumers Producers Both
1 2 3 4 5 6 7 8

Developed
AUS 26.83 0.05 7.61 0.00 30.30 17.83 0.27 0.00
AUT 50.21 5.87 25.81 0.00 51.46 39.88 0.00 0.00
BEL 57.12 12.25 14.98 2.48 68.15 31.62 0.00 0.00
CAN 33.52 13.38 12.19 0.13 38.88 22.73 0.00 0.00
DEU 23.85 4.22 7.53 1.03 36.32 11.51 1.65 0.00
DNK 33.55 0.93 15.98 0.13 41.22 18.88 0.00 0.00
ESP 42.92 0.28 30.96 0.00 45.64 41.03 29.53 0.00
FIN 17.93 0.00 0.46 0.00 26.86 1.62 0.00 0.00
FRA 33.74 1.00 17.66 0.31 40.32 23.61 2.89 0.00
GBR 45.65 17.83 29.04 7.13 54.25 33.23 5.63 0.08
GRC 58.00 10.46 53.50 5.72 56.90 57.02 49.54 1.37
IRL 55.20 30.23 29.72 0.01 55.21 51.22 0.00 0.00
ITA 29.20 0.33 22.11 0.21 32.05 26.31 19.19 0.10
JPN 5.05 0.00 2.03 0.00 9.00 2.39 2.35 0.00
KOR 4.81 0.00 0.00 0.00 8.80 3.34 1.36 0.00
NLD 34.66 1.13 2.83 0.07 54.67 0.81 0.00 0.00
POL 60.79 31.85 49.68 21.07 60.72 60.52 43.06 0.25
PRT 50.21 0.14 41.17 0.00 60.27 46.95 0.00 0.00
SWE 26.97 0.65 3.22 0.00 31.92 7.07 0.00 0.00
USA 7.93 7.93 2.97 2.99 13.89 1.92 1.18 0.45

Average 34.91 6.93 18.47 2.06 40.84 24.97 7.83 0.11

Emerging
BRA 37.14 5.37 37.14 5.37 40.15 36.49 34.23 4.68
CHN 52.13 22.66 46.33 19.40 53.46 52.12 51.28 18.73
IND 57.88 35.06 57.08 34.66 58.67 57.74 56.96 33.99
MEX 49.26 24.32 49.49 24.40 54.50 48.07 36.78 14.80
TUR 51.79 12.04 46.24 9.38 52.43 51.60 49.40 8.37

Average 49.64 19.89 47.25 18.63 51.84 49.20 45.73 16.11

Average 37.85 9.52 24.23 5.38 43.04 29.82 15.41 3.31
Notes: The numbers reported in this table are the share of domestic R&D expenditures incurred by affiliates
of foreign companies in each country. All numbers are in percentage points. The first column shows the
results from the benchmark calibration. The second column changes the firm innovation efficiency distri-
bution for each country to that of the U.S. The third column changes the worker talent distribution for each
country to that of Brazil. The fourth column combines the changes in the second and third columns. The
fifth column increases exporting costs to infinity. The sixth column increases countries’ outward offshore
production costs to infinity. The seventh column combines changes in the fifth and sixth columns. The last
column combines changes in the fourth and seventh columns.
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the benchmark, because these two countries respectively have the highest management efficiency,
and the lowest average talent.

The second column in Table 7 reports the share of R&D done by foreign affiliates for each host
country when it is given the U.S. management efficiency distribution. With an improvement in
domestic management efficiency, domestic firms are more competitive in both labor and product
markets. Domestic wages increase and prices decrease, reducing foreign firms’ incentive to enter.
Indeed, compared to the share of foreign R&D in the benchmark equilibrium in the first column,
the shares in these counterfactual equilibria are much lower. The average share of R&D done by
foreign affiliates across all countries is 9.52% , or a quarter of the benchmark value. The decreases
are smaller for the large developing countries in the sample—China and India. This likely occurs
for two reasons: first, these countries have relatively large domestic market so product market is
an important consideration, and second, these countries are further away from major innovation
countries, so offshore production to these countries is more costly.

I then change each country’s talent distribution to that of Brazil, while keeping its firm effi-
ciency distributions at the benchmark. Intuitively, when domestic talent distribution improves,
R&D outputs of both domestic and foreign-affiliated R&D centers increase. The increase in the
latter is larger for two reasons. First, foreign affiliates are on average more productive, so they be-
nefit more from the improvement in researcher quality. Second, the increase in R&D output allows
more foreign firms to overcome the fixed costs and enter. Column 3 of Table 7 reports the share of
R&D by foreign affiliates in each country. On average, foreign affiliates account for about 25% of
domestic R&D, which is a decrease of around one-third from the benchmark value. The size of the
decrease, again, varies considerably across countries. Perhaps because developed countries had
higher talent distribution to begin with, they experience larger drops in inward offshore R&D.

Finally, I combine the two experiments by changing the distributions of both management
efficiency and talent. As can be seen from the fourth column of Table 7, the global average share
of R&D done by foreign affiliates is around 5%, about one-fifth of the benchmark value. Overall,
cross-country differences in the distributions of talent and firm efficiency can account for most of
the observed offshore R&D for developed countries, and a smaller but still significant share for
large developing countries.

The role of foreign access I now examine the impact of the host country’s access to foreign
countries on offshore R&D. In the model, foreign access consists of two channels: access to foreign
consumers through exporting, and access to foreign producers through offshore production. I
consider their separate and joint impacts.

In the first experiment, I increase each host country l’s iceberg export cost, τld, l 6= d to infinity.
This shuts down host countries’ direct access to foreign consumers, but R&D centers there can still
indirectly access foreign consumers through offshore production. The shares of R&D by foreign
affiliates in these counterfactual equilibria are reported in column 5 of Table 7, which shows small
but universal increases in offshore R&D shares across countries.

This result might seem surprising at first glance, given the partial equilibrium intuition below:
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eliminating the access to foreign consumers through direct exporting reduces the return to doing
R&D in a host country. This effect is especially strong for more productive firms, because they
export more. So fewer foreign firms enter, and their share in total R&D decreases. In a model
with both trade and offshore production, however, this direct channel is muted—without expor-
ting, firms can still serve foreign consumers by offshoring their production to other countries.
Moreover, due to the lower demand for labor from production, wages for both inventors and pro-
duction workers decrease, which makes the country more attractive as a host for R&D centers.
An increase in export costs thus has a similar effect to a decrease in a host country’s production
efficiency, which strengthens its comparative advantage in innovation, driving it to specialize in
R&D activities.

In the second experiment, I increase the costs of offshore production in each country to infinity
(by setting φR

il , i 6= l to zero), so it is impossible for R&D centers to perform offshore production in
other countries. The 6th column of Table 7 shows that, compared to the benchmark equilibrium,
most countries experience a decrease in offshore R&D. The average share of R&D by foreign affilia-
tes decreases by about 8 percentage points from the benchmark economy, to around 30%. Because
firms located in emerging economies in this sample do not perform outward offshoring activities
to begin with, the decrease in offshore R&D resulting from this change tends to be more significant
for developed economies than for emerging economies.

The general equilibrium effect works in the same direction as the partial equilibrium effect in
this case. When the option of offshore production is eliminated, R&D centers in the host countries
have to produce locally to serve both foreign and domestic customers, which increases wages for
production workers and inventors, making the country less attractive as a host for R&D centers.
An increase in offshore production costs is therefore similar to a reduction in R&D innovation
efficiency of a country, which strengthens its comparative advantage in production.

Column 7 of Table 7 reports the experiment when both exporting and offshore production
are shut down. Compared to column 5, the share of offshore R&D is much smaller for developed
countries, because when offshore production is not an option, countries can no longer specialize in
innovation. For developing countries, the differences between columns 5 and 7 are small, mainly
because they do not perform much outward offshoring production in the benchmark equilibrium.

Finally, I combine the two sets of experiments reported in this section, by changing the two
distributions and also eliminating host access to foreign consumers and producers. The average
of foreign R&D shares, reported in the last column of Table 7, is 3.3%, or one-tenth of the bench-
mark value. The only countries that attract a significant share of offshore R&D are large emerging
economies, such as Brazil, China, and India. The large markets of these countries, and their rela-
tive closeness to export and offshore production from other countries, are the reasons for foreign
firms to perform R&D in those countries.

In summary, the experiments in this section show that the two main forces incorporated in the
model have significant impacts on firms’ offshore R&D decisions. Differences in the management
and worker quality distributions together explain about six-seventh of the equilibrium offshore
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Figure 9: The Welfare Gains from Offshore R&D

Notes: The vertical axis shows the welfare gains from offshore R&D (%), and the horizontal axis shows the share of R&D in a host
country performed by foreign affiliates in the model economy.

R&D. Host access to foreign customers reduces offshore R&D in the country, while its access to
foreign producers increases it. Combined, international differences in the distributions of talent
and firm efficiency, and access to foreign markets and producers, explain more than 92% of the
average level of offshore R&D in the benchmark equilibrium. The small remaining offshore R&D
activities are concentrated in emerging economies with large domestic markets.

6.2 The Gains from Offshore R&D

I now turn to the normative aspect of offshore R&D. As a starting point, I examine the welfare
gains from various forms of economic integrations by eliminating each channel from the model
separately. I define the gains from offshore R&D as the increase in real income as a country moves
from an equilibrium where offshore R&D is not allowed to the baseline equilibrium. I define
gains from trade and gains from offshore production analogously. I compare these gains from
individual channels to the overall gains from openness.

