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Abstract

Wasting food is one of the rare problems that a¤ects our ability to achieve eco-
nomic goals in terms of food security, environmental sustainability, and farm-�nancial
security. Most of the ideas proposed to this point involve either behavioral nudges or
administrative regulations that are either too paternalistic or piecemeal to represent
viable solutions. In this study, we investigate the potential for commerical peer-to-peer
mutualization systems (CPMSs), or sharing-economy �rms, to emerge as market plat-
forms for the exchange of surplus food. If a system of CPMSs is able to develop in a
self-sustaining way, then the market prices they create will generate su¢ cient incen-
tives for all actors to manage surplus food more e¢ ciently. We develop an empirical
model of a CPMS operating as a platform in a two-sided market, and examine its
viability using data from one of the �rst CPMS �rms in the surplus-harvest industry,
Imperfect Produce, Inc. Empirical estimates of a two-sided network-demand model
show that user-demand rises in the number of growers shipping to the platform, and
grower demand for distribution rises in the number of users. Our �ndings indicate that
secondary markets have the key elements needed for CPMS success, and that policy
tools designed to facilitate transactions in secondary markets can be highly e¤ective in
reducing food waste.
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1 Introduction

Food waste is one of the rare problems that cuts across multiple social issues, from food se-

curity (Coleman-Jenson, et al. 2014) and environmental degradation to economic e¢ ciency

(Par�tt, et al. 2010; Gustavsson, et al. 2011; Buzby et al. 2011; Buzby and Hyman 2012).

Wasted food not only impairs society�s ability to feed an estimated 9.7 billion people globally

by 2050 (UN 2015), but it also accounts for roughly 25% of US freshwater supplies each year

and consumes nearly 300 million barrels of oil (Hall et al. 2009). Food production generates

substantial environmental externalities associated with greenhouse gas emissions and phos-

phate run-o¤ (Buzby and Hyman 2012), the unconsumed portion of which is unnecessary,

and food waste at the terminal point of the food system acounts for roughly 18% of total

solid waste in municipal land�lls (EPA 2016). In terms of the discarded value of food, alone,

USDA estimates that the US loses 31% of total food supply, or $165.5 billion per year in total

value (Buzby, et al. 2014). Food waste occurs at virtually all stages of the supply chain from

farmer to retailer to consumer, resulting in the disposal of potentially usable food in nearly

every sector of the food system in the distribution channel between farmers and consumers.

An important strand of economic research examines consumer food waste as a behavioral

problem, seeking to address the problem by regulating waste disposal by educating consumers

about expiration dates and changing consumers� incentives to generate waste (Tsiros and

Heilman 2005; Theotokis, et al. 2012; Buzby and Hyman 2012; Halloran et al. 2014).1 These

are important priorities that confront a growing population. However, policies designed

to reduce food waste in the consumer market only control incentives at the end of the

1Emerging research has identifed a range of causes speci�c to di¤erent levels of the food-supply chain.
While losses at the farm level due to weather damage and natural variation in quality are substantial
(Gustavsson et al. 2011; Kummu et al. 2012), most of the waste in developed economies comes from
households (Gri¢ n et al. 2009; Buzby et al. 2011; Cicatiello et al. 2016). Food waste at the household level
is primarily due to a lack of understanding of �best-before� or �use-by� dates, inaccurate meal planning,
imperfect home-storage systems, and discounts on large packages that encourage over-buying (Gustavsson
et al. 2011; Halloran et al. 2014). Demand uncertainty, and the inability to accurately forecast demand, are
also key to food waste among foodservice operators and food manufacturers (Mena et al. 2011), resulting
in the so-called bullwhip e¤ect that magni�es food waste through the supply chain (Lee at al. 1997; Sucky
2009).
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distribution channel and fail to encompass all stages of the food system where food waste

occurs. In the upstream stages of the food economy, commercial peer-to-peer mutualization

systems (CPMSs), that seek to match farmers and distributors to consumers for fresh produce

items, represent a potentially important market-based solution to more e¢ ciently allocate

food at higher levels of the food sytem by stimulating price realization for products that are

edible, but contain defects in size, color, shape and size; the so-called market for �ugly food�

(Gar�eld 2016).2 In this paper, we examine the e¢ ciency of food exchange in upstream

markets of the food system by examining the performance of CPMS systems in facilitating

the exchange of harvested produce that is too small, large, misshapen, or discolored to make

saleable grade through traditional marketing channels.

It has long been understood in the management of negative environmental externalities

that attaching a price to an activity is more likely to lead to its e¢ cient control, including

waste (Dinan 1993; Fullerton and Kinnaman 1995; Fullerton and Wu 1998; Buzby and Hy-

man 2012; Acu¤ and Ka¢ ne 2013). By creating a market for imperfect, or surplus, food,

suppliers will be better able to match the distribution of quality produced by the natural

variability of biological production, with the willingness-to-pay for quality in the consumer

market.3 This is a classic price discrimination result �whereas supermarket grading stan-

dards (which are generally higher than USDA grades for fresh produce) serve as an e¤ective

minimum-quality standard, selling imperfect produce that is inarguably below-grade allows

suppliers to segment consumers according to their willingness to pay for quality (Mussa and

Rosen 1978; Caswell 1998), sell a greater quantity, and reduce the amount of surplus-harvest.

In this paper, we investigate the potential for CPMS markets to emerge for such ugly food

products.

Fresh foods that are harvested below marketable quality and left unsold contribute to

2We view CPMS systems broadly as any technology that matches buyers and sellers on a platform derived
from peer-to-peer transactions. Botsman (2013) provides a general characterization of CPMS �rms as any
entity that facilitates the decentralized trade of products or services that are underutilized in the economy.

3A reviewer suggests that creating markets for surplus harvest will increase supply, reduce the price, and
encourage more waste. While this e¤ect is plausible, we believe it represents a second-order e¤ect relative
to the direct incentive embedded in a price for waste.
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the food waste problem. Indeed, Gustavsson et al. (2011) and Kummu et al. (2012) have

found weather damage and natural variation in quality to lead to substantial quantities of

unsalable farm products. Because farmers face uncertain demand and supply conditions,

and forecasting is imperfect, over-production of farm products occassionally occurs, leading

to low price realizations that leave perfectly edible food unharvested in the �eld. In the

absence of a market for surplus, or leftover food, excessive amounts of usable food are

discarded either by being �plowed under�at the farm level or by being harvested and sent

to downstream markets that may ultimately process these products as waste (Garrone, et al.

2014). CPMS services that help match these products with buyers can o¤er an important

market for reducing food waste.4

We base our observations on on the performance of CPMS systems for surplus food on

data from Imperfect Produce, Inc. Imperfect Produce, Inc. is a startup company based

in California that aims to reduce food waste in the surplus-harvest market by matching

producers at the farm level with consumers at the retail and foodservice levels of the food

system for the exchange of food products that are not graded through conventional channels

of the food system. Our data consists of four years of peer-to-peer transactions, including the

amounts ordered, prices paid, and attributes of consumers and the sharing �rms. These data

are su¢ ciently rich to allow us to test an empirical model of activity on the sharing platform

in which the breadth of sales transactions matches with the range of consumer preferences

for product attributes that drive value in �nal goods markets for food products. These data

are su¢ ciently rich to allow us to investigate whether the fundamental conditions are present

for a CPMS to succeed in matching buyers and sellers in food market, and if so, whether

farm-to-consumer platforms in the �food sharing�economy present a viable opportunity for

a upstream food markets to help alleviate the problem of unwanted food.5

4In this study, we do not attempt to measure the amount of food loss, or waste, so we use the terms
interchangably throughout. We do appreciate, however, that the concepts are not identical (Bellemare, et
al. 2017).

5While food waste occurs at all points of the food supply chain, CPMSs to date have emerged largely
between farmers and consumers, providing rich transactional data on which to base our empirical investiga-
tion. However, Food Cowboy represents one example of a �B2B��rm that transacts surplus food that has
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CPMS �rms such as Uber, AirBnB, FarmLink, TaskRabbit, and Liquid have increased

consumer�s willingness to transact goods in the �sharing economy� (Bardhi and Eckhardt

2012; Lamberton and Rose 2012; Sundararajan 2013, 2014; Belk 2014; Fraiberger and Sun-

dararajan 2015; Möhlmann 2015). As Botsman and Rogers (2010) argue, CPMS markets

emerge when advances in sharing technology �e.g., cell phone applications �facilitate mar-

kets for durable assets with excess capacity. In the case of food, a farmer�s �eld is the durable

asset, and excess capacity is manifest in surplus harvest. A novel feature of CPMS markets

for surplus food is that excess capacity in food markets results in a perishable stock. For this

reason, policies that facilitate food transactions in a CPMS market, and thereby generate

sales that would otherwise not transpire, serve to reduce surplus output that would otherwise

be discarded, plowed under, or end up in lower-valued uses than intended.6

Our empirical approach is framed around recent estimation techniques employed in two-

sided markets (Armstrong 2006; Kaiser and Wright 2006; Steiner, et al. 2016). In a two-

sided market, demand for a �platform�, for instance a menu of food items coordinated for

sale by a CPMS provider like Imperfect Produce, is comprised by demand for distribution

from potential suppliers of surplus food on one side, and by demand for procurement from

potential consumers of food waste on the other side. The nature of demand on the platform

is two-sided due to indirect network economies (Rochet and Tirole 2003, 2006) created by

the breadth of the items available on the platform. Speci�cally, the bene�t to consumers

from interacting on the platform rises with the number of suppliers providing surplus food

been purchased by restaurants, or even households. In this regard, Food Cowboy represents an example of
how the CPMS concept may be extended to downstream food markets and encompass consumer-level food
waste.