The first column in Table 8 presents the welfare gains from offshore R&D. The unweighted
average welfare gain is 2.6%. This average, however, masks a great deal of country heterogeneity.
Some countries, such as China, India, and Greece, benefit by around 4% or higher. Meanwhile
countries like Japan and Korea barely receive any benefits or even lose, due to the general equi-
librium effect from international competition. Figure 9 plots the gains from offshore R&D against
the share of foreign affiliates in domestic R&D for each country. Countries with a higher share of
R&D done by foreigners tend to benefit more from offshore R&D.
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Table 8: The Welfare Gains from International Economic Integration

ISO Offshore R&D Trade Offshore Prod. Openness Trade & Offshore Prod.
1 2 3 4 5

Developed
AUS 1.14 5.64 2.09 19.47 17.24
AUT 3.28 10.67 3.12 52.43 43.98
BEL 4.51 15.94 4.52 74.15 61.53
CAN 1.76 9.43 3.53 43.56 38.74
DEU 1.18 7.08 3.17 24.87 22.88
DNK 1.77 17.23 2.32 43.02 40.40
ESP 2.67 3.95 0.32 17.61 12.69
FIN 1.17 8.12 3.00 21.70 20.86
FRA 1.91 6.90 2.34 22.51 19.62
GBR 2.51 8.47 4.59 34.68 28.82
GRC 4.51 7.67 0.03 20.54 13.32
IRL 4.11 12.55 2.17 60.98 48.39
ITA 1.23 3.33 0.42 11.35 9.22
JPN -0.29 3.16 1.31 4.75 4.69
KOR 0.03 3.83 0.15 6.60 6.45
NLD 2.18 19.47 9.43 64.29 62.48
POL 4.93 5.01 0.61 28.20 17.45
PRT 3.24 5.23 2.48 43.77 33.17
SWE 1.93 8.79 3.52 34.33 31.72
USA 1.93 8.92 3.97 16.08 15.90

Average 2.29 8.57 2.65 32.24 27.48

Emerging
BRA 2.12 -0.46 0.09 6.91 3.27
CHN 4.11 -0.92 -0.05 7.96 2.40
IND 4.93 -0.53 0.04 9.48 3.70
MEX 2.97 3.61 0.73 20.73 13.60
TUR 3.95 3.27 -0.18 12.06 6.14

Average 3.61 1 0.13 11.43 6.41

Average 2.55 7.06 2.15 28.08 23.27
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The second and third columns report the gains from trade and the gains from offshore pro-
duction, respectively. The average is around 7.0% for trade, and 2.1% for offshore production.
Again, the welfare gains take a wide range of values. As expected, smaller economies and coun-
tries that are closer to major markets, such as Belgium, Netherlands, and Ireland, gain more from
both trade and offshore production. Larger and more remote economies, such as India, gain less.
Some countries even receive modest losses from trade and offshore production.

In the fourth column are the overall gains from openness. They range from 16% for the U.S. to
74% for Belgium, with an average of 35%. The gains from openness are almost always larger than
the sum of the gains from the three forms of economic integration, which means these three forms
of integration are substitutes—the benefit from additional openness is smaller once a country is
already open in other dimensions. The substitution between trade and offshore production is
intuitive—since these two are alternative ways of serving goods from where they are invented
to where they are consumed, when one channel is present, the marginal benefits from the other
channel are lower. The last column of Table 8 reports the combined gains from trade and offshore
production, computed from a counterfactual scenario where both trade and offshore production
are eliminated. Indeed, the values in column 5 are universally larger than the sum of columns
2 and 3. This result is consistent with the finding in Arkolakis et al. (2014), in a setting without
offshore R&D.

The interaction pattern between offshore R&D and the combined effect of trade and offshore
production is more nuanced—while in most countries, the sum of columns 1 and 5 is still smaller
than column 4, the difference is small. In countries like the U.S., the sum of gains from offshore
R&D and the gains from trade and offshore production is actually larger than the gains from
openness.

This difference is again related to the interaction among various forces through country speci-
alization. First, there is a demand-for-R&D channel. The option to export and to produce offshore
raises the return to innovation. Because of the fixed marketing cost, this benefits more efficient
firms particularly, who are also the ones most likely to perform offshore R&D. This demand side
channel therefore tends to increase the gains from offshore R&D when trade and offshore pro-
duction are present. However, there is also a labor-supply channel. Since innovation and pro-
duction compete for workers, the general equilibrium effect discussed in the previous section sets
in. When one sector expands in a country, wages increase, making the country benefit less from
new opportunities in the other sector.

Offshore R&D tends to increase the R&D efficiency in countries that are relatively scarce in
high efficiency firms, which weakens the comparative advantage of these countries in production.
Because those are also the countries that tend to specialize in production, offshore R&D reduces
their gains from trade and offshore production by weakening their comparative advantage. The
substitution between offshore R&D, trade and offshore production is stronger for countries with
strong comparative advantage in production. We can use the ratio between the sum of gains from
offshore R&D and the combined gains from trade and offshore production over the gains from
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Figure 10: The Substitution Between International Activities

Notes: The vertical axis shows the sum of gains from offshore R&D and the combined gains from trade and offshore production,
divided by the overall gains from openness. The horizontal axis shows the share researcher compensation in total income.

openness as a measure of the strength of this substitution. A lower ratio means smaller marginal
gains from further integrating the economy once it is already integrated through other ways, and
therefore represents stronger substitution. I use the share of income generated by R&D labor in the
calibrated equilibrium as a measure for comparative advantage in innovation. Figure 10 displays
the relationship between these two measures. As conjectured, the substitution is more important,
for countries with comparative advantage in production.

How important is accounting for offshore R&D in understanding the gains from openness?
Figure 11 plots the relationship between host income and the ratio between the gains from open-
ness in the benchmark model, shown in Table 8, and the gains from openness in a restricted-
version of the model without offshore R&D. With offshore R&D as an additional channel for gains
from openness, the ratio is generally larger than 1, indicating higher gains from openness in the
benchmark model. The average of this ratio among the model countries is 1.2. This amplifica-
tion, however differs significantly across countries. For emerging countries in the sample, such
as China, India, Brazil, and Turkey, the gains from openness are more than 100% higher in the
benchmark model with offshore R&D. This amplification is much lower for developed countries.
For example, for the U.S., the inclusion of offshore R&D only increases the gains from openness
by 15%. The wide range of the ratio also underscores the importance of incorporating offshore
R&D—overlooking this channel will not only understate the gains from openness, but also bias
the comparison of the gains from openness across countries.

Why do developing countries benefit more from offshore R&D? Further examination of coun-
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Figure 11: Relative Importance of Offshore R&D

Notes: The vertical axis shows the ratio between gains from openness in the benchmark model, and the gains from openness in a
model without offshore R&D. The horizontal axis shows host income.

tries’ participation in various forms of integration suggests that during the sample period, deve-
loping countries participated more intensively in offshore R&D than in trade and offshore pro-
duction. By fitting this pattern, the model implies that the frictions impeding offshore R&D in-
crease more slowly with distance than the frictions impeding trade and offshore production. As a
result, developing countries which are far away from major home countries of innovating firms—
U.S., West Europe, and Japan—participate more intensively in offshore R&D, and less intensively
in offshore production.

To sum up, the counterfactual experiments in this section demonstrate that offshore R&D re-
presents a quantitatively important new channel through which countries benefit from globaliza-
tion. It is a weak substitute for trade and offshore production in general, although the substitution
patterns depend on a country’s specialization in innovation or production in the world economy.
Further, by showing that offshore R&D and other forms of globalization have very different im-
pacts across countries, the results also highlight the importance of modelling offshore R&D sepa-
rately, rather than treating it as part of the offshore production process.

6.3 Further Liberalization of China and India

Existing quantitative research on multinational activities usually does not allow firms to make
independent decisions on offshore R&D and production. I evaluate whether this is an important
restriction by comparing the welfare implications of liberalizing offshore R&D and offshore pro-
duction. Doing so is potentially important because policy makers usually have at their disposal
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policies that specifically target production or innovation activities.
As an example, I focus on the case of China and India and evaluate two types of openness

policies. This exercise is interesting in its own right, because both countries are becoming popu-
lar destinations for offshore production and R&D. Related to this trend, their governments are
attempting to attract more foreign companies, especially R&D intensive ones, by cutting red tape
and speeding up the entry approval process.

I first consider an inward offshore R&D liberalization that makes it easier for foreign firms
to open R&D centers in India and China. More specifically, I reduce the fixed costs of R&D in
these countries by 20%. This reduction in cost can be interpreted as a tax credit for the upfront
investment in R&D, subsidized land, or speedy approval of entry. The magnitude of the reduction
is well within the range of policies commonly used.49 The first column of Table 9 reports the
results. As we can see, China and India benefit by 0.6 and 0.9 percent in welfare from such a
policy, while other countries are not significantly affected.