6An interesting possibility suggested by a reviewer is that creating new, upstream markets for surplus
harvest will reduce food prices, potentially resulting in greater post-consumer food waste. While our model
is silent on general equilibrium e¤ects, the total amount of food transacted on CPMS platforms is currently
small and likely to have negligible e¤ects on overall food prices. Moreover, we believe enhancing the e¢ ciency
of food utilization at upstream levels of the food system leads to better matching in downstream consumer
markets that will tend to dominate second-order e¤ects relatived to changes in consumer food prices. Com-
prehensive modeling of general equilibrium e¤ects of CPMS innovations in upstream food markets, which
includes changes in land use, changes in animal feed prices, as well as consumer price changes in fresh pro-
duce markets relative to processed, shelf-stable foods (and the attendant consumer health implications), are
beyond the scope of the present study.
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on the platform, while the bene�t to suppliers from interacting on the platform rises with

the number of consumers purchasing surplus food on the platform. Network economies on

a two-sided platform thereby create a �virtuous cycle� in which supply facilitates its own

demand, causing emerging platforms either to succeed or fail in spectacular fashion.

We estimate the strength of demand on each side of the market in our empirical model,

allowing us to determine: (i) whether demand conditions exist for CPMS markets to emerge

as a viable business model for surplus food; and (ii) whether policy tools such as subsidies

on �ugly food�are e¤ective in reducing the amount of surplus food. Our �ndings indicate

that consumers�preferences for the breadth of food items available on the site is particularly

important in driving indirect network e¤ects in the CPMS market. This result suggests that

the pro�tability of a CPMS in this setting is directly related to the number of suppliers the

platform sources from in procuring surplus food, and that the value of transacting surplus

food on the platform rises signi�cantly for producers with the size of the network. This

feature of the market makes food policies that subsidize purchases on CPMS platforms for

surplus food particularly e¤ective in reducing excess produce. To quantify this e¤ect, we

numerically estimate the e¤ect of price subsidies on CPMS purchases on the quantity of

surplus food siphoned out of the waste stream in upstream food markets. We �nd that a

25 percent subsidy on CPMS transactions results in a 60 percent increase in the quantity

of surplus food sold on the platform and that a 90 percent subsidy on CPMS transactions

results in a threefold increase in the quantity of surplus food sold on the platform, which

suggests that subsidies on �ugly food�transactions are a cost-e¤ective policy to reduce the

amount of food that may be otherwise discarded.

Our study contributes both to the empirical literatures on two-sided markets and CPMS

viability and to the practical policy discussion on food waste. While the majority of empirical

investigations into two-sided markets consider either technology (Nair, Chintagunta, and

Dube 2004) or media (Ackerberg 2004; Kaiser and Wright 2006) markets, ours is the �rst to

consider a secondary market for a surplus commodity as a fundamentally two-sided market.

5



That is, consumers demand a range of choices from the commodity on o¤er, and suppliers

demand broad distribution among the consumers served by the platform. Our empirical

analysis of a surplus-harvest CPMS is the �rst to cast the study of sharing-economy �rms in

the context of a two-sided market, with the attendant implication that they may be subject

to indirect network e¤ects. In terms of the food waste literature, ours is the �rst analysis of

the viability of a �market�for surplus food. If such markets are indeed viable, then agents

at all points in the food supply chain may be endowed with the incentive to not throw food

away, but to trade it for pro�t.

The remainder of the paper is organized as follows. In the next section, we formulate an

empirical model to assess the viability of CPMS platforms as a tool for reducing surplus food.

In section 3, we describe our data and provide summary evidence from reduced-form models

that the market for surplus food indeed has the character of a two-sided market. In section 4,

we present and discuss our estimation results that test our hypothesis of a two-sided market

and discuss the practical relevance of our �ndings for the viability of CPMS platforms for

creating markets for surplus harvest. In the �nal section, we draw some broad conclusions

on how policies can be designed to reduce surplus food through the use of targeted incentives

in emerging CPMS markets for ugly produce.

2 Econometric Model of a Surplus-Food Market

2.1 Background

Our empirical model is based on the indirect network e¤ects generated by a two-sided demand

for intermediary distribution services.7 CPMSs in general, and those that distribute surplus

food speci�cally, behave as multi-product platforms that exist to connect buyers of surplus

food to suppliers. Buyers prefer a variety of products, and therefore value platforms that are

able to attract and retain a large number of suppliers (Draganska and Jain 2005; Richards

7�Indirect network e¤ects�refer to the general concept that bene�ts of membership rise in the �size�of
the market, whether measured by the number of users, products, software titles or other measure.
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and Hamilton 2013; Steiner, et al. 2016), while suppliers prefer to sell through a platform

that attracts a large number of potential buyers. In the case of a CPMS market for surplus

food, buyers may be more interested in procuring food from the CPMS market when the

platform makes multiple food items available at once, and sellers can �nd higher-valued uses

for surplus food items when there is a greater number of buyers on the platform.

Network e¤ects have been empirically identi�ed in many markets for durable goods.

Network e¤ects have been shown to be important in two-sided markets for computer hard-

ware and software (Nair, Chintagunta, and Dube 2004), video games (Clements and Ohashi

2005; Corts and Lederman 2009; Dube, Hitsch, and Chintagunta 2010; Lee 2013; Zhou

2016), automated clearing house (ACH) payment systems (Ackerberg and Gowrisankaran

(2006), intermediation systems (Caillaud and Jullien 2003), video cassette recorders (Park

2004), compact-disc players (Gandal, Kende, and Rob 2000), C2C platforms (Chu and Man-

chanda 2016), radio stations (Jeziorski 2014), sports-card trading platforms (Jin and Rysman

2015), newspapers (Argentesi 2007; Chandra and Collard-Wexler 2009; Van Cayseele and

Vanormelingen 2009), yellow page advertising and magazines (Rysman 2004, Kaiser and

Wright 2006). Our analysis departs from the literature by considering network e¤ects for

perishable items (surplus produce), which di¤er methodologically from durable goods mar-

kets (as discussed below), and by deriving novel insights for alternative uses for unsold food.

Speci�cally, our approach allows us to numerically simulate the e¤ectiveness of various food

policy instruments (e.g., taxes on waste, subsidies on donations) in reducing surplus harvest

when food policy is targeted toward one side or the other of the CPMS market.

Our objective in this section is to derive a model of weekly platform demand, where

demand is de�ned as the probability of ordering food on the platform, multiplied by the size

of each order. The size of each order is de�ned as the number of di¤erent items purchased

in each basket.

We adopt a two-stage approach to modeling each component of platform demand. In the

�rst stage, we model the probability that each household purchases surplus food from the
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platform in a given week, and in the second stage, we model the number of items purchased

on the platform conditional on having placed an order. Aggregating over all households

in the data set accordingly provides a predictive model of the total platform demand on a

weekly basis. Critically, platform demand in each stage of the model depends on the range

of products o¤ered, or the number of suppliers serving the platform.

With the demand estimates, we then model equilibrium product provision, or how suppli-

ers of surplus food respond to consumer demand conditions on the platform. By endogenizing

both demand for the platform, and the provision of surplus food on the platform, we esti-

mate the strength of demand on each side of the market, which identi�es the importance of

indirect network e¤ects in the CPMS market for surplus food.

2.2 Purchase Incidence Model

We begin by modeling the number of orders transacted on the platform each week, which is

the product of the total number of households visiting the platform and the probability that

each household purchases food items on the platform. The probability that an individual

household places an order (purchase incidence) depends, in turn, on the variety of items

o¤ered on the platform and the prices of the various items. Allowing household purchase

incidence to depend on the variety of products available on the platform captures the indi-

rect network e¤ect in which demand depends on the number of surplus food items available

on the platform. That demand depends on the extent of product variety available in the

marketplace is well-established in both the marketing literature (McAlister and Pessemier

1982; Kim, Allenby and Rossi 2002; Briesch, Chintagunta and Fox 2009) and the economics

literature (Dixit and Stiglitz 1977; Richards and Hamilton 2015). Intuitively, if preferences

are distributed uniformly among consumers in the market, then individual consumers are

more likely to �nd better matches between products and their tastes when a greater num-

ber of products is available, raising the probability of �nding an acceptable match on the

platform.
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We model our �rst stage �Order-Probability�demand using a combined constant elastic-

ity of substitution (CES) - logit framework. Consumers form expectations of the number of

items o¤ered on the platform, and the total sales receipt that results from their subsequent

purchase, according to a CES index function; however, the indirect utility of each order

is assumed to be driven by an Extreme Value (logit) preference-heterogeneity assumption.

The CES form ensures that consumers exhibit an inherent preference for variety (Dixit and

Stiglitz, 1977; Nair, Chintagunta and Dube, 2004) when forming their expectations of surplus

food purchases on the CPMS platform, which is appropriate for our order-demand problem

because utility is assumed to rise in the number of items available, and at the same time

does not restrict the degree of substitution among products as with a discrete-choice model.

We start with a brief description of the Order-Probability model, and then discuss how we

nest the Order and Size models together on the CPMS platform. Assume the platform o¤ers

j = 1; 2; :::N products, where a product is de�ned as an item in one of several categories,

such as fresh fruits, vegetables, cereal products, or other perishable items.8 Assume buyer i

visits the platform and obtains utility from buying products j = 1; 2; ::: N during week t as

given by the CES demand model (suppressing the time, t, subscript to simplify notation):

Ui(qi1; qi2; :::qiN ; zi) =

 
NX
j=1

q�ij

!�
+ zi; (1)

where the value within parentheses, Qi =
PN

j=1 q
�
ij; is de�ned as a CES quantity index, qij is

the quantity of product j purchased by consumer i; zi is the outside or numeraire product,

and 0 < � < 1, and 0 < � < 1 assure concavity of the utility function. The parameter

� ensures that the products are not perfect substitutes so buyers can, but do not have

to, purchase positive amounts of each product (Nair, Chintagunta and Dube, 2004). This

parameter also ensures that the model generates a positive utility of variety in equilibrium.