The second experiment is a liberalization in inward offshore production, which increases φP
oi

by 10% for i = India, China, o 6= i. Because these two types of liberalizations do not necessarily
share the same fiscal costs or administrative burdens, I do not compare the levels of the welfare
gains, but instead focus on the distributions of the welfare gains across countries. The second
column of Table 9 shows that India and China still benefit from this liberalization. But differently
from the first experiment, major developed countries also benefit significantly. The difference
between these two experiments is due to the interaction between offshore R&D and countries’
specialization in the world economy. Because offshore R&D into China and India reduces these
two countries’ comparative advantage in production, it pushes developed countries to be less
specialized in innovation. As a result, they do not benefit much in the first experiment. Inward
offshore production liberalization, on the other hand, allows China and India to be more speciali-
zed in production, and developed countries to be more specialized in innovation, thus benefiting
everyone. These two experiments demonstrate that openness to offshore R&D and offshore pro-
duction could have different welfare implications for other countries. It is thus very important to
separate offshore R&D and offshore production in the model, to better evaluate specific policies.

Because of the interactions among the three forms of global integration, incorporating offshore
R&D also affects our understanding of the effects of other types of policies. I focus on China
and India as an example to illustrate this point. Specifically, I consider the same liberalization for
China and India in inward offshore production as in the second experiment, but in a restricted
version of the model without offshore R&D. The welfare impacts of this experiment are reported
in the third column of Table 9. Compared to the second column, the welfare gains are significantly
smaller for China and India, but larger for developed countries. The reason for the difference is
that, when there is no offshore R&D, openness to offshore production only crowds out R&D by
domestic firms, so Chinese and Indian firm owners bear all the reduction in profit from increased

49For example, in 2012, to attract a $30 billion investment in a chip factory from Samsung Electronics Co. Ltd., the
Chinese city Xi’An offered an package of favorable policies, including free land, infrastructure, and tax credits. The
land alone was valued at $4 billion, more than 10% of the initial investment cost.
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Table 9: Further Inward FDI Liberalization in China and India

Policy 1 Policy 2 Policy 3

CHN 0.65 0.20 0.13
IND 0.89 0.19 0.12
DEU 0.00 0.17 0.21
JPN 0.00 0.15 0.24
USA -0.01 0.09 0.26
Notes: All numbers are in percentage point
terms. Policy 1 is a unilateral reduction of 20%
in fixed inward offshore R&D costs for China
and India from the benchmark equilibrium. Po-
licy 2 is a unilateral reduction of 10% in inward
offshore production costs for China and India.
Policy 3 simulates the same shock as in Policy
2 in a restricted version of the model without
offshore R&D.

inward offshore production. This reduces the aggregate welfare gains in these two countries, but
increases the welfare gains to developed countries. The difference in welfare impacts suggests
that even if one’s goal is solely to understand the effect of liberalizing offshore production, it is
important to incorporate offshore R&D into the model.

7 Conclusion

Talented researchers and efficient firms are both necessary inputs to invention of new products,
but they are distributed unevenly across countries. By carrying out their R&D activities offshore,
firms mobilize their management technology across borders, which might generate important ag-
gregate gains. This paper develops a unified model of firms’ global R&D and production de-
cisions, featuring talent-acquisition and market-access motives for offshore R&D. These motives
generate testable implications on the pattern of offshore R&D by firms with different efficiencies
and in host countries with different characteristics. Empirical evidence based on USPTO patenting
data by firms performing R&D in different countries confirms these predictions. Counterfactuals
using the calibrated model further suggest these two motives can account for over 90% of the
observed offshore R&D.

Quantitatively, the welfare gains from offshore R&D are on average 2.5% of real income. In-
corporating this channel amplifies the welfare gains from openness by a factor of 1.2, with more
amplification for developing countries than for developed countries. Further experiments show
that a country’s openness to offshore R&D and offshore production have very different spillover
effects to other countries. Moreover, because of the interaction among various forms of internatio-
nal integration, whether offshore R&D decisions are allowed makes a difference when evaluating
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the effects of liberalizing offshore production. All these results point to the importance of incor-
porating offshore R&D for a better understanding of globalization.

As a first step towards quantitatively evaluating offshore R&D, this paper abstracts from many
potential channels through which it can affect aggregate welfare, such as the spillover between fo-
reign and domestic R&D centers, and the effects of offshore R&D on growth. Moreover, although
offshore R&D is one way for efficient firms and talented researchers from different countries to
work together, an alternative is for researchers to migrate, which this paper abstracts from. All
these are exciting opportunities for future research.
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Appendix A Theory

A.1 Lemma 1

Proof Country index i is omitted in this proof. Consider two R&D centers characterized by
management scores (zP

1 , zR
1 ), and (zP

2 , zR
2 ), with zR

2 > zR
1 . Let T : ZP ×ZR → Θ be the mapping

from the type of an R&D center to the type(s) of researchers it recruits. Let θ1 = T(zP
1 , zR

1 ), θ2 =
T(zR

2 , zP
2 ), so the first R&D center recruits θ1 and the second θ2.

I prove by contradiction that θ1 <= θ2. Suppose θ1 > θ2, given that (zP
1 , zR

1 ) hires θ1, it must be
the case that it at least weakly prefer researchers with talent θ1 to researchers with ability θ2. From
Equation 5, this implies

π(zP
1 )

1
1−γ w(θ2)

− γ
1−γ f (zR

1 , θ2)
1

1−γ ≤ πi(zP
1 )

1
1−γ w(θ1)

− γ
1−γ f (zR

1 , θ1)
1

1−γ

[
w(θ1)

w(θ2)
]

γ
1−γ ≤ [

f (zR
1 , θ1)

f (zR
1 , θ2)

]
1

1−γ .

Similarly, for (zP
2 , zR

2 ):

[
w(θ2)

w(θ1)
]

γ
1−γ ≤ [

f (zR
2 , θ2)

f (zR
2 , θ1)

]
1

1−γ . (A.1)
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We therefore have:

[
w(θ1)

w(θ2)
]

γ
1−γ ≥ [

f (zR
2 , θ1)

f (zR
2 , θ2)

]
1

1−γ > [
f (zR

1 , θ1)

f (zR
1 , θ2)

]
1

1−γ ≥ [
w(θ1)

w(θ2)
]

γ
1−γ ,

where the first inequality is from Equation A.1, and the second from Assumption 1.
The above contradiction suggests that θ1 ≤ θ2, and that T(zP, zR) is weakly increasing in zR.

Now suppose θ1 = θ2, given the weak monotonicity of T, for R&D centers with zR ∈ (zR
1 , zR

2 ),
regardless of their production efficiency, will also recruit θ1. Therefore in equilibrium, the demand
for researchers with ability θ1 will have a mass point, which contradicts with the assumption
that talent distribution in each country has no mass point. Therefore the equilibrium matching
function, T(zP, zR), will be strictly increasing in zR.

Now consider (zP
1 , zR

1 ) and (zP
2 , zR

1 ). If these two R&D centers hire different types of resear-
chers, θ1, and θ2, then from monotonicity, all researchers with ability between θ1 and θ2 would be
recruited by R&D centers with innovation efficiency zR

1 . The demand for researchers by R&D cen-
ters with this efficiency will be a positive mass, which contradicts that the distribution of efficiency
for R&D centers have no mass point. Therefore Ti(zP, zR) is independent of zP.

A.2 Lemma 2

Proof Country index i is omitted. To show that w(θ) is differentiable, we consider an R&D
center with innovation efficiency zR

1 , which is matched to T(zR
1 ). Consider zR and θ = T(zR

1 ). By
the definition of T(zR

1 ), R&D centers with innovation efficiency zR
1 prefers researchers with ability

θ instead of those with θ + dθ. Following Equation A.1, this implies:

[
w(θ + dθ)

w(θ)
]
γ

≥ [
f (zR

1 , θ + dθ)

f (zR
1 , θ)

]

Consider zR
2 = T−1(θ + dθ), then similarly, we also have:

[
w(θ + dθ)

w(θ)
]
γ

≤ [
f (zR

2 , θ + dθ)

f (zR
2 , θ)

]

From these two equations, we have:

f (zR
1 , θ + dθ)− f (zR

1 , θ)

f (zR
1 , θ)

≤ w(θ + dθ)γ − w(θ)γ

w(θ)γ ≤ f (zR
2 , θ + dθ)− f (zR

2 , θ)

f (zR
2 , θ)

Dividing all three terms in the above inequality by dθ, and letting dθ → 0, the first term approaches
f2(zR

1 ,θ)
f (zR

1 ,θ) , and the third term approaches f2(zR
2 ,θ)

f (zR
2 ,θ) , which in term equals f2(zR

1 ,θ)
f (zR

1 ,θ) , given the continuity of

f (zR, θ) and T(zR). Therefore we have

lim
dθ→0

w(θ + dθ)γ − w(θ)γ

w(θ)γdθ
=

f2(zR
1 , θ)

f (zR
1 , θ)
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Therefore w(θ)γ is differentiable, with derivative being w(θ)γ f2(zR
1 ,θ)

f (zR
1 ,θ) . This implies w(θ) is also

differentiable, and its derive satisfies the following equation:

w′(θ)
w(θ)

=
f2(zR, θ)

γ f (zR, θ)
.

A.3 Proposition 2

Proof Country index i is omitted. Consider two talent distributions H(θ) and H̃(θ), with H̃(θ)
more talent abundant than H(θ) according to Definition 1, and ˜h(θ) and h(θ) being the correspon-
ding PDFs. I use tilde to denote variable under H̃(θ). I first show that T̃(zR) ≥ T(zR), i.e., firms
are matched with more talented researchers under H̃(θ) than under H(θ).

I prove by contradiction. From the definition of talent abundance, T̃(zR) = θ̃ > T(zR) = θ,
and T̃(zR) = θ̃ > T(zR) = θ. Suppose for zR ∈ (zR, zR), T̃(zR) < T(zR), then there must be
zR

1 < zR and zR
2 > zR, so that T̃ crosses T from above at zR

1 , and crosses it again from below at zR
2 .

In zR ∈ (zR
1 , zR

2 ), T̃(zR) < T(zR).

For this to be possible, it must be the case that T̃′(zR
2 )

T̃′(zR
1 )

>
T′(zR

2 )

T′(zR
1 )

. Using Equation 7, and that

T(zR
1 ) = T̃(zR

1 ), T(zR
2 ) = T̃(zR

2 ), this implies:

[
w̃(T̃(zR

1 ))

w̃(T̃i(zR
2 ))

]
1

1−γ

∫
ZP π̃(zP)

1
1−γ gP(zP|zR

2 )dzP∫
ZP π̃(zP)

1
1−γ gP(zP|zR

1 )dzP

h̃(T̃(zR
1 ))

h̃(T̃(zR
2 ))

> [
w(T(zR

1 ))

w(T(zR
2 ))

]
1

1−γ

∫
ZP π(zP)

1
1−γ gP(zP|zR

2 )dzP∫
ZP π(zP)

1
1−γ gP(zP|zR

1 )dzP

h(T(zR
1 ))

h(T(zR
2 ))

.

Note that π(zP) depend on the talent distribution because the latter determines general equili-
brium outcomes, such as X and P. However, if one of the two additional conditions stated in
Proposition 2 is satisfied,∫

ZP π̃(zP)
1

1−γ gP(zP|zR
2 )dzP∫

ZP π̃(zP)
1

1−γ gP(zP|zR
1 )dzP

=

∫
ZP π(zP)

1
1−γ gP(zP|zR

2 )dzP∫
ZP π(zP)

1
1−γ gP(zP|zR

1 )dzP
.

Then the above inequality further simplifies to:

[
w̃(T̃(zR

1 ))

w̃(T̃(zR
2 ))

]
1

1−γ
h̃(T̃(zR

1 ))

h̃(T̃(zR
2 ))

> [
w(T(zR

1 ))

w(T(zR
2 ))

]
1

1−γ
h(T(zR

1 ))

h(T(zR
2 ))

.

From the definition of talent abundance, h̃(T̃(zR
1 ))

h̃(T̃(zR
2 ))

<
h(T(zR

1 ))

h(T(zR
2 ))

. From Equation 6 and log-supermodularity,

[
w̃(T̃(zR

1 ))

w̃(T̃(zR
2 ))

]
1

1−γ < [
w(T(zR

1 ))

w(T(zR
2 ))

]
1

1−γ , so the above inequality cannot hold. Thus we have proved that

T̃ ≥ T, ∀zR ∈ (zR, zR).
Let y(zP, zR) and ỹ(zP, zR) denote the number of varieties an R&D center with efficiency (zP, zR)

develops when the talent distribution is H(θ) and H̃(θ), respectively. Now consider the output
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difference between R&D centers with zR
1 < zR

2 . From Equation 4, we have:

log(
y(zP, zR

1 )

y(zP, zR
2 )

) = log(y(zP, zR
1 ))− log(y(zP, zR

2 ))

=
∫ zR

2

zR
1

∂log(y(zP, zR))

∂zR dzR

=
1

1− γ

∫ zR
2

zR
1

f1(zR, T(zR))

f (zR, T(zR))
dzR

≤ 1
1− γ

∫ zR
2

zR
1

f1(zR, T̃(zR))

f (zR, T̃(zR))
dzR

= log(
ỹ(zP, zR

1 )

ỹ(zP, zR
2 )

),

where the inequality uses the definition of log-supermodularity and the above conclusion that
T̃(zR) ≥ T(zR).

A.4 Proposition 3

Proof To derive the gains from openness under Assumption 3, I proceed in three steps. The first

step is to derive expression for production workers’ real wage, wP
i

Pi
, in terms of measurable flows

and total number of domestically invented varieties. The second step is to derive the relationship
between production wage and total expenditure, Xi

wP
i

in order to obtain Xi
Pi

, the real income of a

country. In the final step, I use Xi
Pi

to derive the gains from openness.

Step1: real wage for production worker I first derive real wage for production workers, wP
i

Pi
.

The key step is to derive the total measure of varieties in each country. Under the assumption that
f (zR, θ) = zRθβ, Equation 6 becomes w′i(θ)

wi(θ)
= β

γ
1
θ . Therefore the researcher wage schedule can be

solved directly:

wi(θ) = wiθ
β
γ

Under the assumption that the fixed marketing cost is 0, the per-variety variable profit given

by Equation 2 becomes πi(zP) = zPσ−1
∑d

1
σ (

σ
σ−1 )

1−σΓ( δ+1−σ
δ )Pσ−1

d XdΨ
σ−1

δ

id . The total innovation
output by an R&D center with (zP, zR) is therefore:

yi(zP, zR) = (
γ

wi
)

γ
1−γ πi(zP)

γ
1−γ zR

1
1−γ

= (
γ

wi
)

γ
1−γ [∑

d

1
σ
(

σ

σ− 1
)1−σΓ(

δ + 1− σ

δ
)Pσ−1

d XdΨ
σ−1

δ

id ]
γ

1−γ zP
γ(σ−1)

1−γ zR
1

1−γ
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The measure of varieties invented in country i that can be produced with zP is

mi(zP) = Ri

∫
ZR

i

yi(zP, zR)g(zP|zR)gi(zR)dzR

= Rig(zP)
∫

ZR
i

yi(zP, zR)gi(zR)dzR

= KizP
γ(σ−1)

1−γ −κP−1
,

Where Ki = zP
i

κP
κP(

γ

wi
)

γ
1−γ [∑

d

1
σ
(

σ

σ− 1
)1−σΓ(

δ + 1− σ

δ
)Pσ−1

d XdΨ
σ−1

δ

id ]
γ

1−γ Ri

∫
ZR

i

zR
1

1−γ gi(zR)dzR

(A.2)

The total measure of varieties developed in country i, Mi is

Mi =
∫ ∞

zP
i

mi(zP)dzP =
Ki

κP − γ(σ−1)
1−γ

zP
i

γ(σ−1)
1−γ −κP (A.3)

From Equation A.2, the productivity distribution for varieties developed in country i follows a
Pareto distribution, with minimum zi

P and dispersion parameter γ(σ−1)
1−γ − κP. Given the measure

of new varieties, Mi, the offshore production and trade block of the model corresponds to the
model in Arkolakis et al. (2014) with exogenous entry. Following their notation, I define λE

id =
∑l Xild

Xd
, λT

ld = ∑i Xild
Xd

. Then λE
id denotes the share of consumption expenditure in country d that are

spent on goods invented in country i, and λT
ld denotes the share of consumption in country d that

are imported from country l.
Given that the total measure of varieties developed in country i is Mi, and that their producti-

vity distribution is Pareto, the ideal price index in country d is given by:

P1−σ
d = Γ(

δ + 1− σ

δ
)(

σ

σ− 1
)1−σ ∑

i
Ψ

σ−1
δ

id Mi
κP − γ(σ−1)

1−γ

zP
i

γ(σ−1)
1−γ −κP

∫ ∞

zP
i

zP(σ−1)+ γ(σ−1)
1−γ −κP−1

dzP

= Γ(
δ + 1− σ

δ
)(

σ

σ− 1
)1−σ ∑

i
Ψ

σ−1
δ

id Mi
κP − γ(σ−1)

1−γ

κP − σ−1
1−γ

zP
i
(σ−1)

.

By definition of Xid from Equation 13, using the above expression for price, we have

λE
id =

Xid

Xd

=
Ψ

σ−1
δ

id MizP
i
(σ−1)

∑i Ψ
σ−1

δ

id MizP
i
(σ−1)

= Γ(
δ + 1− σ

δ
)(

σ

σ− 1
)1−σ

κP − γ(σ−1)
1−γ

κP − σ−1
1−γ

Ψ
σ−1

δ

id MizP
i
(σ−1)

P1−σ
d

.