With direct utility de�ned over products, the buyer chooses the quantity of each subject to

the usual budget constraint, with income yi, such that the inverse demand for the products

8Note that we cannot assume the products within a particular category are identical over time as suppliers
only deliver what happens to be in surplus at each point in time.
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o¤ered by the platform during any particular week is written:9

p(qi1; qi2; :::qiN ; yi) = ��

 
NX
j=1

q�ij

!��1
q��1ij ; (2)

We then solve for the direct demand system and substitute the result back into the utility

function in (1) to �nd the indirect utility for buyer i choosing the bundle of N products

across all categories j as:

Vi(p;N; yi) = (1� ��)(��)
��

1���N
�(1��)
1��� p

��
���1 + yi; (3)

where yi is the amount of the numeraire good, assuming prices for all products within each

category for the platform are symmetric (p = pj8j), so the CES price index simpli�es to:

p = N
��1
�

j pj. We then use this CES price index to capture the e¤ect of basket-level pricing

and the size of the platform on the probability that each household places an order during

a given week.

We assume that order-preferences are heterogeneous and are randomly distributed over

consumers, which allows indirect utility to be written as:

Vi(p;N; yi) = (1� ��)(��)
��

1���N
�(1��)
1��� p

��
���1 + yi + "i; (4)

where "i is an iid random error term. Assuming the distribution of consumer heterogeneity is

Type I Extreme Value, and incorporating the fact that our data is time-series in nature, the

probability that buyer i purchases from the platform at time t is given by: Pit = Pr(Vit >

V �
it + "it) = exp(Vit)=(1 + exp(Vit)), which results in a familiar logit model of purchase-

incidence, with non-linear utility (Bucklin and Lattin 1992; Bell and Lattin 1998; Briesch,

Chintagunta and Fox 2009). Based on economic principles, therefore, the probability that a

household purchases on the platform in a given week is a decreasing function of the average

price of the basket of items he or she purchases, and an increasing function of the number

of items available on the platform.

9Some of Imperfect Produce�s buyers are foodservice operators, so the budget constraint does not apply
to all. However, management assures us that these buyers are in the minority, but in number and in volume.
Therefore, a consumer-based model is an accurate description of their marginal buyer.
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Our data are collected at the individual-household level, and re�ect speci�c purchases of

surplus food baskets (�boxes�). As a result, both box-attributes and household preference

heterogeneity are likely to be important in determining the probability that each household

purchases a particular box of food from the platform in a given week. If either of these

features of our data are not taken into account, they are likely to induce substantial bias in

all model parameters. Because the quantity of the numeraire good drops out in �nding the

logit-probability term, we write the indirect utility function Vit for estimation purposes as:

Vi(p;N; z;x) = f(p;N j�; �) +
JX
j=1


jzij +

KX
k=1

�kxk + "i; (5)

where f() is the non-linear function of prices and platform size implied by the CES consumer-

preference model above, z is a vector of household-attributes that re�ect a household�s need-

based motivations for purchasing from the site in a given week, while x captures attributes

of the speci�c box of food items that is purchased.

We calculate a number of need-based variables in z that are commonly used to explain

purchase incidence, or the probability that a purchase occurs during a particular week (Bell,

Ho, and Tang 1998; Briesch, Chintagunta, and Fox 2009). Namely: CRi = consumption rate,

or the average apparent rate of fruit and vegetable consumption per household, calculated

by dividing total purchases over the sample period by the number of weeks the household

participates on the site,10 ITTi = inter-purchase time, or the number of weeks between the

previous purchase and current purchase, LQi = lagged quantity, or the number of items

purchased on the previous purchase occasion.

Among our household-level attributes, we expect CR to have a positive in�uence on

the probability of purchase, all else constant, as heavier fruit and vegetable consumers are

likely to be more frequent visitors to the site. We expect ITT to have a similar, positive,

e¤ect on the probability of purchase because, at a given consumption rate, the longer time

between purchases implies a greater likelihood that the household will run out of its preferred
10For all households, the relevant sample period consists of only those weeks between the �rst- and last-

purchase weeks. Implicitly, therefore, we assume the households is not aware of Imperfect Produce prior to
their �rst purchase, and choose not to use the site after their �nal purchase.
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items. Lagged quantity (LQ), on the other hand, is expected to have a negative e¤ect on

the probability of purchase as stockpiling, to the extent that it is possible with perishable

items, reduces the likelihood of need during the next purchase occasion.

In addition to these measures of household-heterogeneity, we include a set of basket

attributes (x) that consists of: PROM = the dollar value of any promotion used to purchase

a particular box of food by household i at purchase occasion t, ORG = a binary indicator

that assumes a value of 1 if the contents of the box are organic, FR = a binary indicator

that assumes a value of 1 if the box consists entirely of fruit, V G = a binary indicator that

equals 1 if the basket consists entirely of vegetables, SM = a binary indicator that equals

1 if the box is a �small� size, MD = a binary indicator that equals 1 for �medium� size

boxes, and LG = 1 if the box is �large�. For the categorical variables, the base case for

basket-content is a �mixed�box of food items, while an extra-large basket serves as the base

case for the size indicator.

In the Imperfect Produce data, we have no measures of observed heterogeneity at the

household level (i.e., demographic variables such as age, income, and education) so we can

only control for unobserved preference heterogeneity at the household level. We control for

unobserved heterogeneity by allowing the key model parameters to vary randomly across

households such that:

�i = �0 + �1�1; �1~N(0; 1) (6)

�i = �0 + �1�2; �2~N(0; 1);

where a 0 subscript indicates the parameter-mean, and 1 its standard deviation, and �k are

independent, standard-normal, random variates. Because the logit expression no longer has a

closed form with parameters that vary randomly, we estimate the entire Order-Probability /

Order-Size model using simulated maximum likelihood using the algorithm described below.
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2.3 Order-Size Model

In the second-stage model, �Order-Size�demand is represented by a count-data framework,

which is appropriate because our data describes the number of items (size) purchased with

each order. Because size-demand is a weakly positive, count-variable, we model the size of

each order as a Poisson-distributed variable (Bucklin, Gupta, and Siddarth 1998).11 A count-

data speci�cation is appropriate for this problem because it is reasonable to expect that once

a buyer has decided to purchase, the number of items is determined by the household�s need

for each item, the relative price of each, and a number of unobserved factors speci�c to each

household.

Order-size, or the amount purchased, is estimated conditional on the observation that

the buyer visits the platform. On the Imperfect Product platform, buyers have the option

of purchasing either a small, medium, large, or extra-large box of food, with the number of

items in each box increasing accordingly.12 While buyers likely have many other alternatives

for their fresh produce, our data do not describe their other purchases, so we focus only on the

items chosen from the platform.13 The number of items purchased in each of j = 1; 2; :::; J

di¤erent box formats depends on both the realization of utility for buyer i and the set of

observed box-speci�c attributes described above (xk) and unobserved household-preference

attributes. Unlike the purchase-incidence model above, the arguments of the purchase-

frequency model are intended to capture volume-preference rather than need-based measures.

Assuming the number of items purchased is Poisson distributed, therefore, implies that the

probability of purchasing Qijt items from the platform in period t is given by:

P (Qijt = qijtjQijt > 0) =
exp(��i)(�i)qijt
(1� exp(��i))qijt!

; (7)

where �i is the Poisson distribution parameter with: �i = exp(�i0+�pp+�NN+
PK

k=1 �kxk)

to ensure that the visitation probability is strictly positive. Conditional on having chosen

11We describe our tests for overdispersion in the Estimation and Identi�cation section below.
12Box sizes vary over time, and with the items chosen, so box size and number of items are not isomorphic.
13With data from more than one platform, the platform choice model could easily be extended to a nested

logit framework (Nair, Chintagunta, and Dube 2004).
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to make a purchase, the quantity purchased is likely to decrease in prices (p) because box

prices rise approximately linearly with item prices. Also conditional on purchase-incidence,

we expect the number of items chosen to rise in the number of items available on the platform

(N) simply because consumers are assumed to have a preference for variety, and there will

be a higher probability of a preference-match the more items are available on the site.14 The

remaining elements of the box-attribute vector (x) are the same as in the logit purchase-

incidence model, and we have relatively obvious priors on how each of these variables is

likely to a¤ect the number of items purchased relative to the base case scenarios. Namely,

promotion will be positively related to the number of items purchased, organic items are

likely to be purchased more often, and smaller-sized boxes will imply a lower number of

items. As in the logit model, we include a measure of unobserved heterogeneity in the �i

expression that is again assumed to be normally distributed.