Therefore,

P1−σ
d =

Ψ
σ−1

δ

dd MdzP
d
(σ−1)

λE
dd

Γ(
δ + 1− σ

δ
)(

σ

σ− 1
)1−σ

κP − γ(σ−1)
1−γ

κP − σ−1
1−γ

. (A.4)
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Note that λT
dd = ∑i ψiddλE

id, where ψidd =
Td(

wP
d τdd
φP

id
)−δ

Ψid
, so production wage satisfies:

wP
d

δ
=

1
λT

dd
(∑

i

TdφP
id

δ
λE

id
Ψid

) (A.5)

To express ∑i
TdφP

id
δ
λE

id
Ψid

in flow units, consider:

Xidd

Xd
= λE

id

Td(
wP

d τdd

φP
id

)−δ

Ψid

⇔ Xidd

Xd
ΨddwP

d
δ
= λE

idTd(
τdd

φP
id
)−δ Ψdd

Ψid

⇔ ∑i Xidd

Xd
ΨddwP

d
δ
= ∑

i
λE

idTdφP
id

δ Ψdd

Ψid

⇔ ∑i Xidd

Xd

Td

ψddd
= ∑

i
λE

idTdφP
id

δ Ψdd

Ψid

⇔ Td
∑i Xidd

Xd

∑l Xdld

Xddd
= ∑

i
λE

idTdφP
id

δ Ψdd

Ψid

The real wage for production workers, wP
d

Pd
, is

wP
d

Pd
= zP

d Γ(
δ + 1− σ

δ
)

1
σ−1 (

σ

σ− 1
)(

κP − γ(σ−1)
1−γ

κP − σ−1
1−γ

)
1

σ−1 M
1

σ−1
d λT

dd
− 1

δ λE
dd
− 1

σ−1 (∑
i

λE
idTdφP

id
δ Ψdd

Ψid
)

1
δ

= zP
d Γ(

δ + 1− σ

δ
)

1
σ−1 (

σ

σ− 1
)(

κP − γ(σ−1)
1−γ

κP − σ−1
1−γ

)
1

σ−1 M
1

σ−1
d λT

dd
− 1

δ λE
dd
− 1

σ−1 (Td
∑i Xidd

Xd

∑l Xdld

Xddd
)

1
δ

= zP
d Γ(

δ + 1− σ

δ
)

1
σ−1 (

σ

σ− 1
)(

κP − γ(σ−1)
1−γ

κP − σ−1
1−γ

)
1

σ−1 M
1

σ−1
d λT

dd
− 1

δ λE
dd
− 1

σ−1 (TdλE
dd

∑i Xidd

Xddd
)

1
δ

= zP
d Γ(

δ + 1− σ

δ
)

1
σ−1 (

σ

σ− 1
)(

κP − γ(σ−1)
1−γ

κP − σ−1
1−γ

)
1

σ−1 T
1
δ

d M
1

σ−1
d λT

dd
− 1

δ λE
dd

1
δ−

1
σ−1 (

Xddd

∑i Xidd
)−

1
δ

(A.6)

Step 2: Relating consumption to wage: In the second step, I derive the ratio between pro-
duction wage and expenditures, Xd

Pd
. I start with the market clearing condition for production

workers:

wP
d LP

d =
σ− 1

σ
Yd + ∑

o
EocR

d wP
d (1− Go(ẑR

od))

=
σ− 1

σ
Yd + ∑

o
EocR

d wP
d (

ẑR
od

zR
o
)−κR

(A.7)

The first term on the right hand side is total demand for production workers from production,
while the second term on the right hand side is demand from the overhead of R&D centers. The
second line uses the fact that GE

o (z̃R) follows Pareto distribution. The goal here is to express the
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second term in the right hand side in the form of aggregate flow variables.
Consider the expected profit for a firm with zR to perform offshore R&D in country i:

πR
i (z

R) =
∫

ZP
i

πR
i (z

P, zR)g(zP|zR)dzP

= (1− γ)
∫

ZP
i

yi(zP, zR)πP
i (z

P)g(zP)dzP

= (1− γ)κP(
γ

wi
)

γ
1−γ [∑

d

1
σ
(

σ

σ− 1
)1−σΓ(

δ + 1− σ

δ
)Pσ−1

d XdΨ
σ−1

δ

id ]
1

1−γ zR
1

1−γ zP
i

κP
∫ ∞

zP
i

zP
σ−1
1−γ−κP−1

dzP

= K′iz
R

1
1−γ ,

where K′i =
κP

κP− σ−1
1−γ

(1− γ)( γ
wi
)

γ
1−γ [∑d

1
σ (

σ
σ−1 )

1−σΓ( δ+1−σ
δ )Pσ−1

d XdΨ
σ−1

δ

id ]
1

1−γ zP
i

σ−1
1−γ . Therefore the cu-

toff innovation efficiency level for a firm from o to open R&D center in country i is given by:

(ẑR
oi)

1
1−γ =

cR
i wP

i

K′iφ
R
oi

1
1−γ

The total fixed costs paid by firms from country o, doing R&D in country i, is

EocR
d wP

d (
ẑR

od
zR

o
)−κR = Eo(zR

o )
κR(ẑR

oi)
1

1−γ−κR(φR
oi)

1
1−γ K′i

Now consider total R&D expenditures incurred by offshore R&D centers of country o firms:

Ioi = Eo
γ

1− γ

∫ ∞

ẑR
oi

∫ ∞

zP
i

πR
i (z

P, zRφR
oi)gi(zP)dzPgo(zR)dzR

= Eo
γ

1− γ
K′iφ

R
oi

1
1−γ

κR

κR − 1
1−γ

(zR
o )

κR(ẑR
oi)

1
1−γ−κR ,

so the overhead cost is a fixed share, (1−γ)κR−1
γκR

, of total R&D expenditure by foreign firms. Noting
that this ratio holds true for offshore R&D center from all other countries, except for the home
country because they do not incur additional fixed costs, the labor market clearing condition, A.7,
becomes:

wP
d LP

d =
σ− 1

σ
Yd +

(1− γ)κR − 1
γκR

(1− Idd

Id
)Id,

and we have:
Xd

wP
d
=

LP
d

σ−1
σ

Yd
Xd

+ (1−γ)κR−1
γκR

Id
Xd
(1− Idd

Id
)

.

We can combine this equation with Equation A.6 to obtain the expression for gains from open-
ness:

GOd = (
Md

M′d
)

1
σ−1 (

Xddd

∑i Xidd
)−

1
δ λT

dd
− 1

δ λE
dd

1
δ−

1
σ−1

σ−1
σ

σ−1
σ

Yd
Xd

+ (1−γ)κR−1
γκR

Id
Xd
(1− Idd

Id
)
− 1, (A.8)

where Md is the measure of varieties innovated in country d in the benchmark equilibrium, while
M′d is the measure of output invented under the counterfactual autarky equilibrium.

Step 3: deriving relative change in measure of varieties: The final step is to express Md
M′d

in
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terms of observable flows. To do this, we first derive wd, the wage for the bottom researcher in

country d. Notice that under the multiplicative assumption, wage schedule is wi(θ) = wiθ
β
γ , and

the optimal demand for researcher satisfies li(zP, zR) = [ γ
wi

πP
i (z

P)zR]
1

1−γ θ−
β
γ .

In this case, the wage schedule can be interpreted as each unit of researcher efficiency, defined

as θ
β
γ , is paid a unit of wage, wi. Therefore the payment to a researcher whose ability is 2θ

β
θ is

simply twice the payment to a researcher with ability θ
β
θ . The labor demand equation can be

manipulated into:

li(zP, zR)θ
β
γ

zR
1

1−γ

= (
γ

wi
)

1
1−γ πi(zP)

1
1−γ ,

which states that for an R&D center (zP, zR), each unit of innovation management efficiency, zR
1

1−γ ,
is matched with ( γ

wi
)

1
1−γ πi(zP)

1
1−γ unit of researcher efficiency talent. The labor market clearing

condition for researcher efficiency unit is then:

LR
i

∫
Θi

θ
β
γ hi(θ)dθ = Ri(

γ

wi
)

1
1−γ [

∫
ZP

i

πi(zP)
1

1−γ gi(zP)dzP][
∫

ZR
i

zR
1

1−γ gi(zR)dzR]

Therefore

(
γ

wi
)

1
1−γ =

LR
i

∫
Θi

θ
β
γ hi(θ)dθ

Ri
κP

κP− σ−1
1−γ

zP
i

σ−1
1−γ [∑d

1
σ (

σ
σ−1 )

1−σΓ( δ+1−σ
δ )Pσ−1

d XdΨ
σ−1

δ

id ]
1

1−γ
∫

ZR
i

zR
1

1−γ gi(zR)dzR
.

Substituting this into Equation A.3, we obtain the expression for the measure of varieties de-
veloped:

Mi =
κP − σ−1

1−γ

κP − γ(σ−1)
1−γ

(LR
i

∫
Θi

θ
β
γ hi(θ)dθ)γ(Ri

∫
ZR

i

zR
1

1−γ gi(zR)dzR)1−γ

As this expression makes clear, under the multiplicative assumption of f (zR, θ), the aggregate
innovation output is a Cobb-Douglas function of total stock of innovation efficiency stock, and
researcher talent stock in an economy. This expression also implies that in the absence of immigra-
tion, the ratio between the measure of varieties in the benchmark equilibrium and in the autarky

equilibrium is Mi
M′i

= (
Ri

∫
ZR

i
zR

1
1−γ gi(zR)dzR

R′i
∫
(Z′i )

R zR
1

1−γ g′i(z
R)dzR

)1−γ, where the denominator is the stock of innovation

efficiency units in autarky equilibrium when offshore R&D is not possible.