Although the data generating process is, conceptually, maintained to follow a Poisson

distribution, empirical applications of the Poisson model often �nd that the data are more

disperse than the maintained distribution would suggest. Practical causes of overdispersion

include settings in which contagion are potentially important, or bandwagon e¤ects, in which

a rise in the number of observations of a phenomenon is likely to also be associated with a

greater dispersion about the mean. Intuitively, user-networks are likely to succeed, or fail, in

spectacular fashion. Consequently, we begin by estimating a base Poisson model, and then

consider Negative Binomial (NB) alternative as a means of addressing any overdispersion

problem that may arise. We test for the preferred speci�cation using the Chi-square test

developed by Cameron and Trivedi (1990). In this test, the null hypothesis is that the mean

of the estimated distribution is equal to the variance, while in the alternative, the variance

is greater than the mean (hence the term overdispersion). The CT test for overdispersion

14Variety is discovered through the shopping experience, and not advertised explicitly. Shoppers are
allowed to customize their box by �rst choosing the size of the box, then choosing whether it contains only
fruit, only vegetables, or a mixture of the two, and can then choose individual elements of the box. More
variety implies a greater ability to substitute items in and out of the box, very similar to a traditional
shopping experience.
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essentially involves conducting an ordinary least squares regression of the variance of the

�tted value of the dependent variable on either the mean, or the square of the mean (Greene

2010). The resulting test statistic, for the signi�cance of the regression coe¢ cient, is Chi-

square distributed with 1 degree of freedom.

In our application, we fail to reject the null hypothesis that the variance of the estimated

value of box-size is equal to the mean, but reject the null if we de�ne the alternative as the

square of the mean. Consequently, we have some support for the maintained hypothesis that

box-size follows a Poisson distribution, but this support is not entirely conclusive. Therefore,

we present results from both the NB model below, and the simpler Poisson alternative.15

As in the Order-Probability model above, we also allow for unobserved heterogeneity over

buyers by allowing critical elements of the Poisson �ijt function, namely prices and network-

size, to be randomly distributed over buyers. Failing to account for unobserved heterogeneity

in a household-level environment such as ours invites bias in all parameters. Following the

notational convention introduced above, we allow each parameter to be normally distributed

such that the parameters are given by: �ik = �0k + �1k�3k; �3k~N(0; 1) where the �3k are

independent, standard-normal, random variates.

2.4 Estimation and Identi�cation

We estimate both stages of the platform-demand model together using maximum likeli-

hood. Combining the Order-Probability and Order-Size models, the parameters of the �xed-

parameter version of the Logit-Poisson platform-demand model are estimated by maximizing

the log-likelihood function value given by:

LLF =
X
T

ln[Pijt(j) � P (Qijt = qijtjQijt > 0))dijt(1� Pijt(j))
(1�dijt)]; (8)

where dijt = 1 if buyer i purchases box j from the platform on visit t, and = 0 other-

wise. For the random-parameter version of the platform-demand model, we use simulated

15We present the likelihood function for the Negative-Binomial �P�model in the appendix below, which
is a general version of the more usual Negative Binomial model.
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maximum-likelihood (SML) to recover both the structural parameters, and the distributional

parameters of the random elements of the model. As is standard in this literature, we use

Halton draws to improve the e¢ ciency of the estimation routine, and found that there was

little di¤erence in the parameter estimates for more than 100 Halton draws. The result of

this model is demand for both the platform and the surplus food purchased on the platform.

Before estimating equation (8) and the supply of surplus-harvest equation, it is �rst

necessary to account for the fact that the number of products and the price index are

likely to be endogenous. Therefore, we estimate the platform-demand model using a control

function approach (Petrin and Train 2010), using raw commodity and other operating input

prices as instruments for retail prices, and commodity shipment levels as instruments in the

demand equation. Speci�cally, the USDA reports a full set of wholesale prices for fresh

fruits and vegetables in California on a weekly basis, so these farm-gate prices constitute

clear candidates for retail-price instruments. Wholesale prices for a range of fresh fruits and

vegetables are the primary cost-element for Imperfect Produce, so are likely to be closely

related to the retail prices they charge users. However, because Imperfect Produce is an

in�nitesimally small player in the US fresh produce industry, the prices they pay to farmers

are plausibly unrelated to the demand for produce in general. Therefore, wholesale produce

prices are likely to be excellent retail-price instruments. We also include a non-linear time

trend to account for any movements in retail prices that may be driven by the same, more

general, cycles that drive Imperfect Produce�s pricing strategy.

A �rst-stage regression of retail prices set by Imperfect Produce on indices of fruit and

vegetable prices, and time-trends, produces an F -statistic of 10; 564:36 and a R2 value of

0:18. Based on these estimates, we can safely conclude that our wholesale price indices are

not weak instruments for retail prices (Staiger and Stock 1997), and economic reasoning

suggests that are likely to be appropriate as well.

For network size, we face a fundamental dimensionality problem in identifying the e¤ect

of network size on platform demand. Namely, over the data period IP o¤ers some 450
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di¤erent items for sale through either their vegetable, fruit, or mixed boxes. And, our prices

are reported on a per-box basis and not a per-item basis. Therefore, recording and matching

item-level instruments is neither feasible, nor desirable. We capture wholesale movements in

the produce o¤ered for sale by IP by using indices of fresh fruit and vegetable prices reported

by USDA for the state of California (USDA 2017). Our instrument for network size exploits

the uncertainty of agricultural production, and the economic rationale for establishing food-

based CPMSs. That is, IP exists in order to create a market for surplus produce. In few

other industries is there a greater di¤erence between planned and actual production output,

because yields and grades are largely determined by environmental conditions such as heat,

rain, or wind, and not necessarily by conscious management decisions. These features of the

biological production process mean that observed production levels for specialty crops are

exogenous to the demand for the IP platform, and yet correlated with the number of items

that appear on the site.

Our instrument consists of an index of commodity movement volumes using the USDA

Agricultural Marketing Service Market News Service website. For the 60-week sample period,

we created a straight sum of weekly shipments in the Southern California district (in 10,000

lb units) for the top 20 commodities that appear on the IP website. Because of the wide

range of speci�c items o¤ered on the site (an average of some 450 products), tracking every

one of them through the AMS site is intractable. However, we assume that higher volumes of

the most popular items are correlated with production, and shipment levels, of all speciality

items. That is, overproduction for the most common commodities will be correlated with

overproduction of all commodities within a single growing season. Our index, therefore, is

expected to be positively correlated with the amount of surplus growers �nd on their hands,

and the range of items that appear for sale on the site. First-stage IV regressions using this

index �nd an R2 of 0:66 and an F value of 125; 553:09, so our network-size instruments again

cannot be considered weak according to the criteria described in Staiger and Stock (1997).
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2.5 Equilibrium Provision of Surplus Food

Next, we model the equilibrium provision of surplus food, or the number of products o¤ered

on the platform, and the price at which they are o¤ered. Following Richards and Hamilton

(2013) and Nair, Chintagunta, and Dube (2004), we assume the price of surplus food and

the number of items o¤ered on the platform are determined by solving the joint pro�t-

maximization condition for the optimal amount and price for surplus harvest. Solving for

the supply of surplus food products on the platform and the average price o¤ered on the

platform then allows us to derive hypotheses regarding the e¤ect of shocks to platform

demand on the price, supply of products o¤ered, and pro�tability of the platform itself. As

a structural model of surplus-food supply, the supply-side of our model allows to test the

relative importance of platform-size and consumer tra¢ c on the viability of our surplus-food

CPMS.

At this time there are only a handful of �rms in the surplus-harvest market in Califor-

nia. Still, pricing and output decisions are conditioned by the greater produce market as

consumers have access to fresh produce that is closely substitutable for that sold by Imper-

fect Produce. Therefore, we assume platforms set category-level prices and assortments in a

Bertrand-Nash manner for each category in the store. We derive the optimal retail pricing

model �rst, followed by an expression for variety, or assortment depth.

Conditional on prices set by suppliers, the pro�t expression for the platform in time

period t is written as:

�t = E[Qt](pt � rt � wt)� v(Nt); (9)

where rt is the constant cost of selling, wt is an average wholesale price, v(Nt) is the cost

of expanding the size of the platform, and E[Qt] is the expected sales during week t; which

is the product of the probability of household-purchase and the number of items purchased,

aggregated to the market level. We follow Draganska and Jain (2005) in de�ning the cost of

variety as a quadratic: v(Nt) = 
0Nt+(1=2)
1N
2
t �, which is appropriate as restocking costs

can be expected to rise in a non-linear way with the number of products to be monitored,

18



stored, re-shelved and priced. With this assumption, the platform�s �rst-order condition in

prices is given by:

E[Qt] +
@E[Qt]

@pt
(pt � rt � wt) = 0; (10)

re�ecting the local-monopoly assumption that the platform considers only the demand for

their own products in setting prices. Stacking the �rst-order conditions for all items o¤ered

on the platform and time periods and solving for retail prices in matrix notation gives:

p = r+w �  E[Q]�1p E[Q]; (11)

where p is a JTx1 vector of prices (J boxes, T weeks) , w is a JTx1 vector of wholesale

prices, r is a JTx1 vector of product-speci�c selling-input prices, E[Q] is a JTx1 vector of

expected quantities, and E[Q]p is a diagonal JTxJT matrix of expected-quantity-derivatives

with respect to all retail prices. In the Imperfect Produce data, we do not observe the speci�c

wholesale prices paid, so they are approximated by the indices of fruit and vegetable farm-

gate prices described in more detail below. We parameterize these indices in the marginal cost

equation as their true relationship with marginal cost is unknown, and must be estimated.

We estimate unobserved selling costs as a linear function of input prices, which is common

practice in this literature (Villas-Boas 2007; Richards and Hamilton 2015). Speci�cally, we

write the constant marginal cost of selling as: rjt = �0 +
PL

l=1 �lvl;where v is a vector

of input prices that includes a weekly measure of wages in the food retailing industry, an

index of cardboard-box prices, a utility price index, and an index of energy costs. Finally,

we parameterize the third term in equation (11) with a conduct parameter,  ; to measure

any departure from the maintained Bertrand-Nash pricing environment faced by Imperfect

Produce. As is well understood in this literature, a value of  = 1 indicates that Imperfect

Produce is able to price as a Bertrand-Nash oligopolist, but a value of  = 0 suggests that

pricing approximates a perfectly competitive ideal.

Similarly, the �rst-order condition for optimal platform size is given by:

@E[Qt]

@Nt

(pt � rt � wt)�
@�

@Nt

= 0; (12)
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where: @�=@Nt is the marginal cost of augmenting the assortment, or increasing the size of

the network. The �rst-order condition for platform size is also stacked over boxes and weeks

to �nd:

�N = �E[Q]NE[Q]�1p E[Q]; (13)

where �N = 
0 + 
1N is the marginal cost of adding to the network, and E[Q]N is again

a diagonal matrix of expected-quantity derivatives with respect to platform size. With this

assumption, the estimated network-size equation is given by:

N = �� 1E[Q]NE[Q]�1p E[Q]� � 0; (14)

where � 0 = 
0=
1 and � 1 = 1=
1. Network size is a function of the equilibrium retail markup

in (11), so the size of the network o¤ered by the platform is function of wholesale prices. By

estimating both margins and equilibrium network size together, we endogenize both decisions

made by the platform manager, and thereby test the relative strength of network size on

consumer demand for the platform, and the incentive to expand the number of products

o¤ered on it.

In the equilibrium-supply model derived in this section, we test the relative importance

of consumer tra¢ c and network size by estimating the equilibrium pricing and network-size

equations together, and testing the importance of network size both directly and indirectly.

Our direct test is a simple t-test of the sign and signi�cance of the � 1 parameter. In equi-

librium, the marginal cost of adding another supplier must equal the marginal bene�t. In

equilibrium, if the value of � 1 is positive, then adding another supplier provides positive

incremental pro�t to the platform, all else constant. Because p and N are determined in

equilibrium, however, we estimate the importance of indirect network e¤ects by varying the

level of N parametrically, and measuring the resulting impact on equilibrium margins by

simulating our structural price- and network-model. Conditioned on the model of demand

that drives both equilibrium pricing and margins, if a larger network causes margins to rise,

then we have evidence of indirect network e¤ects in the surplus-produce market.
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On the supply side, the imputed-margin values, and marginal-value of network size are

also likely to be endogenous. In order to instrument variables that re�ect decisions taken

by platform managers, we require variables that re�ect demand-side shocks �shocks that

are likely to be correlated with pro�tability and growth-potential, yet mean-independent of

retail prices, and network-size, respectively. Given the limited data that we have available,

the set of instruments for both equations are similar. Speci�cally, we capture box-speci�c

demand shocks by including a vector of box-�xed e¤ects. Second, we include our index of

weekly fruit and vegetable shipments in order to capture any changes in demand that derive

from the wider market for fruits and vegetables. Third, we capture any temporal changes

in demand for the platform by including both a linear and quadratic time trend. Finally,

we control for any remaining dynamic changes in demand by including lagged values of the

imputed margin from equation (11), the marginal value of network size from equation (13),

and lagged values of network size and retail price. For the pricing equation, a �rst-stage

instrumental-variables regression produces an F-statistic of 15:03, and for the endogenous

network size, these instruments produce an F-statistic of 15:16. In neither case can the

instruments be described as weak (Staiger and Stock 1997). In the Results section below,

we present estimates from both an IV and non-IV supply model in order to demonstrate the

importance of controlling for endogeneity our system.

3 Data

Our data are from Imperfect Produce, Inc. Imperfect Produce began operations in mid-

2015 with just over 1,000 customers, and by early 2017 had grown to over 7,500 customers.

A cofounder of Imperfect Produce, Ron Clark, spent decades in the produce industry in

California, and worked closely with the California Association of Food Banks. Through

this association, he realized that there should be a market for surplus produce, or produce

that does not make either formal grades set by either state marketing orders, or informal
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standards set by retail and foodservice buyers.16

Originally motivated by purely environmental and other social concerns, Imperfect Pro-

duce adopted, and adapted, a number of business practices over time in order to achieve

�nancial independence. Imperfect Produce serves as an online, and real-life, platform that

connects growers who have fresh fruit and vegetable items that either represent surplus har-

vest over contractual obligations or do not conform with usual size and quality standards

in the grading process with retail or foodservice buyers looking for either low-cost meal

ingredients or for �unloved� produce that they do not want to see go to waste. The key

to the success of the Imperfect Produce platform is the immersive use of technology, from

a state-of-the art mobile application to inventory-optimization software that rivals systems

employed by larger, more established food distributors.

Similar to CPMS �rms in other industries, Imperfect Produce recognized early on the

value of data-capture, and data analytics in optimizing delivery schedules, and the mix of

produce that they would want to source. Consequently, Imperfect Produce maintains a

detailed database of every transaction they have ever executed, including all price, volume,

and item speci�cations, as well as the amount of any promotion that was o¤ered. Their

data base provides a detailed description of the nature of each item, and how the customer

assembled the box that they purchased. Box-prices for each transaction re�ect a �xed amount

for the box itself, and a variable amount for each item. After 2 years of operation, they have

a detailed data set of every transaction, one that mimics the type of data collected by larger

supermarkets, with millions more transactions. Imperfect Produce also captures all of their

purchase-transactions, which we describe in more detail below.

Our data capture the entirety of transactions on the surplus food platform for the 60-week

period from January 1, 2016 through February 28, 2017.17 We observe the identity of the

16None of the marketing orders, or fruit and vegetable lobby groups, that we spoke with had any objection
to the existence of �rms selling o¤-grade produce because they represent ready markets for secondary-
produce, create new markets for produce that would otherwise be thrown away, and enjoy overwhelming
support from growers and packers. Implicitly, they support the price-discrimination role of secondary produce
markets described in the Introduction.
17Our complete data set also contains transactions from September 1, 2015 - December 31, 2015, but IP
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purchaser, the speci�c box that was purchased, the date it was purchased, the number and

identity of the items in the box, the total amount spent, and the amount of any promotion

used to capture the sale. Unfortunately, we have no demographic data on the purchasers

to control for observed heterogeneity in preferences, although we do control for unobserved

heterogeneity in the estimates presented below. All of our estimates are su¢ ciently precise

that the lack of demographic data is not a great concern.

Table 1 summarizes the demand-side data. Perhaps most importantly, the summary

data demonstrates considerable variation in the size of the Imperfect Produce platform,

which varies from a low of 29 unique items to a high of 83 over the sample period. This

suggests that variation in demand related to platform size is well-identi�ed. Our summary

data also show that customers demand a wide range of di¤erent boxes, and that order sizes

can vary from small, single-box orders, to large orders in the hundreds of dollars. In terms of

the attributes of each order, over 1=4 of all boxes are organic, and the vast majority consist

of a mix of fruits and vegetables. Further, the plurality of boxes ordered are small, and the

next most popular size is medium. Based on an average consumption rate of only 6:5 items

per week (or roughly one per day), the popularity of small boxes is not surprising. That

said, this consumption rate suggests that households using the Imperfect Produce platform

are obtaining a substantial proportion of their fresh produce needs this way. In general,

therefore, this summary data shows that there is likely su¢ cient variation in the data to

identify the key parameters in our demand, and supply models, and that the Imperfect

Platform plays an important role in users�shopping plans.

[table 1 in here]

We �rst use the IP data to determine whether there is summary evidence that the volumes

of produce traded through the Imperfect Produce platform are related to the number of

suppliers delivering produce to the site. Using the transactional data summarized in table 1,

we show how much fresh produce has been sourced from growers over the �rst four years of

substantially changed their box-labeling system on January 1, 2016, so we removed the earlier transactions
due to a lack of comparability across boxes.
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operation, and how much has been transacted to buyers. Viability in two-sided networks is

completely determined by demand from both sides of the market �from those who demand

distributional services, and those who demand the end-product. In �gure 1, we show that

variation in user tra¢ c appears to be positively related to changes in the number of suppliers

to the platform, which is necessary for indirect network e¤ects to arise. However, graphical

evidence cannot control for many, potentially confounding factors.

[�gure 1 in here]

We examine this question more closely by examining the data in �gure 1 using a reduced-

form approach in order to determine if sales volume is related to the number of items o¤ered

on the platform, and whether any relationship is robust to controlling for other factors that

may explain the co-movement of tra¢ c and supplier interest. Table 2 presents estimates from

3 models, each with slightly di¤ering controls. In the �rst model (Model 1), the estimates

show that price is the strongest determinant of sales volume, as expected, but the number

of items o¤ered on the platform, nonetheless, remains an important determinant of platform

tra¢ c. As in all of the reduced-form models, the attributes of each box are also important.

[table 2 in here]

In the next model (Model 2), we control for promotional spending because, as a startup,

Imperfect Produce invested substantial amounts in building tra¢ c. Controlling for spending

does not alter the importance of price, and actually leads to a stronger role for platform

size. Finally, we account for any temporal e¤ects associated with platform demand in Model

3. Including a quadratic time-trend reduces the size of the price coe¢ cient only slightly,

and reduces the importance of network size by roughly 50%, but there appears to be no

non-linear time-e¤ects in the data. Because our data captures the latter part of their initial

growth phase, controlling for a linear trend term is critical in the structural model below.

In summary, our reduced-form evidence suggests that the number of suppliers, or platform

size, appears to be critical to growing demand for a surplus-produce platform.

We also have access to all of the �rm�s purchase data, albeit in lesser detail than the
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transaction data described above. While we have records of individual purchases, so we can

track what was purchased and whom it was purchased from, we do not have volume data

speci�c enough to assign a cost to each individual item. Nonetheless, we have total purchas-

ing costs by week and, given that Imperfect Produce does not hold substantial inventories

of any item, we are able to impute a rough estimate of their gross margin over time. While

volume is a necessary condition for success, it is not su¢ cient without a margin-generating

mechanism.