Recall that each unit of zR
1

1−γ is matched with γ
wi

1
1−γ units of researcher efficiency units. Since

the draw of zP is independent of zR, the share of researcher efficiency units recruited by foreign
R&D centers in the open economy is proportional to the share of innovation efficiency units of

these R&D centers in the country, that is,
Ri

∫
ZR

i
zR

1
1−γ gi(zR)dzR

R′i
∫
(Z′i )

R zR
1

1−γ g′i(z
R)dzR

= Ii
Iii

.
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The expression for the welfare gains from openness therefore is:

GOd = (
Xddd

∑i Xidd
)−

1
δ λT

dd
− 1

δ λE
dd

1
δ−

1
σ−1 (

Idd

Id
)−

1−γ
σ−1

σ−1
σ

σ−1
σ

Yd
Xd

+ (1−γ)κR−1
γκR

Id
Xd
(1− Idd

Id
)
− 1

= (
Xddd

∑i Xidd
)−

1
δ (

∑i Xidd

Xd
)−

1
δ (

∑l Xdld

Xd
)

1
δ−

1
σ−1 (

Idd

Id
)−

1−γ
σ−1

σ−1
σ

σ−1
σ

Yd
Xd

+ (1−γ)κR−1
γκR

Id
Xd
(1− Idd

Id
)
− 1,

(A.9)

which is equivalent to Equation 17 in Section 2.

A.5 The Gains from Openness in the Literature

I compare the gains-from-openness formula in this model, given by Equation A.9, to the formula
in Ramondo et al. (2015) and Arkolakis et al. (2014), both of which feature trade and offshore
production, but not offshore R&D. Their formulas are given by the following:

GOd =

Arkolakis et al. (2014)︷ ︸︸ ︷
[(

Xddd

Xd
)−

1
δ (

∑l Xdld

Xd
)

1
δ−

1
κP ]︸ ︷︷ ︸

Direct Effect (Ramondo et al., 2015)

[(
Xd

Yd
)

κP+1−σ
σ−1

1
κP

+1
]−1 (A.10)

Like Equation A.9, this equation consists of an direct and an indirect effect. There are three
main differences between these two equations. First and most important, Equation A.9 features
an extra term, Idd

Id
, the gains

from having foreign affiliates doing R&D domestically. The second difference is that, the po-
wer on the direct effect is different across these two equations. Specifically, κP, the dispersion
parameter for production efficiency distribution, does not appear in Equation 17. This is because
by assuming out the fixed marketing costs, the extensive margin of exporting vanishes, and the
elasticity of substitution between varieties alone determines trade elasticity. Third, while in Equa-
tion A.10, the strength of the indirect effect only depends on Yd

Xd
, in the present paper, it depends

on Id
Xd

and Idd
Id

, too.

Appendix B Data and Empirics

In this section I provide the background of the data used in the empirical and quantification
section, and additional robustness. I then present empirical evidence on positive assortative mat-
ching between firms and inventors.

B.1 Patent Data

The main source of data I use to measure offshore R&D is patenting information from the USPTO.
I use firm-level data for empirical exercises in Section 4. I use aggregate bilateral statistics con-
structed by the OECD from the USPTO database for calibration and quantitative exercises. The
notion of offshore R&D employed in the construction of the OECD data is the same as how I define
offshore R&D, but the OECD took extra efforts to ensure, to the extent possible, that patents filed
under the name of affiliates in host countries are rightly classified as invented in by foreign affili-
ates, rather than domestic firms. For example, a patent filed by Apple China should be classified
as invented by a foreign affiliate, rather than a domestic Chinese company.
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One important drawback of using patent data is that, it might be biased due to differential
selection into patenting across countries. For example, if only firms selling to the U.S. patent at
USPTO, then the measure of offshore R&D will be biased towards these firms. I present two pieces
of evidence to show this selection is not important in the context of this paper.

Figure B.1: The Comparison of Two Measure

Notes: The figure plots measure of offshore R&D based on R&D expenditure against the measure based on patenting from the OECD
harmonized USPTO data, averaged over 1998-2007. Redline indicates perfect correlation.

Table B.1: Correlation Between Various Measures of Offshore R&D

Full Sample

R&D USPTO EPO PCT

R&D 1.00
USPTO 0.37 1.00

EPO 0.42 0.89 1.00
PCT 0.57 0.88 0.93 1.00

Excluding Three Outliers

R&D USPTO EPO PCT

R&D 1.00
USPTO 0.72 1.00

EPO 0.67 0.90 1.00
PCT 0.76 0.93 0.93 1.00

Notes: The upper panel presents correlations
between four measures of the share of R&D
activities done by foreign firms in a host coun-
try. The four measures are based on R&D ex-
penditures, and patenting data from three pa-
tent offices: USPTO, EPO, and PCT. The lower
panel present the correlation excluding three
outlier countries: Latvia, Bulgaria, and Turkey.
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First, in Figure B.1, I compare the patent-based measure of offshore R&D to the expenditure-
based measure, to show that such selection is unlikely to be important in the context of offshore
R&D. As the figure indicates, other than three outliers, Latvia, Turkey, and Bulgaria, the two
measures line up closely.

Second, if differential selection in patenting in the U.S. due to product market consideration is
important, one should expect the data based on the European Patent Office (EPO) and the Patent
Cooperation Treaty (PCT) to give different results. The upper panel in Table B.1 presents the
correlation matrix of the four measures. As the table indicates, the three patent-based measures
are close to each other, and they are all different from the expenditure-based measure. However,
the discrepancies are mainly driven by the three outliers, Latvia, Turkey, and Bulgaria. Once the
three outliers are excluded, as the lower panel in Table B.1 shows, all patent-based measures are
strongly correlated with the expenditure-based measure.

B.2 Additional Robustness with Alternative Measures

In this subsection I discuss additional robustness tests of results in Section 4, using alternative
measures of host relative talent abundance, R&D center innovation output, and firm innovation
efficiency.

There are two sets of robustness, which I report in Table B.2. In columns 1-4, I aggregate data
across all patent categories to construct measure for firm R&D output and host relative talent
abundance. In columns 5-8, I use category-level data to construct R&D output as well as talent
abundance (in regression, only the main category of each firm is kept). In all these regressions, I
include full control variables from the second column in Table 2.

Within each of these two sets, I vary how I measure key variable to see if the results are sensi-
tive. In columns 1-3 and 5-7, I use the same measure for the dependent variable, but vary how I
construct independent variables. Specifically, I first vary the cutoff in defining “top” inventors and
“top” firms from the top 1% in the baseline analysis, to top 10% in columns 1 and 5. In columns 2
and 6, I use the ratio between the average number of patents by inventors and the average num-
ber of patents by firms as the measure for the relative abundance in talented researchers. Since the
dispersion in inventors’ output is primarily driven by the output of the most talented inventors in
a country, in columns 3 and 7, I use the ratio between the standard deviation of inventor output
and the standard deviation of firm innovation output as a proxy for the relatively abundance of
talented researchers. Finally, in columns 4 and 8, I use citation counts, rather than patent counts,
to measure both the outcome variables and firms’ R&D efficiency. All these alternative measures
yield similar results.
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Table B.2: Determinants of Offshore R&D: Alternative Measures

Regression Level: Aggregated Across Categories Only Firms’ Main Category

Dependent Variable: Benchmark (patent) Citation Benchmark (patent) Citation-based

(1) (2) (3) (4) (5) (6) (7) (8)
Host relative talent abundance 2* I (Parent R&D >median) 0.146* 0.259*

(0.083) (0.145)
Host relative talent abundance 3* I (Parent R&D >median) 0.110* 0.254*

(0.056) (0.130)
Host relative talent abundance 4* I (Parent R&D >median) 0.140** 0.225*

(0.066) (0.127)
Host relative talent abundance* I (Parent R&D2 >median) 0.106** 0.173*

(0.048) (0.093)
Home-Host FE X X X X
Host-Home-Category FE X X X X
Firm FE X X X X X X X X
Full Controls X X X X X X X X
Observations 8083 8149 8149 7687 4882 5265 5238 3907
R2 0.486 0.486 0.486 0.501 0.591 0.588 0.587 0.600
Notes: All regressions include the full set of controls in the second column of Table 2. The definition of common variables are the same as Tables
2. Host relative talent abundance 2 is defined as the ratio between the share of top inventors and the share of top firms, in which “top” is defined as
among global top 10%. Host relative talent abundance 3 is defined as the ratio between the average number of patents by inventors, and the average
number of patents by firms. Host relative talent abundance 4 is defined as the ratio between the standard deviation of the number of patents by
inventors, and the standard deviation of the number of patents by firms. Parent R&D 2 is the total citation of the patents invented by a parent
company in its home country.
standard errors (two way clustered at the host-country and parent-company levels) are in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B.3 Evidence on Positive Assortative Matching

The log-supermodularity assumption implies strict positive assortative matching between firms
and researchers. While there is a large literature that studies assortative matching in the labor
market in general (see, for example, Abowd et al., 1999 and the references thereto), and a more
recent literature that focuses on the markets for CEOs and managers (Terviö, 2008, among others),
to the best of my knowledge, there has been no prior research that specifically investigates the
match between inventors and firms. This subsection describes the data and the main findings
from this test.

B.3.1 Measures and Specification

I rely also on the USPTO patent-level data for this test. As in the empirical exercises reported in
Section 4, I construct a panel of inventors and firms using the inventor identifier from Li et al.
(2014) and the firm identifier from the NBER patent database project (Hall et al., 2001). This data
set has a structure that resembles that of a matched employer-employee data set, except that here
a match only shows up in a given year, when a patent is filed.