Some platforms in the surplus harvest business serve as brokers, extracting a fee on each

transaction negotiated between a farmer with surplus produce, and a retail or foodservice

buyer. Imperfect Produce, on the other hand, conducts business as a traditional middleman,

taking title to the produce purchased from growers, and selling for their own account to

individual customers. In �gure 2, we show how Imperfect Produce�s gross margin has varied

over time, by month, and how the margin has varied with the number of items o¤ered on the

site. Interestingly, there appears to be a strong, positive relationship between gross margin

and the number of items o¤ered on the site over the �rst 12 months of our sample period

(calendar 2016) (linear regression coe¢ cient = 3; 299, t-ratio = 2:352), the relationship all

but disappears over the �nal 2 months of the sample (linear regression coe¢ cient = 324,

t-ratio = 0:291). Although January and February are relatively slow months in the fresh

produce business, Imperfect Produce management assures us that these months were not

out of the ordinary.

[�gure 2 in here]

Data for our instruments and selling costs are from the USDA, Agricultural Marketing

Service and the Bureau of Labor Statistics. Speci�cally, the fresh produce price indices and

shipment values are from the USDA, on a monthly basis. We do nos adjust the monthly

frequency to smooth out variation to estimate with the other, weekly data series.18 Our

input price series are from the Bureau of Labor Statistics, Producer Price Index series, again

18While doing so is common, we believe �tting a cubic-spline, or similar smoothing method, imputes
arti�cial variation in the data that is likely to be misleading.
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on a monthly basis. We capture labor costs, which are the largest component of selling costs,

by including a measure of weekly compensation to workers in the food retailing industry.

Another large, and unique, cost item for Imperfect Produce is the price of boxes used to

deliver items to retail customers. We measure the cost of packaging with a monthly index

of prices earned by cardboard-box manufacturers. Utility and fuel costs are also producer-

price indices for generators and distributors of electricity, and fuel wholesalers, respectively.

Although Imperfect Produce faces a number of other costs of doing business, our price

indices are likely to capture most of the variation in the marginal cost of buying, handling,

and distributing surplus produce.

4 Results and Discussion

We �rst present our estimates of the demand-side model, followed by estimates of the pricing-

and-network size model, and then demonstrate the importance of our �ndings for food policy

through numerical simulation. Within each stage, we present estimates from a range of

speci�cations to evaluate the robustness of our model and conduct a series of speci�cation

tests to determine the preferred model.

4.1 Platform Demand Estimates

In this section, we begin by presenting the estimates from each of a series of platform

demand models, and then interpret our �ndings from the best-�tting speci�cation of the

model. Table 3 shows our platform demand estimates. Our initial speci�cation, which

is not shown in the table, maintains a simple Logit-Poisson process; however, tests for

overdispersion revealed that the Negative Binomial was preferred (�2 = 640.7). Within the

class of Negative Binomial models, moreover, the Negative-Binomial-P (NBP) model, which

is the most general speci�cation we estimate, is the preferred model. Consequently, the

entries in Table 3 present the results of three di¤erent versions of the Logit-NBP model.

[table 3 in here]
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Model 1 in Table 3 makes no attempt to control for endogeneity of either the platform

price or the size of the network (number of items o¤ered). Identifying network e¤ects when

both variables are endogenous is the focus of much of the recent empirical network economics

literature (Jeziorski 2014, for example), e¤ects of particular importance in our setting given

the intent of the purchase incidence model to capture need-based motivations for visiting the

Imperfect Produce site. Because the incidence and purchase quantity equations are estimated

together, we include controls for endogenous prices and network size in Model 2 to remove

any bias that may be transmitted to the incidence equation. Comparing the estimates in

Model 2 to those in Model 1, we see that Model 2 is preferred (�2 = 21; 668, based on a

likelihood-ratio test) and removes a substantial amount of bias from the key parameters in

the incidence model, � and �.

Model 3 accounts for unobserved heterogeneity by allowing for random household-level

parameters. Comparing the �t of Model 2 to Model 3 reveals Model 2 to be the preferred

speci�cation. Although the scale parameters on the � and � are statistically signi�cant,

they are very small in magnitude, which indicates that heterogeneity is not an important

consideration. For this reason, we use the estimates from Model 2 to test our hypotheses

regarding the importance of network-size on demand, and to condition our supply-model

estimates to follow.

Based on the Purchase Incidence estimates in Table 3, it is apparent that consumption

rate, inter-purchase time, and the amount purchased on the previous visit are all critically

important in the binary decision to order surplus food from the platform. This result is not

surprising in light of the prior empirical literature on purchase incidence (Briesch, Chinta-

gunta, and Fox 2009). Conditioned on these variables, we also �nd that promotions are not

important drivers of site tra¢ c, but that the attributes of the order are important. Cus-

tomers prefer organic boxes, either in a small or medium size, consisting of a mix of fruits

and vegetables.

With respect to the Purchase Quantity component, the estimates in the bottom panel
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of Table 3 are statistically signi�cant in determining the amount purchased in each order.

The estimated value for the Network Size variable implies a net marginal e¤ect of 0:05,

meaning that an increase of one item in the assortment on o¤er will result in an expected

increase of 0:05 items per week, accounting for the equilibrium e¤ect on purchase incidence,

and the number of items purchased if an order is placed. In elasticity terms, this estimate

suggests a network-size elasticity of 0:23, which implies that a 10% increase in network

size can be expected to result in a 2:3% increase in expected sales. The price elasticity

implied by the estimates in Table 3 is �0:15, which indicates that the quantity response

to changes in surplus food prices is highly inelastic. This is perhaps to be expected given

that the clientele for Imperfect Produce may order surplus food not only for the purpose

of obtaining inexpensive produce, but also to contribute to resolving the problem of food

waste. Unlike in the incidence model, we �nd that promotion has an important impact on

the quantity purchased, and that users tend to order signi�cantly more surplus food items

when purchasing organic relative to conventional produce.

As in the incidence model, we �nd that the controls for the endogeneity of price and

network size are statistically signi�cant. The importance of controlling for endogeneity is

emphasized by comparing the estimates from Model 2 to those of Model 1. While there

appears to be little bias in estimated price e¤ect, the marginal e¤ect of network size is

estimated with substantial bias in the non-control function model. These demand estimates,

in turn, drive the equilibrium supply model estimates described next.

4.2 Pricing and Network Size

Conditioned on consumer preferences for platform size and prices, the supply estimates test

for the e¤ect of network size and equilibrium pricing. In this model, we control for the

simultaneous in�uences of pricing and demand on the marginal value of increasing the size

of the platform. Although our demand estimates above show that consumers have a positive

marginal value of network-size, the converse must also be true to create a �virtuous cycle�
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of indirect network e¤ects: Namely, suppliers must also value consumer tra¢ c and be more

likely to use the platform as the size of the network increases. In our model, we infer the

demand for platform services by estimating the marginal value of network-size demand by

the platform manager. In Table 4, this estimate is shown by the value of � 1, which is the

equilibrium marginal value of N from the manager�s perspective.

Notice that our estimates of � 1 in Table 4 are remarkably robust across the three speci-

�cations we consider. In Model 1, we estimate � 1 independent from the equilibrium-pricing

equation, while in Model 2 we estimate both equations together, but without endogeneity

controls. In Model 3, we estimate both equations together, and with endogeneity controls.

Because the estimators are di¤erent for each model, we compare goodness-of-�t using a sim-

ple non-nested comparitor, the pseudoR2. By this measure, we see that Model 3 provides

the best �t to the data, while also controlling for the endogeneity of both marginal network

value, and retail margins.

Model 3 reveals the marginal network value estimate to be positive and signi�cant, as in

the other models, but with a magnitude that is more than twofold the size. Both the margin

and network-value models in Table 4 are estimated in money-metric terms, which allows

us to interpret this estimate as the marginal value to the network operator, per box, of an

additional item in the assortment, or $0:55 / item. Based on an average box price of $6:47

(box size times item price in table 1), this estimate represents fully 8:5% of the retail value

of a box. More importantly, it suggests that, in equilibrium, the platform manager is willing

to pay $0:55 / item on a per-box basis, for another item in the assortment. Because this

is an estimate of the equilibrium value, it suggests that there is a signi�cant, positive value

to distribution through the platform from produce suppliers. Put di¤erently, our estimate

implies that suppliers are willing to accept $0:55 / item for distribution, indicating that

when consumers demand more items on the platform suppliers demand greater distribution

through the platform.

[table 4 in here]
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Estimates from the pricing model in Table 4 show how properly accounting for the en-

dogeneity of network size can have dramatic e¤ects on the degree of market power exercised

by the platform manager. While estimating either the pricing- and network-size equations

separately (Model 1) or without endogeneity controls (Model 2), the outcome implies nearly-

competitive pricing conduct ( is near zero in each case); however, when the marginal value

of N and retail margins are properly instrumented, the estimate of  is closer to Bertrand-

Nash behavior than to competitive pricing. Consequently, this �nding suggests that platform

managers in CPMS markets such as this are able to exploit indirect network e¤ects to gen-

erate much higher margins than would otherwise be the case.

4.3 Policy Implications

In this Section we numerically characterize the policy implications of subsidizing CPMS

markets to reduce the amount of produce that is not purchased for human consumption.

Our numerical model illustrates the importance of platform size, the demand for distribution

services by providers, the demand for surplus food by consumers, and platform pricing in

determining surplus food transactions on the CPMS platform. We allow for endogenous

consumer demand, retail prices (and margins), and network-size in our numerical model,

which allows us to demonstrate the importance of indirect network e¤ects in the market by

varying parameters in consumer demand and by introducing our key food policy instruments.

We �rst examine the e¤ect of changes in consumer acceptance for surplus food.

Table 5 presents estimates of the retail margin, and platform-demand for network-size

by varying consumer demand for surplus food. Speci�cally, we vary the key parameter in

the Order-Size demand model, �N in Table 3, that measures consumers� preferences for

purchasing surplus food on the CPMS platform. Increasing consumers�preference for the

number of items available on the platform should lead to three e¤ects: (i) higher prices;

(ii) an increase in the number of surplus food items o¤ered on the platform; and (iii)

indirectly through prices, reduced quantity demanded for each surplus food product on the
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platform.19 Our numerical simulation precisely reveals these e¤ects. Higher values of �N

are indeed associated with signi�cantly higher retail prices (and margins) and a signi�cant

increase in network size. The reason is that a positive shock in consumers�preferences for

product variety causes vendors to respond by placing a greater number of products on the

platform, increasing demand for each item on the platform, resulting in higher equilibrium

prices. These are the necessary ingredients for producing indirect network e¤ects: Platform

managers are able to leverage greater demand from one side of the market (consumers) to

increase demand for distribution from the other side of the market (suppliers) in a virtuous

cycle that raises platform rents.

[table 5 in here]

We are now ready to examine the policy implications of our �ndings for surplus food.

Speci�cally, we consider a price-based incentive, which we refer to as an �ugly food�subsidy,

that provides a price incentive for consumers to purchase surplus food on the CPMS platform.

Table 6 shows the e¤ect of an ad valorem subsidy on produce purchased on the platform,

where we de�ne the net price paid by consumers as bp = (1� �)p, p as the list price and � as
the subsidy rate.

Given the non-linearity of the structural model, the e¤ect of varying the subsidy from 10%

through 90% results in a highly non-linear response for both the equilibrium price and the

number of suppliers. A relatively small subsidy level (25%) produces only modest changes in

the overall size of the network (48:5 versus 46:9 products on o¤er), while the e¤ect on price

is more substantial ($1:72 / item versus $1:57 / item). The total quantity of surplus food

purchased on the platform rises from 17:42 to 27:92 items per order �a 60% increase that

siphons surplus food products onto the platform that would otherwise result in food loss.20

19We assume that quality does not decline in response to a demand shock. When demand rises, managers
at the �rm reach out to more suppliers, and source more volume from existing suppliers. Still, they o¤er
produce with only cosmetic imperfections, and never nutritional or eating de�ciencies.
20Surplus food sold through Imperfect Produce may have otherwise been used for animal feed, composted,

or used in some other, low-value purpose. However, we cannot make a general statement as to alternative
destinations for the food sold through the platform. Ben Chesler, CEO of Imperfect Produce, states that
"...It is very speci�c to the item and speci�c purchase. Generally it goes to waste but we avoid making broad
claims like that. Some goes to waste, some foes to animal feed, some goes to processors..." More generally,
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At higher subsidy levels (90%), the e¤ect on network size increases sharply (75:33 versus

46:9 products on o¤er), while the price e¤ect is moderate ($2:11 / item versus $1:57 / item).

The increase in the quantity of surplus food sold on the platform is substantial, more than

tripling the quantity of surplus food purchased on the platform (from 17:42 to 53:69). Policies

that provide monetary incentives to consumers for purchasing surplus food products have a

dramatic impact on the amount of food lost to the retail market.

[table 6 in here]

5 Conclusions

In this paper, we study the viability of a secondary market in the sharing economy for ugly

produce, or fresh fruits and vegetables that fail to make more usual saleable-grades. We de-

velop a model of a two-sided market in which consumers demand a variety of produce from a

surplus-harvest website, and suppliers seek distribution to the greatest number of consumers

possible. We estimate our empirical model using transactional data from a sharing-economy

�rm that has been operating successfully in this area for two years, Imperfect Produce, LLC.

Our results show that, controlling for prices and the attributes of the items they are

purchasing, consumer demand for deliveries through the Imperfect Produce website rise in

the variety of items they o¤er. Controlling for the endogeneity of surplus produce-supplies,

we show that equilibrium margins and distribution rise in the number of items o¤ered on

the site, which supports our hypothesis that Imperfect Produce operates in a two-sided

market. As is the case with other two-sided markets, the platform manager is able to use

indirect network e¤ects to his or her advantage, increasing user-demand for the website by

providing more items, and generating demand for distribution by attracting a greater number

our assumption on this point is that the farmer allocates surplus harvest to its highest and best use. By
creating an active market for produce, in direct-consumption form, the value of food sold through IP is likely
to be (we do not have prices for alternative uses such as feed or processing) much greater. While this is
not reducing waste in the sense of Bellemare et al. (2017), we agree with Buzby et al. (2011) who argue
more generally that food losses include the degradation in value of food such that it cannot be used for its
intended purpose. That is, because producers purchase scarce inputs such that their price is equal to their
marginal value product, and marginal value product depends on the output price, degradation in saleable
value represents a misuse of inputs, and economic loss.
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of consumers. Counter-factual simulations of our equilibrium pricing and network-size model

show that increasing the intensity of demand for variety, or the number of items o¤ered on

the site, increases the demand for distribution by suppliers by an elasticity of roughly 0:5.

We interpret this result as demonstrating that sharing-economy �rms in the surplus-food

market can take advantage of substantial indirect network e¤ects.

Finding evidence of indirect network e¤ects in a non-conventional, sharing-economy in-

dustry represents a substantial contribution to both the empirical literature on how CPMS

�rms operate, and the practical literature on food waste. Ours is the �rst study to document

indirect network e¤ects in CPMS �rms, which should be a necessary condition for their suc-

cess. While the viability of any startup �rm is not guaranteed, if the fundamental economics

of the industry suggest the presence of indirect network e¤ects, then success is substantially

more likely.21 There is plenty of evidence of indirect network e¤ects in technology industries,

from personal digital assistants (PDAs, Nair, Chintagunta and Dube 2004) to yellow pages

(Rysman 2004), but we are the �rst to show they also exist in the sharing economy.

In terms of the surplus food problem, our �ndings show that there may indeed be a

market solution to an issue that has otherwise been regarded as largely intractable, resulting

from behavioral errors by millions of agents in the economy, each with limited ability to solve

the errors-in-planning that result in either surplus harvest, or food that perishes before it can

be used. If the conditions exist for a market to arise in surplus food, then at least farmers

will have an incentive to manage their harvests optimally. In fact, platforms such as Food

Cowboy have emerged to provide households and restaurants a means of selling food they

would otherwise throw away, providing a �rst step in making a market for food waste more

generally. While the larger waste problem is not likely to disappear, economists understand

21Unlike many technology platforms that emerge as monopoly, or near�mononoply, due to the fact that
they are subject to indirect network e¤ects, and their platform is not compatible with others (Apple iPhone,
and Microsoft Windows, for example), consumers in the surplus harvest market have the ability to multi-
home (Armstrong 2006) so the same competitive lock-in that we see in technology markets is not likely to
occur. We de�ne success in this market, therefore, as being able to generate su¢ cient long-term pro�t to
survive, and not to earn monopoly pro�ts as in other industries that are also subject to indirect network
e¤ects.
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that aligning incentives with the larger social objective �minimizing food waste �can move

us toward a longer-term solution to the problem.

Our �ndings have important implications for both the management of sharing-economy

platforms like Imperfect Produce, and the viability of surplus-produce trading more generally.

In any sharing-economy platform, the manager intermediates between users who demand a

greater breadth of service and suppliers who agree to share their surplus goods with potential

users. In the case of Imperfect Produce, users of the food surplus website are attracted by

the variety of items on o¤er, and suppliers are attracted by the number of consumers on the

site. If the fundamental economics of two-sided markets continues to work as we have shown

here, then greater expansion of the concept beyond surplus harvest to leftover perishables

from retail stores, household compost and restaurant-waste are indeed possibilities.

Our research has some important limitations. Most importantly, the Imperfect Produce

data describes the operation of a startup �rm, in an industry that is struggling to become

established. To the extent that management was learning-on-the-job while our data were be-

ing generated, it likely contains more noise than would be the case if the data were generated

by a more established �rm. Second, Imperfect Produce did not record accurate, per-item

data from suppliers. With more accurate data on the demand-for-distribution from suppli-

ers, we would have been able to estimate the demand for distribution in a more direct way.