Using lagged innovation as a proxy for inventor ability, and various lagged measures of firm
innovation efficiency, I investigate whether more talented inventors are more likely to switch to
high-efficiency firms. The idea is that, if there are greater values for high-talent inventors to work
with high-efficiency firms, such matches should show up more in the data than other kinds of ma-
tches. Since patents are invented jointly by inventors and firms, correlating these two measures
would pick up their mechanical correlation. To avoid this problem, I focus on a sample of in-
ventors that switch firms and examine, among them, whether the more innovative ones are more
likely to move to more productive firms.

B.3.2 Results

The main findings are reported in Table B.3. There are two panels in Table B.3, each corresponding
to a set of regressions with the same outcome variable. Each specification in the table regresses a
measure of firm innovation efficiency on a measure of inventor talent, on a sample of inventors
that have just moved to a new firm. The independent variable, same across all panels, is my
preferred measure of inventor quality, which is the lagged value of log total forward citations to
the patents filed by the inventor to date, adjusted by the number of inventors on each of these
patents. The lagged value refers to the previous observation of the inventor in the database when
he/she does not work for the present employer. This might be a few years back, however, if an
inventor’s last patent is from the distant past. The dependent variable in panel A is the lagged
value of the log of total number of forward citations to the patents a firm has been granted. I use
lag value here to ensure that the inventor under investigation is not also included in the outcome
variable, leading to a mechanical correlation.

The first column adds no control variables. In the second column, I add the years since first
patenting for firms and inventors to capture the life cycle effects, as it is plausible that inventors
with different ages prefers firms at different stages of growth, for reasons not necessarily related to
firms’ innovation efficiency. In the third column, I add year fixed effects as well as category fixed
effects. After controlling for these fixed effects, the point estimate shrinks somewhat, but is still
statistically significant. Column 3 is my preferred specification. The point estimate indicates that,
an inventor with talent that is 1% higher will be matched to a firm with 0.2% higher innovation
efficiency.

Columns 4 through 6 push further by adding fixed effects for previous employers, current
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Table B.3: The Match Between Firms and Inventors

(1) (2) (3) (4) (5) (6)
Panel A Outcome: ln (Total citation to patents of the firm) t−1
Inventor Quality: Measure 1t−1 0.192∗∗∗ 0.290∗∗∗ 0.228∗∗∗ 0.025∗∗∗ 0.095∗∗∗ 0.025∗∗∗

(0.006) (0.006) (0.006) (0.004) (0.007) (0.005)
Observations 54733 54733 54733 54733 54733 54733
Firm/Inventor Controls X X X X X
Year/Category FE X X X X
New Employer FE X X
Previous Employer FE X X
R2 0.017 0.240 0.315 0.898 0.664 0.927

Panel B Outcome: Firm Productivity (total citation per inventor) t−1
Inventor Quality: Measure 1t−1 2.460∗∗∗ 3.598∗∗∗ 3.244∗∗∗ 0.301∗∗∗ 1.480∗∗∗ 0.283∗∗∗

(0.080) (0.092) (0.091) (0.061) (0.098) (0.066)
Observations 56096 56096 56096 56096 56096 56096
Firm/Inventor Controls X X X X X
Year/Category FE X X X X
New Employer FE X X
Previous Employer FE X X
R2 0.037 0.059 0.101 0.673 0.458 0.801
Notes: The regressions reported in this table use a sample of inventors that have switched firms. The independent variable is
the lagged value of the log of total forward citations to the patents filed by the inventor to date, adjusted for the number of
inventors for each of these patents. Firm/Inventor Controls refers to years since first patenting for the firm and for the inventor.
Year/Category FE refers to year fixed effects and category fixed effects. Categories here are defined by Hall et al. (2001). There are
in total six categories: chemical (excluding drugs), Computers and Communications, drugs and medical, electrical and electronics,
mechanical, and others.
Robust standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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employers, and both, respectively. Identifying the effect from overtime changes for a given origin or
destination employer help overcome biases that might arise from unobserved firm heterogeneity.
The cost is that the attenuation effect might be stronger. As indicated by the R2, when both current
and former employer fixed effects are added in Column 6, they absorb most of the variation. The
coefficient decreases by more than 80%. However, it is still statistically significant.

Total forward citations might be a noisy measure of invention efficiency for the firm. For
example, firms with larger researcher teams tend to have more inventions, hence higher citations,
to their patents. Although researcher team size is a theory-consistent measure for innovation
efficiency, some firms might have more inventors for reasons outside the model. Panel B uses a
measure similar in spirit to firms’ “labor productivity”, defined as the per-inventor total forward
citations in a given year, to address this concern. The results are all statistically and economically
significant. The preferred specification in column 3 suggests that one percent increase in inventor
productivity would increase the per-inventor citation of his/her employer by 3.

Although not reported, I also perform robustness using alternative numeric measures of pro-
ductivity, results based on rankings rather than numeric measures, and results from a sample of
job switchers likely due to "exogenous job loss" (original employers stopping patenting). The evi-
dence on positive assortative matching between inventors and firms is robust to these alternative
choices. These results are available upon request.

Appendix C Quantification

This section provides additional information on the quantification section.

C.1 Data

I use the OECD harmonized USPTO data to construct the bilateral offshore R&D measure as dis-
cussed in Appendix B. The first column in Table C.1 reports the R&D by foreign affiliates based
on this measure.

The calibration uses the World Management Survey (Bloom et al., 2012) and an internatio-
nally comparable cognitive ability score database (Hanushek and Woessmann, 2012). I compute
the mean, standard deviation, and skewness of innovation management efficiency distribution in
each country, by computing the corresponding statistics of the exponent of firm-level talent ma-
nagement scores for each country. I take exponent so that the distribution of scores has a right tail
that resembles the firm size distribution. The distribution statistics for cognitive test scores are di-
rectly from Hanushek and Woessmann (2012). These statistics include the average cognitive score
for high school students in a country, the share of students that achieve “top” performance, and
the share of student that achieve “basic” performance. Thresholds for “top” and “basic” perfor-
mance are defined in absolute level so the shares are comparable internationally. These statistics
are reported in Table C.1.

A few countries in the sample are not included in the world management survey. I impute
their management distribution statistics by regressing each statistics on income, R&D share, and
geographic-region fixed effects, where geographic regions are at sub-continent level. The R2 of
these regressions are all above 0.85. In general, geographic-region dummies have biggest expla-
natory power. Table C.1 indicates which countries have imputed management scores.

The model economy consists of the 25 countries reported in the table, and a statistical ag-
gregation of another 23 countries: Argentina, Belarus, Switzerland, Chile, Colombia, Costa Rica,
Guatemala, Croatia, Iran, Islamic Rep, Israel, Lebanon, Malaysia, Norway, New Zealand, Saudi
Arabia, Singapore, El Salvador, Thailand, Tunisia, Uruguay, Venezuela, South Africa. The main
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constraint in modelling these countries explicitly is the availability of World Management Survey
and the World Input-Output Database. In calibrating the distributions for this “country”, I use the
same imputation method as described above when World Management Survey is not available,
and then use country population as weights to compute the average distribution statistics.

Table C.1: Country Characteristics

Innovation Mgt. Dist. Talent Dist.

ISO Offshore R&D Mean Std. Skewness Imputed Mean Top Share Basic Share

AUS 27.09 6.43 3.64 1.88 5.09 11.241 93.84
AUT 50.41 6.14 3.80 2.49 Yes 5.09 9.7359 93.106
BEL 57.25 6.20 3.85 2.48 Yes 5.04 9.3775 93.129
BRA 37.29 5.26 3.33 2.35 3.64 1.087 33.846
CAN 33.73 8.40 6.09 2.01 5.04 8.3302 94.843
CHN 52.24 5.94 2.74 1.85 4.94 8.3393 93.478
DEU 23.99 8.21 5.25 2.20 4.96 8.1654 92.694
DNK 33.69 6.87 5.00 2.67 Yes 4.96 8.7538 88.78
ESP 43.23 5.29 3.46 2.21 4.83 7.9337 85.88
FIN 18.22 7.00 5.10 2.67 Yes 5.13 12.386 95.775
FRA 33.97 6.43 4.25 2.52 5.04 8.4914 92.621
GBR 45.88 7.33 4.84 2.06 4.95 8.7857 92.885
GRC 58.26 5.63 3.70 1.89 4.61 4.2429 79.772
IND 58.03 5.93 5.00 3.02 4.28 1.2742 92.188
IRL 55.46 7.14 6.73 3.86 4.99 9.4048 91.371
ITA 29.70 6.47 4.15 2.17 4.76 5.4455 87.543
JPN 5.33 7.83 5.57 1.82 5.31 16.758 96.669
KOR 5.05 6.76 4.05 1.88 Yes 5.34 17.835 96.159
MEX 49.42 6.90 4.43 1.66 4.00 0.88366 48.933
NLD 34.82 6.56 4.14 2.46 Yes 5.12 9.1594 96.536
POL 60.79 7.25 4.60 1.73 4.85 9.8585 83.764
PRT 50.24 5.38 2.99 1.94 4.56 3.1628 80.269
SWE 27.25 7.06 4.17 1.99 5.01 8.7552 93.943
TUR 51.82 5.86 2.58 2.09 4.13 3.9199 58.233
USA 8.08 10.94 8.15 2.15 4.90 7.3299 91.824
Notes:“Offshore R&D” refers to the share (%) of patents invented in a country but owned by firms
from foreign countries, based on the USPTO data. “Innovation Mgt. Dist.” refers to the sample dis-
tribution statistics constructed from the World Management Survey as described in Section C.1.
“Imputed” indicates whether the innovation management distribution statistics are imputed. “Ta-
lent” refers talent distribution statistics from Hanushek and Woessmann (2012), in which “Mean”
is the mean score for a country, and “Top Share” and "Basic Share" are share of students achie-
ving "top" and "basic" performance, respectively. The performance standards are common across
countries.
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Table C.2: Firm Management Score Summary Statistics

Variable Obs Mean Std. Dev. Min Max

zR 11338 6.68 4.92 1 54.6
IzP∈GP

H
11340 0.0109 0.104 0 1

Notes: This table presents the summary statistics for
firm-level innovation management score and the in-
dicator for whether a firm is in the top 1% production
efficiency.

C.2 Calibration

C.2.1 Relating Production Efficiency to Innovation Efficiency

To discipline the relationship between firms’ innovation and production management efficiencies,
I use micro data from the World Management Survey to estimate the following equation:

Prob(zP ∈ H|zR) =
exp(A + B× zR)

1 + exp(A + B× zR)
. (C.1)

This data base covers around 11000 firms from 34 countries. I classify a firm as being a H type, if its
production management scores falls in the top 1% in the sample. Because in calibration, I assume
the management score in the model, zR, is exponent of the management score in the data, in this
estimation, I transform the innovation score accordingly. Table C.2 presents summary statistics on
innovation management score, defined this way, and the indicator for H type.

Table C.3 presents result from Logit estimation of Equation C.1, using the full sample. Consis-
tent with positive correlation between innovation and management efficiency, the estimate for A
is positive and statistically significant.

C.2.2 Estimating the Matching Function

In calibration, I use a nonparametric patching function to determine the value for the complemen-
tarity parameter. I estimate this matching function based on Panel B of Table B.3. The measure for
firm innovation efficiency and inventor talent is the same as in the regression. I estimate a local
linear regression of inventor talent on firm innovation efficiency, focusing on the job-switching
inventors. I control for the fixed effects for year and patent category, as well as firm and inventor
age, defined as years since firs time the firm/inventor appears in the USPTO database.

C.2.3 Model Fit: Additional Figures

In assessing the model fit, I construct a measure of foreign affiliates’ managerial advantage. The
measure I use is the ratio between the average innovation management score of foreign affiliates
in each country, and the average score of domestic firms in that country. Figure C.1 plots this
ratio to its data counterpart for each country. The figure shows that, consistent with the summary
statistics in Table 4, there is a positive relationship between the model and the data, although the
model over predicts the premium.
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Table C.3: Estimates for A and B

Dependent Variable: IzP∈GP
H

Coeff
zR 0.167***

(0.009)
Constant -6.30***

(0.17)

Pseudo R2 0.2545
N 11338
Notes: This table presents results from a
Logit regression of the high production ef-
ficiency indicator IzP∈GP

H
, on firms’ innova-

tion efficiency, zR. The high production effi-
ciency indicator takes a value of 1 if the pro-
duction management score of a firm is in the
top 1% in the world.
Standard errors are in parentheses
* p < 0.10, ** p < 0.05, *** p < 0.01

Figure C.1: Foreign Affiliate Managerial Advantage

Notes: The vertical axis shows the model-based foreign affiliate innovation managerial advantage, defined as the ratio between the
average innovation management score of foreign affiliates in each country and the average score of domestic firms. The horizontal
axis shows the empirical counterpart of this ratio, based on the data from Bloom et al. (2012). The correlation between the model and
the data is 0.53.
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C.3 Computational Algorithm

To solve the model and calibrate it to match the data, I use the following calibration algorithm:

1. Choose cM, cR, zR
H, α, κP.

2. Choose {Λl}, country-specific production efficiency.

3. Choose {φR
oi}, {φP

il}, {τld}, bilateral frictions.

4. Solve the model, compare the model-predicted bilateral shares in offshore R&D, offshore
production, and trade, to the data. If they are not the same, go back to Step 3, and update
international frictions accordingly. Otherwise proceed to the next step.

5. Compare the model-generated GDP with the data. If they are not the same, go back to step
2, and update country-level productivity accordingly.

6. Compute the moments on the firm size distribution, and the extensive margin of offshore
R&D and trade, reported in Table 4. Compare these moments to their data counterparts. If
these moments are not the same with the data, go back to Step 2. If they are the same, then
the calibration procedure is finished.

I solve the model in step 4 of this calibration procedure, using the following algorithm. I start
with a guess of aggregate variables {Xi}, {Pi}, {wP

i }, cutoffs for workers to become researchers,
{θ̂i}, and cutoffs for offshore R&D, {ẑR

oi}. Given the aggregate variables, I solve for the cutoffs to
export for each producer-consumer country pairs, {ẑP

ld}, and the corresponding per-variety profit,
{πP

i (z
P)}. I then use {ẑR

oi} to solve for the measure and efficiency distribution of R&D centers
in each country. With this information, I solve the researcher labor market equilibrium in each
country, finding the researcher wage schedule, wi(θ) and the matching function Ti(zR), which
further allows me to solve for the number of varieties in each country, and the productivity for
these varieties. The offshore and trade block of the model then determines {Xild}. Based on {Xild},
I distribute all revenues from sales to the production workers, researchers, and firm owners from
different countries.

I then update the guess {Xd} using the current account balance conditions, {wd} using the pro-
duction labor market clearing condition, and {Pd} using the model-implied price indices (Equa-
tion 12). I also update the guess for occupation choice and offshore R&D based using their re-
spective indifference conditions. I continue this process until the updated aggregate objects and
the cutoffs are the same as the input.

A crucial step in solving the model is to solve for the research market equilibrium for each
country, characterized by Equations 6, 7, and 8. This is computationally difficult for two reasons.
First, due to firms’ offshore R&D decisions, the density of R&D center efficiency distribution is dis-
continuous. This discontinuity leads to kinks in the matching function. Commonly used boundary
value problem solver take a long time or, under many parameter values, fail to find the solution.
Second, the density of R&D center efficiency distribution depends on the offshore R&D decision
of firms from all over the world. Evaluating the R&D density function therefore requires summing
over all home countries (Equation 10). Similarly, we also need to evaluate πP

i (z
P), which depends

on aggregate variables of all countries. The computational burden increases quadratically in the
number of countries in the economy.

I solve the first problem by using the “shooting” method, that is, to recast the boundary value
problem as a sequence of initial value problems. Specifically, given a wage for the bottom resear-
cher, wi(θ̂) = wi, Equations 6, 7 constitute an initial value problem. This problem can be solved
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by simply forward integrating the two Equations starting from the initial value of wage. I use the
Runge-Kutta Cash–Karp method in solving the initial value problems.

Let the solution to the initial problem be Ti(zR|wi). If Ti(zR|wi) = θi, then the solution to
the initial problem is also the solution to the original boundary value problem. We can therefore
search over the initial wage, wi(θ̂i) and solve a sequence of initial value problems until we find
the solution to the original problem. Further, as shown in Proposition 4 at the end of this section,
Ti(zR|wi) decreases monotonically in wi. This feature of the model makes this search efficient and
robust.

To further speed up the process, I use the model feature that given all the aggregate variables,
the research market equilibrium in each country is independent. I use the OpenMP protocol to
parallelize the computation. In solving for each researcher market equilibrium, evaluating gR

i (z
R)

and πP
i (z

P) requires summing over all home countries. I further parallelize this process by using
SIMD.

In the following proposition, I prove the monotonicity of Ti(zR|wi) in wi:

Proposition 4 Define Ti(zR|w) and wi(θ|w) as the solution to the initial problem given by Equations 7,
6, and initial conditions wi(θ̂i) = w, Ti(zR) = θi. Then the end value of the solution to this initial problem,
Ti(zR

i |w), decreases in w.

Proof Consider two wages for the bottom researcher in country i, w1 < w2. This proposition
claims that Ti(zR

i |w1) ≥ Ti(zR
i |w2). I prove by contradiction.

Suppose Ti(zR
i |w1) < Ti(zR

i |w2). Given that w1 < w2, Equation 7 implies that at T′i (z
R|w1) >

T′i (z
R
i |w2), that is, at least initially at zR

i , when facing a lower wage wi, R&D centers will hire a
larger number of researchers. This means that at an ε interval to the right of zR

i , Ti(zR|w1) >
Ti(zR|w2). Since Ti(zR

i |w1) and Ti(zR
i |w2) are both continuous function of zR, for Ti(zR

i |w1) ≤
Ti(zR

i |w2) to hold, there must be at a point z̃R, such that Ti(zR|w2) crosses Ti(zR|w1) at z̃R for the
first time from below. Suppose θ̃ = Ti(z̃R|w1) = Ti(z̃R|w2). From Equation 7, wi(θ̃|w1) > wi(θ̃|w2).

From Equation 6, wi(θ|wi) = wiexp
∫ θ

θ̂i

f2(T−1
i (x),x)

γ f (T−1
i (x),x)

dx. Under the log-supermodularity assump-

tion of function f , the integrant on the right hand side increases with zR. Because z̃R is the first
point where the two matching functions intercept, for all θ ∈ (θ̂i, θ̃), T−1

i (θ|w1) < T−1
i (θ|w2).

Therefore wi(θ̃|w1) < wi(θ̃|w2), which contradicts the above result.
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