Third, and perhaps most importantly, the market for surplus harvest is currently so small

that it would be a heroic e¤ort to attempt to infer any aggregate welfare e¤ects due to this

platform. However, Chen, Esteban, and Shum (2013) show that such markets for secondary

output may, in fact, harm the interests of the �rms involved. We leave this question for

future research. Finally, our data describe only the California market. Whether they will

generalize to the larger US, or global, markets, is uncertain.
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6 Appendix: The NegBin-P Model

In this appendix, we derive the alternative count-data model to our maintained Poisson spec-

i�cation. This speci�cation, the Negative-Binomial-P (NBP) model (Greene 2010) accounts

for overdispersion typical in count-data settings, in a very general way. Given that the usual

form of the NegBin model is given as (Greene 2003):

Pr(Y = yijxi) =
�(1=�+ yi)

�(1=�)�(yi + 1)
u
1=�
i (1� ui)

yi ; (15)

where ui = 1=(1 + ��i); then we replace 1=� with (1=�)�
2�P
i such that:

Pr(Y = yijxi) =
 

�((1=�)�Qi + yi)

�((1=�)�Qi )�(yi + 1)

! 
(1=�)�Qi

(1=�)�Qi + �i

!(1=�)�Qi �
�i

(1=�)�Qi + �i

�yi
;

(16)

where Q = 2�P: In the combined Logit-Poisson platform-demand model, we substitute the

NBP speci�cation for the Poisson stage in order to test for the importance of overdispersion

in estimating the strength of indirect network e¤ects in the Imperfect Produce platform. We

compare the two speci�cations using the simple OLS-based test described in the text.
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Table 1. Data Summary
Variable Units Mean Std. Dev. Min. Max. N

Number of Items # 46.3801 14.5647 29 83 201836
Box Size # 7.5409 3.9272 4 12 201836
Order Dollars $ 20.3375 11.1023 6 450 201836
Order Items # 13.5346 7.6526 4 381 201836
Promotion Dollars $ 0.2719 2.3352 0 140.12 201836
Item Price $ / Item 1.5710 0.2727 0.38 11.18 201836
Organic % 26.4185 44.0899 0 100 201836
Fruit % 1.9283 13.7518 0 100 201836
Vegetable % 2.2389 14.7947 0 100 201836
Small % 24.5338 43.0288 0 100 201836
Medium % 21.2296 40.8934 0 100 201836
Large % 4.4452 20.6097 0 100 201836
Consumption Rate Items / Week 6.5507 3.5494 1.19 72.46 201836
Box 1 % 0.9840 9.8706 0 100 201836
Box 2 % 0.9443 9.6717 0 100 201836
Box 3 % 0.6733 8.1779 0 100 201836
Box 4 % 1.7262 13.0245 0 100 201836
Box 5 % 8.9355 28.5256 0 100 201836
Box 6 % 15.0835 35.7889 0 100 201836
Box 7 % 0.7030 8.3553 0 100 201836
Box 8 % 2.7190 16.2638 0 100 201836
Box 9 % 10.2608 30.3447 0 100 201836
Box 10 % 7.3163 26.0405 0 100 201836
Box 11 % 1.0494 10.1900 0 100 201836
Box 11 % 1.1896 10.8417 0 100 201836
Note: Data from Imperfect Produce, LLC.
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Table 2. Reduced-Form Sales Volume Regression
Model 1 Model 2 Model 3

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Constant 34.3496* 0.1444 33.1989* 0.1393 32.6954* 0.1605
Price -7.2329* 0.0684 -7.2331* 0.0657 -7.0529* 0.0691
Number of Items 0.5574* 0.1045 0.9407* 0.1005 0.4071* 0.1552
Organic 3.8004* 0.0334 3.6792* 0.0321 3.6016* 0.0330
Fruit 0.2259* 0.0738 0.1935* 0.0709 0.1797* 0.0709
Veg 0.0445 0.0691 0.0608 0.0664 0.0519 0.0664
Small -15.0453* 0.0870 -14.1162* 0.0842 -14.1456* 0.0843
Medium -12.0483* 0.0860 -11.2289* 0.0832 -11.2091* 0.0831
Large -6.7192* 0.0952 -6.0758* 0.0918 -6.0557* 0.0917
Promotion 0.3793* 0.0041 0.3807* 0.0041
Week 0.0185* 0.0043
Week2 -0.1105* 0.0726
R2 0.4582 0.4997 0.5002
F 11,006.35 11,554.05 9,472.21
Note: A single asterisk indicates signi�cance at a 5% level. Data are at the household

level, on a weekly basis.
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Table 3. Demand Estimates: Logit / NB-P Model
Model 1 Model 2 Model 3

Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Logit Purchase Incidence Model
� 0.7736* 0.0905 0.7909* 0.1197 0.7790* 0.0938
�(s) 0.0100* 0.0023
� 0.7342* 0.2752 0.7406 0.4646 0.7362* 0.1597
�(s) 0.0094 0.0064
Consumption Rate 30.6115* 0.1214 30.6144* 0.1221 30.6124* 0.1195
Inter. Time 21.2850* 0.1263 21.2863* 0.1270 21.2854* 0.1176
Lagged Q -4.1132* 0.0550 -4.1098* 0.0555 -4.1121* 0.0438
Promotion -0.2807* 0.0020 -0.2122* 0.0019 -0.2583* 0.0016
Week -6.9485* 0.0348 -6.9299* 0.0421 -6.9425* 0.0357
Organic 0.1746* 0.0786 0.1925* 0.0998 0.1800* 0.0728
Fruit -6.3739* 0.1073 -6.3655* 0.1332 -6.3712* 0.1036
Vegetable -4.5805* 0.1733 -4.5717* 0.2000 -4.5777* 0.1386
Small 7.9059* 0.0974 7.9236* 0.1420 7.9113* 0.0953
Medium 6.4082* 0.1002 6.4257* 0.1467 6.4138* 0.1032
Large 3.0118* 0.1033 3.0207* 0.1504 3.0146* 0.0610
Price Control 0.5004* 0.0399 2.7108* 0.0306
Network Control 0.4998* 0.0851 7.2893* 0.0745
NB-P Purchase Quantity Model
Constant 3.9838* 0.0018 3.9856* 0.0024 3.9852* 0.0001
Price -0.7018* 0.0006 -0.7103* 0.0012 -0.6997* 0.0008
Network Size 0.0155* 0.0002 0.0150* 0.0002 0.0040* 0.0000
Promotion 0.0286* 0.0002 0.0292* 0.0002 0.0332* 0.0000
Organic 0.3316* 0.0007 0.3189* 0.0013 0.3307* 0.0003
Fruit -0.0040 0.0044 -0.0030 0.0042 -0.0039 0.0043
Vegetable -0.0170* 0.0070 -0.0165* 0.0065 -0.0170* 0.0067
Small -0.8517* 0.0007 -0.8613* 0.0022 -0.8520* 0.0003
Medium -0.5828* 0.0020 -0.5758* 0.0019 -0.5820* 0.0011
Large -0.2569* 0.0005 -0.2537* 0.0015 -0.2565* 0.0003
Lambda(s) 0.0351* 0.0000
Price Control 0.4886* 0.0003 -0.0149* 0.0000
Network Control 0.4986* 0.0011 0.0099* 0.0001
T 0.0054* 0.0008 0.0059* 0.0003 0.0455* 0.0000
Q 6.4870* 0.0059 6.4870* 0.0088 6.4870* 0.0001
LLF -540739 -558033 -542233
AIC 5.6130 5.793 5.629
Note: Model 1 = Logit / NB-P model without controls, �xed parameters.

Model 2 = Logit / NB-P model with controls, �xed parameters.

Model 3 = Logit / NB-P model with controls, random parameters
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Table 4. Pricing and Platform Size Model Estimates
Model 1 Model 2 Model 3

Variable Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.

Network Size Model
Constant 4.3560* 0.0577 4.3570* 0.0613 4.0172* 0.0324
Marginal Network Value 0.2627* 0.1180 0.2580* 0.1143 0.5517* 0.1984
Retail Margin Model

Constant 3.0186* 0.2279 2.7757* 0.2132 2.4422* 0.3821
Fruit Price -1.0351* 0.1513 -0.9000* 0.1507 -0.5052* 0.2282
Veg Price -0.1452* 0.0738 -0.0824 0.0680 -0.4967* 0.1206
Retail Wage 0.7122* 0.0751 0.6470* 0.0848 0.9139* 0.0856
Box Price -0.8222* 0.0709 -0.7138* 0.0802 -0.8702* 0.0716
Utility Price -0.2352 0.2121 -0.3042 0.3243 -0.8032* 0.1772
Fuel Price -0.2357* 0.0253 -0.2003* 0.0385 -0.2260* 0.0211
Conduct Parameter 0.0926* 0.0470 0.0897* 0.0452 0.5519* 0.1769
R2 / LLF / G 0.261 706.094 263.691
R2 Eq. 2 0.007
Note: Model 1 is independent equations. Model 2 is NLSUR with no endogeneity controls.

Model 3 is GMM with margin- and network-instruments. A single asterisk indicates

signi�cance at 5%.
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Table 5. Counter-Factual Simulation of Indirect Network E¤ects
�N Price Std. Dev. t-ratio Network Std. Dev. t-ratio

100% 1.5968* 0.2855 2.4807 51.2097* 12.2843 12.6246
50% 1.5838 0.2790 1.2460 48.6327* 9.7849 6.8530
0 1.5710 0.2727 46.3802 7.7350

-50% 1.5584 0.2666 -1.2566 44.4179* 6.1383 -7.5409
-100% 1.5459* 0.2607 -2.5234 42.7151* 5.0222 -15.0809
Note: Simulation conducted with estimates in table 4. A single asterisk

indicates signi�cant di¤erence at a 5% level.
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Table 6. Policy Simulations: Subsidizing Ugly Produce
� Price SD t-ratio Network SD t-ratio Volume SD t-ratio

0% 1.5710 0.2727 46.3802 7.7350 17.4204 12.2361
10% 1.6487 0.2731 5.3997 47.3121 0.1401 3.2322 21.2023 13.8297 5.4955
25% 1.7701 0.2509 14.4139 48.5055 0.4859 7.3581 27.9214 16.6419 13.6411
50% 1.9207 0.1886 28.2955 52.8411 8.0226 15.5564 39.7491 23.7332 22.4382
90% 2.1109 0.1566 46.0590 75.3317 3.5339 91.3504 53.6898 31.1292 29.0965
Note: t-ratio compares subsidy to 0% (base case). SD is the standard deviation.

A single asterisk indicates signi�cance at a 5% level.
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Figure 1. Users and Products by Week
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Figure 2. Gross Margin by Items
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